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Stirring two grains of sand*

Krzysztof Burdzy†

Abstract

Consider two unit balls in a d-dimensional flat torus with edge length r, for d ≥ 2.
The balls do not move by themselves but they are pushed by a Brownian motion. The
balls never intersect—they reflect if they touch. It is proved that the joint distribution
of the processes representing the centers of the balls converges to the distribution
of two independent Brownian motions when r →∞, assuming that we use a proper
clock and proper scaling. The diffusion coefficient of the limit process depends on
the dimension. The positions of the balls are asymptotically independent also in
the following sense. The rescaled stationary distributions of the centers of the balls
converge to the product of the stationary (hence uniform) distributions for each ball
separately, as r →∞.
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1 Introduction

The word “stirring” in the title of this paper refers to a random change in a system of
many bodies that is caused by a single agent that moves continuously and acts locally.
This is in contrast to those stochastic flows where different parts of the moving medium
are simultaneously “pushed” by different (although possibly correlated) random noises.
In everyday life, stirring typically refers to activities such as stirring coffee in a cup or
stirring paint in a bucket. In these situations, stirring the medium with a spoon or a
stick causes the bulk of the liquid to move (in a circular fashion). Our model is closer
to stirring sand in a sandbox with a stick. In this situation, sand grains are displaced
locally and there is no overall motion of the bulk of the sand mass.

Stirring sand in a sandbox provided motivation for this project but our model is a
simplification of the reality in (at least) two significant ways. First, we will consider only
two “sand grains” represented by balls. This seems to be the crucial step in the analysis
of the motion of many “sand grains” (see the remarks on [9] below). Second, the stirring
agent will be represented by an infinitely small particle performing Brownian motion.
One may consider our results as a first step towards a more realistic model.
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Stirring two grains of sand

In our model, the stirring agent, represented by Brownian motion, is not affected by
the motion of “sand grains.” The two sand grains (balls) remain motionless except when
they are pushed by the Brownian particle aside, when its trajectory hits their surfaces.

The problem that we will investigate is that of the evolution of the vector between
the centers of the two balls. It is natural to guess that the motion of a each ball should
be similar to that of Brownian motion on the local time scale. The crux of the problem is
that the directions of the push that the balls receive from the Brownian particle are not
independent. Therefore, even if the guess about the motion of a single ball is correct,
that does not immediately imply that the limit distribution for the pair of the balls is a
pair of independent Brownian motions. We will prove that this is in fact true and we
will express this idea in two different ways, to be described below. The main technical
challenge of the paper is to estimate the magnitude of the dependence between motions
of the two balls.

We will separately prove the invariance principle for a single ball pushed by Brownian
motion in dimension 2 in the whole space R2. This is meaningful because Brownian
motion is recurrent in two dimensions so it will keep pushing the ball forever. We
consider this simplified question separately to present a more or less straightforward
proof. Many technical details obscure this part of the argument in the case of two balls
or in higher dimensions.

In dimensions 3 and higher, the two balls and Brownian motion will be located in a
torus because Brownian motion is transient in these dimensions (but the theorem will
cover the two dimensional case as well). First, we will prove an invariance principle
on the local time scale for the centers of the two balls. The limiting process is a pair
of two independent Brownian motions. Next we will show that the rescaled stationary
distributions for the two balls in a torus of diameter r converge to the product of the
stationary (and hence uniform) distributions for the individual balls as r → ∞. At the
end of Section 3 we will explain why the latter theorem does not immediately follow
from the former.

The present paper is a part of a larger project. Our present model is “almost”
equivalent to the model in which a ball with the center moving as a Brownian motion
pushes two point-like particles. The equivalence is not complete because the two balls in
our model cannot intersect (by assumption) and hence their centers are always at least
two units apart. In the other model, the two point-like particles can come arbitrarily
close. Their motion was partly analyzed in [9], where it was proved that the distance
between the two particles does not converge to 0 in a three dimensional torus. This is
very close to proving recurrence for the two-particle process. The main results of the
present article show, more or less, that the particles are independent on the large scale.
Only one element of the program initiated in [9] is still missing—the positive recurrence
(as opposed to the mere recurrence) of the two particle motion. If this gap is filled then
this will be, most likely, sufficient to prove Conjectures 1.5 and 1.6 in [9].

The paper is organized as follows. The next section contains the formal description
of the model. Section 3 presents the statements of the main results. It is followed by
Section 4 with a review of excursion theory and some results on excursion laws. The
motion of a single ball is analyzed in Section 5. Section 6 is devoted to estimates of
local time. Section 7 gives estimates for hitting distributions. The main theorem on
invariance principle is proved in Section 8. The theorem on convergence of the stationary
distributions is proved in two sections, Sections 9 and 10, the first of which is devoted to
the irreducibility of the process.
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2 Preliminaries

2.1 Processes in Rd

First we will consider the case when the Brownian motion and the balls are located
in Rd with d ≥ 2. We will consider two moving balls with radii 1 and centers Xt and Yt,
respectively. Brownian motion will be denoted Bt.

For x, y ∈ Rd, the Euclidean norm of x will be denoted |x| and the Euclidean distance
between x and y will be denoted dist(x, y) = |x− y|.

Let B(x, r) denote the open ball with center x and radius r and let S(x, r) = ∂B(x, r).
The two moving spheres will be denoted Xt = S(Xt, 1) and Yt = S(Yt, 1).

For x ∈ S(y, r), let n(S(y, r), x) be the unit outward normal vector to S(y, r) at x.
We will now describe the effect of the push of Bt on the trajectory of Xt. Let us ignore

the other sphere Yt for the moment. We assume that |B0 −X0| ≥ 1, a.s. By the results of
[14], there exist a continuous process Zt taking values in B(X0, 1)c and a non-decreasing
real valued continuous process (“local time”) LXt such that LX0 = 0,

∫∞
0

1{Zt /∈X0}dL
X
t = 0,

and

Zt = Bt +

∫ t

0

n(X0, Zs)dL
X
s , t ≥ 0. (2.1)

At this point, a better name for the process LX would have been LZ but LX was used
in anticipation of (2.3) below. The process Zt is Brownian motion reflected on X0. We
define Xt by

Xt = X0 −
∫ t

0

n(X0, Zs)dL
X
s , t ≥ 0. (2.2)

In this way, the sphere Xt is pushed by Brownian motion Bt. Note that we have Bt /∈
B(Xt, 1) for all t ≥ 0,

∫∞
0

1{Bt /∈Xt}dL
X
t = 0, and

Xt = X0 −
∫ t

0

n(Xs, Bs)dLXs , t ≥ 0. (2.3)

Next we will consider the motion of the spheres Xt and Yt only, ignoring Bt. Suppose
that Xt is a continuous process and |X0 − Y0| ≥ 2. We do not want the spheres Xt and Yt
to intersect. We apply the results of [14] once again. There exist a continuous process Vt
taking values in B(Y0, 2)c and a non-decreasing real valued continuous process (“local
time”) L′t such that L′0 = 0,

∫∞
0

1{Vt /∈S(Y0,2)}dL
′
t = 0, and

Vt = Xt +

∫ t

0

n(S(Y0, 2), Vs)dL
′
s, t ≥ 0.

We define Yt by

Yt = Y0 −
∫ t

0

n(S(Y0, 2), Vs)dL
′
s, t ≥ 0. (2.4)

In this way, the sphere Yt is pushed by the sphere Xt. Note that we have B(Xt, 1) ∩
B(Yt, 1) = ∅ for all t ≥ 0 and

∫∞
0

1{|Xt−Yt|>2}dL
′
t = 0.

Now we will describe the joint evolution of Bt, Xt and Yt. Suppose that |B0 −X0| ≥ 1,
|B0 − Y0| ≥ 1, |X0 − Y0| ≥ 2, and B0 /∈ X0 ∩ Y0 (the last condition is satisfied if, for
example, |X0 − Y0| > 2). Assume without loss of generality that Bt hits X0 strictly before
hitting Y0. Then we use (2.2) and (2.4) to define Xt and Yt until the first time T1 ≥ 0

such that BT1
∈ YT1

. Suppose that BT1
/∈ XT1

. At this time we switch the roles of Xt

and Yt in the definitions (2.2) and (2.4). In other words, Bt is now pushing the sphere
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Yt and the sphere Yt is pushing the sphere Xt. We define in this way processes Xt and
Yt for t ≥ T1 until the first time T2 ≥ T1 such that BT2

∈ XT2
. Suppose that BT2

/∈ YT2
.

We continue in this fashion, i.e., we construct stopping times T1, T2, T3, . . . , such that
Tn = inf{t ≥ Tn−1 : Bt ∈ Yt} for odd n and Tn = inf{t ≥ Tn−1 : Bt ∈ Xt} for even n. The
inductive definition is continued as long as BTn /∈ XTn for odd n and BTn /∈ YTn for even
n.

Lemma 2.1. With probability 1, all stopping times Tn, n ≥ 1, are well defined and
limn→∞ Tn =∞.

Proof. The claim in the lemma may be false for two different reasons. First, it is possible
that for some random time T∞ and n <∞,

P(T∞ = Tn <∞, BT∞ ∈ XT∞ ∩ YT∞) > 0. (2.5)

Second, it may be that all Tn’s are well defined and for some random time T∞ we have
P(T∞ <∞) > 0 and T∞ = limn→∞ Tn, a.s.

We will analyze the second case first. Consider ω such that all Tn(ω)’s are well
defined and T∞(ω) = limn→∞ Tn(ω) <∞. (The dependence of Tn’s and T∞ on ω will be
suppressed in the notation in the remaining part of the proof.) Consider an ε ∈ (0, 1)

and let t1 < T∞ be so close to T∞ that supt1≤s,t≤T∞ |Bs −Bt| < ε. Suppose that n1 is so
large that T2n > t1 for 2n ≥ n1. Consider any n such that T2n > t1. We have BT2n

∈ XT2n
,

BT2n+1
∈ YT2n+1

and Bt /∈ Yt for t ∈ [T2n, T2n+1). Note that Y can move during the
interval [T2n, T2n+1) only if it is pushed by X because it is not pushed by B. Simple
geometry shows that Y is being pushed by X at a time t only if B is pushing X at the
time t and dist(Bt, Yt) ≥

√
5. Suppose that dist(Bt, Yt) ≥

√
5 for some t ∈ [T2n, T2n+1)

and let t2 = sup{t ∈ [T2n, T2n+1) : dist(Bt, Yt) ≥
√

5}. Then Yt2 = YT2n+1
but this is a

contradiction since

dist(Yt2 , YT2n+1
) ≥ dist(Yt2 , Bt2)− dist(Bt2 , BT2n+1

)− dist(YT2n+1
, BT2n+1

)

≥
√

5− ε− 1 > 0.

We conclude that dist(Bt, Yt) <
√

5 for all t ∈ [T2n, T2n+1) and, consequently, Yt = YT2n+1

for all t ∈ [T2n, T2n+1). This implies that for all t ∈ [T2n, T2n+1),

dist(Yt, Bt) ≤ dist(Yt, YT2n+1
) + dist(BT2n+1

, YT2n+1
) + dist(Bt, BT2n+1

) ≤ 1 + ε. (2.6)

Let t3(s) = sup{t ∈ [T2n, s] : Bt ∈ Xt} for s ∈ [T2n, T2n+1). Then, for s ∈ [T2n, T2n+1),

dist(Bs, Xs) ≤ dist(Bt3(s), Xt3(s)) + dist(Bt3(s), Bs) ≤ 1 + ε. (2.7)

By analogy, (2.6) and (2.7) hold on every interval of the form [T2n+1, T2n+2) for 2n+1 ≥ n1.
Since ε can be taken arbitrarily small,

lim
t↑T∞

dist(Bt, Xt) = lim
t↑T∞

dist(Bt, Yt) = 1. (2.8)

This implies that limt↑T∞ dist(Xt, Yt) = 2. It is easy to see that this claim and (2.8) are
also true in the case represented by (2.5) because in that case we have BT∞ ∈ XT∞ ∩YT∞ .

