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Abstract

We study systems of stochastic differential equations describing positions 1, ..., z, of

Hii(#6%5) e show
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the existence of strong and pathwise unique non-colliding solutions of the system

with a colliding initial point z1(0) < ... < z,(0) in the whole generality, under natural

assumptions on the coefficients of the equations.

p ordered particles, with inter-particles repulsions of the form
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1 Introduction

Consider the following system of SDEs

da; = o5(x;)dB; + | bi Z Hij(@i, z5) dt, i=1

) (1.1)
T — T

21(t) < ... <zp(t), t>0,

describing positions of p ordered particles evolving in R. Here (Bi)izl,m’p denotes a
collection of one-dimensional independent Brownian motions. Throughout the whole
paper we assume that the coefficients of the equations are continuous and that the
functions H;; are non-negative and symmetric in the sense (2.1).

The SDEs systems (1.1) contain the following ones

dry = 2B+  le) + 3 G =1 a2

z_x_]
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Strong solutions of non-colliding particle systems

where G(z,y) = ¢*(z)h*(y) + ¢*(y)h*(z), B > 0 and ¢,h,b : R — R. Let S, denote the
space of symmetric p x p real matrices and H, the space of Hermitian p x p matrices.
It was shown in [11] that for the starting point having no collisions and for g = 1, this
system describes the eigenvalue processes of the S,-valued process X; satisfying the
following matrix valued stochastic differential equation

dX, = g(X0)dWih(X,) + h(X,)dWT g(Xy) + b(X,)dt,

where the functions g, h, b act spectrally on S, and W, is a Brownian matrix of dimension
p X p. When 8 = 2, the system (1.2) is satisfied by the eigenvalues of the H,-valued
process Y; which is a solution of

- ~ 1
dYy = g(Yy)dWih(Xy) 4+ h(X})dW [ g(X,) + ib(Xt)dt

where W, is a complex Brownian matrix of dimension p X p. In the last case, for some
special choices of g, h and b, the systems (1.2) contain the canonical Dyson Brownian
Motion (g = %,h = 1,b = 0) and the eigenvalue processes of the complex Wishart
(Laguerre) processes (g = v/x,h = 1,b = const > p — 1). Recall that the Dyson Brownian
Motion is obtained as p independent Brownian particles conditioned not to collide (see
[8, 10]) and the Laguerre eigenvalue process as p independent Squared Bessel particles
conditioned not to collide (see [17]).

The general case 3 € R™ in (1.2) corresponds to the $3-versions of the processes
described by (1.2) with § = 1 and is important in modern statistical physics (see for
example [9]). On the other hand, Dyson Brownian Motions are a special case of Brownian
particle systems with an interacting potential (see [21]).

Thus the systems (1.1) contain Dyson Brownian Motions, Squared Bessel particle
systems, Jacobi particle systems, their g-versions, non-colliding Brownian and Squared
Bessel particles, potential-interacting Brownian particles and other particle systems
crucial in mathematical physics and physical statistics (see [15, 16]). Note that the
singularities (x; — ij)71 make the SDEs system (1.1) difficult to solve, especially when
the starting point has a collision, i.e. z;(0) = z;(0) for some i # j. Moreover, the most
degenerate case z;(0) = ... = z,(0) is of great importance in physical applications.

In this paper we prove the existence of strong and pathwise unique non-colliding
solutions of (1.1), with a degenerate colliding initial point x(0), in the whole generality,
under natural assumptions on the coefficients of the equations (1.1), formulated and
discussed in details in Section 2. The Theorem 1 ensures, that even if starting from the
most degenerate collision state

z1(0) =...=x,(0) =0,

the particles x; will diffract instantly and never more collide. This statement is proved in
the strong, trajectorial solution sense. In this way, we answer in a very general setting
a question raised by Rogers and Shi ([21, (5i)]) in the context of potential-interacting
Brownian particles: is the finite particle process well defined by its SDEs system? As
observed by Grabiner in [10], starting the process from a collision point makes impossible
the usual conditioning procedure and the existence of strong solutions of corresponding
SDEs is highly unclear even in the case of processes conditioned not to collide.

In some particular cases (Dyson Brownian Motions, some Squared Bessel particle
systems) these difficulties have been overcome and the existence of strong solutions
of (1.1) has been established by Cépa and Lépingle in [3, 4, 18], using the technique
of Multivalued SDEs (MSDEs). The MSDEs theory was used in [7] and [23] in order to
show the strong existence of solutions of radial Dunkl and Heckman-Opdam SDEs with
more general singularities.
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However, the approach via MSDEs can not be applied to the equations of the general
form given in (1.1) and consequently, the existence of the strong solutions has been an
open question in many important examples.

Note that some existence results were proved in last years without use of MSDEs
(see [14, 5, 6]) but under the hypothesis of starting without collision (Chybiryakov’s
proof of [5, Prop. 6.8,p.170] does not work for a collision starting point).

Our approach is based on the classical Ito calculus, applied to elementary symmetric
polynomials in p variables X = (z1,..., ;)

as well as to symmetric polynomials of squares of differences between particles
Vo, =en(A), where A= {a;; = (z; — xj)Q 1 <i<j<p}

The main advantage of the semimartingales y,, and V,, is that singularities disappear in
their stochastic descriptions. Moreover, the processes V,, control the collisions between
particles.

In the next Section 2 we present and explain technical assumptions of the main result
of the paper, Theorem 1, formulated at the end of Section 2. In Sections 3 and 4 we
develop the stochastic analysis of symmetric polynomial stochastic processes y,, and V,.
These sections provide the main ingredients of the proof of Theorem 2.2. In Section 5 we
show that the system (1.1) has a weak continuous solution. Next, we prove the pathwise
uniqueness of solutions of the system (1.1) and we conclude with a proof of Theorem 2.2.
The last Section 6 contains applications to important classes of particle systems.

2 Assumptions and Main Result

As it was mentioned in the Introduction, our general assumptions on the coefficients
of the equations are

* the functions o;,b;, H;; are continuous for everyi,j =1,...,p and i # j;
* the functions H;; are non-negative and the following symmetry condition holds

Note that H;;(z;,z;)/(x; — x;) describes the repulsive force with which the j-th particle
located in x; acts on the i-th particle located in z;. The symmetry assumptions on H;;
mean that if j > 4, i.e. z; > x;, then the upper particle x; pushes the lower particle z;
down with the same force as the lower one pushes the upper one up.

Next three conditions are adaptations of standard regularity assumptions occurring
in the theory of SDEs (without singularities), which usually guarantee uniqueness and
non-explosion of solutions. Note that we remain in the context of one-dimensional
Yamada-Watanabe theorem, where the coefficients in the martingale part are allowed to
be 1/2-Hoélder continuous and the drift part coefficients are Lipschitz continuous.

(C1) There exists a function p : R™ — R™ such that f0+ (z)dz = oo and that
loi(x) —oi(y)]> < plz —yl), z,yeR, i=1,....p

Moreover, the functions b; are Lipschitz continuous or non-increasing
(C2) There exists ¢ > 0 such that

of(x) +bi(w)w < c(1+]a?), w€R,
Hij(z,y) <c(l+fay]), =,y eR.
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The conditions (C2) are standard conditions on the growth of the coefficients of SDE
which give finiteness of the solutions for every ¢t > 0, however the sublinear growth of b;
can be replaced by non-positivity of b;(z)x for large x.

