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Abstract

Let (ξi)i∈Z be a stationary Harris recurrent geometrically ergodic Markov chain on a
countably generated state space (E,B). Let f be a bounded and measurable function
from E intoR satisfying the conditionE(f(ξ0)) = 0. In this paper, we obtain the almost
sure strong approximation of the partial sums Sn(f) =

∑n
i=1 f(ξi) by the partial sums

of a sequence of independent and identically distributed Gaussian random variables
with the optimal rate O(logn).
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1 Introduction and main result

This paper focuses on a Komlós-Major-Tusnády type strong approximation for additive
functionals of Markov chains. We first recall the famous Komlós-Major-Tusnády theorem
(1975 and 1976): let (Xi)i>0 be a sequence of independent and identically distributed
(iid) centered real-valued random variables with a finite moment generating function
in a neighborhood of 0. Set σ2 = VarX1 and Sn = X1 + X2 + · · · + Xn. Then one can
construct a standard Brownian motion (Bt)t≥0 in such a way that

P
(

sup
k≤n
|Sk − σBk| ≥ x+ c log n

)
≤ a exp(−bx), (1.1)

where a, b and c are positive constants depending only on the law of X1. From this result,
the almost sure approximation of the partial sum process by a Brownian motion holds
with the rate O(log n). It comes from the Erdös-Rényi law that this result is unimprovable.
This result has been later extended to the multivariate case by Einmahl (1989), who
obtained the rate O((log n)2) in the almost sure approximation of partial sums of random
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Strong approximation for Markov chains

vectors with finite moment generating function in a neighborhood of 0 by Gaussian
partial sums. Next Zaitsev (1998) removed the extra logarithmic factor and obtained
(1.1) in the case of random vectors. We refer to Götze and Zaitsev (2009) for a detailed
review of the results on this subject.

We now come to the framework of this paper. Let (ξn) be an irreducible and aperiodic
Harris recurrent Markov chain on a countably generated measurable state space (E,B).
We will consider only chains which are positive recurrent and π will exclusively denote
the (unique) invariant probability measure of (ξn). In that case the transition probability
P (x, .) of the Markov chain satisfies the following minorization condition: there exists
some positive integer m, some measurable function h with values in [0, 1] with π(h) > 0,
and some probability measure ν on E, such that

Pm(x,A) ≥ h(x)ν(A) . (1.2)

In order to avoid additional difficulties, we will assume throughout the paper that the
above condition holds true with m = 1. Let then Q(x, ·) be the sub-stochastic kernel
defined by

Q = P − h⊗ ν . (1.3)

Under assumption (1.2), proceeding as in Nummelin (1984), we can define an extended
chain (ξ̄n, Un) in E × [0, 1] as follows. At time 0, U0 is independent of ξ̄0 and has the
uniform distribution over [0, 1]; for any nonnegative integer n,

P(ξ̄n+1 ∈ A | ξ̄n = x, Un = y) = 1y≤h(x)ν(A) + 1y>h(x)
Q(x,A)

1− h(x)
:= P̄ ((x, y), A) (1.4)

and Un+1 is independent of (ξ̄n+1, ξ̄n, Un) and has the uniform distribution over [0, 1].
Then the kernel P̃ of the extended chain is equal to P̄ ⊗ λ (here λ denotes the Lebesgue
measure on [0, 1] and the notation µ⊗ ν means here and after the tensor product of the
measures µ and ν ). This extended chain is also an irreducible and aperiodic Harris
recurrent chain, with unique invariant probability measure π ⊗ λ. It can easily be seen
that (ξ̄n) is an homogenous Markov chain with transition probability P (x, .). Define now
the set C in E × [0, 1] by

C = {(x, y) ∈ E × [0, 1] such that y ≤ h(x)}. (1.5)

For any (x, y) in C, P(ξ̄n+1 ∈ A | ξ̄n = x, Un = y) = ν(A). Since π ⊗ λ(C) = π(h) > 0, the
set C is an atom of the extended chain, and it can be proven that this atom is recurrent.

Everywhere in the paper, we shall use the following notations: Pπ (respectively PC)
will denote the probability measure on the underlying space such that ξ̄0 ∼ π (resp.
(ξ̄0, U0) ∈ C), and Eπ(·) will denote the Pπ-expectation (resp. EC(·) the PC -expectation).

Define now the stopping times (Tk)k≥0 by

T0 = inf{n ≥ 1 : Un ≤ h(ξ̄n)} and Tk = inf{n > Tk−1 : Un ≤ h(ξ̄n)} for k ≥ 1 , (1.6)

and the return times (τk)k>0 by
τk = Tk − Tk−1 . (1.7)

Then T0 is almost surely finite and the return times τk are iid and integrable. Moreover,
from the strong Markov property, it is well known that the finite random sequences
(ξ̄Tk+1, . . . , ξ̄Tk+1

) (k ≥ 0) are identically distributed and independent. Their common law
is the law of (ξ̄1, . . . , ξ̄T0

) under the probability PC . Let then

Sn(f) =

n∑
k=1

f(ξ̄k) . (1.8)
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From the above property, for any measurable function f from E into R, the random
vectors (τk, STk(f) − STk−1

(f))k>0 are independent and identically distributed. This
fact was used in Csáki and Csörgö (1995) to get strong approximation results for the
partial sums Sn(f) under moment assumptions on the return times τk. Let us recall
their result. Assume that the chain satisfies (1.2) with m = 1. If the random variables
STk(|f |)− STk−1

(|f |) have a finite moment of order p for some p in ]2, 4] and if the return

times τk satisfy E(τ
p/2
k ) <∞, then one can construct a standard Wiener process (Wt)t≥0

such that

Sn(f)−nπ(f)−σf Wn = O(an) a.s., with σ2
f = lim

n

1

n
VarSn(f) and an = n1/p log n . (1.9)

Note that the above result holds true for any bounded function f only if the return times
have a finite moment of order p. The proof of Csáki and Csörgö (1995) is based on the
regeneration properties of the chain, on the Skorohod embedding and on an application
of the results of Komlós, Major and Tusnády (1975) to the partial sums of the iid random
variables STk+1

(f) − STk(f), k > 0. Since the moments of the return times essentially
play the same role as the moments of the random variables in the case of iid random
variables, it seems clear that such a result is optimal, up to a possible power of log n.
However this result has not been extended to the case p > 4. By contrast the strong
approximation of the renewal process associated to the chain holds with the optimal rate
O(n1/p) if E(τp1 ) <∞, for any p > 2. Furthermore, if the chain is geometrically ergodic,
then the strong approximation of the renewal process holds with the rate O(log n) (see
Corollaries 3.1 and 4.2 in Csörgö, Horváth, and Steinebach (1987) for these results).

We now recall some possible methods to get strong approximation results. Some of
these methods are based on the ergodicity properties of the Markov chain. For positive
measures µ and ν, let ‖µ− ν‖ denote the total variation of µ− ν. Set

βn =

∫
E

‖Pn(x, .)− π‖dπ(x) . (1.10)

The coefficients βn are called absolute regularity (or β-mixing) coefficients of the chain.
Then, as proved by Bolthausen (1980 and 1982), for any p > 1,

EC(T p0 ) <∞ if and only if
∑
n>0

np−2βn <∞ . (1.11)

The second part of (1.11) is also called a weak dependence condition. Under a mixing
condition which is more restrictive than (1.11) in the context of Markov chains, Shao
and Lu (1987) obtained (1.9) with the rate an = O(n1/p(log n)c) for some c > 1 for
p in ]2, 4]. Their proof was based on the so-called Skorohod embedding. Recently,
using a direct method based on constructions via quantile transformations, as in Major
(1976), Merlevède and Rio (2012) improved the results of Shao and Lu (1987). For p
in ]2, 3[, they obtained (1.9) under the ergodicity condition (1.11) with the better rate
an = n1/p(log n)(p−2)/(2p). The results of Merlevède and Rio (2012) involve more general
weak dependence coefficients than the coefficients βn, so that their result applies also
to non irreducible Markov chains and to some dynamical systems. In the context of
dynamical systems, Gouëzel (2010) used spectral methods to construct coupling with
independent random variables and applied then strong approximation results for partial
sums of independent random vectors to get rates of the order of n1/p for p in ]2, 4[ in
(1.9). The techniques used in these papers are suitable for Markov chains or non trivial
dynamical systems, including the Liverani-Saussol-Vaienti map. Nevertheless the applied
tools limit the accuracy to the rate O(n1/4).
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Recently, for stationary processes that are functions of iid innovations, Berkes, Liu and
Wu (2014) obtained (1.9) with the rate O(n1/p) for any p > 2 provided that the innovations
have finite moments of order p and the process has a fast enough arithmetically decay of
some coupling coefficients. Moreover they give some application to nonlinear time series
(see Example 2.2). However their condition (2.15) is too restrictive (even for functional
autoregressive processes) and they do not give estimates of their coupling coefficients
for more general Markov chains.

In this paper we are interested in general Harris recurrent Markov chains. Our aim
is to obtain the optimal rate O(log n). Recall that, in the dependent case the rate o(n1/p)

has never been surpassed. In order to get better rates of approximation, we will assume
throughout the paper that the Markov chain is geometrically ergodic, which means that
(see Theorem 2.1 in Nummelin and Tuominen (1982))

βn = O(ρn) for some real ρ with 0 < ρ < 1, (1.12)

where βn is defined in (1.10). Note now that P(τ1 > n) = PC(T0 > n) = νQn(1) and in
addition Pπ(T0 > n) = πQn+1(1) + νQn(1)π(h) where Q is defined by (1.3). Therefore,
condition (1.12) together with Corollary 2.4 and Lemma 2.8 in Nummelin and Tuominen
(1982) imply that both P(τ1 > n) and Pπ(T0 > n) decrease exponentially fast. Hence, if
(1.12) holds there exists a positive real δ such that

E
(
etτ1
)
<∞ and Eπ

(
etT0

)
<∞ for any |t| ≤ δ . (1.13)

We will use this fact together with a strategy inherited from the papers of Bolthausen
(1980 and 1982) to get the optimal rates of strong approximation in that case: we will
apply a strong approximation result of Zaitsev (1998) to the multidimensional partial sum
process (Tn − T0, STn(f)− ST0

(f)) rather than the initial theorems of Komlós, Major and
Tusnády (1975 and 1976). This method enables us to get the optimal rate of convergence.
Let us now give our main result.