Note that the definition (2.3) of the local time LXt applies in the new context of one
Brownian particle and two balls, for t < T∞. Let LYt be the “local time” of Bt on Yt,
defined in a way analogous to LXt . Suppose that for some s1 < T∞,

LXT∞ − L
X
s1 = LYT∞ − L

Y
s1 = 0. (2.9)
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Then it follows from (2.3) and an analogous formula for Yt that Xt = XT∞ and Yt = YT∞
for all t ∈ [s1, T∞]. Since {Bt} ∩ (B(Xt, 1) ∪ B(Yt, 1)) = ∅ for t ∈ [s1, T∞] and the spheres
XT∞ and YT∞ are tangent at BT∞ , it follows that for some s2 ∈ (s1, T∞), the piece of
Brownian path {Bt, t ∈ [s2, T∞]} stays inside a cone with vertex BT∞ and opening π/8.
This event has probability 0 according to a theorem in [7].

Next consider the case when (2.9) is false. Let s3 < T∞ be so large that dist(Bt, Xt) ≤
1.01 and dist(Bt, Yt) ≤ 1.01 for t ∈ [s3, T∞]. Simple geometry shows that if dist(Bt, Xt) ≤
1.01, dist(Bt, Yt) ≤ 1.01, and B is pushing X or Y at time t then the distance between X
and Y is increasing. We have assumed that (2.9) is false so the amount of push on the
interval [s3, T∞] is strictly positive and we conclude that lim inft↑T∞ dist(Xt, Yt) > 2 on
the event {T∞ <∞}, contradicting our earlier claim.

Lemma 2.1 completes the construction of our model on Rd.

2.2 Processes on a torus

We will denote the flat d-dimensional torus Rd/(rZd) with edge length r by T dr . We
can identify T dr with [0, r)d in the obvious way. We will say that x = y (mod r) for x, y ∈ Rd
and r ∈ R if x = y + rz for some z ∈ Zd. Recall that dist(x, y) denotes the Euclidean
distance between x, y ∈ Rd. We will also use dist(x, y) to denote the usual distance
between x, y ∈ T dr ; it should be clear from the context which distance we are referring
to. The precise definition of dist(x, y) for x, y ∈ T dr is the following. We identify x, y ∈ T dr
with x̃, ỹ ∈ [0, r)d and let dist(x, y) be equal to the minimum of |x̂− ŷ| over all x̂, ŷ ∈ Rd
such that x̂ = x̃ (mod r) and ŷ = ỹ (mod r).

At a few places, for example, in Lemmas 7.2 and 9.1, the traditional notation |x| for
x ∈ T dr will be occasionally used because it fits well with some classical formulas. The
meaning of |x| for x ∈ T dr is |x| = dist(x, 0), in the sense of the distance in T dr .

The definitions of balls and spheres in T dr will be relative to the distance dist( · , · ) on
T dr . The definition of {(Bt, Xt, Yt), t ≥ 0} on T dr will be the analogue of the definition of
{(Bt, Xt, Yt), t ≥ 0} on Rd, with the new meaning given to balls and spheres.

Technical difficulties with the definition of the joint distribution of B,X and Y on
Rd are local in nature so we will not go into details of the construction on T dr . We limit
ourselves to the remark that if r > 4 then the evolution of the process {(Bt, Xt, Yt), t ≥ 0}
on T dr is the natural analogue of the evolution of this process on Rd.

If Brownian motion Bt is defined on T dr then we define its “unfolded” version Bt by
requiring that it is a continuous process on Rd, B0 = B0 and Bt = Bt (mod r) for all
t ≥ 0. Processes Xt and Yt are defined in an analogous way.

The volume, i.e., the d-dimensional Lebesgue measure, of a set D ⊂ Rd or D ⊂ T dr
will be denoted |D|.

We will always assume that the edge length r of the torus T dr is greater than 4. Recall
the assumptions that dist(B0, X0) ≥ 1, dist(B0, Y0) ≥ 1, dist(X0, Y0) ≥ 2, and B0 /∈ X0∩Y0
from Section 2.1. We will always make these assumptions for processes (Bt, Xt, Yt) on
Rd and T dr .

3 Main results

Our first theorem is concerned with the motion of a single ball pushed by Brownian
motion in two dimensions. Since the two-dimensional Brownian motion is recurrent,
we do not need to place the processes in a torus to obtain a meaningful result. On the
technical and conceptual side, the proof of the first theorem is much simpler than those
of the other main results so it is natural to state and prove this result first.

Let LX be defined as in (2.3) and let σXt = inf{s ≥ 0 : LXs ≥ t}.
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Theorem 3.1. Suppose that d = 2, X0 = 0, |B0 −X0| ≥ 1 and {(Bt, Xt), t ≥ 0} is defined
on (R2)2 as in (2.1)-(2.3). The processes {n−1/2XσXnt

, t ≥ 0} converge weakly to Brownian
motion as n→∞.

Recall the definition of the vector of three process (Bt, Xt, Yt) on a torus from Section
2.2. We will sometimes emphasize the dependence on r in the notation by writing
(Brt , X

r
t , Y

r
t ) and similarly (Br

t ,X
r
t ,Y

r
t ). Let LX be defined as in (2.3), let LY be defined

in an analogous way, and let Lt = LXt +LYt for t ≥ 0. Let σt be the left-continuous inverse
local time, i.e., σt = inf{s ≥ 0 : Ls ≥ t}. Let Cd =

√
(d− 1)d and note that Cd > 0 for

d ≥ 2. We have Cd =
√

2 for d = 2 so the normalization in the following theorem seems
to contradict the normalization in Theorem 3.1. There is no contradiction because the
two theorems use different local time clocks; the local time clock in the next theorem is
twice as fast as that in Theorem 3.1, on average.

Theorem 3.2. Suppose that d ≥ 2, and for each r > 4 we have dist(Br0 , X
r
0 ) ≥ 1,

dist(Br0 , Y
r
0 ) ≥ 1, dist(Xr

0 , Y
r
0 ) ≥ 2 and Br0 /∈ X r0 ∩ Yr0 . Let {(Brt , Xr

t , Y
r
t ), t ≥ 0} be defined

on T dr . The processes {Cd n−1/2(Xr
σnt − Xr

0,Y
r
σnt − Yr

0), t ≥ 0} converge weakly to
standard 2d-dimensional Brownian motion when n→∞ and r →∞.

In two dimensions, the last theorem could be stated for {(Bt, Xt, Yt), t ≥ 0} defined
on (R2)3. The proof of Theorem 3.2 would apply almost verbatim in that setting so this
version of the theorem is omitted.

Theorems 3.1-3.2 are concerned with processes run with the local time clock as it is
more meaningful than the standard clock in this context. The next theorem is stated for
processes run with the usual clock but the proof shows that the result is equally true for
processes run with the local time clock.

Let νdr be the uniform probability measure on T dr .

Theorem 3.3. Suppose that d ≥ 2, r > 4, and {(Brt , Xr
t , Y

r
t ), t ≥ 0} is defined on T dr .

(i) The process (Brt , X
r
t , Y

r
t ) has a unique stationary distribution Ldr .

(ii) The distributions of (Xr
0 , Y

r
0 )/r under Ldr converge to νd1 × νd1 as r →∞.

It follows immediately from translation invariance of the process (Brt , X
r
t , Y

r
t ) that

the distribution of Xr
0 under Ldr is νdr , and the same remark applies to Y r0 . Hence, the

essence of Theorem 3.3 (ii) is that the two components of (Xr
0 , Y

r
0 ) are asymptotically

independent.

We will explain, in an informal way, why Theorem 3.3 does not immediately follow
from Theorem 3.2. Suppose that processes X and Y satisfy the conclusion of Theorem
3.2. It is conceivable that the process |Xr

σt−Yr
σt | has a positive drift of order 1/r because

this drift would disappear in the limit theorem for {n−1/2(Xr
nσt −Yr

nσt), t ∈ [0, t1]} for
any fixed t1 < ∞. The process (Xr

σt , Y
r
σt) needs about r2 units of time to reach the

stationary distribution. On this time scale, the drift of size 1/r would move Xσt and Yσt
about r2/r = r units apart, relative to the analogous situation without a drift. Since the
effect of the drift on this time scale is comparable with the diameter of the torus, it is
conceivable that under the stationary distribution Xr and Y r would be typically farther
apart than two random vectors with the joint distribution νdr × νdr .

4 Excursion theory

This section contains a brief review of excursion theory needed in this paper. See,
e.g., [15] for the foundations of the theory in the abstract setting and [6] for the special
case of excursions of Brownian motion. Although [6] does not discuss reflected Brownian
motion, all results we need from that book readily apply in the present context.

Let Px denote the distribution of Brownian motion starting from x and let Ex be the
corresponding expectation. For a domain (open connected set) D ⊂ Rd, let PxD denote
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the distribution of Brownian motion starting from x ∈ D and killed upon exiting D.
An “exit system” for excursions of reflected Brownian motion Z from ∂D is a pair

(L∗t , H
x) consisting of a positive continuous additive functional L∗t of Z and a family of

“excursion laws” {Hx}x∈∂D. Let ∆ denote the “cemetery” point outside D and let C be
the space of all functions f : [0,∞) → D ∪ {∆} which are continuous and take values
in D on some interval [0, ζ), and are equal to ∆ on [ζ,∞). For x ∈ ∂D, the excursion
law Hx is a σ-finite (positive) measure on C, such that the canonical process is strong
Markov on (t0,∞), for every t0 > 0, with the transition probabilities P�

D. Moreover, Hx

gives zero mass to paths which do not start from x. We will be concerned only with the
“standard” excursion laws; see Definition 3.2 of [6]. For every x ∈ ∂D there exists a
unique standard excursion law Hx in D, up to a multiplicative constant.

Excursions of Z from ∂D will be denoted e or es, i.e., if s < u, Zs, Zu ∈ ∂D, and
Zt /∈ ∂D for t ∈ (s, u) then es = {es(t) = Zt+s, t ∈ [0, u − s)} and ζ(es) = u − s. By
convention, es(t) = ∆ for t ≥ ζ(es), so et ≡∆ if inf{s > t : Zs ∈ ∂D} = t.

Let σt = inf{s ≥ 0 : L∗s ≥ t} and Eu = {es : s < σu}. Let I be the set of left endpoints
of all connected components of (0,∞) \ {t ≥ 0 : Zt ∈ ∂D}. The following is a special case
of the exit system formula of [15]. For every x ∈ D, every bounded predictable process
Vt and every positive universally measurable function f : C → [0,∞) that vanishes on
excursions et identically equal to ∆, we have

Ex

[∑
t∈I

Vt · f(et)

]
= Ex

∫ ∞
0

VσsH
Z(σs)(f)ds = Ex

∫ ∞
0

VtH
Zt(f)dL∗t . (4.1)

Here and elsewhere Hx(f) =
∫
C fdH

x. Intuitively speaking, (4.1) says that the right
continuous version Et+ of the process of excursions is a Poisson point process on the
local time scale with variable intensity H �.

The normalization of the exit system is somewhat arbitrary. For example, if (L∗t , H
x)

is an exit system and c ∈ (0,∞) is a constant then (cL∗t , (1/c)H
x) is also an exit system.

One can even make c dependent on x ∈ ∂D. Theorem 7.2 of [6] shows how to choose
a “canonical” exit system; that theorem is stated for the usual planar Brownian motion
but it is easy to check that both the statement and the proof apply to reflected Brownian
motion. According to that result, we can take L∗t to be the continuous additive functional
whose Revuz measure is a constant multiple of the surface area measure dx on ∂D and
Hx’s to be standard excursion laws normalized so that

Hx(A) = lim
δ↓0

1

δ
P
x+δn(D,x)
D (A), (4.2)

for any event A in the σ-field generated by the process on an interval [t0,∞), for any
t0 > 0, where n(D,x) stands for the inner unit normal vector.

Recall the local time LX from the Skorokhod representation of reflected Brownian
motion given in (2.1). In the present context LX will be called LZ . The Revuz measure
of LZ is the measure dx/(2|D|) on ∂D, i.e., if the initial distribution of Z is the uniform
probability measure µ on D, then

Eµ
∫ 1

0

1A(Zs)dL
Z
s =

∫
A

dx/(2|D|) (4.3)

for any Borel set A ⊂ ∂D. It has been shown in [8] that L∗t = LZt , i.e., (LZt , H
x) is an exit

system if excursion laws Hx are defined as in (4.2).