The last group of conditions (A1)-(A5) relates mainly to the singular part of the
equations. Condition (A1) will be crucial for the proof of the pathwise uniqueness of
solutions in Section 5. Conditions (A2)-(A5) are introduced in order to ensure non-
collisions of the particles, which is a crucial property of a solution of (1.1) to show the
existence of its strong solution.

(Al) Foreveryi# jandw < z <y < z we have

Hij(w,2z)(y —x) < Hij(z,y)(z —w). (2.2)

Since H;;(x;,x;)/(z; — ;) describes the force with which the particles z; and z; repel
each other, the condition (2.2) means that the force decreases as the particles move
away from each other in such a way that the first particle goes down and the other goes
up.

(A2) There exists ¢ > 0 such that for every i # j we have
ot (x) + 0} (y) < ez —y)? + 4H;(z,y), @,y €R, (2.3)

This assumption ensures that the repulsive forces between the particles are sufficiently
large relatively to the martingale part to prevent collisions of the particles caused
by o;(x;)dB; and o;(z;)dB;. Moreover, this assumption is optimal in many important
examples such as 3 versions of Dyson’s Brownian motion model (see Section 6 for more
details), i.e. for 0 =1, b = 0 and H,;(x,y) = 8/2 the condition (A2) holds if and only if
B > 1, which is a necessary and sufficient condition for the system to have no collisions.

(A3) There exists ¢ > 0 such that foreveryx <y < zandi < j <k
Hij(z,y)(y — o) + Hji(y,2) (2 —y) < ez —y)(z —2)(y — ) + Hip (2, 2)(2 — 2).

This condition is used to ensure that the repulsive forces between particles do not cause
collisions. Since H is non-negative, two particles are pushed off from each other, but if
we add another particle, which is above the previous ones, then two additional forces
appear which push the first two particles down. The condition (A3) implies that the
additional forces do not cause a collision between two original particles.

It can be easily seen that the conditions (A2) and (A3) do not ensure that the particles
become immediately distinct if we start from a collision point (consider the example of
generalized squared Bessel particles with integer order a € {0,1,...,p— 2} starting from
zero). Thus, if ;(0) = z;(0) = « for some ¢ < j, we will distinguish two situations. When
o (x) + aj?(x) > 0 or H;j(xz,z) > 0, then the process X will instantly leave the initial
collision point thanks to the martingale part or the repulsive forces, respectively (see
Proposition 4.3). We call such a phenomenon a "diffraction"” of particles. Consequently,
in the study of the particle process we must pay special attention to starting from a
collision in an element of the sets

G = ﬂ {m:a?(x)—l—a?(x)—&—Hij(Lx):0}, 1<k<i<p.

k<i<j<l
We will call elements of the sets Gy; "degenerate points", and if

LE}C(O) = LU[(O) =T c le,
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we will say that the particle process is starting from a "multiple degenerate" point. The
next condition (2.4) guarantees that there is a force coming from the whole drift at «
such that at most one particle can stay at the point z, so the multiple degeneracy will
disappear (Proposition 3.5).

(A4) The sets G, consist of isolated points and for every x € Gy; we have

l -2

p
H7 S Yi
S (b + 3 B0y | £ 2.4
J

i=k = Ui
for every yi,...,yp—2 € R.

We use the convention that multiplying by the indicator 1g\ (.} (y;) = 0 always gives 0,
i.e. the whole j-th term of the second sum in (2.4) disappears when y; = z.

Finally, we consider the following monotonicity property of the drift coefficients b; in
(1.1)

(AB) Ifi < j then b;(z) < bj(x) forallz € R.

This condition comes up naturally because if b;(x) > b;(x) then the particle z; could
catch up with the particle z; thanks to the bigger drift force.

In the case, when the coefficients of the equations do not depend on ¢ and j, i.e.
oi(z) = o(x), bi(z) = b(z) and H;;(x,y) = H(z,y), simple sufficient conditions for (A1)-
(A5) are discussed in more detail in Section 6.

Remark 2.1. If we know that the particle system (z1,...,z,) lives on some subset
I =[a,b] C R, then we can restrict all the conditions to z,y € I.

Before formulating Theorem 2.2, the main result of the paper, recall that, accordingly
to [20, IX(1.2)], a pair (X, B) is a solution of the system (1.1) if all the integrals appearing
in its integral form are meaningful. In particular, the integrals of the drift parts of (1.1)
will be understood, if needed, as improper Riemann integrals.

Theorem 2.2. Consider the system (1.1) with an initial condition

If the conditions (C1), (C2) and (A1)-(A5) hold, then there exists a unique strong non-
exploding solution [X (t)]:>0 of (1.1) such that the first collision time

T =inf{t > 0:2,(t) = z;(t) forsomei # j,i,j7=1,...,p}

is infinite almost surely.

Remark 2.3. If we drop the condition (C2) in Theorem 2.2, then there exists a unique
strong solution, possibly admitting explosions, such that the first collision time 7" is not
shorter than the lifetime of the solution.

Remark 2.4. It is enough to assume (A2)-(A5) to show that there exists a solution of
(1.1) having no collisions after the start. The additional conditions (C1) and (Al) ensure
the pathwise uniqueness of the solutions and consequently the existence of a unique
strong solution.

3 Stochastic description of the basic symmetric polynomials

We denote the elementary symmetric polynomials in p variables X = (z1,...,x,) and
of degreen=1,2,...,p by

en(X) = Z Tiy Lijy + - T, -

11<...<lpn
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We use the following notational conventions: ey(X) = 1 and e_;(X) = 0. We will also
consider incomplete polynomials. For any fixed collection z;,,z;,, ...,z of entries of X

Ty Tig Ty B )
én (X)= iy Ty« T, s

i1<...<in

i #h
i.e. it is the sum of all products of length n which do not contain any of the specified
variables z;,,2;,,...,x; . There is obviously no one-to-one correspondence between
(x1,...,2p) and (e1,...ep) since changing the order of the arguments does not affect the

values of their symmetric polynomials. But if we restrict the arguments to the open set
Cr={(z1,...,2p) ERP 111 <w3 < ... <xp}

then the smooth function
e=(e1,...,ep): Cy - RP

is one-to-one. This follows from the fact that (—1)*e;(X) is the coefficient of 27~* in

the polynomial P(z) = [[?_,(x — z;). Thus e is a diffeomorphism between C; and e(C.),

which is an open subset of RP. Let us denote by

f=(fr i fp)re(Cy) = O

the inverse diffeomorphism. By the continuity of ordered roots of a polynomial as
functions of its coefficients (see for example [19]), f extends to a continuous function

fre(Ch) =T

3.1 Symmetric polynomials of particles

In the following proposition we determine the SDEs system for the symmetric polyno-
mials in (21, ..., xzp) verifying the system (1.1) whenever there are no collisions between
particles.