Theorem 1.1. Let (ξn) be a stationary, irreducible and aperiodic Harris positive re-
current Markov chain on E, with invariant probability measure π. Assume that the
chain satisfies (1.2) with m = 1 and the geometric ergodicity condition (1.12). Let g be
any bounded measurable function from E × [0, 1] to R such that π ⊗ λ(g) = 0 and let
S̄n(g) =

∑n
k=1 g(ξ̄k, Uk). Let P̃ = P̄ ⊗ λ. If

σ2
g = π ⊗ λ(g2) + 2

∑
n>0

π ⊗ λ(gP̃ng) > 0 ,

then there exists a standard Wiener process (Wt)t≥0 and positive constants a, b and c

depending on g and on the transition probability P (x, ·) such that, for any positive real x
and any integer n ≥ 2,

Pπ

(
sup
k≤n

∣∣S̄k(g)− σgWk

∣∣ ≥ c log n+ x
)
≤ a exp(−bx) . (1.14)

We now give in a separate corollary the application of this result to additive function-
als of the initial chain. The proof, being immediate, will be omitted.

Corollary 1.1. Let (ξn) be a stationary, irreducible and aperiodic Harris positive recur-
rent Markov chain on E, with invariant probability measure π. Assume that the chain
satisfies (1.2) with m = 1 and the geometric ergodicity condition (1.12). Let f be any
bounded measurable function from E to R such that π(f) = 0 and let Sn(f) =

∑n
k=1 f(ξk).

If
σ2
f = π(f2) + 2

∑
n>0

π(fPnf) > 0 ,
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then there exists a standard Wiener process (Wt)t≥0 and positive constants a, b and c

depending on f and on the transition probability P (x, ·) such that, for any positive real x
and any integer n ≥ 2,

Pπ

(
sup
k≤n

∣∣Sk(f)− σfWk

∣∣ ≥ c log n+ x
)
≤ a exp(−bx) . (1.15)

Remark 1.1. Corollary 1.1 may be generalized to the nonstationary case. Let µ be any
law on E such that ∫

E

‖Pn(x, .)− π‖dµ(x) = O(rn) for some r < 1.

Corollary 2.4 and Lemma 2.8 in Nummelin and Tuominen (1982) ensure that Pµ(T0 > n)

decreases exponentially fast. Consequently the proof of Theorem 1.1 extends to the
Markov chain (ξn) with transition probability P and initial law µ without modification.

2 Proof of Theorem 1.1

Before proving our main result, we give an idea of the proof. The constants v, ṽ, λ
and γ appearing below will be specified in Subsection 2.3. For any i ≥ 1, let

Xi =

Ti∑
`=Ti−1+1

g(ξ̄`, U`) .

The random variables (Xi, τi)i>0 are independent and identically distributed. Let then
α be the unique real such that Cov(Xk − ατk, τk) = 0. Applying the multidimensional
extension of the results of Komlós Major and Tusnády (1976), which is due to Zaitsev
(1998), we obtain that there exist two independent standard Brownian motions (Bt)t≥0

and (B̃t)t≥0 such that

S̄Tn(g)− α(Tn − nE(τ1))− vBn = O(log n) a.s. and Tn − nE(τ1)− ṽB̃n = O(log n) a.s.

Next, using the Komlós-Major-Tusnády strong approximation theorem, one can construct
a Poisson process N with parameter λ from B̃ in such a way that

nE(τ1) + ṽB̃n − γN(n) = O(log n) a.s.

For this Poisson process,

S̄γN(n)(g)− αγN(n) + αnE(τ1)− vBn = O(log n) a.s.

The processes (Bt)t≥0 and (N(t))t≥0 appearing here are independent. From the above
result one can deduce that

S̄n(g) = vBN−1(n/γ) + αn− αE(τ1)N−1(n/γ) +O(log n) a.s. (2.1)

If v = 0, which corresponds to the case of renewal processes, then

S̄n(g) = αn− αE(τ1)N−1(n/γ) +O(log n) a.s.

Up to some multiplicative constant, the process on right hand is a partial sum process
associated to iid random variables with exponential law. Hence, using the Komlós-Major-
Tusnády strong approximation theorem again, one can construct a Brownian motion W̃
such that

αn− αE(τ1)N−1(n/γ) = W̃n +O(log n) a.s. , (2.2)
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which leads to the expected result. Notice that the Brownian motion W̃ depends only on
the Poisson process N and on some auxiliary atomless random variables independent of
the σ-field generated by the processes B and N .

If v 6= 0 and α = 0, (2.1) ensures that

S̄n(g) = vBN−1(n/γ) +O(log n) a.s.

As noted by Csörgö, Deheuvels and Horváth (1987), since the renewal process of the
Poisson process is the partial sum process associated to independent random variables
with exponential law, the above compound process is a partial sum process associated to
iid random variables with a finite Laplace transform, and consequently, one can construct
a Brownian motion W such that

BN−1(n/γ) −Wn = O(log n) a.s. ,

which leads to the expected result. However the Brownian motion W depends on N . It
follows that, in the case α 6= 0 and v 6= 0, the so constructed processes W and W̃ are not
independent. Then the construction of Csörgö, Deheuvels and Horváth (1987) cannot be
used to prove our theorem.

In order to perform the exact rate in the case α 6= 0, it will be necessary to construct
a Brownian motion W ∗ independent of N in such a way that

Bn −W ∗γN(n) = O(log n) a.s. (2.3)

Since W ∗ is independent of N , it will also be independent of W̃ . Then, using (2.1) and
(2.2), we will get that

S̄n(g) = W ∗n + W̃n +O(log n) a.s.

which will imply our strong approximation theorem. The proof of (2.3) will be done in
Subsection 2.2. Then, starting from this fundamental result, we will prove the main
theorem.

2.1 Some technical lemmas

Lemma below follows from the classical Cramér-Chernoff calculation (see also, for
instance, Lemma 1 in Bretagnolle and Massart (1989)).

Lemma 2.1. Let Z be a real-valued random variable with Poisson distribution of param-
eter m. Then, for any positive x and any sign ε, we have

P
(
ε(Z −m) > x

)
≤ exp

(
−mh(εx/m)

)
.

where
h(t) = (1 + t) log(1 + t)− t for t > −1 and h(t) = +∞ for t ≤ −1. (2.4)

Next lemma follows once again from the classical Cramér-Chernoff calculation to-
gether with the Doob maximal inequality.

Lemma 2.2. Let (N(t) : t ≥ 0) be a real-valued homogeneous Poisson process of
parameter m. Then, for any positive reals x and s, we have

P
(

sup
t≤s
|N(t)− tm| > x

)
≤ exp

(
−msh(x/(ms))

)
+ exp

(
−msh(−x/(ms))

)
.

where h(·) is defined by (2.4).

Lemma 2.3 below is due to Tusnády in his Phd-thesis (see Bretagnolle and Massart
(1989) for a complete proof of it).
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Lemma 2.3. Let ξ be a random variable with law N (0, 1), Φ its distribution function
and Φm the distribution function of a Binomial law B(m, 1/2). Let Bm = 2Φ−1

m (Φ(ξ))−m
where Φ−1

m is the generalized inverse of Φm. Then the following inequality holds:

|Bm| ≤ 2 + |ξ|
√
m.

2.2 A fundamental lemma

The main new tool for proving Theorem 1.1 is the lemma below.

Lemma 2.4. Let (Bt)t≥0 be a standard Brownian motion on the line and {N(t) : t ≥ 0} be
a Poisson process with parameter λ > 0, independent of (Bt)t≥0. Then one can construct
a standard Brownian process (Wt)t≥0 independent of the Poisson process N(·) and such
that, for any positive integer n ≥ 2 and any positive real x,

P
(

sup
k≤n

∣∣Bk − 1√
λ
WN(k)

∣∣ ≥ C log n+ x
)
≤ A exp(−Bx) ,

where A, B and C are positive constants depending only on λ. Furthermore (Wt)t≥0 may
be constructed from the processes (Bt)t≥0, N(·) and some auxiliary atomless random
variable δ independent of the σ-field generated by the processes (Bt)t≥0 and N(·).
Proof. For j ∈ Z and k ∈ N, let

ẽj,k = 2−j/2
(
1]k2j ,(k+ 1

2 )2j ] − 1](k+ 1
2 )2j ,(k+1)2j ]

)
,

and

Yj,k =

∫ ∞
0

ẽj,k(t)dB(t) = 2−j/2
(
2B(k+ 1

2 )2j −Bk2j −B(k+1)2j
)
.

Note that (ẽj,k)j∈Z,k≥0 is a total orthonormal system of `2(R). Hence for any t ∈ R+, Bt
can be written as

Bt =
∑
j∈Z

∑
k≥0

(∫ t

0

ẽj,k(t)dt
)
Yj,k . (2.5)

For any j ∈ Z and k ∈ N such that N(k2j) < N((k + 1
2 )2j) < N((k + 1)2j), let

f̃j,k = c
−1/2
j,k

(
bj,k1]N(k2j),N((k+ 1

2 )2j)] − aj,k1]N((k+ 1
2 )2j),N((k+1)2j)]

)
,

where

aj,k = N((k +
1

2
)2j)−N(k2j) , bj,k = N((k + 1)2j)−N((k +

1

2
)2j) ,

and
cj,k = aj,kbj,k(aj,k + bj,k) .

For j ∈ Z, let Ej = {k ∈ N : N(k2j) < N((k + 1
2 )2j) < N((k + 1)2j)}, and notice that

(f̃j,k)j∈Z,k∈Ej is an orthonormal system whose closure contains the vectors 1]0,N(t)] for

t ∈ R+ and then the vectors 1]0,`] for ` ∈ N∗. With the convention f̃j,k = 0 if k /∈ Ej , we
then set

W` =
∑
j∈Z

∑
k≥0

(∫ `

0

f̃j,k(t)dt
)
Yj,k for any ` ∈ N∗ and W0 = 0 . (2.6)

Since conditionally to N(·), (f̃j,k)j∈Z,k∈Ej is an orthonormal system and (Yj,k) is a
sequence of iid standard Gaussian random variables, independent of N(·), one can
easily check that, conditionally to N(·), (W`)`≥0 is a Gaussian sequence such that
Cov(W`,Wm) = ` ∧m. Therefore this Gaussian sequence is independent of the Poisson
process N(·). By the Skorohod embedding theorem, there exists a standard Wiener

EJP 20 (2015), paper 14.
Page 7/27

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-3746
http://ejp.ejpecp.org/


Strong approximation for Markov chains

process (Wt)t which coincides with the Gaussian sequence (W`) at integer values. Fur-
thermore this Wiener process can be constructed from the Gaussian sequence and
an auxiliary atomless random variable δ independent of the σ-field generated by the
processes (Bt)t≥0 and N(·).