4.1 Excursions crossing spherical shells

We will calculate the “probability” under excursion law that an excursion starting at
the inner boundary of a spherical shell hits the outer boundary. Let D = B(0, b) \ B(0, 1)
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for some b > 1.
Let A be the event that the process hits S(0, b) before hitting S(0, 1). The function

x→ Px(A) is harmonic in D with boundary values 1 on S(0, b) and 0 on S(0, 1).
In the two-dimensional case we have Px(A) = log |x|/ log b for x ∈ D so for x ∈ S(0, 1),

Hx(A) = lim
δ↓0

1

δ
P
x+δn(D,x)
D (A) = 1/ log b. (4.4)

For d ≥ 3, Px(A) = (1− |x|2−d)/(1− |b|2−d) for x ∈ D so for x ∈ S(0, 1),

Hx(A) = lim
δ↓0

1

δ
P
x+δn(D,x)
D (A) =

d− 2

1− |b|2−d
. (4.5)

The last formula holds with b =∞. We have in that case

Hx(A) = lim
δ↓0

1

δ
P
x+δn(D,x)
D (A) = d− 2. (4.6)

4.2 Expected lifetimes of excursions

We will derive estimates for expected excursion lifetimes in the exterior of two balls
in a torus.

Let sd = 2πd/2/Γ(d/2) denote the (d− 1)-dimensional area of S(0, 1) ⊂ Rd. Recall that
ζ denotes the lifetime of an excursion.

Lemma 4.1. Suppose that d ≥ 2, r > 4, x1, x2 ∈ T dr , and D = T dr \ (B(x1, 1) ∪ B(x2, 1)).
Let (Lt, H

x) denote the exit system for reflecting Brownian motion in D, normalized as
in (4.2).

(i) There exist r1 and c1 such that if |x1 − x2| ≥ 2, r ≥ r1 and x ∈ S(x1, 1) ∪ S(x2, 1),
then

Hx(ζ) ≤ c1rd. (4.7)

(ii) For all ε > 0 there exist r1, r2 < ∞ such that if |x1 − x2| ≥ r1, r ≥ r2 and
x ∈ S(x1, 1) ∪ S(x2, 1), then

(1− ε)rd/sd < Hx(ζ) < (1 + ε)rd/sd.

Proof. Step 1. In this proof, B will denote reflected Brownian motion in D. Let D̃ :=

T dr \ B(x1, 1) and let H̃x denote an excursion law in D̃ normalized as in (4.2). We will
consider various “large” spheres, balls, etc. We will always tacitly assume that their
diameters are smaller than r, the edge of the torus.

Every positive harmonic function in D̃ is integrable by the results of [2]. Since
the density of the expected occupation measure for an excursion law for reflected
Brownian motion in D̃ is (a constant multiple of) the Poisson (Martin) kernel, it follows
that for some c2 = c2(r) < ∞, H̃x(ζ) < c2 for every x ∈ S(x1, 1). Since D ⊂ D̃,
Hx(ζ) ≤ H̃x(ζ) < c2 <∞ for x ∈ S(x1, 1).

For an excursion et in D̃, let Sa = inf{s ≥ 0 : et(s) ∈ S(x1, a)}. The argument given in
the last paragraph implies that for every a > 1 there exists α(a) < ∞ such that for all
x ∈ S(x1, 1),

H̃x(ζ ∧ Sa) = α(a). (4.8)

Standard arguments show that (4.3) implies that, a.s.,

lim
t→∞

Lt/t = 2sd/(2|D|) = sd/|D|, (4.9)
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and

|D|/sd = lim
t→∞

t/Lt = lim
t→∞

σt/t = lim
t→∞

Eσt/t = lim
t→∞

1

t

∫ t

0

HB(σs)(ζ)ds. (4.10)

The middle expression in (4.9) contains 2 in front of sd/(2|D|) because the boundary of
D consists of two spheres.

Step 2. Let Dk = B(x1, 2
k) \ B(x1, 1) and let fk(x, · ) be the density with respect

to the surface area measure µk on ∂Dk of the hitting distribution on ∂Dk of Brown-
ian motion starting from x ∈ Dk. We apply the Harnack inequality in the domain
B(x1, 2

k−1 · 3/2) \ B(x1, 2
k−1 · 3/4) to see that there exists c3 > 0, independent of k, such

that for all z1, z2 ∈ S(x1, 2
k−1) and y ∈ ∂Dk,

fk(z1, y)/fk(z2, y) ≥ c3. (4.11)

By the strong Markov property applied at the hitting time of S(x1, 2
k−1), for z ∈ Dk ∩

B(x1, 2
k−1) and y ∈ S(x1, 2

k),

fk(z, y) =

∫
S(x1,2k−1)

fk(x, y)fk−1(z, x)µk−1(dx). (4.12)

We now apply [11, Lem. 6.1] (see [10, Lem. 1] for a better presentation of the same
estimate) to see that (4.11)-(4.12) imply that there exist constants Cj , 1 ≤ j ≤ k−1, such
that for every 1 ≤ j ≤ k − 1 and all z1, z2 ∈ S(x1, 2

k−j) and y ∈ S(x1, 2
k),

fk(z1, y)/fk(z2, y) ≥ Cj .

Moreover, Cj ∈ (0, 1), Cj ’s depend only on c3, and 1− Cj ≤ e−c4j for some c4 > 0 and all
j. Hence, for z1, z2 ∈ S(x1, 2) and y ∈ S(x1, 2

k),

fk(z1, y)/fk(z2, y) ≥ Ck−1 ≥ 1− c5e−c4k. (4.13)

Step 3. We will first prove part (ii) of the lemma. Fix an arbitrarily small ε > 0.
Assume that |x1−x2| > 2m+1 and choose m so large that, in view of (4.13) and the strong
Markov property applied at the time S2,

1− ε ≤ Hz1(e(S2m) ∈ dy)

Hz2(e(S2m) ∈ dy)
=
H̃z1(e(S2m) ∈ dy)

H̃z2(e(S2m) ∈ dy)
≤ 1 + ε, (4.14)

for all z1, z2 ∈ S(x1, 1) and y ∈ S(x1, 2
m).

Let TA = inf{t ≥ 0 : Bt ∈ A} for any set A. We will now treat m as a fixed
number (we will consider r a variable and we will let r → ∞) so that (4.8) yields
Hx(ζ ∧ S2m) = H̃x(ζ ∧ S2m) = c6 for some c6 < ∞ and all x ∈ S(x1, 1). We obtain for
z1, z2 ∈ S(x1, 1),

Hz1(ζ) = Hz1(ζ ∧ S2m) +Hz1(ζ − S2m ; ζ ≥ S2m)

= c6 +

∫
S(x1,2m)

Ey TS(x1,1)∪S(x2,1)H
z1(e(S2m) ∈ dy; ζ ≥ S2m)

≤ c6 + (1 + ε)

∫
S(x1,2m)

Ey TS(x1,1)∪S(x2,1)H
z2(e(S2m) ∈ dy; ζ ≥ S2m).

Let β =
∫
S(x1,2m)

Ey TS(x1,1)∪S(x2,1)H
z0(e(S2m) ∈ dy; ζ ≥ S2m) for some arbitrarily chosen

z0 ∈ S(x1, 1). The last estimate may be now written as

Hz(ζ) ≤ c6 + (1 + ε)β,
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for z ∈ S(x1, 1). By symmetry, the estimate holds also for all z ∈ S(x2, 1). We can use the
lower bound in (4.14) to derive the analogous lower estimate, so for z ∈ ∂D,

c6 + (1− ε)β ≤ Hz(ζ) ≤ c6 + (1 + ε)β. (4.15)

Note that |D|/rd → 1 as r →∞. By (4.10) and (4.15), for large r,

(1− ε)rd/sd ≤ lim
t→∞

1

t

∫ t

0

HB(σs)(ζ)ds ≤ lim
t→∞

1

t

∫ t

0

(c6 + (1 + ε)β)ds. (4.16)

For similar reasons,

(1 + ε)rd/sd ≥ lim
t→∞

1

t

∫ t

0

HB(σs)(ζ)ds ≥ lim
t→∞

1

t

∫ t

0

(c6 + (1− ε)β)ds. (4.17)

The estimates (4.16)-(4.17) show that,

1− ε
1 + ε

rd/sd −
c6

1 + ε
≤ β ≤ 1 + ε

1− ε
rd/sd −

c6
1− ε

.

Since ε > 0 is arbitrarily small and r can be made large, this and (4.15) imply part (ii) of
the lemma.

Next we prove part (i) of the lemma. Note that the argument given in this step
remains valid if we replace all occurrences of excursion laws H with H̃ and drop the
assumption on the distance between x1 and x2. The only difference is that we would
need (4.10) with an extra constant 2 on the left hand side because we would use the exit
system in D̃ rather than D. Hence, we have H̃x(ζ) ≤ c7rd for large r, that is, an inequality
analogous to the upper estimate in part (ii). Part (i) follows because Hx(ζ) ≤ H̃x(ζ).

5 Motion of a single ball

Proof of Theorem 3.1. Our starting point is the following equation, analogous to (2.1),
where X0 is replaced with S(0, 1). We will consider a continuous process Zt (reflected
Brownian motion) taking values in B(0, 1)c and local time LZt such that we have LZ0 = 0,∫∞
0

1{Zt /∈S(0,1)}dL
Z
t = 0, and

Zt = Bt +

∫ t

0

n(S(0, 1), Zs)dL
Z
s , t ≥ 0. (5.1)

Let σZt be the inverse local time, i.e., σZt = inf{s ≥ 0 : LZs ≥ t}, and(
L1,Z
t ,L2,Z

t

)
= LZt =

∫ t

0

n(S(0, 1), Zs)dL
Z
s . (5.2)

It follows from the recurrence of two-dimensional Brownian motion that limt→∞ LZt =∞.
Comparing the above setup with the statement of the theorem and (2.1)-(2.3), we

conclude that it will suffice to prove that processes {n−1/2LZ
nσZt

, t ≥ 0} converge weakly
to Brownian motion as n→∞.

We will first compute the distribution of ZσZt assuming that Z0 = (1, 0). Let Ka =

{(x1, x2) ∈ R2 : x1 < a}. Let Wt = (W 1
t ,W

2
t ) be the reflected Brownian motion in

the half-plane K0 starting from W0 = 0 and let LWt be its local time on ∂K0. Let
σWt = inf{s ≥ 0 : LWs ≥ t}. Suppose that B̃ is a two-dimensional Brownian motion
starting from B̃0 = 0 and let (a,Ma) be the (random) location of B̃ at the hitting time
of the line ∂Ka. It is well known that the processes {W 2

σWt
, t ≥ 0} and {Mt, t ≥ 0} have

the same distribution. Hence, for a fixed t, the distribution of WσWt
is the same as the
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harmonic measure on ∂Kt with the base point at (0, 0). The complex analytic function
z → exp(−z) maps W onto a time change of Z and the local time is conformally invariant,
so ZσZt is distributed as the image of the distribution of WσWt

under the map z → exp(−z).
By the earlier remarks and conformal invariance of harmonic measure under the map
z → exp(z − t), the distribution of ZσZt is the same as the harmonic measure in B(0, 1)

relative to the base point exp(−t). The density of this harmonic measure with respect to
the uniform probability measure on S(0, 1) at a point z ∈ S(0, 1) is

1− e−2t

|z − (e−t, 0)|2
, (5.3)

by the Poisson formula (see [1, Ch. 4, Sect. 6.3]).
Let θ = arg(z) ∈ [0, 2π) for z ∈ S(0, 1) and let µt(dz) be the distribution of ZσZt .

We will need a formula for
∫
S(0,1) cos(θ)µt(dz). Note that for any fixed ϕ, the function

z → cos(θ − ϕ) is equal to the harmonic function z = (z1, z2) → z1 cos(ϕ) + z2 sin(ϕ) on
S(0, 1). Since µt(dz) is the harmonic measure with the base point exp(−t), it follows that∫

S(0,1)
cos(θ − ϕ)µt(dz) = exp(−t) cos(ϕ). (5.4)

Recall that n = n(S(y, r), x) denotes the unit outward normal vector to S(y, r) at x
and write n = (n1,n2). The strong Markov property applied at σZt , invariance of the
transition probabilities of Z under rotations about 0, and (5.4) imply for s > t, with the
convention θ = arg(z),

E
(
n1(S(0, 1), ZσZs ) | ZσZt = eiϕ

)
=

∫
S(0,1)

cos(θ − ϕ)µs−t(dz) = exp(t− s) cos(ϕ). (5.5)

Let Ux denote the uniform probability distribution on S(x, 1). Assume that B0 has the
distribution U0. Then ZσZt has the same distribution. Hence, by (5.5),

E
(
n1(S(0, 1), ZσZs ) n1(S(0, 1), ZσZt )

)
=

∫
S(0,1)

exp(t− s) cos2(θ)U0(dz)

=

∫ 2π

0

1

2π
exp(t− s) cos2(θ)dθ = (1/2) exp(t− s).