In the proof, as well as in some other proofs in this paper, we use the property

p
Zai Zbij = Z(aibij + Cljbji).

i=1 i i<j

Proposition 3.1. Let X = (x1,...,x,) be a solution of (1.1) such that z1(0) < ... < z,(0).
Then the symmetric polynomials e, (X), n = 1,...,p, are continuous semimartingales
described until the first collision time of (x;);=1,... , by the system of SDEs

» 1/2
den(X) = (Zcr%(xi)(eif_l(X))?) du,

d(en(X), em(X)) = Zo?(mi)eif_l(X Jeri_y(X)dt. (3.2)
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Proof. By an application of Itd formula and the fact that e,,(X) = z;e”* | (X) + % (X) for
any ¢ we get that for every ¢ smaller than the first collision time of (z;)i=1,... »

den(X) = Y el |(X)dw; =Y oi(xi)en (X)dB; +

i=1 i=1
- % - z; Hij(wi,x5)
=1 i=1 j#i
Thus there exist Brownian motions U,, n = 1,...,p, such that

P p 1/2
3 o4 )y (X)aB, = (Z a%’(xi)(ezu(X))?) ,

i=1

and (3.2) holds. Moreover, by the symmetry property (C2) of H;;(x,y) and the fact that
forany j # i

we obtain
p
Z Hij(xi, x5) z, Hij(xi,75) | =z, Hji(xj, ;)
ZZ%—NX)W = Z en_l(X)W+en_l(X)W
i=1 j#i 1<J
= = ey Hijlwi, xy).
i<j

This ends the proof. O

Note the following remarkable property of the stochastic differential equations
describing the polynomial processes e, (X), n = 1,...,p: the singularities (z; — ;)"
appearing in (1.1) are no longer present in (3.1).

Now, using the map f : e(C}) — C, we get rid of x;’s in the system (3.1). We will
shorten the notation eZi to e!,. We denote by y elements of ¢(C.).

Proposition 3.2. Define the following functions on e(C4 ):

P ) 1/2 o
an(y) = <Zaf(fi(y))(621(f(y)))2> . yeCy,
=1
) = D bilfiw)eh 1 (Fw) = S e o (fW) Hi(fi(w), 1)),
=1 1<J

sum@) = S 2L (FW)eh 1 (F)):
i=1

(i) The functions ay,, g, and sy ., n,m = 1,...,p, are continuous on e(C.).
(ii) Let X = (z1,... 7:rp) be a solution of (1.1) on C'y. The symmetric polynomial
processes y, (t) = e, (X (t)), t > 0,n=1,...,p, satisfy the system of SDEs

Ayn = an(Y1,-- -, Yp)dUpn + g (Y1, ..., yp)dt, n=1,...,p, (3.3)
where {U,;n =1...,p} is a family of one-dimensional Brownian motions satisfying

(@4ndUp, amdUp) = $pmdt, n#m, nm=1,...,p. (3.4)

(iii) Let yo € e(Cy). The system (3.3)-(3.4) with the initial condition y(0) = yo has a
solution, possibly admitting explosions.
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Proof. The part (i) follows by continuity of the map f on e(C4) and by continuity of the
functions oy, b; and H;;. Part (ii) is a corollary of Proposition 3.1. By [13, Th.2.3, p.159],
the system (3.3) with the condition (3.4) has a solution, possibly admitting explosions,
for every y(0) € e(Cy). O

Definition 3.3. Let (y1,...,y,) be a solution of (3.3)-(3.4) with y(0) € e(Cy). We define
stochastic process A = (A1,...,\,), where

)\i:fz'(yla-”ayp)a Z:L,p

Thus, from now on, whenever we write \;(t) we mean the process \;(t) = f;(y(t)),
defined from a solution y(¢) of (3.3)-(3.4), using the inverse symmetric polynomial map f.
Obviously we have

Yn :en()\lv"'v)‘p) = en(A)v n= 13"'7p
and whenever y(0) € e(Cy), i.e. A;(0) # A;(0) for every ¢ # j, then A = (A\q,...,)\,) isa
solution of (1.1) up to the first collision time. It is thus natural to interpret A = (A1,..., )
as a system of particles related to the solution y of (3.3)-(3.4).

3.2 Non-explosion of solutions

Now we show that the condition (C2) is sufficient in order that the solutions ¥, ...,y
of (3.3)-(3.4) do not explode in a finite time.

Proposition 3.4. If (C2) holds, then the explosion time of any solution of (3.3) is infinite
almost surely.

Proof. Lety = (y1,...,Yyp) be a solution of (3.3). We define

P
R = Z)\ZZ =yl — 2.
i=1

Applying It6 formula to (3.3) we get

p
ARy = 2yyardUy — 2a2dUs + [ D (07 (Ni) + 2Xibi(A0)) + 2 Hij(Ai, ) | dt.

i=1 i<j

Using (3.4) one sees easily that (y1a1dU; — a2dUs, y1a1dUy — axdUs) = Y0 02(X)A2. Tt
follows that there exists a Brownian motion W, such that

P 1/2 P
cmﬁﬂ<2kﬂmﬁ> AWy + | D (07 () + 2Xbi( M) +2> Hig(Mi, Aj) | dt.
=1

i=1 i<j

The rest of the proof is similar to the proof of the classical theorem on non-explosion
of solutions of a SDE, see Theorem 2.4 in [13]. For the convenience of the reader we
provide the proof.

Set 7, = inf{t > 0 : R; > n}. Using the fact that the expectation of the martingale
part vanishes and (C2) we get

tATh p
ERin., = Ro+ E/ D (7 (N) 20k (N)) + 2> Hij(Aiy ;) | ds
0 i=1 i<j
t
s&ﬂﬂwmmm
0
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Continuity of the paths and the Lebesgue dominated convergence theorem imply that
the function ¢ —+ ER,., is continuous. By the integral version of the Gronwall’s lemma

ERinr, < (14 Ro)e —1, t>0

and taking n — oo we obtain that R; is finite almost surely for every ¢t > 0. Thus, all
the processes \?(t) < R, are finite for every ¢ and consequently every v, (t) = e, (A(t))
is finite almost surely. It implies that the explosion time of the solution y(¢) is infinite
almost surely. O

3.3 Instant exit from a multiple degenerate point

Starting from this section, we study the behavior of the particles \; associated to a
solution y of (3.3).

In the next proposition we use the condition (A4) to show that if there are at least
two particles A\i, \; starting from the same degenerate point, i.e. a point = belonging to
a set Gy, then immediately all particles, except perhaps one, are pushed off that point,
i.e. there might be at most one particle which stays at z. Observe that Proposition 3.5
does not imply the instant diffraction of the particles, i.e. it could possibly happen that
Ak(t) = Ai(t) on some time interval (0, €) with positive probability. This problem together
with the non-degenerate case, i.e. starting from a collision in x ¢ Gy;, will be considered
later in Proposition 4.3.

Proposition 3.5. Lety = (v1,...,Yp) be a solution of (3.3) and assume that (A4) holds.
If A\, (0) = N (0) = x € Gy; for some k < | then

p
T=1inf{t > 0: Z 1oy (=2 < 1} =0 as.