Let c1 and c2 be two positive reals such that

c1 ≥ c̃1 := max
(

8 +
1765(2 +

√
2)2(1 +

√
2)2

λ
,

1656

λ2(log 2)2

)
, (2.7)

and

c2 ≥ c̃2 :=
1765(2 +

√
2)2

(
√

2− 1)2
. (2.8)

Let n0 be the smallest integer such that n0 ≥ c1 and

n0 − c1 log(n0)− c2 ≥ 0 . (2.9)

The lemma will be proven if we can show that there exist positive constants a and b

depending only on λ, such that for any n ≥ max(25, n0),

P
(

sup
k≤n
|Bk − λ−1/2WN(k)| ≥ 3c1 log n+ 3c2x

)
≤ ae−bx . (2.10)

Indeed, for any integer n in [2,max(25, n0)], it can be easily shown that the conclusion
of the lemma holds. From now on, n is a positive integer such that n ≥ max(25, n0). To
prove (2.10), we first define j0 as the smallest integer such that

2j0 ≥ c1 log n+ c2x , (2.11)

where c1 and c2 are positive reals satisfying (2.7) and (2.8) respectively. Now, let K be
the integer such that 2K−1 + 1 < n ≤ 2K . Notice that

P
(

sup
k≤n
|Bk − λ−1/2WN(k)| ≥ 3c1 log n+ 3c2x

)
≤ P

(
sup

1≤`≤2K−j0

∣∣B`2j0 − λ−1/2WN(`2j0 )

∣∣ ≥ c1 log n+ c2x
)

+ P
(

sup
0≤`≤2K−j0−1

sup
`2j0<k≤(`+1)2j0

|Bk −B`2j0 | ≥ c1 log n+ c2x
)

+ P
(

sup
0≤`≤2K−j0−1

sup
`2j0<k≤(`+1)2j0

|WN(k) −WN(`2j0 )| ≥ λ1/2(c1 log n+ c2x)
)
. (2.12)

But, by Lévy’s inequality,

P
(

sup
0≤`≤2K−j0−1

sup
`2j0<k≤(`+1)2j0

|Bk −B`2j0 | ≥ c1 log n+ c2x
)

≤
2K−j0−1∑
`=0

P
(

sup
`2j0<k≤(`+1)2j0

|Bk −B`2j0 | ≥ c1 log n+ c2x
)

≤ 2K−j0+1P
(
|B2j0 | ≥ c1 log n+ c2x

)
≤ 2K−j0+2

√
2π

exp(−2−(j0+1)(c1 log n+ c2x)2) .

Using the definition (2.11) of j0, it follows that

P
(

sup
0≤`≤2K−j0−1

sup
`2j0<k≤(`+1)2j0

|Bk −B`2j0 | ≥ c1 log n+ c2x
)

≤ 23

√
2π
× n1−c1/4

(c1 log n+ c2x)3/2
exp(−c2x/4) . (2.13)
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Next,

P
(

sup
0≤`≤2K−j0−1

sup
`2j0<k≤(`+1)2j0

|WN(k) −WN(`2j0 )| ≥ λ1/2(c1 log n+ c2x)
)

≤
2K−j0−1∑
`=0

P
(

sup
`2j0<k≤(`+1)2j0

|WN(k) −WN(`2j0 )| ≥ λ1/2(c1 log n+ c2x)
)

≤ 2K−j0P
(

sup
0<t≤λ2j0+1

|Wt| ≥ λ1/2(c1 log n+ c2x)
)

+

2K−j0−1∑
`=0

P
(

sup
`2j0<k≤(`+1)2j0

|N(k)−N(`2j0)| ≥ λ2j0+1
)
.

Using once again Lévy’s inequality and the definition (2.11) of j0, we get

2K−j0P
(

sup
0<t≤λ2j0+1

|Wt| ≥ λ1/2(c1 log n+ c2x)
)

≤ 2K−j0+1 21+j0/2

√
π(c1 log n+ c2x)

exp
(
− (c1 log n+ c2x)2

2j0+2

)
≤ 23

√
π
× n1−c1/8

(c1 log n+ c2x)3/2
exp(−c2x/8) .

On another hand, by Lemma 2.2,

P
(

sup
1≤k≤2j0

N(k) ≥ λ2j0+1
)
≤ P

(
sup

1≤k≤2j0
|N(k)− kλ| ≥ λ2j0

)
≤ exp

(
− λ2j0h(1)

)
.

Hence, by using (2.11),

2K−j0P
(

sup
1≤k≤2j0

N(k) ≥ λ2j0+1
)
≤ 2

n1−λc1/3

c1 log n+ c2x
exp(−λc2x/3) .

So, overall,

P
(

sup
0≤`≤2K−j0−1

sup
`2j0<k≤(`+1)2j0

|WN(k) −WN(`2j0 )| ≥ λ1/2(c1 log n+ c2x)
)

≤ 23

√
π
× n1−c1/8

c1 log n+ c2x
exp(−c2x/8) + 2

n1−λc1/3

c1 log n+ c2x
exp(−λc2x/3) . (2.14)

Therefore, starting from (2.12) and considering the upper bounds (2.13) and (2.14), we
derive that to prove the lemma, it suffices to show that there exist positive constants A1

and B1 depending only on λ, such that for any n ≥ max(25, n0),

P
(

sup
1≤`≤2K−j0

∣∣B`2j0 − λ−1/2WN(`2j0 )

∣∣ ≥ c1 log n+ c2x
)
≤ A1 exp(−B1x) . (2.15)

In the rest of the proof, we shall prove the inequality above.
Taking into account (2.5) and (2.6), we first write that, for any ` ∈ N∗,

B`2j0 − λ−1/2WN(`2j0 ) =
∑
j≥j0

∑
k≥0

(∫ `2j0

0

ẽj,k(t)dt− λ−1/2

∫ N(`2j0 )

0

f̃j,k(t)dt
)
Yj,k .

Notice that if `2j0 /∈]k2j , (k + 1)2j [ then∫ `2j0

0

ẽj,k(t)dt =

∫ N(`2j0 )

0

f̃j,k(t)dt = 0 .
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Therefore setting
`j = [`2j0−j ] ,

we get

B`2j0 − λ−1/2WN(`2j0 ) =
∑
j≥j0

(∫ `2j0

0

ẽj,`j (t)dt− λ−1/2

∫ N(`2j0 )

0

f̃j,`j (t)dt
)
Yj,k .

Setting

tj =
`2j0 − `j2j

2j
,

this leads to
B`2j0 − λ−1/2WN(`2j0 ) =

∑
j≥j0

Ũj,kYj,k +
∑
j≥j0

Ṽj,kYj,k ,

where Ũj,k = Uj,`j1tj∈]0,1/2] with

Uj,`j = 2j/2tj − λ−1/2 bj,`j√
cj,`j

(
N(`2j0)−N(`j2

j)
)

(2.16)

and Ṽj,k = Vj,`j1tj∈]1/2,1[ with

Vj,`j = 2j/2(1− tj)− λ−1/2 aj,`j bj,`j√
cj,`j

+ λ−1/2 aj,`j√
cj,`j

(
N(`2j0)−N((`j +

1

2
)2j)

)
. (2.17)

It follows that

P
(

sup
1≤`≤2K−j0

∣∣B`2j0 − λ−1/2WN(`2j0 )

∣∣ ≥ c1 log n+ c2x
)

≤
K∑
k=j0

P
(

sup
` : 2k≤`2j0≤2k+1−1

∣∣B`2j0 − λ−1/2WN(`2j0 )

∣∣ ≥ c1 log n+ c2x
)

≤
K∑
k=j0

2k+1−j0−1∑
`=2k−j0

P
(∣∣∣ ∑

j≥j0

(
Ũj,`j + Ṽj,`j

)
Yj,`j

∣∣∣ ≥ c1 log n+ c2x
)
.

Recall now that (Yj,k)j>0,k≥1 is a sequence of standard centered Gaussian random
variables that are mutually independent. In addition this sequence is independent of
(N(t), t ≥ 0). Therefore,

P
(∣∣∣ ∑

j≥j0

(
Ũj,`j + Ṽj,`j

)
Yj,`j

∣∣∣ ≥ c1 log n+ c2x
)

≤ P
(∣∣∣ ∑

j≥j0

(
Ũj,`j + Ṽj,`j

)
Yj,`j

∣∣∣ ≥ c1 log n+ c2x,
∑
j≥j0

(
Ũj,`j + Ṽj,`j

)2
< c1 log n+ c2x

)
+ P

(∑
j≥j0

(
Ũj,`j + Ṽj,`j

)2 ≥ c1 log n+ c2x
)

≤ 2(2π)−1/2

√
c1 log n+ c2x

e−(c1 logn+c2x)/2 + P
(∑
j≥j0

(
Ũj,`j + Ṽj,`j

)2 ≥ c1 log n+ c2x
)
.

So, overall, by using (2.11) and the fact that 2K ≤ 2n,

P
(

sup
1≤`≤2K−j0

∣∣B`2j0 − λ−1/2WN(`2j0 )

∣∣ ≥ c1 log n+ c2x
)
≤ 8(2π)−1/2n1−c1/2

(c1 log n+ c2x)3/2
e−c2x/2

+

K∑
k=j0

2k+1−j0−1∑
`=2k−j0

P
(∑
j≥j0

(
Ũj,`j + Ṽj,`j

)2 ≥ c1 log n+ c2x
)
. (2.18)
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Let now
Θ`,j0 = Θa,`,j0 ∩Θb,`,j0 , (2.19)

where

Θa,`,j0 = {aj,`j ≤
3

2
(λ2j−1) for all j ≥ j0} ∩ {aj,`j ≥

1

2
(λ2j−1) for all j ≥ j0} ,

and

Θb,`,j0 = {bj,`j ≤
3

2
(λ2j−1) for all j ≥ j0} ∩ {bj,`j ≥

1

2
(λ2j−1) for all j ≥ j0} .

We have

P(Θc
a,`,j0) ≤

∑
j≥j0

P
(
aj,`j >

3

2
(λ2j−1)

)
+
∑
j≥j0

P
(
aj,`j <

1

2
(λ2j−1)

)
.

Hence, by Lemma 2.1,

P(Θc
a,`,j0) ≤

∑
j≥j0

(
exp

(
− λ2j−1h(2−1)

)
+ exp

(
− λ2j−1h(−2−1)

))
.