It follows that

E
(
L1,Z
σZu

)2
= E

(∫ σZu

σZ0

n1(S(0, 1), Zs)dL
Z
s

)2

= E

(∫ u

0

n1(S(0, 1), ZσZs )ds

)2

(5.6)

= 2

∫ u

0

∫ u

t

E
(
n1(S(0, 1), ZσZs ) n1(S(0, 1), ZσZt )

)
dsdt

= 2

∫ u

0

∫ u

t

(1/2) exp(t− s) dsdt = u+ e−u − 1.

For j = 1, 2, and n = 1, 2, . . . , let

Lj,Z(n) =

∫ σZn+1

σZn

nj(S(0, 1), Zs)dL
Z
s .

Suppose that B0 has the uniform distribution on S(0, 1). Then, for every t, ZσZt also
has the uniform distribution on S(0, 1). By the strong Markov property, the sequence
{L1,Z

(n) , n ≥ 0} is strictly stationary.
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We will sketch a proof that the sequence {L1,Z
(n) , n ≥ 0} is ϕ-mixing in the sense of [5,

Sect. 20] with ϕn ≤ c1e
−n for some c1 < ∞. We will prove that condition (20.2) in [5,

Sect. 20] is satisfied. That condition is always satisfied if P (E1) = 0 so we can assume
that P (E1) > 0. Given this assumption, we can rephrase condition (20.2) in [5, Sect. 20]
in the following way. Suppose that A1 andA2 are events such that

A1 ∈ σ
(
L1,Z
(n) , n = 0, 1, . . . , j

)
, (5.7)

A2 ∈ σ
(
L1,Z
(n) , n = j + k, j + k + 1, . . .

)
. (5.8)

We need to prove that for all k ≥ 1 and all events satisfying (5.7)-(5.8) and P(A1) > 0,

|P(A2 | A1)− P(A2)| ≤ ϕk. (5.9)

By the strong Markov property applied at time j + 1, the conditional distribution of A2

given A1 and ZσZj+1
is the same as the conditional distribution of A2 given ZσZj+1

. Hence,
instead of (5.9), it will suffice to prove∣∣∣P(A2 | ZσZj+1

= x
)
− P(A2)

∣∣∣ ≤ ϕk, (5.10)

for all A2 satisfying (5.8), x ∈ S(0, 1) and k ≥ 1. We have

P
(
A2 | ZσZj+1

= x
)

=

∫
S(0,1)

P
(
A2 | ZσZj+k = y

)
P
(
ZσZj+k ∈ dy | ZσZj+1

= x
)
. (5.11)

If follows from (5.3) that for large k,

sup
x1,x2∈S(0,1)

P
(
ZσZj+k ∈ dy | ZσZj+1

= x1

)
P
(
ZσZj+k ∈ dy | ZσZj+1

= x2

) = sup
z1,z2∈S(0,1)

1− e−2(k−1)

|z1 − (e−k+1, 0)|2
· |z2 − (e−k+1, 0)|2

1− e−2(k−1)

≤ 1 + 6e−k+1.

This and the analogous lower bound can be combined with (5.11) to show that (5.10)
holds with ϕk ≤ c1e−k for some c1 <∞.

We have proved ϕ-mixing so we can apply [5, Thm. 20.1] to see that the processes
{n−1/2L1,Z

σZbntc
, t ≥ 0} converge in distribution to Brownian motion with some diffusion

coefficient, as n → ∞. Note that |L1,Z
(n) | ≤ 1, a.s. This implies that {n−1/2L1,Z

σZnt
, t ≥

0} converge to Brownian motion in distribution, as n → ∞. The same applies to
{n−1/2L2,Z

σZnt
, t ≥ 0} and to every process of the form {n−1/2LZ

σZnt
· v, t ≥ 0}, for every

vector v of unit length. The last observation can be rephrased by saying that every
linear combination of the processes L1,Z

σZt
and L2,Z

σZt
satisfies the same type of invariance

principle, with possibly different normalizing constant. Applying the strong Markov
property at σZns, we can prove that for any unit vector v,{

{n−1/2(LZσZ
n(t+s)

− LZσZns) · v, t ≥ 0}, {n−1/2L1,Z

σZnt
, t ∈ [0, s]}, {n−1/2L2,Z

σZnt
, t ∈ [0, s]}

}
converge jointly and the first component of the limit is Brownian motion independent of
the other two components. Hence,{

n−1/2(L1,Z

σZnt
,L2,Z

σZnt
), t ≥ 0

}
converges to a process whose each component is Brownian motion and whose increments
are Gaussian and independent. We conclude that the limit process is Gaussian and it is a
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constant multiple of Brownian motion, by rotation invariance. It remains to identify the
diffusion coefficient. The formula (5.6) implies that limu→∞Var L1,Z

σZu
/u = 1. In general,

the existence of a weak limit for a sequence of random variables does not imply that
the variance of the limit is the limit of variances but this is the case in the setting of [5,
Sect. 20] so we conclude that the diffusion coefficient is 1.

6 Estimates for the local time

Recall the process Z defined in (2.1). Let X0 = S(0, 1) in that equation so that the
process Z takes values in Rd \B(0, 1). We will identify LZ with LX that appeared in (2.1).
Let (

L1,Z
t , . . . ,Ld,Zt

)
= LZt =

∫ t

0

n(S(0, 1), Zs)dL
Z
s . (6.1)

If d ≥ 3 then (4.6) implies that LZ∞ <∞, a.s., so LZ∞ is a well defined vector.

Lemma 6.1. Suppose that d ≥ 3 and {(Bt, Zt), t ≥ 0} is defined on (Rd)2. Assume that
B0 is distributed uniformly on S(0, 1). Then

E(L1,Z
∞ )2 =

2

(d− 2)(d− 1)d
.

Proof. Let

Mt = inf{|Bs| : s ∈ [0, t]},

Ũt = Bt/Mt,

Ct =

∫ t

0

M−2s ds,

γt = inf{s ≥ 0 : Cs ≥ t},

Ut = Ũγt .

Processes {Ut, t ≥ 0} and {Zt, t ≥ 0} have the same distribution. This claim is a slight
modification of [16, Thm. 2.3], where a “scaling coupling” was constructed. The above
construction is related to “perturbed Bessel processes,” see, e.g., [12].

Let LUt be the local time of U on S(0, 1). Then, informally speaking, dLU = −dM/M

and, therefore, LUt = − logMt. The last formula can be verified rigorously, for example,
by using excursion theory.

Let ek be the k-th vector in the usual orthonormal basis for Rd and

σUt = inf{s ≥ 0 : LUs ≥ t},
σMt = inf{s ≥ 0 : Ms = e−t}.

For all t ∈ (0,∞), the distributions of σUt and σMt are defective because there may be no
s such that LUs ≥ t or Ms = e−t. The distribution of UσUt is the same as the distribution of
BσMt /|BσMt |. We will give the value 0 to these and similar quantities in our calculations

when σUt or σMt are undefined. The distribution of BσMt is the same as the hitting
distribution of S(e−t, 0). Suppose that B0 = e1. Then, by the Kelvin transformation (see
[17, Thm. 3.1, p. 102]), the distribution of BσMt is the same as the hitting distribution
of S(e−t, 0) by Brownian motion starting from the point e−2te1 times the probability
that Brownian motion starting from e1 will hit S(0, e−t). The last probability is equal to
e−t(d−2). Since |BσMt | = e−t, we see that the (defective) distribution µt(dz) of BσMt /|BσMt |
is the same as et(2−d) times the hitting distribution of S(0, 1) by Brownian motion starting
from the point e−te1.
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For any fixed unit vector v ∈ S(0, 1), the function z → v · z is harmonic. It follows that∫
S(0,1)

v · z µt(dz) = e−tet(2−d)v · e1 = et(1−d)v · e1. (6.2)

Let Ux denote the uniform probability distribution on S(x, 1). Note that U0 is the
harmonic measure in B(0, 1) with the base point at 0. The function

f(x1, . . . , xd) = ((d− 1)x21 − x22 − · · · − x2d + 1)/d

is harmonic and its values on S(0, 1) are the same as those of the function (x1, . . . , xd)→
x21 = (z · e1)2 so ∫

S(0,1)
(z · e1)2 U0(dz) =

∫
S(0,1)

f(z)U0(dz) = f(0) = 1/d. (6.3)

Let n = (n1,n2, . . . ,nd) and for j = 1, . . . , d, and n ≥ 1,

Lj,U(n) =

∫ σUn+1

σUn

nj(S(0, 1), Us)dL
U
s .

We have by the strong Markov property applied at σUt , rotation invariance of reflected
Brownian motion and (6.2), for s > t and v ∈ S(0, 1),

E
(
n1(S(0, 1), UσUs ) | UσUt = v

)
=

∫
S(0,1)

v · z µs−t(dz) = e(s−t)(1−d)v · e1. (6.4)

Now assume that B0 is uniformly distributed over S(0, 1). Then UσUt has the defective

distribution et(2−d)U0. We obtain from (6.3) and (6.4), for s > t,

E
(
n1(S(0, 1), UσUs ) n1(S(0, 1), UσUt )

)
=

∫
S(0,1)

e(s−t)(1−d)(z · e1)2et(2−d)U0(dz)

= e(s−t)(1−d)et(2−d)/d = es(1−d)et/d.

It follows that

E
(
L1,U
∞
)2

= E

(∫ ∞
0

n1(S(0, 1), Us)dL
U
s

)2

= E

(∫ ∞
0

n1(S(0, 1), UσUs )ds

)2

= 2

∫ ∞
0

∫ ∞
t

E
(
n1(S(0, 1), UσUs ) n1(S(0, 1), UσUt )

)
dsdt

= 2

∫ ∞
0

∫ ∞
t

(1/d)es(1−d)et dsdt

=
2

(d− 2)(d− 1)d
.

Recall the notation from the beginning of this section and (6.1). Consider any b > 1

and let

Tb = inf{t ≥ 0 : Zt /∈ B(0, b)},

λ1(d, b) =

1/ log b if d = 2,
d− 2

1− |b|2−d
if d ≥ 3,

(6.5)

λ2(d, b) = E(L1,Z
Tb

)2. (6.6)

The expectation on the last line is calculated under the assumption that B0 is distributed
uniformly on S(0, 1).
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Lemma 6.2. Suppose that d ≥ 2 and {(Bt, Zt), t ≥ 0} is defined on (Rd)2. Assume that
B0 is distributed uniformly on S(0, 1).

(i) If d = 2 then

lim
b→∞

λ2(d, b)/ log b = 1.

(ii) If d ≥ 3 then

lim
b→∞

λ2(d, b) =
2

(d− 2)(d− 1)d
.

(iii) For every ε, β > 0,

lim
b→∞

bβλ1(d, b)E

((
L1,Z
Tb
/
√
bβ
)

1{
L1,Z
Tb

/
√
bβ>ε

})2

= 0.

Proof. (i) Let d = 2, S1 = 0,

Tk = inf{t ≥ Sk : |Zt| ≥ b}, k ≥ 1,

Sk = inf{t ≥ Tk−1 : |Zt| = 1}, k ≥ 2.

Recall the notation n = (n1,n2) and for j = 1, 2, and n = 1, 2, . . . , let

L̃j,Z(n) =

∫ Tn

Sn

nj(S(0, 1), Zs)dL
Z
s .

Recall that B0 has the uniform distribution on S(0, 1). Then, for every n, ZSn also
has the uniform distribution on S(0, 1). By the strong Markov property, the sequence
{L̃1,Z

(n) , n ≥ 0} is strictly stationary. One can prove that the sequence {L̃1,Z
(n) , n ≥ 0} is

ϕ-mixing in the sense of [5, Sect. 20] with ϕn ≤ c1e−n for some c1 <∞ using the formula
(5.3) and the method employed in the proof of (4.13). Let T (t) be the largest Tn ≤ t.
By [5, Thm. 20.1], for some c1, {c1n−1/2L̃1,Z

σZ
T (t)

, t ≥ 0} converge to Brownian motion in

distribution, as n→∞. The distribution of LZTn − L
Z
Sn

is exponential with mean log b, by

(4.4). Hence |L̃1,Z
(n) | is majorized by an exponential random variable with mean log b. This

implies that {c1n−1/2L1,Z

σZnt
, t ≥ 0} converge to Brownian motion in distribution, as n→∞.