=1

Proof. Without loss of generality we can assume that A\;_1(0) < A;(0) and \(0) <
Ai+1(0), i.e. there are exactly [ — k + 1 particles starting from z, and we denote by
S ={k,k+1,...,1—1,1} the set of indices of these particles. Moreover, we can and do
assume that z = 0. Additionally, we will denote by v(t) = >°7_| 15, 1)=s} the number of
particles staying at time ¢ in z. Let v = 7(0) = | — k + 1 and note that we have v > 2.
Suppose by contradiction that the first time, when at least one of the particles moves
from 0, i.e. the random variable

To=f{t >0 Ag(t) £OV ...V Apsy_1(t) # 0}

is greater than zero with positive probability. Using continuity of the paths we can see
that there exists 7y (positive with positive probability) such that

Al(t) < )\kfl(t) < )\}g(t) =...= )\l(t) =0< )\l+1(f) <...< )\p(t), t < 7o,

i.e. we have v particles remaining equal to zero on [0, 7)) and p — v nonzero particles
on this time interval. Since each product forming part of the sum defining e, (A), where
n = p—~+ 1 contains at least one of the zero particle, we have e, (A)(t) = 0 for t € [0, 7o).
In particular its drift part is zero on [0, 7).

From the other side, observe that if ¢ ¢ S then el (A) = 0 and e;\lig" A) =0ifin

n—1

addition j ¢ S. Since H(0,0) = 0 we can write the drift part of y,, on [0,7) as

. n; Xi,)\j
drift[y,] = > | bi(A)en 1 (A) = Y ey (M) Hij (A, Ay)
€S j#i,j¢S
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Seeing that for j ¢ S we have e:;‘ ?J (A) =0, we can write

§>/\
<

65’;1(1\) = Aje 5 + ei“ﬁ (A) =X ez § , wheneveri e S,j ¢ S.

Note also that for every i # k, i,k € S we have eZQl(A) = eA’“ 1(A) and this common
quantity is equal to the product of p — v non zero particles. Consequently, we obtain that
for ¢ < 7y the drift part of y,, = e, (A) is from one side identically zero, but from the other

side it is equal to

| - Hij(0, )
driftly,] = 2621_1(/\) bi(0) + Z #
€S J#angs J
= WY (o) + S TR L) ke
i€s JFi

Since the assumption (A4) ensures that the above-given sum over S is nonzero, it implies

;\L 1(A) =0on (0,7), which is a contradiction with the fact

that for every i € S we have e
that en—l(A) is equal to the product of particles which are nonzero on [0, 7).

Now we reason by induction on v = v(0) > 2 in order to prove the statement of the
Proposition. Note that if v = 2, we have 7 = 79. The above-given arguments show that in
this situation, for every ¢ > 0 we have Pa(7 > ¢) = 0.

Suppose v = 7(0) > 2. Using continuity of the paths and the Markov property we
obtain

P,(r>t) < > P,(v@)<y-1,7>1)
g€[0,t)NQ

Y B Py (r>t—q)v(g) <y—1]=0
g€[0,t)NQ

by induction hypothesis. Consequently, for all ¢ > 0 one has P, (7 > t) = 0 for every
~v = ~(0) > 2. The Proposition follows. O

4 Polynomials of squares of differences between particles and
collision times

4.1 Symmetric polynomials of squares of differences between particles
For any 1 <i,j < pwe put a;; = (\; — \;)? and define the family of the processes
Vo, =en(A), where A= {a;; = (\; —\;)*:1<i<j<p},

where n =1,2,..., N = p(p — 1)/2. The process V,, is a sum of all products of the length
n of the squared differences between particles. In particular

i<j
is the squared Vandermonde determinant and
Vi) = _(Nilt) = Ai(1)°
i<j

Note that these processes and their zeros control the collisions between particles. For
example, Vy(t) is zero if and only if any collision occurs at time ¢, V;(¢) is zero if and
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only if all the particles are equal at time ¢. In general, V,,(¢) is zero if and only if at least
N — n + 1 collisions take place at time t.

Since V,, as a function of (\y, ..., \,) is a symmetric polynomial, it can by expressed as
a polynomial of y1 = e1(A),...,yp = e,(A). Processes y,...,y, are defined as a solution
of the system (3.3)-(3.4), so by It6 formula, V,, are semimartingales. This is a reason
why we consider the squares of differences between particles instead of studying the
differences themselves. We begin with exploring the semimartingale structure of V,,,
n=1,..., N in the case when Vy(0) > 0, i.e. the system starts from a point having no
collisions. Then the semimartingale A = (A1,..., ),) is a solution of the system (1.1) up
to the first collision time. Thus we can apply the It6 formula to (1.1) which significantly
simplifies calculations.

Since e, (A) = a;;e,”

%l (A) +en (A) and e (A) = apet iy (A) + eZ9 7 (A), the Itd
formula implies

n—1

AV, = Zen 1 da’” +3 Z Z fflL” 2akl a’lj7 akl> :

1<J 7<j k<l

Note that d (a;;, ar;) # 0 if and only if {7, j} N {k,1} # (. Moreover

dai; = 2(A; — Xj)dNi +2(A; — X)dA; +d (N, Ai) +d (N, Aj)
= 2(N = Aj)oi(Ni)dB; +2(A; — Ai)oj(A;)dBj +2(Ai — Aj)(bi(Ai) — bji(Az))dt
Hi(Miy Ak) Hir(\j, Ak)
2(N) + 2(0))dt + 2(A A An) 5~ Hislho M) g
HoP () + 7 ()t + Z I D D v vl K2
k#j
which gives
d <aij7aik> = 4()\1 — )\j)()\l — )\k)Uf()\Z)dt
Consequently, the martingale part of dV,, is described by
dM, = 222 el (A)os(\)dB;, (4.1)
i=1 j#i
. 2
d(My, M) = 4 o7 (A) | D (i —Aen?y(A) | dt.
i=1 j#i

Finally, the drift part of V,, is (using the notation i # j # k when no equality between any
two of the indices i, j, k holds)

p
Dndt = Z A)D et (At +2> 3 (= M) — Ae)ens ™ (A)o (A)dt
=1

i i=1 jEk#i

+AY HyOw e (At 2 S (AﬁAj)Meiilm)dt
i Nk

i<j ititk
2> (A = ) (b;() = bi(N))en”  (A)dt. (4.2)
1<J

Observe that using the relation %7 | (A) = a;pet 5" (A) 4 7 "*(A) and the symmetry
property (C2), the fourth term can be written as
2 3 (A=) Hivhis M) iy Ayt =23 3" Hip(\ Ao)en 2y (A)dt
A — /\ [ 1 [ 75
i£j#k i<k j#i,j#k
423 (A = A = M) Hin(Mi, Ar)en?5 ™ (A)dt,  (4.3)
i#jF#k
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so it is well-defined even if any collision occurs. Moreover, the second part is non-negative
and the first one vanishes when V,, = 0.

Similarly as for SDEs for symmetric polynomials y; = ¢;(X), the stochastic differential
equations describing V;,(A) do not contain singularities (z; — z;) 7 .