Therefore,

P(Θc
a,`,j0) ≤ 2

∑
j≥j0

exp
(
− λ2j/20

)
≤ 80

λ2j0
exp

(
− λ2j0/40

)
.

A similar bound is valid for P(Θc
b,`,j0

). Hence by (2.11),

K∑
k=j0

2k+1−j0−1∑
`=2k−j0

P(Θc
`,j0) ≤ 5× 27

λ(c1 log n+ c2x)2
n1−λc1/40 exp(−λc2x/40) . (2.20)

Starting from (2.18) and taking into account the upper bound (2.20), we infer that
to prove (2.15) and then the lemma, it suffices to show that there exist two positive
constants A2 and B2 such that, for any n ≥ max(25, n0),

K∑
k=j0

2k+1−j0−1∑
`=2k−j0

P
(∑
j≥j0

(
Ũj,`j + Ṽj,`j

)2 ≥ c1 log n+ c2x,Θ`,j0

)
≤ A2 exp(−B2x) , (2.21)

for any c1 ≥ c̃1 and any c2 ≥ c̃2 where c̃1 and c̃2 are defined in (2.7) and (2.8) respectively.
To prove the inequality (2.21), we first notice that, by definition of Ũj,`j and Ṽj,`j ,∑

j≥j0

(
Ũj,`j + Ṽj,`j

)2
=
∑
j≥j0

Ũ2
j,`j +

∑
j≥j0

Ṽ 2
j,`j

and that if k ∈ {j0, . . . ,K} with ` ∈ [2k−j0 , 2k+1−j0 [∩N, then `j = 0 for any j ≥ k+ 1, and
tj ≤ 1/2 for any j ≥ k + 2. Therefore,

∑
j≥j0

(
Ũj,`j + Ṽj,`j

)2
=

2(k+4)∑
j=j0

(
Ũ2
j,`j + Ṽ 2

j,`j

)
+

∑
j≥2(k+4)

U2
j,0 . (2.22)

In the rest of the proof, if it is not specified, k and ` are two integers such that k ∈
{j0, . . . ,K} and ` ∈ [2k−j0 , 2k+1−j0 [. On the set Θ`,j0 ,

|Uj,0| ≤
`2j0

2j/2
+ 3
√

2 2−j/2
N(`2j0)

λ
≤ 2k+1

2j/2
+ 3
√

2 2−j/2
N(2k+1)

λ
,
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leading to ∑
j≥2(k+4)

U2
j,0 ≤

1

24
+ 9

N2(2k+1)

λ222k+5
≤ 1

24
+
N2(2k+1)

λ222k+1
.

Hence, for any y > 2−4,

P
( ∑
j≥2(k+4)

U2
j,0 ≥ y,Θ`,j0

)
≤ P

(N(2k+1)

λ2k+1
≥
√

(y − 2−4)/2
)
.

Next, if
√

(y − 2−4)/2 ≥ 3/2, by Lemma 2.1,

P
(N(2k+1)

λ2k+1
≥
√

(y − 2−4)/2
)
≤ P

(
N(2k+1)− λ2k+1 ≥ λ2k

)
≤ exp(−λ2k+1h(1/2)) ≤ exp(−λ2k/20) ,

and taking into account (2.11),

K∑
k=j0

2k+1−j0−1∑
`=2k−j0

exp(−λ2k/20) ≤ 5× 24

λ(c1 log n+ c2x)2
n1−λc1/40 exp(−λc2x/40) .

So, overall, starting from (2.22) and taking into account the considerations above, we
get, for any n ≥ 10,

K∑
k=j0

2k+1−j0−1∑
`=2k−j0

P
(∑
j≥j0

(
Ũj,`j + Ṽj,`j

)2 ≥ c1 log n+ c2x,Θ`,j0

)

≤
K∑
k=j0

2k+1−j0−1∑
`=2k−j0

P
( 2(k+4)∑

j=j0

(
Ũj,`j + Ṽj,`j

)2 ≥ (c1 − 2) log n+ c2x,Θ`,j0

)
+

5× 24

λ(c1 log n+ c2x)2
n1−λc1/40 exp(−λc2x/40) . (2.23)

We prove now that, for any n ≥ 25 and any c1 ≥ c̃1,

K∑
k=j0

2k+1−j0−1∑
`=2k−j0

P
( 2(k+4)∑

j=j0

(
Ũ2
j,`j + Ṽ 2

j,`j

)
≥ (c1 − 2) log n+ c2x,Θ`,j0

)
≤ 4

c1 log n+ c2x
exp

(
− λc2x

c̃2

)
, (2.24)

where c̃1 and c̃2 are defined in (2.7) and (2.8) respectively. Clearly taking into account the
restriction on c1 and the fact that c2 ≥ c̃2, the inequality (2.21), and then the lemma, will
follow from (2.23) and (2.24). To prove (2.24), we first write the following decomposition

bj,`j√
cj,`j

=
1

2aj,`j

√
4aj,`j bj,`j
aj,`j + bj,`j

=
1

2aj,`j

√
aj,`j + bj,`j −

(aj,`j − bj,`j )2

aj,`j + bj,`j
.

Therefore

1

2aj,`j

√
aj,`j + bj,`j −

1

2aj,`j

|aj,`j − bj,`j |√
aj,`j + bj,`j

≤
bj,`j√
cj,`j

≤ 1

2aj,`j

√
aj,`j + bj,`j . (2.25)

Set, for any j > 0 and k ≥ 0,

Πj,k = N((k + 1)2j)−N(k2j) . (2.26)

EJP 20 (2015), paper 14.
Page 12/27

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-3746
http://ejp.ejpecp.org/


Strong approximation for Markov chains

Recalling the definition (2.16) of Uj,k and noticing that aj,`j + bj,`j = Πj,`j , we then get

|Uj,`j | ≤ tj |λ−1/2Π
1/2
j,`j
− 2j/2|

+ λ−1/2Π
1/2
j,`j

∣∣∣ 1

2aj,`j

(
N(`2j0)−N(`j2

j)
)
− tj

∣∣∣+
|aj,`j − bj,`j |
λ1/2Π

1/2
j,`j

N(`2j0)−N(`j2
j)

2aj,`j
.

Whence, using the fact that, for tj ∈]0, 1/2], N(`2j0)−N(`j2
j) ≤ aj,`j , we infer that

|Ũj,`j | ≤ |λ−1/2Π
1/2
j,`j
− 2j/2|1tj∈]0,1/2] + (2λ1/2Π

1/2
j,`j

)−1|aj,`j − bj,`j |1tj∈]0,1/2]

+ 2j/2
∣∣∣ 1

2aj,`j

(
N(`2j0)−N(`j2

j)
)
− tj

∣∣∣1tj∈]0,1/2] .

Moreover using the fact that, on the set Θ`,j0 , aj,`j ≥ λ2j−2 and Πj,`j = aj,`j + bj,`j ≥
λ2j−1, we get that, on the set Θ`,j0 ,

|Ũj,`j | ≤ |λ−1/2Π
1/2
j,`j
− 2j/2|1tj∈]0,1/2] + 2−(j+1)/2λ−1|aj,`j − bj,`j |1tj∈]0,1/2]

+ 21−j/2λ−1
∣∣N(`2j0)−N(`j2

j)− 2tjaj,`j
∣∣1tj∈]0,1/2] . (2.27)

On another hand, permuting the roles of aj,`j and of bj,`j in (2.25), we get

1

2bj,`j

√
Πj,`j −

1

2bj,`j

|bj,`j − aj,`j |√
Πj,`j

≤
aj,`j√
cj,`j

≤ 1

2bj,`j

√
Πj,`j ,

where we recall that Πj,`j = aj,`j + bj,`j . Since

Vj,`j = 2j/2(1− tj)−
aj,`j√
cj,`j

λ−1/2
(
N((`j + 1)2j)−N(`2j0)

)
,

it follows that for any tj ∈]1/2, 1[,

|Vj,`j | ≤ (1− tj)|λ−1/2Π
1/2
j,`j
−2j/2|+λ−1/2Π

1/2
j,`j

∣∣∣ 1

2bj,`j

(
N((`j +1)2j)−N(`2j0)

)
− (1− tj)

∣∣∣
+
|aj,`j − bj,`j |
λ1/2Π

1/2
j,`j

N((`j + 1)2j)−N(`2j0)

2bj,`j
.

Whence, using the fact that, for tj ∈]1/2, 1[, N((`j + 1)2j)−N(`2j0) ≤ bj,`j , we infer that

|Ṽj,`j | ≤ |λ−1/2Π
1/2
j,`j
− 2j/2|1tj∈]1/2,1[ +

|aj,`j − bj,`j |
2λ1/2Π

1/2
j,`j

1tj∈]1/2,1[

+ 2j/2
∣∣∣ 1

2bj,`j

(
N((`j + 1)2j)−N(`2j0)

)
− (1− tj)

∣∣∣1tj∈]1/2,1[ .

Since, on the set Θ`,j0 , bj,`j ≥ λ2j−2 and Πj,`j ≥ λ2j−1, we get that, on the set Θ`,j0 ,

|Ṽj,`j | ≤ |λ−1/2Π
1/2
j,`j
− 2j/2|1tj∈]1/2,1[ + 2−(j+1)/2λ−1|aj,`j − bj,`j |1tj∈]1/2,1[

+ 21−j/2λ−1
∣∣N((`j + 1)2j)−N(`2j0)

)
− 2(1− tj)bj,`j

∣∣1tj∈]1/2,1[ .

Notice now that

N((`j + 1)2j)−N(`2j0)
)
− 2(1− tj)bj,`j

= N((`j + 1)2j)−N(`j2
j) + 2tj(bj,`j − aj,`j )− 2bj,`j −

(
N(`2j0)−N(`j2

j)− 2tjaj,`j
)

= (2tj − 1)(bj,`j − aj,`j )−
(
N(`2j0)−N(`j2

j)− 2tjaj,`j
)
.
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So, overall, on the set Θ`,j0 ,

|Ṽj,`j | ≤ |λ−1/2Π
1/2
j,`j
− 2j/2|1tj∈]1/2,1[ + 2−(j+1)/2(23/2 + 1)λ−1|aj,`j − bj,`j |1tj∈]1/2,1[

+ 21−j/2λ−1
∣∣N(`2j0)−N(`j2

j)− 2tjaj,`j
∣∣1tj∈]1/2,1[ . (2.28)

Taking into account (2.27) and (2.28), it follows that, on the set Θ`,j0 ,

Ũ2
j,`j + Ṽ 2

j,`j ≤ 3|λ−1/2Π
1/2
j,`j
− 2j/2|2 + 24× λ−2 × 2−j |aj,`j − bj,`j |2

+ 12× λ−2 × 2−j
∣∣N(`2j0)−N(`j2

j)− 2tjaj,`j
∣∣2 .