This we already know from the proof of Theorem 3.1. The point of the present argument
is that this time we divided the time axis into subintervals of independent lengths with
exponential distributions with mean log b. Since the limit process is the same in both
cases, the variances must match and, therefore, limb→∞ λ2(d, b)/ log b = 1 because the
contributions from the cross terms will disappear in the limit, for the same reason why
we have ϕ-mixing.

(ii) Suppose that d ≥ 3. It follows from (4.6) that LZ∞ has the exponential distribution
with mean 1/(d − 2). This and the formula (6.1) show that the family {L1,Z

Tb
}b>1 is

uniformly integrable. We have limb→∞ L1,Z
Tb

= L1,Z
∞ , a.s., so part (ii) of the lemma follows

from Lemma 6.1.

(iii) For any starting point B0 = x /∈ B(0, 1), the distribution of ZσZ1 is absolutely
continuous with respect to the uniform probability measure on S(0, 1), according to
the proofs of Theorem 3.1 and Lemma 6.1. Let c1 = c1(d) be the maximum of the
corresponding Radon-Nikodym derivative and note that c1(d) < ∞. Let T ′b = Tb ◦ θσZ1
where θ is the usual Markov shift. By the strong Markov property applied at σZ1 and
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parts (i) and (ii) of this lemma, for all x ∈ S(0, 1),

Ex(L1,Z
Tb

)2 ≤ Ex
(
L1,Z

σZ1
+ (L1,Z

T ′b
− L1,Z

σZ1
)
)2

(6.7)

≤ 2Ex(L1,Z

σZ1
)2 + 2Ex

(
L1,Z
T ′b
− L1,Z

σZ1

)2
≤ 2 + 2c1λ2(d, b).

Let c2 =
√

2 + 2c1λ2(d, b). Then for large b,

Px(L1,Z
Tb
≥ 2c2) ≤ Ex(L1,Z

Tb
)2/(4c22) ≤ 1/4.

An application of the strong Markov property at times σZ2kc2 shows that, for k ≥ 1,

Px(L1,Z
Tb
≥ 2kc2) ≤ 1/4k,

and this implies that for some c3 > 0 and all a > 0,

Px(L1,Z
Tb
≥ a) ≤ exp(−c3a/c2) = exp

(
− c3a√

2 + 2c1λ2(d, b)

)
.

This implies that for every ε, β > 0,

lim
b→∞

bβλ1(d, b)Ex
((

L1,Z
Tb
/
√
bβ
)

1{
L1,Z
Tb

/
√
bβ>ε

})2

(6.8)

= lim
b→∞

λ1(d, b)Ex
(

L1,Z
Tb

1{
L1,Z
Tb

>ε
√
bβ

})2

≤ lim
b→∞

λ1(d, b)
∑

k:2k+1≥ε
√
bβ

22(k+1) exp

(
− c32k√

2 + 2c1λ2(d, b)

)
.

For a fixed d ≥ 3, the quantities λ1(d, b) and λ2(d, b) have limits in (0,∞) as b→∞. This
and the fact that the series ∑

k≥0

22(k+1) exp

(
− c32k√

2 + 2c1c4

)
is summable for any c4 ∈ (0,∞) imply that the limit in (6.8) is equal to 0. This proves
part (iii) for d ≥ 3.

For d = 2, limb→∞ λ2(d, b)/ log b = 1. If 2k+1 ≥ ε
√
bβ and n ≥ k + 1, then the ratio of

the two consecutive terms in the series on the right hand side of (6.8), corresponding to
indices k = n and k = n+ 1, is equal to

(1/4) exp

(
− c32n√

2 + 2c1λ2(d, b)
+

c32n+1√
2 + 2c1λ2(d, b)

)

= (1/4) exp

(
c32n√

2 + 2c1λ2(d, b)

)
≥ (1/4) exp

(
c3ε
√
bβ√

2 + 2c1λ2(d, b)

)
.

The last expression is greater than 2 for sufficiently large b, so for large b, the series on
the right hand side of (6.8) is bounded by twice its first term, and this implies that

lim
b→∞

bβλ1(d, b)Ex
((

L1,Z
Tb
/
√
bβ
)

1{
L1,Z
Tb

/
√
bβ>ε

})2

≤ lim
b→∞

8λ1(d, b)ε2bβ exp

(
− c3ε

√
bβ/2√

2 + 2c1λ2(d, b)

)
= 0.
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7 Hitting distribution estimates

For an open set D and a point x ∈ D, let µDx (dy) be the harmonic measure on ∂D

with the base point x.

Lemma 7.1. Consider b > 2, r > 8b, and points x1, y1 ∈ T dr with dist(x1, y1) > 2b.
Suppose that z1 ∈ S(x1, b) ∪ S(y1, b) and let D = T dr \ (B(x1, 1) ∪ B(y1, 1)). There exists c1
such that

1− c1/ log b ≤ µDz1(S(x1, 1))/µDz1(S(y1, 1)) ≤ 1 + c1/ log b, if d = 2, (7.1)

1− c1b2−d ≤ µDz1(S(x1, 1))/µDz1(S(y1, 1)) ≤ 1 + c1b
2−d, if d ≥ 3. (7.2)

Proof. Let

A(x1) = {z ∈ T dr : µDz (S(x1, 1)) ≥ µDz (S(y1, 1))},
A(y1) = {z ∈ T dr : µDz (S(x1, 1)) ≤ µDz (S(y1, 1))}.

We have A(x1) ∪ A(y1) = T dr so the volume of each of these sets is equal to or greater
than rd/2 (the volumes are equal by symmetry). We define some subsets of Rd as follows,

A(x) = A(x) + rZd for x = x1, y1; S(x, 1) = S(x, 1) + rZd for x ∈ T dr .

The problem is invariant under translations so we may and will assume that x1 and y1
are positioned in such a way in T dr = [0, r)d ⊂ Rd that S(x1, b)∪S(y1, b) does not intersect
the boundary of [0, r)d.

Let B denote Brownian motion in Rd starting from z1 ∈ S(x1, b) ∪ S(y1, b) and for
K ⊂ Rd let TB(K) be the first hitting time of K. Let U1 = 0 and T′1 = T dr , and note
that BU1 ∈ T′1. Let T1 be a d-dimensional cube in Rd with the same center as T′1 but
with edge length equal to 3r. For k ≥ 2, let Uk = inf{t ≥ Uk−1 : Bt ∈ ∂Tk−1} and let
T′k = T dr + rx, where x ∈ Zd is chosen so that BUk ∈ T′k (if such an x is not unique then
we choose one of the x’s in an arbitrary way). Let Tk be the d-dimensional cube in Rd

with the same center as T′k but with the edge length equal to 3r. By our assumption on
the positions of x1 and y1, the distance from BUk to S(x1, 1) ∪ S(y1, 1) is greater than or
equal to b− 1 for all k, a.s. Suppose that z /∈ B(x1, b) ∪ B(y1, b). Let α(2, b) = 1/ log b and
α(d, b) = b2−d for d ≥ 3. The following estimate is standard,

Pz(TB(S(x1, 1)) < U2) ≤ c2α(d, b).

The set S(x1, 1) ∩Tk−1 consists of 3d copies of S(x1, 1), each one of them at a distance
greater than or equal to b− 1 from BUk−1

. This, the strong Markov property and the last
estimate imply that

Pz1(TB(S(x1, 1) ∩Tk−1) < Uk | FUk−1
) ≤ c3α(d, b).

Since the d-dimensional Lebesgue measure of A(x1) ∩Tk−1 is greater than (3r)d/2, we
have for some c4,

Pz1(TB(A(x1) ∩Tk−1) < Uk | FUk−1
) ≥ c4.

For the same reason

Pz1(TB(A(y1) ∩Tk−1) < Uk | FUk−1
) ≥ c4,

so

Pz1(TB(∂A(x1) ∩Tk−1) < Uk | FUk−1
) ≥ c4.
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The above estimates imply that

Pz1(TB(S(x1, 1)) ≤ TB(∂A(x1))) ≤ c5α(d, b).

For any x ∈ ∂A(x1), we have Px(TB(S(x1, 1)) ≤ TB(S(y1, 1))) = 1/2, so

Pz1(TB(S(x1, 1)) ≤ TB(S(y1, 1))) ≤ 1/2 + c5α(d, b).

By analogy,

Pz1(TB(S(y1, 1)) ≤ TB(S(x1, 1))) ≤ 1/2 + c5α(d, b).

The last two estimates imply (7.1)-(7.2).

Recall that for an open set D and a point x ∈ D, µDx (dy) is the harmonic measure on
∂D with the base point x and Ux denotes the uniform probability distribution on S(x, 1).

Lemma 7.2. Suppose that x1, y1 ∈ T dr and dist(x1, y1) > 2b. Let D = T dr \ (B(x1, 1) ∪
B(y1, 1)). There exists c1 such that for b > 4 and r > 8b there exists a ∈ (0, 1] such that
for z ∈ S(x1, b) ∪ S(y1, b) there exists a probability distribution D on S(x1, 1) satisfying

µDz ( · )/µDz (S(x1, 1)) = aUx1 + (1− a)D, on S(x1, 1), (7.3)

and

1− a < c1b
1−d. (7.4)

Heuristically, (7.3)-(7.4) say that the exit distribution from D, normalized so that its
restriction to S(x1, 1) is a probability measure, is very close to the uniform distribution
on S(x1, 1).

Proof. Step 1. By translation invariance we may and will suppose that x1 = 0.
Suppose that the lemma has been proved for all z ∈ S(0, b). If z ∈ S(y1, b) then one

can apply the strong Markov property at the hitting time of S(0, b) and use standard
arguments to extend the claim to z ∈ S(y1, b). Hence, we will assume that z ∈ S(0, b).

Let D1 = B(0, b) \ B(0, 1). We will write x = (x1, x2, . . . , xd) for x ∈ Rd. Let x0 =

(b/2, 0, . . . , 0) and let f(x) = µD1
x0

(dx)/U0(dx) for x ∈ S(0, 1). By rotational symmetry,
f(x) is a function of x1 only. We will show that f(x) is a non-decreasing function of x1.
Suppose that x, y ∈ S(0, 1) and x1 > y1 and let M be the (d− 1)-dimensional hyperplane
such that x and y are symmetric with respect to M . Note that M passes through the
origin and, therefore, D1 is symmetric with respect to M . The points x0 and x are on the
same side of M . If we start a Brownian motion at x0 and it hits M then it has the same
chance of exiting D1 at dx and dy, by symmetry. But Brownian motion starting at x0 can
exit D1 at dx without hitting M , so f(x) ≥ f(y).

Let D2 = {x ∈ D1 : x1 > 0}, A1 = {x ∈ S(0, 1) : x1 ≥ 1/2}, z1 = (1, 0, . . . , 0), and
h(x) = µD2

x0
(dx)/U0(dx). We will argue that there exists a constant c2 not depending

on b > 4, such that h(y) > c2h(z1) if y ∈ A1. Let G(x0, · ) be Green’s function in D2

and let G∗(x) = 1 − |x|2−d if d ≥ 3, and G∗(x) = log |x| if d = 2. The functions G(x0, · )
and G∗( · ) are positive and harmonic in D3 := B(0, 2) ∩D2, and vanish continuously on
{x ∈ ∂D3 : |x| = 1, x1 ≥ 1/4}. Hence, by the boundary Harnack principle, there exists c3
such that if x, y ∈ {z ∈ D3 : |z| ≤ 3/2, z1 ≥ 3/8} then

G(x0, x)

G(x0, y)
≥ c3

G∗(x)

G∗(y)
.
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If in addition |x| = |y| then G∗(x) = G∗(y) and we obtain

G(x0, x)

G(x0, y)
≥ c3.

Let c4 be the surface area of S(0, 1). The last estimate implies that for any v ∈ A1,

c4h(v) = lim
x→v,x∈D2

G(x0, x)

1− |x|
≥ c3 lim

y→z1,y∈D2

G(x0, y)

1− |y|
= c3c4h(z1). (7.5)

Let D4 = {x ∈ B(0, b) : x1 > 0}, D5 = {x ∈ Rd : x1 > 0} and A2 = B(0, 1) ∩ ∂D5. It is
easy to see that for some constant c5 not depending on b (for b > 4) and for all x ∈ A1,
we have µD4

x (A2) > c5. It follows from this and (7.5) that

µD4
x0

(A2) ≥
∫
A1

µD4
x (A2)µD2

x0
(dx) ≥ c5µD2

x0
(A1) ≥ c5U0(A1) inf

x∈A1

h(x) ≥ c6h(z1).