We finish by observing that the polynomials V,, fulfill equations (4.1) and (4.2) also if
Vn(0) =0, with A\; = f;(Y),i =1,...,p. This follows from the fact that the polynomials V,,
are smooth polynomial functions of the semimartingales y1,...,y,, satisfying the SDEs
system (3.3). Thus, by the unicity of the martingale and drift part of a semimartingale,
the It6 formula applied to (3.3) gives the equations (4.1) and (4.2). But computing
derivatives of the functions V,, = V,,(f(Y)) required in the It6 formula does not depend
on the initial condition Vi (0). Such argument allows us to avoid looking for explicit
relations between the polynomials V,, and e,,. A similar argument was used in [2].

We resume the results of this subsection in the following proposition.

Proposition 4.1. The semimartingales V,,, n = 1,..., N, with V,,(0) € V,(Cy) decom-
pose into the martingale and drift part

V,=M,+ D,

with M, given by (4.1) and D,, given by (4.2) and (4.3), where \; = f;(Y) and Y =
(y1,-..,Yp) is a solution of the SDEs system (3.3).

4.2 Collision time when starting from a regular state

In this section we consider the first collision time defined in terms of the semimartin-
gale Vy by
T =inf{t > 0: Vn(t) = 0},

with standard convention that inf ) = oo.

We begin with a generalization of Theorem 5 from [11]. We show that under certain
conditions on coefficients of the equation the particles never collide when the starting
point does not have any collisions.

Proposition 4.2. Let (V4, ..., Vy) be semimartingales described by equations (4.1), (4.2)
and (4.3). Suppose that Viy(0) > 0 and (A2) together with (A3) hold. If the functions
x — b;(z) are Lipschitz continuous or non-decreasing and they satisfy condition (A5),
then T = oo almost surely.

Proof. The proof is similar to the proof of Theorem 5 from [11]. Defining the process
Ui = —3 InVy(t) on [0, T) and applying the It formula we obtain the martingale part of
U equal to

0‘72()\1)dBz — U?(Aj)dBj

2 X — A

i<j

and the following representation of the finite-variation part

. bi(\) — bi(N;) 1= 07 (M) +0F(N)) — 4H (N, )
dI‘lft[U]t = Z - ()\)J — >\i( ) + 52 ()\j — )\i)Z

_ Hje(Aj, M) Ak — Aj) = Hig(Ni, M) (A — Ai) + Hig(Ai, Aj) (N — \)

(A = A) Ak = X)) (A = \i) '

i<j<k

Note that conditions (A2) and (A3) together with the assumptions on b;(x) ensure that
there exists ¢ > 0 such that drift[U]; < ct, which implies finiteness of the finite-variation
part of U whenever t is bounded. Applying McKean argument we obtain the result. O
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4.3 Instant diffraction

Now we consider the case when Vy(0) = 0. If the process starts from a collision
point, then we must first study the question of the instant diffraction (i.e. becoming
different) of the particles. We begin with showing that under certain conditions imposed
on the coefficients of the equation such phenomenon takes place, i.e. the stopping times

T, =inf{t >0:V,(¢t) >0}, n=1,..., N,

are 0 with probability one.
Proposition 4.3. Let (V1,...,Vy) be semimartingales described by (4.1) and (4.2) and

such that Vy(0) = 0, where \; = f;(Y) and Y = (y1,...,y,) is a solution of the SDEs
system (3.3). If (A4) holds then T = 0 almost surely.

Proof. First we assume that if \;(0) = \;(0) = = € R for some i # j, then o7 (z) + o7 (z) +
H;;j(z,z) > 0, i.e. A(0) belongs to the set

E={(z1,...,2p) €RP: (x; # x;) V(07 (2;) + 05 (i) + Hij(ws, ;) > 0), forevery i # j}.

Since the functions ¢?(z) and H;;(z, x) are continuous, the set F is open. The continuity
of the paths implies that there exists a positive stopping time 7 such that on the interval
[0, 7) the system stays in E, i.e. if A;(0) # A;(0), then

)\i(t) 75 )\j (t), t<T (4.4)
and if A\;(0) = A;(0) for some i # j, then
0'3()\1(7,‘)) +O'J2()\l(t))+Hw(/\l(t),)\z(t)) >0, t<T. (4.5)

Now inductively we show that if 7, > 0 with positive probability, then the probability that
Tn—1 > 0 is also positive. Note that if V,,(¢) = 0 on [0, 7,,), then its finite-variation part
vanishes on [0, 7, AT). Since then (A\; —\;)en? ; (A) = 0and (i — ;) (Ai—Ap)en?y ™ (A) =0
using (4.2) we obtain that

P

Do) D e (A) +4> " Hig(\i \en? (A) = Dy =0 (4.6)

i=1 i i<j

Now let us fix ¢ # j. If X\;(t) = \;(t) at t € [0, 7, A7) then by (4.4) we have X;(0) = X;(0)
and consequently by (4.5) one of the functions o?(x), H;;(x,z) is positive at \;(¢). Then,
the above-given equality implies that e;,”;(A) = 0 at . If X\;(t) # A\;(t), since V,,(t) =0
and 3

Va(t) = aije,” 1 (A) + en (A),

Eq',j

nl1(A) = 0. It means that for every ¢ € [0,7, A7) and every ¢ and j we have
#7.(A) = 0 which implies that V,,_;(¢) = 0 on this interval.

Finally, if we assume that 7y > 0 with positive probability, then the first part of the
proof implies that 71 > 0 with positive probability, i.e. if a pair of particles remains glued
for some positive time, then all of the particles are glued for some time. But forn = 1
the formula given in (4.6) reads as

we also get e

(&

/4

(p— 1)201'2()‘1') +4ZHij()\i,)\j) =D;=0

i=1 i<j

for every t € [0, 71 A 7) and it is a contradiction with (4.5). Note that if there exists i # j
such that A;(0) # A;(0) (i.e. V,,(0) > 0 for some n > 1) then this finite induction can be
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stopped at level n, because we obtain then a contradiction with the continuity of the
paths.

Now we consider the remaining case A(0) ¢ E. It means that the process A starts
from a multiple degenerate point. By condition (A4) and Proposition 3.5 we obtain that
the system immediately visits the set E. Thus, the standard argument based on the
Markov property and the continuity of the paths together with the above-given proof for
the case when A(0) € E give

Pyoy(tv >t) < Z Proy(Tnv > t,A(q) € E)
g€[0,t)NQ

Z Ex0)[Pag)(Tv >t —q),A(q) € E] =0.
g€[0,t)NQ

Consequently P, ) (7y = 0) = 1 almost surely even if A(0) ¢ E. This ends the proof. O

4.4 No collision after instant diffraction
Now we can state the main result of this section.

Theorem 4.4. Let (V4,...,Vy) be semimartingales described by (4.1) and (4.2) and such
thatV,,(0) >0 forn=1,...,N, where \; = f;(Y) andY = (y1,...,y,) is a solution of the
SDEs system (3.3). If the assumptions (A2)-(A5) hold then T' = co almost surely.