Therefore, on the set Θ`,j0 ,

2(k+4)∑
j=j0

(
Ũ2
j,`j + Ṽ 2

j,`j

)
≤ 3

2(k+4)∑
j=j0

|λ−1/2Π
1/2
j,`j
− 2j/2|2 + 24× λ−2

2(k+4)∑
j=j0

2−j |aj,`j − bj,`j |2

+ 12× λ−2

2(k+4)∑
j=j0+1

2−j
∣∣N(`2j0)−N(`j2

j)− 2tjaj,`j
∣∣2 , (2.29)

the last sum starting at j = j0 + 1 since `j02j0 = `2j0 and tj0 = 0.
To handle the terms in the inequality above we shall introduce the following double

indexed sequence (ξj,k)j>0,k≥0 of Gaussian random variables. Let Φ be the distribution
function of a standard real-valued Gaussian random variable and Φn be the distribution
function of the Binomial law B(n, 1/2). Let (δj,k)j>0,k≥0 be a sequence of iid random
variables with uniform law on [0, 1], independent of the Poisson process N(·). For any
j ∈ N∗ and k ∈ N, let

ξj,k = Φ−1
(

ΦΠj,k(Πj−1,2k − 0) + δj,k
(
ΦΠj,k(Πj−1,2k)− ΦΠj,k(Πj−1,2k − 0)

))
, (2.30)

where we recall that the Πj,k’s have been defined in (2.26). Note that, conditionally
to the sigma algebra, say Fj , generated by the random variables {Πj,k : k ≥ 0} and
{δi,k : i < j, k ≥ 0} the random variables (ξj,k)k≥0 are independent with law N (0, 1). By
recurrence, it follows that for any positive integer m0, (ξj,k)j≤m0,k≥0 is a sequence of
independent random variables with law N (0, 1), and therefore (ξj,k)j>0,k≥0 is a sequence
of iid standard real-valued Gaussian random variables. Moreover according to Lemma
2.3, ∣∣Πj−1,2k −

1

2
Πj,k

∣∣ ≤ 1 +
1

2
Π

1/2
j,k |ξj,k| . (2.31)

Since limm→∞ 2−mΠm,`m = λ almost surely, we have

2(k+4)∑
j=j0

|λ−1/2Π
1/2
j,`j
− 2j/2|2 = λ−1

2(k+4)∑
j=j0

(∑
m≥j

(
2
j−m

2 Π
1/2
m,`m

− 2
j−m−1

2 Π
1/2
m+1,`m+1

))2

.

But

Π
1/2
m,`m

− 2−1/2Π
1/2
m+1,`m+1

=
Πm,`m − 2−1Πm+1,`m+1

Π
1/2
m,`m

+ 2−1/2Π
1/2
m+1,`m+1

. (2.32)

Notice now that `m+1 = [`m/2]. Therefore, setting

Π̃j,k = Πj−1,2k −
1

2
Πj,k , (2.33)

we have
Πm,`m − 2−1Πm+1,`m+1

= (−1)`mΠ̃m+1,`m+1
. (2.34)
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In addition, recall that on the set Θ`,j0 , Πj,`j = aj,`j + bj,`j ≥ λ2j−1. Hence, starting from
(2.32) and using (2.34) and (2.31), we get that, on the set Θ`,j0 ,

∣∣Π1/2
m,`m

− 2−1/2Π
1/2
m+1,`m+1

∣∣ ≤ λ−1/22−(m−1)/2 +
1√
2
|ξm+1,`m+1 | .

Whence, on the set Θ`,j0 ,

2(k+4)∑
j=j0

|λ−1/2Π
1/2
j,`j
− 2j/2|2 ≤ λ−1

2(k+4)∑
j=j0

(∑
m≥j

2
j−m

2

(
λ−1/22−(m−1)/2 +

1√
2
|ξm+1,`m+1

|
))2

= λ−1

2(k+4)∑
j=j0

(2
√

2√
λ

2−j/2 +
1√
2

∑
m≥j

2
j−m

2 |ξm+1,`m+1 |
)2

≤ λ−2 × 2−j0+5 + λ−1

2(k+4)∑
j=j0

∑
i≥j

2
j−i
2

∑
m≥j

2
j−m

2 ξ2
m+1,`m+1

≤ λ−2 × 2−j0+5 + λ−1(2 +
√

2)

2(k+4)∑
j=j0

∑
m≥j

2
j−m

2 ξ2
m+1,`m+1

,

Therefore, on the set Θ`,j0 ,

2(k+4)∑
j=j0

|λ−1/2Π
1/2
j,`j
− 2j/2|2 ≤ λ−2 × 2−j0+5 + λ−1(2 +

√
2)

2(k+4)∑
m=j0

m∑
j=j0

2
j−m

2 ξ2
m+1,`m+1

+ λ−1(2 +
√

2)
∑

m≥2k+9

2(k+4)∑
j=j0

2
j−m

2 ξ2
m+1,`m+1

.

This leads, by taking into account (2.11), to

2(k+4)∑
j=j0

|λ−1/2Π
1/2
j,`j
− 2j/2|21Θ`,j0

≤ 25

λ2(c1 log n+ c2x)
+ λ−1(2 +

√
2)2

2(k+4)∑
m=j0

ξ2
m+1,`m+1

+ λ−1(2 +
√

2)2
∑

m≥2k+9

2k+4

2m/2
ξ2
m+1,`m+1

. (2.35)

On another hand,

|aj,`j − bj,`j |2 = |2aj,`j −Πj,`j |2 = 4
∣∣Πj−1,2`j −

1

2
Πj,`j

∣∣2 .
Therefore by using (2.31) and the fact that on the set Θ`,j0 , Πj,`j ≤ 3λ× 2j−1, we derive

1Θ`,j0

2(k+4)∑
j=j0

2−j |aj,`j − bj,`j |2 ≤ 4

2(k+4)∑
j=j0

(
21−j + 3λ× 2−2ξ2

j,`j

)
,

leading, by taking into account (2.11), to

1Θ`,j0

2(k+4)∑
j=j0

2−j |aj,`j − bj,`j |2 ≤
16

c1 log n+ c2x
+ 3λ

2(k+4)∑
j=j0

ξ2
j,`j . (2.36)

EJP 20 (2015), paper 14.
Page 15/27

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-3746
http://ejp.ejpecp.org/


Strong approximation for Markov chains

To handle now the last term in the right-hand side of (2.29), we first note that
`2j0 = `j02j0 , and write the following decomposition

N(`2j0)−N(`j2
j)−2tjaj,`j =

j∑
m=j0+1

(
N(`m−12m−1)−N(`m2m)−(`m−12m−1−`m2m)

aj,`j
2j−1

)
.

Since `m = [`m−1/2], `m−12m−1 6= `m2m only if `m−1 = 2`m + 1 and in this case
`m−12m−1 − `m2m = 2m−1. Therefore, using the notation (2.26) and that aj,`j = Πj−1,2`j ,
we have

N(`2j0)−N(`j2
j)− 2tjaj,`j

=

j∑
m=j0+1

1`m−12m−1 6=`m2m
(
N((2`m + 1)2m−1)−N(`m2m)− 2m−jaj,`j

)
=

j∑
m=j0+1

1`m−12m−1 6=`m2m

(
Πm−1,2`m −

1

2
Πm,`m +

j−1∑
u=m

1

2u+1−m

(
Πu,`u −

1

2
Πu+1,`u+1

)
+

1

2j−m
(1

2
Πj,`j −Πj−1,2`j

))
.

Using the notation (2.33) and the relation (2.34), we then derive

N(`2j0)−N(`j2
j)− 2tjaj,`j

=

j∑
m=j0+1

1`m−12m−1 6=`m2m

(
Π̃m,`m +

j−1∑
u=m

(−1)`u

2u+1−m Π̃u+1,`u+1 −
1

2j−m
Π̃j,`j

)
.

Therefore by (2.31),

∣∣N(`2j0)−N(`j2
j)− 2tjaj,`j

∣∣
≤

j∑
m=j0+1

1`m−12m−1 6=`m2m

( j∑
u=m

1

2u−m
(
1 +

1

2
Π

1/2
u,`u
|ξu,`u |

)
+

1

2j−m
(
1 +

1

2
Π

1/2
j,`j
|ξj,`j |

))

≤ 2j +

j∑
m=j0+1

j∑
u=m

1

2u−m
Π

1/2
u,`u
|ξu,`u | .

It follows that

1Θ`,j0

2(k+4)∑
j=j0+1

2−j
∣∣N(`2j0)−N(`j2

j)− 2tjaj,`j
∣∣2

≤ 8

2(k+4)∑
j=j0+1

j2

2j
+ 3λ

2(k+4)∑
j=j0+1

1

2j

( j∑
m=j0+1

j∑
u=m

2m

2u/2
|ξu,`u |

)2

,

since on the set Θ`,j0 , Πu,`u = au,`u + bu,`u ≤ 3λ × 2u−1. Hence by taking into account
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(2.11) and by using Cauchy-Schwarz’s inequality,

1Θ`,j0

2(k+4)∑
j=j0+1

2−j
∣∣N(`2j0)−N(`j2

j)− 2tjaj,`j
∣∣2

≤ 32(k + 4)2

c1 log n+ c2x
+ 12λ

2(k+4)∑
j=j0+1

1

2j

( j∑
u=j0+1

2u/2|ξu,`u |
)2

=
32(k + 4)2

c1 log n+ c2x
+ 12λ

2(k+4)∑
j=j0+1

1

2j

j∑
i=j0+1

2i/2
j∑

u=j0+1

2u/2ξ2
u,`u

≤ 32(k + 4)2

c1 log n+ c2x
+ 12(2 +

√
2)λ

2(k+4)∑
j=j0+1

1

2j/2

j∑
u=j0+1

2u/2ξ2
u,`u .

Therefore

1Θ`,j0

2(k+4)∑
j=j0+1

2−j
∣∣N(`2j0)−N(`j2

j)−2tjaj,`j
∣∣2 ≤ 32(k + 4)2

c1 log n+ c2x
+12(2+

√
2)2λ

2(k+4)∑
u=j0+1

ξ2
u,`u .