It is well known that µD5
x0

(A2) ≤ c7b1−d so

h(z1) ≤ c−16 µD4
x0

(A2) ≤ c−16 µD5
x0

(A2) ≤ c8b1−d.

If Brownian motion starting from x0 hits ∂D5 before exiting D1 then it can exit D1

through z1 and −z1 with equal probabilities. Hence, f(z1) = h(z1) + f(−z1) and

f(z1)− f(−z1) = h(z1) ≤ c8b1−d.

We have shown at the beginning of the proof that f(−z1) ≤ f(x) ≤ f(z1) for all x ∈ S(0, 1)

so for all v1, v2 ∈ S(0, 1),

|f(v1)− f(v2)| ≤ c8b1−d. (7.6)

Step 2. Suppose that B is Brownian motion on T dr starting from z ∈ S(0, b) ∪ S(y1, b)

and let

R0 = 0,

Vk = inf{t ≥ Rk−1 : Bt ∈ S(0, b/2) ∪ S(y1, b/2)}, k ≥ 1,

Rk = inf{t ≥ Vk : Bt ∈ S(0, b) ∪ S(y1, b) ∪ S(0, 1) ∪ S(y1, 1)}, k ≥ 1,

K = inf{k ≥ 1 : BRk ∈ S(0, 1) ∪ S(y1, 1)}.

Recall that TB(A) denotes the first hitting time of A for any set A. Standard methods
show that for some c9 and all x ∈ S(0, b) ∪ S(y1, b) and y1, y2 ∈ S(0, b/2) ∪ S(y1, b/2),

Px(BTB(S(0,b/2)∪S(y1,b/2)) ∈ dy1)

Px(BTB(S(0,b/2)∪S(y1,b/2)) ∈ dy2)
≤ c9.

Similarly, for some c10 and all x ∈ S(0, b/2) ∪ S(y1, b/2) and y1, y2 ∈ S(0, b) ∪ S(y1, b),

Px(BTB(S(0,b)∪S(y1,b)∪S(0,1)∪S(y1,1)) ∈ dy1)

Px(BTB(S(0,b)∪S(y1,b)∪S(0,1)∪S(y1,1)) ∈ dy2)
≤ c10.

Now the same argument that leads to (4.13) in Step 2 of the proof of Lemma 4.1 yields
existence of c11 and c12 such that for y1, y2 ∈ S(0, b/2) ∪ S(y1, b/2) and k ≥ 1,

Pz(BVk ∈ dy1 | K > k − 1)

Pz(BVk ∈ dy2 | K > k − 1)
≥ 1− c11e−c12k. (7.7)
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For x ∈ S(0, 1) and k ≥ 1, let

fk(x) =
Pz(BRk ∈ dx;K > k − 1)

U0(dx)
.

It follows from (7.6) and (7.7) that for all v1, v2 ∈ S(0, 1) and k ≥ 1,

|fk(v1)− fk(v2)| ≤ c13b1−de−c12k.

Note that f∗(x) := µDz (dx)/U0(dx) =
∑
k≥1 fk(x). The last estimate implies that for all

v1, v2 ∈ S(0, 1),

|f∗(v1)− f∗(v2)| ≤ c14b1−d.

This can be easily translated into (7.3)-(7.4), using the estimate for µDz (S(x1, 1)) given in
Lemma 7.1.

8 Invariance principle

Proof of Theorem 3.2. Step 1. Suppose that b > 10, r > 10b2 and let a be as in Lemma
7.2. Recall that the state space for each of the processes B,X and Y is T dr . Assume that
dist(X0, Y0) > b2, dist(B0, X0) ≥ b and dist(B0, Y0) ≥ b. Let

T1 = inf{t ≥ 0 : Bt ∈ X0 ∪ Y0},
Uk = inf{t ≥ Tk : Bt ∈ S(Xt, b) ∪ S(Yt, b)}, k ≥ 1,

Tk = inf{t ≥ Uk−1 : Bt ∈ Xt ∪ Yt}, k ≥ 2,

k1 = inf{k : dist(Xt, Yt) < 2b for some t ≤ Uk},
j(X, 1) = inf{k ≥ 1 : BTk ∈ XTk},
j(X,n) = inf{k > j(X,n− 1) : BTk ∈ XTk}, n ≥ 2,

j(Y, 1) = inf{k ≥ 1 : BTk ∈ YTk},
j(Y, n) = inf{k > j(Y, n− 1) : BTk ∈ YTk}, n ≥ 2.

Recall (2.3) and let

LXt =

∫ t

0

n(Xs, Bs)dLXs , LYt =

∫ t

0

n(Ys, Bs)dLYs ,

∆nLX = LXUj(X,n)
− LXTj(X,n)

, ∆nLY = LYUj(Y,n)
− LYTj(Y,n)

.

Note that for k < k1, XUk = X0 +
∑

1≤n≤k ∆nLX , and a similar formula holds for Y .
The strong Markov property and Lemma 7.2 imply that for n ≥ 1 such that j(X,n)−

1 < k1, the conditional distribution of BTj(X,n)
given FUj(X,n)−1

is equal to aUXUj(X,n)−1
+

(1− a)DXn , where DXn is a probability distribution on XUj(X,n)−1
, determined by the values

of XUj(X,n)−1
, YUj(X,n)−1

and BUj(X,n)−1
. Recall formulas (5.1)-(5.2) and for x ∈ S(0, 1)

let Dbx be the distribution of LZ
TZS(0,b)

, assuming that B0 = x. Let Db =
∫
S(0,1)D

b
xU0(dx)

and let {M1
n}n≥1 be a sequence of i.i.d. random vectors with distributions Db. Let

{δn}n≥1 be i.i.d. random variables with P(δn = 1) = 1 − P(δn = 0) = a. We assume
that {δn}n≥1 and {M1

n}n≥1 are independent. We will define another process {M2
n}n≥1.

Before doing so, we note that we can and will assume that {M1
n}n≥1, {M2

n}n≥1 and
{δn}n≥1 are defined on the same probability space as (B,X, Y ). For every n ≥ 1, let M2

n

be a random vector with the conditional distribution
∫
S(0,1)D

b
xDXn (dx) given FUj(X,n)−1

.

Let Mn = δnM1
n + (1 − δn)M2

n for n ≥ 1. It is elementary to check that the sequences
{Mn}n≥1,j(X,n)−1<k1 and {∆nLX}n≥1,j(X,n)−1<k1 have the same distributions.
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Recall λ1(d, b) from (6.5). Let {N b
t , t ≥ 0} be a Poisson process with the rate (expected

number of jumps per unit of time) equal to λ3(d, b) := b4λ1(d, b). We assume that N b is
independent of {δnM1

n}n≥1. Let {N1
t , t ≥ 0} be a continuous time pure jump process

with values in Rd, starting from 0, with jump times matching those of N b. For n ≥ 1, the
n-th jump of N1 is equal to δnM1

n/b
2.

Let Π be the covariance matrix equal to the unit diagonal matrix times 2/((d− 1)d).
We will use the invariance principle in the form given in [13, Thm. IX 4.21] to show
that the processes {N1

t , t ≥ 0} converge weakly to Brownian motion with the covariance
matrix Π as b→∞. To apply [13, Thm. IX 4.21], one needs to check three conditions.
Their condition (iii) is concerned with the initial distributions and it is clearly satisfied
in our case—the initial distributions converge to the delta function at 0. Condition (i)
is an assumption on the asymptotic form of the expectation and variance of the jumps.
The jumps of N1 are symmetric so the expected value of the jumps is zero. Note that the
first coordinate (M1

n)1 of M1
n has the same distribution as L1,Z

Tb
in Lemma 6.2. Hence, by

Lemma 6.2 (i)-(ii) and (7.4), the variance of the first component of the limit is equal to

lim
b→∞

b4λ1(d, b)E(δ1(M1
n)1/b

2)2 = lim
b→∞

λ1(d, b)aE((M1
n)1)2

= lim
b→∞

λ1(d, b)aE(L1,Z
∞ )2 = lim

b→∞
λ1(d, b)aλ2(d, b) =

2

(d− 1)d
.

The covariance structure of the limit is represented by a constant multiple of the unit
diagonal matrix because of the rotational symmetry of M1

n. Finally, the Lindeberg-Feller-
type condition (ii) in [13, Thm. IX 4.21] has been verified in Lemma 6.2 (iii). We conclude
that processes {N1

t , t ≥ 0} converge weakly to Brownian motion with the covariance
matrix Π.

We define {M̃1
n}n≥1, {M̃2

n}n≥1, {δ̃n}n≥1 and {M̃n}n≥1 relative to Y in the same way
as {M1

n}n≥1, {M2
n}n≥1, {δn}n≥1 and {Mn}n≥1 were defined relative to X. We can and

will assume that {M̃1
n}n≥1 and {δ̃n}n≥1 are independent of {M1

n}n≥1 and {δn}n≥1. We

assume that all processes {M1
n}n≥1, {M2

n}n≥1, {δn}n≥1, {Mn}n≥1, {M̃1
n}n≥1, {M̃2

n}n≥1,
{δ̃n}n≥1 and {M̃n}n≥1 are defined on the same probability space as (B,X, Y ).

Recall the process N b. We assume that N b is independent of {δ̃nM̃1
n}n≥1. Let

{Ñ1
t , t ≥ 0} be constructed from {δ̃nM̃1

n}n≥1 and N b in the same way as {N1
t , t ≥ 0} was

constructed from {δnM1
n}n≥1 and N b. Note that we use the same Poisson process N b in

both cases.
Let {(WX

t ,W
Y
t ), t ≥ 0} be a pair of independent d-dimensional Brownian motions,

each with variance 2/((d− 1)d). It follows from independence of the families {δ̃nM̃1
n}n≥1

and {δnM1
n}n≥1 that {(N1

t , Ñ
1
t ), t ≥ 0} converge weakly to {(WX

t ,W
Y
t ), t ≥ 0}.

Let {N2
t , t ≥ 0} be a continuous time pure jump process with values in Rd, starting

from 0, with jump times matching those of N b. For n ≥ 1, the n-th jump of N2 is equal to
(1− δn)M2

n/b
2. We obtain from (6.7) that for b > 2 and d ≥ 2,

E |M2
n|2 ≤ d2(2 + 2c1λ2(d, b)) ≤ c2 + c3 log b.

According to (7.4), P(1− δk 6= 0) ≤ c4b1−d. It follows that, for large b,

E
∣∣(1− δn)M2

n/b
2
∣∣2 ≤ c5b1−d(c2 + c3 log b)/b4) ≤ c6b−3−d log b.

Recall that λ3(d, b) = b4λ1(d, b). Let n(b) = dλ3(d, b)e and note that n(b) ≤ 2(d− 2)b4 for
large b. It is easy to see that {|M2

n|}n≥1 are i.i.d. By Doob’s maximal inequality,

P

(
sup

1≤n≤n(b)

n∑
1

(1− δn)|M2
n|/b2 ≥ b−1/2

)
≤ b1/2n(b)E

∣∣(1− δn)M2
n/b

2
∣∣2

≤ 2(d− 2)b9/2c6b
−3−d log b = c7b

3/2−d log b ≤ c7b−1/2 log b
b→∞−−−→ 0.
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Note that N2 will have about n(b) jumps by time 1. Now standard arguments show
that {N2

t , t ∈ [0, 1]} converge to the process identically equal to 0 as b → ∞. A similar
argument shows that for every fixed t1 < ∞, {N2

t , t ∈ [0, t1]} converge to the process
identically equal to 0 as b→∞.

Let {Ñ2
t , t ≥ 0} be defined relative to {(1− δ̃n)M̃2

n}n≥1 in the same way as {N2
t , t ≥ 0}

was defined relative to {(1− δn)M2
n}n≥1. In both cases we use the same Poisson process

N b. By analogy, for every fixed t1 <∞, {Ñ2
t , t ∈ [0, t1]} converge to the process identically

equal to 0 as b→∞.

Let Nt = N1
t + N2

t and Ñt = Ñ1
t + Ñ2

t . Combining the results on convergence of
{(N1

t , Ñ
1
t ), t ≥ 0}, {N2

t , t ∈ [0, t1]} and {Ñ2
t , t ∈ [0, t1]}, we see that {(Nt, Ñt), t ≥ 0}

converge weakly to {(WX
t ,W

Y
t ), t ≥ 0} as b→∞.