Proof. If Vx(0) > 0 then it is just the result given in Proposition 4.2. If V(0) = 0, then
for every ¢t > 0, by continuity of the paths and Proposition 4.3, we have

Py N {Vnxlg)=0}] =0.

qG[O,t)ﬁQ
Consequently, by the Markov property
Po(Vn(t)=0) < Z Po(Vn(t) = 0,Vn(g) > 0)
g€[0,t)NQ

> Eo(Pyy(q[Va(t —q) =0],Vn(g) > 0) =0,
q€[0,6)NQ

where the last equality follows from Proposition 4.2. If we now define for every s > 0
T° =inf{t > s : Vi (t) = 0},

then obviously 79 = T is the first collision time and
{T =00} = [{T*" = o0}, Po(T =o00) = lim Py(T?" = o0),

n—oo
n=1

but once again by the Markov property, Proposition 4.2 and the fact that Vi (t) > 0 a.s.
for every ¢t > 0, we have
Py(T%" =00) = Po(Vn(1/n) >0,T%" = )
= Eo(Py,/m[T"" = 0], Vx(1/n) > 0) = Po(Vn(1/n) > 0) = L.

The proof is complete. O

Corollary 4.5. Let (X, B);>o be any solution of the system (1.1) such that X(0) € C+.
Suppose that the conditions (A2)-(A5) hold. Then the particles (z1(t),...,z,(t)) never
collide fort > 0.
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Proof. We consider symmetric polynomials V,,(¢) of squares of differences between
particles x1(¢), ..., z,(t). All we proved on non-collisions of the process A in Theorem 4.4
and the preceding propositions was based on the It6 calculus applied to the system (1.1),
so it applies to any solution X of (1.1). O

5 Existence and uniqueness of a non-colliding solution

Theorem 5.1. Assume that the conditions (A2)-(A5) hold. Then there exists a continuous
solution of (1.1) starting from x € C* such that its first collision time is greater than the
explosion time of the solution. If additionally (C2) holds, then the explosion time and the
first collision time are infinite almost surely.

Proof. Foreveryi=1,...,p we put

)\i(t) = fi(yl(t)""vyp(t))v t>0,

until the first explosion time. Then obviously A = (\1,..., \,) is continuous. Moreover,
by Theorem 4.4, we have

M) # N (D), > 0,i# ]

Thus, for every ¢t > s > 0, using the smoothness of f and It6 formula we have

Hij(Ai(u), Aj(u))
i (1) =

i J
Ai Aj(u)

where B; are one dimensional independent Brownian motions. Here we have used the
bijectivity of It6 formula, i.e. if we apply the It6 formula for the smooth and invertible
function h and semimartingale X and then for h~! and h(X) we arrive at the original
semimartingale representation for X.

By continuity, \;(s) tends to A;(0) whenever s goes to 0. Moreover, [, o;(\;(u))dB;(u)
is a continuous martingale starting from 0 and it converges to 0 when s — 0 almost
surely. Thus the drift integral in (5.1) converges almost surely when s — 0. It means that
for ¢t smaller than the explosion time we have

Ai(t) = Ai(0) = /0 oi(Ni(w))dBi(u) + /0 bi(Ni(u) + > A;(uijj{u) du,

where the last integral is understood as an improper integral whenever x ¢ C*. Obvi-
ously, if (C2) holds, then the explosion time and consequently the first collision time are
infinite. This ends the proof. O

Remark 5.2. Note that the assumptions (A2)-(A5) were used only to ensure that Vi ()
is strictly positive for every ¢ > 0. So even if (A2)-(A5) do not hold, but we can show that
Vn(t) > 0 for every ¢t > 0, then we can construct a solution of (1.1) in the way described
above.

In the next Theorem we use the conditions (C1) and (Al) to show the pathwise
uniqueness of the solutions of (1.1).

Theorem 5.3. Assume that the assumptions (A1)-(A5) and (C1) hold. Then the pathwise
uniqueness for solutions of the system (1.1) with X (0) € C holds.

Proof. Let (X, B) and (X, B) be two solutions of (1.1) having common starting point
X(0) = X(0) € C*t, where B is a Brownian motion in R?. Corollary 4.5 implies that
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the particles X = (z1,...,2,) do not collide after the start and the same is true for
X = (i‘l,...,jﬁp).

The condition (C1) together with Lemma 3.3 from [20], p. 389, implies that the local
time of Z;, = x; — x; at 0 is zero. Note that we can apply the Tanaka formula to the
process Z; (if ever the drift integral in the SDE for Z; is an improper integral in 0, we
write the Tanaka formula for |Z;| on [s,¢] and consider s — 0. The local time at O of the
process (Z;(u))s<u<: converges a.s. to the local time at 0 of the process (Z;(u))o<u<t)-
Thus,

Hij(zi,x;) Hij (@, 45)
ZE|x _a) = /ngn _xlz( altnty) HylEn ) g,
? J J

+ E/o Z sgn(x; — ;) (bi(zi) — bi(Z:))du.

The Lipschitz condition imposed on b;(x) implies that there exists ¢ > 0 such that

E/ ngn i — i) (bi(x;) — bi(2;) du<cE/ Z|xl—xz\du

It is also true if b;(x) is non-increasing, since in this case sgn (z; — Z;) (b;(x;) — b;(Z;)) < 0.
Moreover, the assumptions (Al) and (2.1) on the functions H;; ensure that the first term
is non-positive. Indeed, we can write it in the following form

t P
E/ E [sgn (Jﬁl — i‘l) Fi]‘ + sgn (.’I?j — ij) Fﬂ] du, (5.2)
0 i<j

where

Hij(wi,x;)  Hij(2i, 25)
Ty — Ty .fi — fj '

Fij =

Note that by the symmetry property (2.1) we have F;; + F;; = 0. If sgn(z; — ;) =
sgn(xz; — Z;), it follows that the term indexed by ¢, j in (5.2) vanishes. If the signs of the
differences between particles with and without tilde are different, then the term indexed
by i, j in (5.2) equals 2sgn (z; — &;) F;; and (Al) implies that

Consequently, we have obtained that

ZE\xi(t)—@(tﬂch/ZW — ()| du

and the Gronwall Lemma ends the proof. O

Proof of Theorem 2.2. Theorems 5.1 and 5.3 imply (see Theorem (1.7), p.368 in
[20]) that if all the conditions (C1), (C2) and (A1)-(A5) hold, then the system (1.1) with
X (0) € Cy has a strong pathwise unique solution, with no collisions after having started
from ¢ = 0 and with no explosions for ¢ > 0.

6 Examples and applications

6.1 Identical coefficients

The hypotheses of our results simplify when instead of families of functions (o),
(b;), (Hi;), i,j = 1,...,p we consider the same continuous functions o(z),b(x) and
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H(z,y) = H(y,z). Then the equations (1.1) simplify to

d; = o(2:)dB; + b(mi)+ZM dt, i=1,...,p, 6.1)

G T
2i(t) < ... <aplt), t>0.