(2.37)
Hence starting from (2.29) and considering the upper bounds (2.35), (2.36) and (2.37),
we derive

P
( 2(k+4)∑

j=j0

(
Ũ2
j,`j + Ṽ 2

j,`j

)
≥ (c1 − 2) log n+ c2x,Θ`,j0

)

≤ P
(
A4

2(k+4)∑
m=j0−1

ξ2
m+1,`m+1

+A52k
∑

m≥2k+9

2−m/2ξ2
m+1,`m+1

≥ (c1 − 2) log n+ c2x−A3

)
.

where

A3 =
3× 25 + 16× 24

λ2(c1 log n+ c2x)
+

32× 12(k + 4)2

λ2(c1 log n+ c2x)
,

A4 = 3λ−1(24 + (2 +
√

2)2 + (12)2 × (2 +
√

2)2) and A5 = 3λ−1 × 24(2 +
√

2)2 .

Recall that k ≤ K. Hence k < 1 + (log n)/(log 2). Therefore if n ≥ 25, we get

(k + 4)2 <
4

(log 2)2
(log n)2 . (2.38)

Whence, if n ≥ 25,

A3 ≤
(30 + 32× 12)(k + 4)2

λ2(c1 log n+ c2x)
≤ 1656× (log n)2

λ2(log 2)2(c1 log n+ c2x)
≤ 1656× (log n)

λ2c1(log 2)2
.

Therefore if n ≥ 25 and we take c1 such that

c1 ≥ max
(
3,

1656

λ2(log 2)2

)
, (2.39)

we get A3 ≤ log n implying that

P
( 2(k+4)∑
j=j0−1

(
Ũ2
j,`j + Ṽ 2

j,`j

)
≥ (c1 − 2) log n+ c2x,Θ`,j0

)

≤ P
(
A4

2(k+4)∑
m=j0−1

ξ2
m+1,`m+1

+A52k
∑

m≥2k+9

2−m/2ξ2
m+1,`m+1

≥ (c1 − 3) log n+ c2x
)
.

(2.40)
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Notice now that for any 0 < t < (2A4)−1,

E exp
(
A4t

2(k+4)∑
m=j0−1

ξ2
m+1,`m+1

)
=
( 1

1− 2tA4

)k+4−(j0−2)/2

≤ exp
(2tA4(k + 4)

1− 2tA4

)
,

where, for the last inequality, we have used that − log(1− u) ≤ u
1−u for any u ∈ [0, 1[ and

that j0 ≥ 2 since c1 ≥ 3 and n ≥ 4. On another hand, for any 0 < t < (2−7/2A5)−1,

E exp
(
A5t

∑
m≥2k+9

2k−m/2ξ2
m+1,`m+1

)
=

∏
m≥2k+9

( 1

1− 2tA5 × 2k−m/2

)1/2

.

Using once again the fact that − log(1− u) ≤ u
1−u for any u ∈ [0, 1[, we get that

∑
m≥2k+9

log
( 1

1− 2tA5 × 2k−m/2

)
≤

∑
m≥2k+9

2tA5 × 2k−m/2

1− 2tA5 × 2k−m/2
≤ tA5(

√
2 + 1)× 2−3

1− 2−7/2tA5
.

Since 2−7/2A5 ≤ 2A4, it follows that, for any 0 < t < (2A4)−1,

E exp
(
A5t

∑
m≥2k+9

2k−m/2ξ2
m+1,`m+1

)
≤ exp

( tA5(
√

2 + 1)× 2−4

1− 2tA4

)
.

So, overall, for any 0 < t < (2A4)−1,

E exp
(
tA4

2(k+4)∑
m=j0−1

ξ2
m+1,`m+1

+A5t2
k
∑

m≥2k+9

2−m/2ξ2
m+1,`m+1

)
≤ exp

( t(2A4k +A6)

1− 2tA4

)
,

where
A6 = 8A4 +A5(

√
2 + 1)× 2−4 .

Therefore, starting from (2.40), we get, if n ≥ 25 and c1 satisfies (2.39),

P
( 2(k+4)∑

j=j0

(
Ũ2
j,`j + Ṽ 2

j,`j

)
≥ (c1 − 2) log n+ c2x,Θ`,j0

)
≤ inf

0<t<(2A4)−1
exp

(
− t((c1 − 3) log n+ c2x) +

t(2A4k +A6)

1− 2tA4

)
.

Hence, if (c1 − 3) log n > 2A4k +A6,

P
( 2(k+4)∑

j=j0

(
Ũ2
j,`j + Ṽ 2

j,`j

)
≥ (c1 − 2) log n+ c2x,Θ`,j0

)
≤ exp

(
−

(
√

(c1 − 3) log n+ c2x−
√

2A4k +A6 )2

2A4

)
.

Let
A7 = 3× 148× λ−1(2 +

√
2)2 .

Notice that A4 ≤ A7 and A6 ≤ 9A7. Therefore 2A4k + A6 ≤ 9A7(k + 4)/4. Hence, if
n ≥ 25, and if c1 ≥ 3 + 9A7/(log 2), taking into account (2.38), we get

2A4k +A6 ≤
9A7

2(log 2)
(log n) ≤ (c1 − 3)

2
(log n) .
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So, overall, if

c1 ≥ max
(

3 +
3996(2 +

√
2)2

λ(log 2)
,

1656

λ2(log 2)2

)
,

then for any n ≥ 25,

P
( 2(k+4)∑

j=j0

(
Ũ2
j,`j + Ṽ 2

j,`j

)
≥ (c1 − 2) log n+ c2x,Θ`,j0

)
≤ exp

(
−

(
√

2− 1)2
(
(c1 − 3) log n+ c2x

)
4A4

)
.

This last inequality leads to (2.24) as soon as c1 ≥ c̃1 where c̃1 is defined in (2.7), taking
into account that 4A4 ≤ 1765× λ−1(2 +

√
2)2 and 2j0 satisfies (2.11). This ends the proof

of the lemma.

2.3 Proof of Theorem 1.1

Notice first that it suffices to prove the result for any positive real x such that
x ≤ 2n‖g‖∞. Indeed since |S̄k(g)| ≤ k‖g‖∞ for any positive integer k, it follows, by Lévy’s
inequality, that for any standard Wiener process (Wt)t≥0 and any real x > 2n‖g‖∞,

P
(

sup
k≤n

∣∣S̄k(g)− σgWk

∣∣ ≥ c log n+ x
)
≤ 2P

(
|σgWn| ≥ x/2

)
≤ 4
√

2√
π
× σg

√
n

x
exp

(
− x2

8σ2
gn

)
≤ 2

√
2σg

‖g‖∞
√
π
n−1/2 exp

(
− x‖g‖∞

4σ2
g

)
.

Therefore, to prove the theorem, it suffices to show that there exists a standard Wiener
process (Wt)t≥0 such that (1.15) holds for any positive real x satisfying x ≤ 2n‖g‖∞.
From now on, x will be a positive real satisfying the latter condition.

For any i ∈ N∗, let

Xi =

Ti∑
`=Ti−1+1

g(ξ̄`, U`) .

With this notation
∑k
i=1Xi = S̄Tk(g) − S̄T0

(g). Let τk be defined by (1.7). Notice that
(τk, Xk)k≥1 forms a sequence of iid random vectors. In addition for any k, E(Xk) = 0

since π ⊗ λ(g) = 0. We can assume without loss of generality that Var(τ1) > 0. Indeed if
Var(τ1) = 0 then τ1 is almost surely equal to some positive integer d. Then τi = d almost
surely for any positive integer i, which implies that Tk = kd + T0 almost surely. The
result follows then easily from the Komlós-Major-Tusnády theorem applied to the above
sequence (Xi)i>0 and the fact that T0 has a finite Laplace transform in a neighborhood
of 0.

We now assume that Var(τ1) 6= 0. Let

α =
Cov(τ1, X1)

Var(τ1)
. (2.41)

It follows that (τk, Xk − α(τk − E(τk)))k≥1 is a sequence of iid random vectors such that,
for any k ∈ N∗,

Cov(τk, Xk − α(τk − E(τk))) = 0 .

Let
v2 = Var

(
X1 − α(τ1 − E(τ1))

)
. (2.42)
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As it was recalled in the introduction, under the condition (1.12), the return times τk
have finite Laplace transform on some neighborhood of 0 (see (1.13)). Since g is assumed
to be bounded, the random variables Xk − α(τk − E(τk)) also a finite Laplace transform
on some neighborhood of 0. More precisely, by (1.13),

E
(
et(X1−α(τ1−E(τ1)))

)
≤ etαE(τ1)E

(
et(‖g‖∞+|α|)τ1

)
<∞ for any |t| ≤ δ(‖g‖∞ + |α|)−1.

Taking into account all the considerations above mentioned, we can apply Theorem 1.3
in Zaitsev (1998) to the multivariate sequence of iid random variables (τk, Xk − α(τk −
E(τk)))k>0 to conclude that there exists a sequence (Yi, Zi)i≥1 of independent random
variables in R2 such that (Yi)i≥1 is independent of (Zi)i≥1,

L(Yi) = N (0, v2) , L(Zi) = N (0,Var(τ1)) ,

and satisfying, for some positive constants C1, A1 and B1 depending on g and on the
transition probability P (x, ·), the following inequalities: for any integer n ≥ 2,

P
(

sup
k≤n

∣∣S̄Tk(g)− S̄T0
(g)− α(Tk − T0 − kE(τ1))−

k∑
i=1

Yi
∣∣ ≥ C1 log n+ x

)
≤ A1 exp(−B1x) ,

(2.43)
and

P
(

sup
k≤n

∣∣Tk − T0 − kE(τ1)−
k∑
i=1

Zi
∣∣ ≥ C1 log n+ x

)
≤ A1 exp(−B1x) . (2.44)

Using the Skorohod embedding theorem, we can then construct two independent stan-
dard Wiener processes (Bt)t≥0 and (B̃t)t≥0 such that for any positive integer k,

vBk =

k∑
i=1

Yi and
√

Var(τ1)B̃k =

k∑
i=1

Zi .