Recall the definition of Tk from the beginning of the proof and let

N̂X,b
t = inf{k : σXTk ≥ t/b

4}, N̂Y,b
t = inf{k : σYTk ≥ t/b

4}, N̂ b
t = inf{k : σTk ≥ t/b4}.

It follows from (4.4), (4.5), (6.5) and the definition of N b that {N̂ b
t , t ≥ 0} and {N b

t , t ≥
0} have the same distributions. It is standard to prove that for every t1 <∞, a.s.,

lim
b→∞

sup
0≤t≤t1

|N̂ b
t −N b

t |
λ3(d, b)

= 0. (8.1)

Note that N̂X,b + N̂Y,b = N̂ b. By Lemma 7.1, for any arbitrarily small ε > 0 there
exists b1 such that for b > b1 and all n ≥ 1, the time of the n-th jump of N̂ b is equal to a
jump time of N̂X,b with probability in the range (1/2− ε, 1/2 + ε). This holds conditional
on the times of jumps of N̂X,b, N̂Y,b and N̂ b before the time of the n-th jump of N̂ b. These
observations and (8.1) imply easily that for every t1 <∞, a.s.,

lim
b→∞

sup
0≤t≤t1

|N̂X,b
t −N b

t /2|
λ3(d, b)

= lim
b→∞

sup
0≤t≤t1

|N̂Y,b
t −N b

t /2|
λ3(d, b)

= 0. (8.2)

Let {Rt, t ≥ 0} be a pure jump process with the same jumps as those of the process
{Nt, t ≥ 0} except that their times are determined by the jumps of N̂X,b rather than
N b. We define {R̃t, t ≥ 0} in a similar way relative to {Ñt, t ≥ 0} and N̂Y,b. It follows
from convergence of {(Nt, Ñt), t ≥ 0} and (8.2) that {(Rt, R̃t), t ≥ 0} converge weakly to
{
√

2(WX
t ,W

Y
t ), t ≥ 0} as b→∞.

Recall that the sequences {Mn}n≥1,j(X,n)−1<k1 and {∆nLX}n≥1,j(X,n)−1<k1 have the
same distributions. It follows that we could construct copies of the processes {Rt, t ≥ 0}
and {b−2LX(σXb4t), t ≥ 0} on the same probability space so that we have RTj(X,n)

=

b−2LX(σXb4Tj(X,n)
) for n ≥ 1, j(X,n)− 1 < k1. The process N̂X,b has about λ3(d, b) jumps

per unit of time. We bound the difference between the processes Rt and b−2LX(σXb4t) as
follows.

sup
0≤t≤Udλ3(d,b)e∧k1

|Rt − b−2LX(σXb4t)| ≤ sup
1≤n≤dλ3(d,b)e

sup
Tj(X,n)≤t≤Uj(X,n)

b−2|LXt − LXTj(X,n)
|

≤ sup
1≤n≤dλ3(d,b)e

sup
Tj(X,n)≤t≤Uj(X,n)

b−2|LXt − LXTj(X,n)
|

= sup
1≤n≤dλ3(d,b)e

b−2(LXUj(X,n)
− LXTj(X,n)

).

By (4.4), (4.5) and (6.5), the distribution of LXUj(X,n)
− LXTj(X,n)

is exponential with mean
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1/λ1(d, b). Hence,

P

(
sup

1≤n≤dλ3(d,b)e
b−2(LXUj(X,n)

− LXTj(X,n)
) ≥ b−1/2

)
≤ dλ3(d, b)eP

(
LXUj(X,n)

− LXTj(X,n)
≥ b3/2

)
= dλ3(d, b)e exp(−λ1(d, b)b3/2).

The last quantity goes to 0 as b→∞ so

lim
b→∞

P

(
sup

0≤t≤Udλ3(d,b)e∧k1

|Rt − b−2LX(σXb4t)| ≥ b−1/2
)

= 0.

For the same reason we have

lim
b→∞

P

(
sup

0≤t≤Udλ3(d,b)e∧k1

|R̃t − b−2LY (σYb4t)| ≥ b−1/2
)

= 0.

Note that the last two formulas still hold if we replace λ3(d, b) with any constant multiple
of λ3(d, b). This and the weak convergence of {(Rt, R̃t), t ≥ 0} to {

√
2(WX

t ,W
Y
t ), t ≥ 0}

imply that {(b−2LX(σXb4t), b
−2LY (σYb4t)), t ≥ 0} converge to {

√
2(WX

t ,W
Y
t ), t ≥ 0} as

b→∞.

We will now discuss a few technical points that were partly swept under the rug in
the proof so far. First, we have just made a claim of convergence of some processes
on the half-line although the construction of stopping times used in the proof stops
at Uk1 . We assumed that dist(X0, Y0) > b2. At time Uk1 , the processes X and Y are
about 2b units apart. After rescaling by b−2, this corresponds to the time when b−2X

and b−2Y starting at a distance greater than 1 come closer than 2/b units apart. Since
d-dimensional Brownian motion does not hit a fixed point for d ≥ 2, this time goes to
infinity in probability as b→∞. This justifies the assertion that convergence holds on
the whole time half-line [0,∞).

We can drop the assumption that dist(B0, X0) ≥ b and dist(B0, Y0) ≥ b as follows. The
assumption is satisfied at the time U1 so the invariance principle holds for the post-U1

process. The amount of local time and the maximal displacement of the processes on
the interval [0, U1] can be easily estimated using the same methods that were used to
estimate ∆nLX . The estimates show that the initial part of the process, on the time
interval [0, U1], will disappear in the limit of rescaled processes.

We can now change the clocks from σXt and σYt to the common clock σt due to (8.2).
We conclude that {(b−2LX(σb4t), b

−2LY (σb4t)), t ≥ 0} converge to {(WX
t ,W

Y
t ), t ≥ 0} as

b→∞. It is straightforward to check that this implies the theorem under the assumption
that for each n, dist(X0, Y0) > n−1/2.

We note that the same proof would apply if for some fixed c8 > 0 and all n we assumed
that dist(X0, Y0) > c8n

−1/2.
We also note that our estimates are uniform in the sense that they do not depend on

the initial positions of X,Y and B. We will make this claim more precise. Recall that the
Prokhorov metric is a way to metrize weak convergence. For every T, ε, c9 > 0 there exists
n1 such that for all n ≥ n1, all x1, y1 and z1 such that dist(x1, y1) ≥ c9n−1/2, dist(x1, z1) ≥ 1

and dist(y1, z1) ≥ 1, if X0 = x1, Y0 = y1 and B0 = z1 then the Prokhorov distance between
{Cd n−1/2(Xr

σnt − Xr
0,Y

r
σnt − Yr

0), t ∈ [0, T ]} and standard (2d)-dimensional Brownian
motion on [0, T ] is less than ε.

Step 2. We will show that for any p0 < 1 and t0 > 0 there exist n0 and γ > 0 such
that for any n ≥ n0 and any starting point (B0, X0, Y0) satisfying the usual conditions
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dist(B0, X0) ≥ 1, dist(B0, Y0) ≥ 1 and dist(X0, Y0) ≥ 2, the process |n−1/2(Xσnt −Yσnt)|
will become greater than γ in at most t0 units of time with probability greater then p0.

Let

At = Xσt −Yσt ,

T 1
k = inf{t ≥ 0 : At /∈ B(0, 2k)},
T 2
k = inf{t ≥ 0 : At /∈ B(0, 2k) \ B(0, 2k−2)}.

The process At is not Markovian but the process (At, Xσt −Bσt) is. We will write Px,y to
denote the distribution of {(At, Xσt −Bσt), t ≥ 0} starting from (A0, Xσ0

−Bσ0
) = (x, y).

The last remark in Step 1 and standard Brownian estimates show that there exist
p1, p2 > 0 and k2 such that for k ≥ k2 and |y| ≥ 1,

Px,y(T 1
k = T 2

k ) ≥ p1 for x /∈ B(0, 2k−1), (8.3)

Px,y(T 2
k ≤ 22k) ≥ p2 for x ∈ B(0, 2k) \ B(0, 2k−2). (8.4)

Note that we can take p1 to be any number less than 1/2 for any d, so we will assume
that p1 = 3/8.

By applying the Markov property at times j22k, j = 1, 2, . . . , and (8.4), we see that for
some c10 and k ≥ k2,

Ex,y T 2
k ≤ c1022k for x ∈ B(0, 2k) \ B(0, 2k−2). (8.5)

We will show that there exists c11 > 0 such that for all k ≥ 0, x ∈ B(0, 2k) and |y| ≥ 1,

Ex,y T 1
k ≤ c1122k. (8.6)

The proof will be based on induction. For all k, let

T 3
k = T 1

k1{T 1
k=T

2
k} + T 1

k−1 ◦ θT 2
k
1{T 1

k 6=T
2
k} = T 2

k1{T 1
k=T

2
k} + T 1

k−1 ◦ θT 2
k
1{T 1

k 6=T
2
k},

where θ denotes the usual Markovian shift operator. Suppose that (8.6) holds for
k2, k2 + 1, . . . , k− 1 (the value of c11 will be specified later). In particular, we assume that
(8.6) holds for k − 1 and x ∈ S(0, 2k−1). Then, by (8.5) and (8.6),

Ex,y T 3
k ≤ c1022k + c1122(k−1). (8.7)

Let

T 4
1 = T 3

k ,

T 4
j = T 3

k ◦ θT 4
j−1

, j ≥ 2,

K = min{j : T 4
j = T 1

k }.

The distribution of K is majorized by the geometric distribution with mean 1/p1, by (8.3).
This, the strong Markov property applied at T 4

j ’s and (8.7) imply that

Ex,y T 1
k ≤ (c1022k + c1122(k−1))/p1. (8.8)

To complete the inductive step, we need to find c11 such that the last expression is less
than or equal to c1122k. In other words, we want to have

(c1022k + c1122(k−1))/p1 ≤ c1122k. (8.9)
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The following inequality is equivalent,

c11(1− 1/(4p1))− (c10/p1) ≥ 0. (8.10)

Since p1 = 3/8, we can choose c11 so large that (8.10) and, therefore, (8.9) hold. We
combine this with (8.8) to conclude that Ex,y T 1

k ≤ c1122k which concludes the inductive
step.

To initialize the inductive proof, it suffices to show that (8.6) holds for k = k2 (then
(8.6) holds for all k ≤ k2 with c11 replaced by c1122k2). We only sketch the proof. If
|A0| ≤ 2k2 , it is easy to construct a deterministic smooth trajectory such that if we use it
as the driving path in place of Bt then |At| will exceed 2k2+1 in no more than 22k2 units of
time. By the support theorem (see [3, Thm. I.6.6]) and the continuity of the Skorokhod
map (see [14, Thm. 1.1]), with probability p3 > 0 not depending on the starting point,
if the driving process Bt is Brownian motion then |At| will exceed 2k2 in no more than
22k2+1 units of time. Applying the Markov property at times j22k2+1, j ≥ 1, we conclude
that the expected value of the time when |At| exceeds 2k2 is bounded by 22k2+1/p3. This
implies (8.6) for k = k2 (but we may have to enlarge c11).

Recall that we fixed a p0 < 1 at the beginning of the proof. It follows from (8.6) that
for all k ≥ 0, x ∈ B(0, 2k) and |y| ≥ 1,

Px,y(T 1
k ≥ c1122k/(1− p0)) ≤ 1− p0.

By scaling, the claim made at the very beginning of Step 2 follows if we take γ =

((1− p0)t0/c11)1/2.

It remains to combine the claims proved in Steps 1 and 2. According to Step 2,
irrelevant of the starting position of X,Y and B, the process |n−1/2(Xσnt −Yσnt)| will
reach a small fixed distance in a small fixed time. After that time, we use the invariance
principle in the form proved at the end of Step 1.

9 Irreducibility

The argument presented in this section is a straightforward adaptation of the proof
of [4, Thm. 6.1] so we will omit many details.

Let Pz,x,y denote the distribution of (Bt, Xt, Yt) starting from (z, x, y).

Lemma 9.1. Fix any d ≥ 2 and r > 10. There exists a positive measure µ on (T dr )3

and t0 > 0 such that if µ(Γ) > 0, then for all (z, x, y) ∈ (T dr )3 such that dist(z, x) ≥ 1,
dist(z, y) ≥ 1 and dist(x, y) ≥ 2, we have Pz,x,y((Bt0 , Xt0 , Yt0) ∈ Γ) > 0.