Note that the systems (6.1) contain as a special case the systems (1.2) related to
eigenvalues of matrix stochastic processes. The conditions (A1)-(A5) may be simplified to

(A1) Forallw <z <y <z
H(w,z) _ H(z,y)

z—w T y—x

(A2’) Forall z,y
o’ (z) + 0*(y) < 4H(x,y)

(A3’) Forallz <y < 2z
H(y,z)(z —y) < H(z,y)(y —2) + H(z,2)(2 — x)
(A4’) For all =
o?(x) + H(z,z) >0

or, otherwise, for every y1,...,yp,—2 € R

b(x)+ Y Wlm{z}(yﬂ # 0.

J

Corollary 6.1. Suppose that o is at least 1/2-Hoélder and b is Lipschitz (see condition
(C1)) and that the condition (C2) of non-explosion holds. If the conditions (A1’)-(A4’) are
verified, then the system (6.1) with X (0) € CT_ has a strong pathwise unique solution,
with no collisions and no explosions fort > 0.

6.2 Interacting Brownian particles

In this subsection we consider the following interacting Brownian particle systems
including and essentially bigger than Dyson Brownian particle systems and the systems
considered by Cépa, Lépingle (see [3]):

dt, i=1

yoe Dy (62)

e

z1(t) < ... <zp(t), t>0.

Corollary 6.2. Let the functions o; be at least 1/2-Holder and b; be Lipschitz (i.e. they
verify condition (C1)), with b;(z) < b;(z) ifi < j, and let v > 0. We suppose that the
conditions

bi(x)r < c(1+ |z]?), o(z) <2y, i=1,...,p

hold for all x € R. Then the system (6.2) with x(0) € C, has a strong pathwise unique
solution, with no collisions and no explosions fort > 0.

Proof. We apply the Theorem 1 with constant positive H = ~. The conditions (Al), (A3)
and (A4) are satisfied (observe that the sets G; from (A4) are empty.) The rest of the
assumptions of Theorem 1 hold thanks to the assumptions of the Corollary. O
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6.3 Brownian particles with nearest neighbor repulsion

Consider following systems of Brownian particles where only neighbor particles are
interacting and the repelling force is proportional to the inverse of the distance between
particles:

Y
Tl — T2
1 1 )
dr; = oi(x;)dB; + + dt, i=2,....,p-1, (6.3)
Ti— Ti—1  XTj— Tt
Y
Lp — Tp-1
21(t) < ... <ap(t), t>0.

dxi1 = O'1($1)dBl + dt,

dz, = op(xp)dBy + dt,

Here, the functions H;; = v when |¢ — j| = 1 and they are zero otherwise.

Note that in this case the condition (A3) does not hold. Since (A3) was only used to
show that the particles starting from non-collision points do not collide, it is enough to
prove this fact directly. Because the proof in the general case is very technical, we only
deal with the case p = 3 in the next corollary. However, the proof technique presented
below can also be applied to the general case p > 4.

Corollary 6.3. Let the functions o, be at least 1/2-Hélder and such that |o;(x)| < 1. If

p = 3 and v > 3/4 then the system (6.3) with (0) € C, has a strong pathwise unique
solution, with no collisions and no explosions fort > 0.

Proof. We will show that the drift part of the semimartingale U; defined in the proof of
Proposition 4.2 is non-positive. Indeed, using the bounds |o;(z)| < 1 we get

1 1 1 ”
drift|Ul; < (1 —2 + >+ + .
Wle< (1 =27) <($2 —z1)? (23— 32)? (w3 —21)? (22 — 21)(23 — 22)
Since 25 + 3 > 2 and ﬁ < ;= whenever a,b > 0 and obviously z3 — 21 = (22 — z1) +
(x3 — x2), we arrive for v > 1/2 at
23y 1 9 — 124

drift[U]; < (2 — 1) (s —22) + Az — 1) (23 — 72) - 4(xg — 1) (23 — 22)

which is non-positive if v > 3/4. It means that even though the condition (A3) does not
hold, the assertion of Proposition 4.2 is true. This ends the proof. O
Remark 6.4. We conjecture that the condition
p—1 p—1 -1
D 1 1 1
> £ — — _
25(53) (&) -5
ensures non-positivity of the drift part of U; in the general case p > 3.
The terminology “Brownian particles with nearest neighbor repulsion” was used in
[22] and [18, Section 5.1] to the systems of the form
dX1 =dBy + ¢' (X1 — Xo)dt,
dXi = CZBZ + ¢/(Xz - Xi—l) - ¢/(Xz - Xi+1)dt, = 2, cees D — 1, (64)
dX, =dB,+ ¢'(X, — Xp_1)dt,
Xi(t) <...<Xp(t), t>0,
where ¢ is a positive convex function on (0, 0o) satisfying ¢(0) = oo, ¢(c0) = 0 and the

non-collision condition fo N exp(2¢) = oo (this condition is stronger in [22]). Observe that
the system (6.3) is not contained in systems (6.4).
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6.4 Non-colliding Squared Bessel particles and related processes

In this section we consider the processes satisfying the following system of SDEs

dr; = o:(2:)dBi + B a+zm’+“ dt, B> 0. (6.5)
k#i — Tk
When o;(z) = 2y/z, i = 1,...,p, these processes are called S-Wishart processes and

contain for § = 2 the non-colliding Squared Bessel particle systems studied in [16].
For applications of these classes of particle systems, see [11] and [16]. The 5-Wishart
processes were studied in [7].

Corollary 6.5. Let o« > p— 1 and 3 > 1. Suppose that the functions o; are defined on R
and verify the condition (C1) and the estimate

oi(z)? < 4p|z|, = €R. (6.6)

Then the system (6.5) with an initial condition 0 < z1(0) < z2(0) < ... < z,(0) has a
unique strong solution for ¢ € [0,00). Moreover, the process x; verifies x1(t) > 0 and
there are no collisions between the processes z;(t) fort > 0.

Proof. We apply Theorem 1 with the functions H;;(x,y) = |z| + |y| not depending on 1, j.
To see that (Al) holds note that the trapezium with vertices (z,0), (z,|z|), (v, |y|) and
(y,0) is included in the trapezium with vertices (w,0), (w, |w|), (z,]z|) and (z,0), whenever
w < r <y < z. Condition (A2) follows from inequality (6.6). We prove condition (A3)
in a similar way as Corollary 1 of [11]. As inequality (6.6) implies that ;(0) = 0, the
sets Gy, are equal to {0} and condition (A4) holds since « ¢ {0,1,2,...,p — 2}. Similarly
as in Theorem 7 and Proposition 1 of [11], the condition o > p — 1 guarantees that
z1(t) > 0. O

Note that the Corollary 6.5 strengthens Corollary 6 of [11]. When o;(z) = 24/ and
a > p, Corollary 6.5 was proved in [18] by the methods of MSDEs, see also [7].
The proof of the last corollary applies to more general SDEs systems of the form

da; = oy(;)dB; + B a+zwf’“| dt, 8>0 6.7)
kAi — Tk

and we obtain the following corollary strengthening Corollary 4 of [11].

Corollary 6.6. Let o € R\ {0,1,2,...,p — 2} and 8 > 1. Suppose that the functions
o; verify conditions (C1) and (6.6). Then the system (6.7) with an initial condition
z1(0) < 29(0) < ... < 2,(0) has a unique strong solution for t € [0,00). There are no
collisions between the processes z;(t) fort > 0.