In addition, according to Theorem 1(ii) in Komlós, Major and Tusnády (1975), there
exists a Poisson process (N(t), t ≥ 0) with parameter λ defined by

λ =
(E(τ1))2

Var(τ1)
(2.45)

such that, setting

γ =
Var(τ1)

E(τ1)
, (2.46)

the following inequality holds: for any integer n ≥ 2,

P
(

sup
k≤n

∣∣γN(k)− kE(τ1)−
√

Var(τ1)B̃k
∣∣ ≥ C2 log n+ x

)
≤ A2 exp(−B2x) , (2.47)

where C2, A2 and B2 are positive constants depending on λ. According to the dyadic
construction of Komlós, Major and Tusnády (1975), this Poisson process may be defined
from (B̃t)t≥0 in a deterministic way. Therefore N(·) is independent of (Bt)t≥0. Notice
that (2.44) together with (2.47) imply that

P
(

sup
k≤n

∣∣γN(k)− (Tk − T0)
∣∣ ≥ C3 log n+ 2x

)
≤ A3 exp(−B3x) , (2.48)
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where C3 = C1 +C2, A3 = A1 +A2 and B3 = B1 ∧B2. Actually, as we shall see, the above
upper bound also implies that, for any n ≥ 2,

P
(

sup
t≤n

∣∣γN(t)− T[t]

∣∣ ≥ (C3 +
3λγ

log 2

)
log n+ 4x

)
≤ A3 exp(−B3x) + exp

(
− x log 3

2γ

)
+ Eπ

(
eδT0

)
exp(−δx) , (2.49)

where δ is defined in (1.13). Therefore, for any n ≥ 2,

P
(

sup
t≤n

∣∣γN(t)− T[t]

∣∣ ≥ C4 log n+ 4x
)
≤ A4 exp(−B4x) , (2.50)

where

C4 = C3 +
3λγ

log 2
, A4 = 1 +A3 + Eπ

(
eδT0

)
and B4 = min

(
B3, δ,

log 3

2γ

)
.

Let us prove (2.49). By using (1.13) and (2.48), we have

P
(

sup
t∈[0,n]

∣∣γN(t)− T[t]

∣∣ ≥ (C3 +
3λγ

log 2

)
log n+ 4x

)
≤ Eπ

(
eδT0

)
e−δx + P

(
sup

1≤k≤n

∣∣γN(k)− (Tk − T0)
∣∣ ≥ C3 log n+ 2x

)
+ P

(
sup

1≤k≤n
sup

k−1<t≤k
γ(N(t)−N(k − 1)) ≥ 3λγ

log 2
log n+ x

)
≤ Eπ

(
eδT0

)
e−δx+A3 exp(−B3x)+P

(
sup

1≤k≤n
sup

k−1<t≤k
γ(N(t)−γN(k−1)) ≥ 3λγ

log 2
log n+x

)
.

(2.51)

Now, for any n ≥ 2, by using Lemma 2.2, we get

P
(

sup
1≤k≤n

sup
k−1<t≤k

γ(N(t)−N(k−1)) ≥ 3λγ

log 2
log n+x

)
≤ nP

(
sup

0<t≤1
γN(t) ≥ 3λγ

log 2
log n+x

)
≤ nP

(
sup

0<t≤1
γ|N(t)− λt| ≥ λγ

( 3

log 2
log n− 1

)
+ x
)

≤ nP
(

sup
0<t≤1

|N(t)− λt| ≥ 2λ

log 2
log n+ xγ−1

)
≤ n exp

(
− λh

( 2

log 2
log n+ (γλ)−1x

))
≤ n exp

(
−
(λ log n

log 2
+
γ−1x

2

)
log
(
1 +

2

log 2
log n+ (γλ)−1x

))
,

where for the last inequality, we have used that h(x) ≥ x
2 log(1 + x). Hence, taking into

account that λ > 1, we derive that, for any n ≥ 2,

P
(

sup
1≤k≤n

sup
k−1<t≤k

γ(N(t)−N(k − 1)) ≥ 3λγ

log 2
log n+ x

)
≤ exp

(
− x log 3

2γ

)
. (2.52)

Starting from (2.51) and taking into account (2.52), (2.49) follows.

Note now that the random variables Γk defined by

Γ0 = 0 and Γk := N−1(k) = inf{t > 0 : N(t) ≥ k} for k ≥ 1

are such that (Γk − Γk−1)k≥1 forms a sequence of iid random variables with exponential
law of parameter λ. Therefore, according to Theorem 1(i) in Komlós, Major and Tusnády
(1975), there exists a standard Wiener process (W̃t)t≥0 such that, for any integer n ≥ 2,

P
(

sup
k≤n

∣∣N−1(k)− k

λ
− 1

λ
W̃k

∣∣ ≥ C5 log n+ x
)
≤ A5 exp(−B5x) . (2.53)
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where C5, A5 and B5 are positive constants depending on λ. Notice that the so con-
structed Wiener process W̃ depends only on the process N−1 and on some auxiliary
atomless random variable U independent of the σ-field generated by the processes B, N
and the auxiliary random variable δ of Lemma 2.4.

On another hand, since (Bt)t≥0 is independent of (N(t) : t ≥ 0), according to Lemma
2.4, there exists a standard Brownian process (W ∗t )t≥0 independent of the Poisson
process N(·) and such that, for any integer n ≥ 2,

P
(

sup
k≤n
|Bk −

1√
λ
W ∗N(k)| ≥ C6 log n+ x

)
≤ A6 exp(−B6x) , (2.54)

where C6, A6 and B6 are positive constants depending on λ. Moreover (W ∗t )t is mea-
surable with respect to the σ-field generated by the processes B, N and the auxiliary
random variable δ of Lemma 2.4, which ensures that (W ∗t )t is independent of the σ-field
generated by N(·) and U . Hence the Wiener processes W̃ and W ∗ are independent.

In what follows we shall prove that (1.15) holds true with

Wt =
1

σg

( v√
λ
W ∗t/γ − α

E(τ1)

λ
W̃t/γ

)
. (2.55)

Recall here that σg is assumed to be positive. Notice that (Wt)t≥0 defined by (2.55) is a
standard Brownian motion. Indeed

v2

γλ
+ α2 (E(τ1))2

γλ2
=

Var(X1)

E(τ1)
= lim
n→∞

Var(S̄n(g))

n
= σ2

g .

The two latter inequalities follow from a well known fact concerning the asymptotic
variance (see e.g. Nummelin (1984) or Chen (1999)).

Before proving that (1.15) holds true with (Wt)t≥0 defined by (2.55), let us prove that,
in addition to (2.54), we also have, for any integer n ≥ 2,

P
(

sup
0≤t≤n

|Bt −
1√
λ
W ∗N(t)| ≥ C7 log n+ 3x

)
≤ A7 exp(−B7x) , (2.56)

where

C7 = C6 + (6 + 4λ−1)(log 2)−1 , A7 = A6 + 2 +
1

25
√
π

and

B7 = min(1, B6, (λ log 2)/4) .

With this aim we first write the following decomposition:

P
(

sup
0≤t≤n

|Bt −
1√
λ
W ∗N(t)| ≥ C7 log n+ 3x

)
= P

(
sup

1≤k≤n
sup

k−1≤t≤k
|Bt −

1√
λ
W ∗N(t)| ≥ C7 log n+ 3x

)
≤ P

(
sup

1≤k≤n
|Bk −

1√
λ
W ∗N(k)| ≥ C6 log n+ x

)
+ P

(
sup

1≤k≤n
sup

k−1≤t≤k
|Bt −Bk−1| ≥ 2(log 2)−1 log n+ x

)
+ P

(
sup

1≤k≤n
sup

k−1≤t≤k
| 1√
λ
W ∗N(t) −

1√
λ
W ∗N(k−1)| ≥ (4 + 4λ−1)(log 2)−1 log n+ x

)
:= I1 + I2 + I3 . (2.57)
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By Lévy’s inequality, for any n ≥ 2,

I2 ≤
n∑
k=1

P
(

sup
k−1≤t≤k

|Bt−Bk−1| ≥ 2(log 2)−1 log n+x
)
≤ 2nP

(
|B1| ≥ 2(log 2)−1 log n+x

)
≤ 2

√
2n√

π(2(log 2)−1 log n+ x)
exp(−2−1(2(log 2)−1 log n+ x)2) ≤ exp(−2x) . (2.58)

On another hand, for any y > 0,

I3 ≤
n∑
k=1

P
(

sup
k−1≤t≤k

P
∣∣ 1√
λ
W ∗N(t) −

1√
λ
W ∗N(k−1)| ≥ (4 + 4λ−1)(log 2)−1 log n+ x

)
≤ nP

(
sup

0≤t≤y
λ−1/2|Wt| ≥ (4+4λ−1)(log 2)−1 log n+x

)
+

n∑
k=1

P
(

sup
k−1≤t≤k

(N(t)−N(k−1)) ≥ y
)
.

Using once again Lévy’s inequality and taking y = 2−1λ((4 + 4λ−1)(log 2)−1 log n + x) ,
we get, for any integer n ≥ 2,

P
(

sup
0≤t≤y

λ−1/2|Wt| ≥ (4 + 4λ−1)(log 2)−1 log n+ x
)

≤ 2√
π

1√
(4 + 4λ−1)(log 2)−1 log n+ x

e−((4+4λ−1)(log 2)−1 logn+x)

≤ n−4/(log 2)

√
π

exp(−x) .

On another hand, by Lemma 2.2, for any y ≥ 2λ,

P
(

sup
k−1≤t≤k

(N(t)−N(k − 1)) ≥ y
)

= P
(

sup
0≤t≤1

N(t) ≥ y
)
≤ P

(
sup

0≤t≤1
|N(t)− λt| ≥ y − λ

)
≤ exp(−λh((y − λ)/λ)) ≤ exp

(
− y − λ

2
log(y/λ)

)
≤ exp

(
− (y − λ) log 2

2

)
.

Therefore, for y = 2−1λ((4 + 4λ−1)(log 2)−1 log n+ x) and n ≥ 2,

P
(

sup
k−1≤t≤k

(N(t)−N(k − 1)) ≥ 2−1λ((2 + 4λ−1)(log 2)−1 log n+ x)
)

≤ n−1 exp
(
− xλ log 2

4

)
.

So overall, for any n ≥ 2,

I3 ≤
1

25
√
π

exp(−x) + exp
(
− xλ log 2

4

)
. (2.59)

Starting from (2.57) and considering the upper bounds (2.54), (2.58) and (2.59), (2.56)
follows.