Proof. Suppose that we replace Brownian motion B with a continuous function {At, t ≥
0} in (2.1)-(2.4). These equations have solutions according to [14]. Let (At, X

A
t , Y

A
t )

be the resulting triplet of processes. We proved in Section 2.1 that the processes are
defined until the accumulation time of visits of A to the unit spheres centered at XA and
Y A. We will consider only functions A such that there is no such finite accumulation
time.

Fix some u1, x1, y1 ∈ T dr and assume that for every pair of these points, the distance
between them is greater than 5. Consider any A0, X0, Y0 ∈ T dr with dist(X0, Y0) ≥ 2,
dist(A0, X0) ≥ 1 and dist(A0, Y0) ≥ 1. Let α = 1/(20d). It is elementary to see that
one can find a continuous function {At, t ≥ 0} and a time t1 < ∞ not depending on
u1, x1, y1, A0, X0, Y0 (but possibly depending on d and r) such that there exists t2 ≤ t1 with
the property that At2 ∈ B(u1, α), XA

t2 ∈ B(x1, α) and Y At2 ∈ B(y1, α). We briefly justify this
claim. If the spheres X0 and Y0 touch or are very close to each other then the function
A has to start by “pushing them apart.” Then A has to push the spheres in the right
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direction, one at a time. By the continuity of the Skorokhod map (see [14, Thm. 1.1]),
there exists ε1 > 0 such that if a continuous function Ct satisfies |At − Ct| ≤ ε1 for all
t ∈ [0, t1], then |(At, XA

t , Y
A
t ) − (Ct, X

C
t , Y

C
t )| ≤ α for t ∈ [0, t1]. The support theorem

(see [3, Thm. I.6.6]) implies that for any continuous function {At, t ≥ 0}, if B0 = A0

then P (sup0≤t≤t1 |Bt −At| < ε1) > 0. We conclude that P (|(At, XA
t , Y

A
t )− (Bt, Xt, Yt)| ≤

α) > 0 and, therefore, if B0, X0, Y0 ∈ T dr with dist(X0, Y0) ≥ 2, dist(B0, X0) ≥ 1 and
dist(B0, Y0) ≥ 1 then Bt2 ∈ B(u1, 2α), Xt2 ∈ B(x1, 2α) and Yt2 ∈ B(y1, 2α) with positive
probability. It is easy to see that the last claim implies that

P(Bt1 ∈ B(u1, 3α), Xt1 ∈ B(z1, 3α), Yt1 ∈ B(y1, 3α)) > 0. (9.1)

Let ∠(v, w) denote the angle between vectors v and w and recall that ek is the k-th
vector in the usual orthonormal basis for Rd. Let Cj(δ0) = {v ∈ Rd : ∠(ej , v) ≤ δ0}.
Fix δ0 > 0 so small that for any vj ∈ Cj(2δ0), j = 1, . . . , d, the vectors {vj} are linearly
independent. Let Cj,Xt = Xt + (Cj(δ0) ∩ Xt); this set is a small spherical cap on Xt, with
center in the direction ej from Xt.

Let FX be the event that all of the following conditions hold: (i) Brownian motion B
visits the (random and time dependent) sets Cj,Xt , j = 1, 2, . . . , d, in this order, between
times t1 and 2t1; (ii) B does not visit any other part of Xt ∪ Yt during [t1, 2t1]; (iii) the
local time LX increases less than 1/(2d) when B is hitting Cj,Xt during [t1, 2t1], for each
j = 1, 2, . . . , d.

We define Cj,Yt and FY in an analogous way except that B is required to visit Cj,Yt ’s
during [3t1, 4t1].

Let FB be the event that all of the following conditions are satisfied: (i) B hits B(u1, 1)

between 4t1 and 5t1; (ii) B does not hit X ∪ Y between the last visit to Cd,Xt during
[t1, 2t2] and the first visit to C1,Y

t during [3t2, 4t2]; (iii) B does not visit Xt ∪ Yt between
the last visit to Cd,Yt during [3t2, 4t2] and hitting of B(u1, 1).

The probability of FX ∩ FY ∩ FB is strictly positive due to the support theorem and
excursion theory.

Let

Kj,X =

∫ 2t1

t1

n(Xs, Bs)1{Bs∈Cj,Xs }dL
X
s , Lj,X =

∫ 2t1

t1

1{Bs∈Cj,Xs }dL
X
s ,

Kj,Y =

∫ 4t1

3t1

n(Ys, Bs)1{Bs∈Cj,Ys }dL
Y
s , Lj,Y =

∫ 4t1

3t1

1{Bs∈Cj,Ys }dL
X
s ,

and note that Kj,X ,Kj,Y ∈ Cj(δ0) for all j = 1, . . . , d.
The components of the random vector

K := (K1,X , . . . ,Kd,X ,K1,Y , . . . ,Kd,Y )

are not independent but the fact that FX ∩ FY ∩ FB has a positive probability and the
excursion theory based argument given in the proof of [4, Thm. 6.1] show that the
distribution of

(L1,X , . . . , Ld,X , L1,Y , . . . , Ld,Y )

has a component with a density strictly positive on (0, 1/(2d))2d. For 0 ≤ aj < bj ,
j = 1, 2, . . . , 2d, let Λ([a1, b1], [a2, b2], . . . , [a2d, b2d]) be the set of all possible values of
K1,X + · · ·+Kd,X +K1,Y + · · ·+Kd,Y assuming that Lj,X ∈ [aj , bj ] and Lj,Y ∈ [aj+d, bj+d].
It is easy to show using the definition of Cj(δ0)’s that the 2d-dimensional volume of
Λ([a1, b1], . . . , [a2d, b2d]) is bounded below by c1

∏
1≤k≤2d(bk − ak), and bounded above by

c2
∏

1≤k≤2d(bk − ak). This implies that the distribution of K has a component with a
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strictly positive density on Λ([0, 1/(2d)], [0, 1/(2d)], . . . , [0, 1/(2d)]). Moreover, the claim
holds conditional on the sigma field Ft1 . This and (9.1) imply that the distribution
of (B5t1 , X5t1 , Y5t1) has a component with a strictly positive density on B(u1, 1/(4d)) ×
B(x1, 1/(4d))× B(y1, 1/(4d)).

Proof of Theorem 3.3 (i). If there were more than one invariant measure, at least two
of them (say, µ and ν) would be mutually singular by Birkhoff’s ergodic theorem [18].
However, we have shown in Lemma 9.1 that there exists a strictly positive measure
ψ which is absolutely continuous with respect to any transition probability, so that in
particular, ψ � µ and ψ � ν. Since µ ⊥ ν by assumption, there exists a set Γ such that
µ(Γ) = 0 and ν(Γc) = 0. Therefore, one must have ψ(Γ) = ψ(Γc) = 0 which contradicts
the fact that the measure ψ is non-zero.

10 Stationary measure

Proof of Theorem 3.3 (ii). For a measure µ and function f , let µ(f) denote the integral
of f with respect to µ. Fix a continuous non-negative function f : (T d1 )2 → R and note
that f is bounded, by compactness of (T d1 )2.

Let W denote Brownian motion on (T d1 )2 with the covariance matrix equal to the
unit diagonal matrix times 2/((d − 1)d) and let Ew be the corresponding expectation,
assuming that W0 = w. Standard coupling methods show that W converges to the
stationary distribution uniformly in w, that is, for every ε > 0 there exists t0 such that for
all t ≥ t0 and all w ∈ (T d1 )2, the Prokhorov distance between the distribution of Wt and
the uniform distribution on (T d1 )2 is less than ε.

Fix an arbitrarily small ε1 > 0. By convergence of W to the stationary distribution
and the ergodic theorem, there exists t1 so large that for any w ∈ (T d1 )2,∣∣∣∣Ew ( 1

t1

∫ t1

0

f(Ws)ds

)
− (νd1 × νd1 )(f)

∣∣∣∣ (10.1)

=

∣∣∣∣Ew ( 1

t1

∫ t1

0

f(Ws)ds

)
− lim
t→∞

1

t

∫ t

0

f(Ws)ds

∣∣∣∣ < ε1/2.

Fix t1 satisfying the above estimate. Let Ez,x,y denote the expectation corresponding
to the distribution of (Bt, Xt, Yt) defined on (T dr )3 starting from (z, x, y). Recall from
the last paragraph of Step 1 of the proof of Theorem 3.2 that the convergence of
{n−1/2(Xr

σnt − Xr
0,Y

r
σnt − Yr

0), t ∈ [0, t1]} to {Wt, t ∈ [0, t1]} is uniform in the starting
points of X,Y and B. It follows that there exists r1 such that for all r ≥ r1, z = B0 ∈ T d1 ,
and (x, y) = w ∈ (T d1 )2 such that |rx− rz| ≥ 1, |rz − ry| ≥ 1 and |rx− ry| ≥ 2, we have∣∣∣∣Erz,rx,ry ( 1

t1

∫ t1

0

f((Xσr2s
, Yσr2s)/r)ds

)
− Ew

(
1

t1

∫ t1

0

f(Ws)ds

)∣∣∣∣ < ε1/2.

The last estimate and (10.1) imply that∣∣∣∣Erz,rx,ry ( 1

t1

∫ t1

0

f((Xσr2s
, Yσr2s)/r)ds

)
− (νd1 × νd1 )(f)

∣∣∣∣ < ε1.

By the Markov property applied at times jt1, j = 1, 2, . . . , we obtain for any k ≥ 1,∣∣∣∣∣Erz,rx,ry
(

1

kt1

∫ kt1

0

f((Xσr2s
, Yσr2s)/r)ds

)
− (νd1 × νd1 )(f)

∣∣∣∣∣ < ε1. (10.2)

By Theorem 3.3 (i) and the ergodic theorem, the following limit exists a.s.,

lim
t→∞

1

t

∫ t

0

f((Xσr2s
, Yσr2s)/r)ds = lim

k→∞

1

kt1

∫ kt1

0

f((Xσr2s
, Yσr2s)/r)ds,
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so (10.2) and the Fatou lemma imply that

Erz,rx,ry lim
t→∞

1

t

∫ t

0

f((Xσr2s
, Yσr2s)/r)ds ≤ (νd1 × νd1 )(f) + ε1. (10.3)

Let cf = supx∈(T r1 )2 f(x). Then we can apply the same argument to the function cf − f(x)

to see that

Erz,rx,ry lim
t→∞

1

t

∫ t

0

(cf − f((Xσr2s
, Yσr2s)/r))ds ≤ (νd1 × νd1 )(cf − f) + ε1,

and, therefore,

Erz,rx,ry lim
t→∞

1

t

∫ t

0

f((Xσr2s
, Yσr2s)/r)ds ≥ (νd1 × νd1 )(f)− ε1.

We let ε1 go to 0 (and r → ∞) in the last formula and (10.3) to see that stationary
distributions for the processes (Xσr2t

, Yσr2t)/r converge to νd1 × νd1 . This proves the
theorem for processes run with the local time clock. We will show how this result implies
the result for the processes run with the usual clock.

We will use results on excursion laws proved in Lemma 4.1. There are two differences
between the setup in that lemma and in the present proof. First, Lemma 4.1 contains
estimates for lifetimes of excursion laws using the exit system for reflected Brownian
motion in a domain with fixed holes. In the present context, the holes can move but this
does not affect the validity of the estimates because the holes do not move during the
lifetime of a single excursion. The second difference is that Lemma 4.1 is concerned with
excursions of a single reflected Brownian motion. In the present context, the relevant
Markov process is the vector (B,X, Y ) of which reflected Brownian motion is just one
component. Hence, strictly speaking, we have to consider excursions of (B,X, Y ) from
the set {(b, x, y) ∈ (T dr )3 : b ∈ S(x, 1) or b ∈ S(y, 1)}. It is easy to see that the estimates
for the lifetime of an excursion derived in Lemma 4.1 remain valid in the present context.

The exit system formula (4.1) and Lemma 4.1 (i) show that on the local time scale,
the usual time is a jump process with the jump measure with finite expectation, bounded
uniformly by a constant multiple of rd. Part (ii) of Lemma 4.1 shows that outside a small
set in the state space (small in the sense of having small Lebesgue measure relative
to the measure of T dr ), for sufficiently large r, the expectation of the jump measure is
arbitrarily close to rd/sd. This implies that for any two subsets of the state space (T dr )3,
the ratio of the times spent by the process (B,X, Y ) in these sets in the long run will be
the same as the ratio of local times spent by the process (B,X, Y ) in these sets. This
observation and the fact that we have proved the theorem for the local time scale show
that the theorem is true for the usual time scale.
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