We turn now to the proof of (1.15) with (Wt)t≥0 defined by (2.55). In the rest of the
proof we shall show that, for any n ≥ 2,

P
(

sup
k≤n
|S̄k − σgWk| ≥ c log n+ dx

)
≤ A exp(−Bx) , (2.60)

where
d := 3 + |α|E(τ1) + 4v + 5‖g‖∞ + 5|α|

A := A1 + 2A4 +A5 +A7 + Eπ(eδT0) + 2 +

√
2

π
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B := min
(
B1, B4, B5, B7, 2, δ,

λ(1− log 2)

2‖g‖∞
, 2v−1

√
λ,

2λ

αE(τ1)

)
and

c := c1 +
2v√
λ log 2

+
2αE(τ1)

λ log 2
+
‖g‖∞(1 + γ)

log 2
+ |αE(τ1)|C5

(
1 +
| log γ|
log 2

)
,

with

c1 = 2vC7 + 2C4‖g‖∞ + 2v(log 2)−1 + 2C1 +
|α|E(τ1)

log 2
+ 2|α|C4 . (2.61)

The reals α, v , λ, γ and δ involved in the definition of the constants above are defined in
(2.41), (2.42), (2.45), (2.46) and (1.13) respectively, whereas the constants A1, B1, A2,
B2, A5, B5, A7 and B7 have been defined previously all along the proof.

To prove (2.60), we recall the definition (2.55) of (Wt)t≥0 and first write

P
(

sup
k≤n
|S̄k(g)− σgWk| ≥ c log n+ dx

)
≤ P

(
sup
k≤n

∣∣S̄k(g)− v√
λ
W ∗[k/γ] +α

E(τ1)

λ
W̃[k/γ]

∣∣ ≥ (c− 2v√
λ log 2

− 2αE(τ1)

λ log 2

)
log n+(d−2)x

)
+ P

(
sup
k≤n

∣∣W ∗k/γ −W ∗[k/γ]

∣∣ ≥ 2

log 2
log n+ v−1

√
λx
)

+ P
(

sup
k≤n

∣∣W̃k/γ − W̃[k/γ]

∣∣ ≥ 2

log 2
log n+

λ

αE(τ1)
x
)
. (2.62)

For any integer n ≥ 2, we have

P
(

sup
k≤n

∣∣W ∗k/γ −W ∗[k/γ]

∣∣ ≥ 2

log 2
log n+ v−1

√
λx
)

≤ n√
2π

exp
(
− 1

2

( 2

log 2
log n+ v−1

√
λx
)2)
≤ 1√

2π
exp

(
− 2xv−1

√
λ
)
. (2.63)

Similarly

P
(

sup
k≤n

∣∣W̃k/γ − W̃[k/γ]

∣∣ ≥ 2

log 2
log n+

λ

αE(τ1)
x
)
≤ 1√

2π
exp

(
− 2xλ

αE(τ1)

)
. (2.64)

On another hand, notice that

sup
k≤n

∣∣S̄k(g)− S̄[γ[k/γ]](g)
∣∣ ≤ ‖g‖∞ sup

k≤n

∣∣k − [γ[k/γ]]
∣∣ ≤ ‖g‖∞(1 + γ)

which is less than ‖g‖∞(1+γ)
log 2 log n for any integer n ≥ 2. Therefore, since N(N−1(`)) = `

for any positive integer `, we get that for any integer n ≥ 2,

P
(

sup
k≤n

∣∣S̄k(g)− v√
λ
W ∗[k/γ] +α

E(τ1)

λ
W̃[k/γ]

∣∣ ≥ (c− 2v√
λ log 2

− 2αE(τ1)

λ log 2

)
log n+(d−2)x)

)
≤ I4 + I5 , (2.65)

where, by setting kγ = k/γ,

I4 := P
(

sup
γ≤k≤n

∣∣N−1([kγ ])− 1

λ
[kγ ]− 1

λ
W̃[kγ ]

)∣∣ ≥ (1 +
| log γ|
log 2

)
C5 log n+ x

)
,

and I5 is equals to

P
(

sup
γ≤k≤n

∣∣S̄[γN(N−1([kγ ])](g)− v√
λ
W ∗N(N−1([kγ ])+αE(τ1)

(
N−1([kγ ])− 1

λ
[kγ ]

)∣∣ ≥ c1 log n+d1x
)
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where d1 = d− 2− |α|E(τ1) and c1 is defined in (2.61). Applying (2.53), we infer that, for
any n ≥ 2,

I4 ≤ A5 exp(−B5x) . (2.66)

We handle now I5. Note that

I5 ≤ P
(

sup
t≤N−1([n/γ])

∣∣S̄[γN(t)](g)− v√
λ
W ∗N(t) + αE(τ1)

(
t− 1

λ
N(t)

)∣∣ ≥ c1 log n+ d1x
)

≤ P
(

sup
t≤2n

∣∣S̄[γN(t)](g)− v√
λ
W ∗N(t)+αE(τ1)

(
t− 1

λ
N(t)

)∣∣ ≥ c1 log n+d1x
)

+P
(
N−1([n/γ]) > 2n

)
.

(2.67)

If n < γ, then N−1([n/γ]) = 0 and the second term in the right-hand side is zero. Assume
now that n ≥ γ. Since N−1([n/γ]) has a Gamma distribution with parameters [n/γ] and
λ, we have

P
(
N−1([n/γ]) > 2n

)
=

λ

([n/γ]− 1)!

∫ +∞

2n

(λx)[n/γ]−1e−λxdx

≤ λ× 2[n/γ]−1

∫ +∞

2n

e−λx/2dx = 2[n/γ]e−nλ .

Therefore since λγ = E(τ1) ≥ 1 and x ≤ 2n‖g‖∞,

P
(
N−1([n/γ]) > 2n

)
≤ exp

(
− nλ(1− log 2)

)
≤ exp

(
− xλ(1− log 2)

2‖g‖∞

)
. (2.68)

Moreover, by using (2.56), we get that, for any integer n ≥ 2,

P
(

sup
t≤2n

∣∣S̄[γN(t)](g)− v√
λ
W ∗N(t) +αE(τ1)

(
t− 1

λ
N(t)

)∣∣ ≥ c1 log n+ d1x
)
≤ A7 exp(−B7x)

+ P
(

sup
t≤2n

∣∣S̄[γN(t)](g)− vBt + αE(τ1)
(
t− 1

λ
N(t)

)∣∣ ≥ (c1 − 2vC7) log n+ (d1 − 3v)x
)
.

(2.69)

But

P
(

sup
t≤2n

∣∣S̄[γN(t)](g)− vBt + αE(τ1)
(
t− 1

λ
N(t)

)∣∣ ≥ (c1 − 2vC7) log n+ (d1 − 3v)x
)

≤ P
(

sup
t≤2n

∣∣S̄[γN(t)](g)− S̄T[t]
(g)
∣∣ ≥ ‖g‖∞(2C4 log n+ 4x)

)
+ P

(
sup
t≤2n

v
∣∣Bt −B[t]

∣∣ ≥ v(2(log 2)−1 log n+ x)
)

+P
(

sup
t≤2n

∣∣S̄T[t]
(g)−vB[t]+αE(τ1)

(
t− 1

γλ
T[t]

)∣∣ ≥ (2C1+
|α|E(τ1)

log 2

)
log n+(1+|α|+‖g‖∞)x

)
+ P

(
sup
t≤2n

∣∣αE(τ1)
(
λ−1N(t)− (λγ)−1T[t]

)∣∣ ≥ |α|(2C4 log n+ 4x)
)

:= I
(1)
5 + I

(2)
5 + I

(3)
5 + I

(4)
5 . (2.70)

By (2.50), for any integer n ≥ 2,

I
(1)
5 ≤ P

(
sup
t≤2n

∣∣γN(t)− T[t]

∣∣ ≥ C4 log(2n) + 4x
)
≤ A4 exp(−B4x) . (2.71)
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To handle I(4)
5 , we first notice that λγ = E(τ1). Therefore, applying (2.50), we get that,

for any integer n ≥ 2,
I

(4)
5 ≤ A4 exp(−B4x) . (2.72)

On another hand, by using Lévy’s inequality as we did in (2.58), we infer that, for any
n ≥ 2,

I
(2)
5 ≤ 2nP

(
sup

0≤t≤1

∣∣Bt −B[t]

∣∣ ≥ 2(log 2)−1 log n+ x
)
≤ exp(−2x) . (2.73)

Let us now handle I(3)
5 . With this aim, taking into account that γλ = E(τ1), we first write

sup
t≤2n

∣∣S̄T[t]
(g)−vB[t] +αE(τ1)

(
t− 1

γλ
T[t]

)∣∣ ≤ sup
k≤2n

∣∣S̄Tk−vBk+α
(
Tk−kE(τ1)

)∣∣+ |α|E(τ1)

≤ sup
k≤2n

∣∣S̄Tk(g)− S̄T0
(g)− vBk + α

(
Tk − T0 − kE(τ1)

)∣∣+ |α|E(τ1) + T0(|α|+ ‖g‖∞) .

Therefore, taking into account (2.43), we derive that, for any integer n ≥ 2,

I
(3)
5 ≤ Pπ

(
sup
k≤2n

∣∣S̄Tk(g)− S̄T0
(g)− vBk + α

(
T[k] − T0 − kE(τ1)

)∣∣ ≥ 2C1 log n+ x
)

+ P
(
|α|E(τ1) + T0(|α|+ ‖g‖∞) ≥ |α|E(τ1)

log 2
log n+ (|α|+ ‖g‖∞)x

)
≤ A1 exp(−B1x) + Pπ

(
T0 ≥ x

)
.

Hence, for any n ≥ 2,

I
(3)
5 ≤ A1 exp(−B1x) + Eπ(eδT0) exp(−δx) , (2.74)

where δ is defined in (1.13). Starting from (2.70) and considering the upper bounds
(2.71), (2.72), (2.73) and (2.74), it follows that, for any integer n ≥ 2,

P
(

sup
t≤2n

∣∣S̄[γN(t)] − vBt + αE(τ1)
(
t− 1

λ
N(t)

)∣∣ ≥ (c1 − 2vC7) log n+ (d1 − 3v)x
)

≤ A1 exp(−B1x) + 2A4 exp(−B4x) + exp(−2x) + Eπ(eδT0) exp(−δx) . (2.75)

Starting from (2.67) and considering the upper bounds (2.68), (2.69) and (2.75), we then
get that, for any integer n ≥ 2,

I5 ≤ A1 exp(−B1x) + 2A4 exp(−B4x) +A7 exp(−B7x)

+ exp
(
− xλ(1− log 2)

2‖g‖∞

)
+ exp(−2x) + Eπ(eδT0) exp(−δx) . (2.76)

Starting from (2.62) and considering the upper bounds (2.63), (2.64), (2.65), (2.66) and
(2.76), the inequality (2.60) follows. This ends the proof of the theorem.
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