The generalized Squared Bessel particle systems of the form (6.7) for any a € R will
be studied in a forthcoming paper [12]. On the other hand, defining y; = /z; where
the processes z; are solutions of the system (6.5) with o;(z) = 21/, we obtain Bessel
particle systems and the results of Corollary 6.5 can be transfered to those systems, cf.
[18].

6.5 Non-colliding Jacobi particles

The methods of this paper can also be applied to non-colliding Jacobi particle systems
on the segment [0, 1], defined by

17 1-— "
dx; = 2+/x;(1 )dBi+ B8 q—(¢g+r x1+z Tk +xk( z:) dt. (6.8)

— X
k#i k
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Observe that the sets Gy; = {0, 1} in this case. Corollary 8 of [11] generalizes to the case
0<z1(0) <z2(0) <...<z,(0) <1

Corollary 6.7. The SDE system (6.8) with 0 < z1(0) < 25(0) < ... < 2,(0) <1 has a
unique strong solution fort € [0,00), forany 8 > 1 andgAr >p—1.

6.6 Hyperbolic particle systems

The hyperbolic particle systems have the form

dz; = oi(x;)dB; + | bi(z;) + ”choth(aji —z;) | dt, i=1,...,p, (6.9)
J#i
2i(t) < ... < aplt), t>0.

In the special case o; = 1,b; = 0 they arise as radial Heckman-Opdam processes and
were studied in [23].

Corollary 6.8. Let the functions o; be at least 1/2-Hélder and b; be Lipschitz (i.e. they
verify condition (C1)), with b;(z) < b;(x) if i < j, and let v > 0. We suppose that the
conditions

bi(z)r < c(1+ |z|?), o(z) <2y, i=1,...,p

hold for all x € R. Then the system (6.9) with x(0) € C has a strong pathwise unique
solution, with no collisions and no explosions fort > 0.

Proof. Consider the function h(xz) = va cothz. By continuity, A(0) = 7. We can apply
Theorem 2.2 with H(z,y) = h(y — z). Indeed, Condition (A1) holds because the function
coth x is decreasing on R*. The inequality tanhz < z for > 0 implies that h(z) > ~v
and the assumption (A2) is satisfied. Condition (A3) is true since coth(a + b) = (1 +
coth a coth b)(coth a + coth b) > coth a+ coth b for a,b > 0. The sets Gy; are empty because
H(xz,z) = h(0) = 1. The Corollary follows. O

Note that the same proof works in much greater generality and gives the following
Corollary.

Corollary 6.9. Consider a system of SDEs

dzi = oi(2:)dB; + | bi(x:) + D J(wi —aj) | dt, i=1....p, (6.10)
J#i

where 1) is a continuous odd function which is non-negative and decreasing on R, with
¥(0) = o0, Y(xz+y) > Y(z) +¢¥(y) and x¢(x) > v > 0 for x,y > 0. Let the functions o; be
at least 1/2-Holder and b; be Lipschitz (i.e. they verify condition (C1)), with b;(x) < b;(z)
if1 < j. We suppose that the conditions

bi(z)e < c(l+[ef?), of(x) <2y, i=1,...,p

hold for all z € R. Then the system (6.10) with z(0) € CT has a strong pathwise unique
solution, with no collisions and no explosions fort > 0.

Finally observe that the results and techniques of this section and Section 6.3 may
be applied to systems (6.4), e.g. for ¢(z) = In|sinh 2| and ¢'(z) = coth x.

EJP 19 (2014), paper 119. ejp.ejpecp.org
Page 20/21


http://dx.doi.org/10.1214/EJP.v19-3842
http://ejp.ejpecp.org/

Strong solutions of non-colliding particle systems

References

[1] M. F. Bru, Diffusions of perturbed principal component analysis. J. Multivariate Anal. 29
(1989), no. 1, 127-136. MR-0991060
[2] M. F. Bru, Wishart processes. ]J. Theor. Prob. 4 (1991) 725-751. MR-1132135
[3] E. Cépa, D. Lépingle, Diffusing particles with electrostatic repulsion, Probab. Theory Related
Fields 107 (1997), no. 4, 429-449. MR-1440140
[4] E. Cépa, D. Lépingle, Brownian particles with electrostatic repulsion on the circle: Dyson’s
model for unitary random matrices revisited. ESAIM Probab. Statist. 5 (2001), 203-224.
MR-1875671
[5] O. Chybiryakov, N. Demni, L. Gallardo, M. Rosler, M. Voit, M. Yor, Harmonic and Stochastic
Analysis of Dunkl Processes, Travaux en Cours, Hermann, 2008.
[6] O. Chybiryakov, Skew-product representations of multidimensional Dunkl Markov processes,
Ann. Inst. Henri Poincaré Probab. Stat. 44 (2008), 593-611. MR-2446290
[7]1 N. Demni, Radial Dunkl processes: existence, uniqueness and hitting time, C. R. Math. Acad.
Sci. Paris 347 (2009), 1125-1128. MR-2566989
[8] F. J. Dyson, A Brownian-motion model for the eigenvalues of a random matrix, J. Mathematical
Phys. 3 (1962) 1191-1198. MR-0148397
[9] P. J. Forrester, Log-gases and random matrices, London Mathematical Society Monographs
Series, 34. Princeton University Press, Princeton, NJ, 2010. MR-2641363
[10] D. J. Grabiner, Brownian motion in a Weyl chamber, non-colliding particles, and random
matrices, Ann. Inst. H. Poincaré Probab. Statist. 35 (1999), no. 2, 177-204. MR-1678525
[11] P. Graczyk, J. Malecki, Multidimensional Yamada-Watanabe theorem and its applications, J.
Math. Phys. 54(2013), 021503 MR-3076363
[12] P. Graczyk, J. Matecki, Generalized Squared Bessel particle systems and Wallach set, preprint
(2014).
[13] N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-
Holland, 1981. MR-1011252
[14] K. Inukai, Collision or non-collision problem for interacting Brownian particles, Proc. Japan
Acad. Ser. A Math. Sci. 82 (2006), 66-70. MR-2222214
[15] M. Katori, H. Tanemura, Noncolliding processes, matrix-valued processes and determinantal
processes, Sugaku Expositions 24 (2011), no. 2, 263-289. MR-2882846
[16] M. Katori, H. Tanemura, Noncolliding Squared Bessel processes, J. Stat. Phys. 142 (2011),
592-615 MR-2771046
[17] W. Konig, N. O’Connell, Eigenvalues of the Laguerre process as non-colliding squared Bessel
processes, Electron. Comm. Probab. 6 (2001), 107-114. MR-1871699
[18] D. Lépingle, Boundary behavior of a constrained Brownian motion between reflecting-
repellent walls, Probab. Math. Statist. 30 (2010), no. 2, 273-287. MR-2792586
[19] S. Lojasiewicz, Introduction to Complex Analytic Geometry, Birkhauser, Basel, 1991. MR-
1131081
[20] D. Revuz, M. Yor. Continuous Martingales and Brownian Motion. Springer, New York, 1999.
MR-1725357
[21] L. C. G. Rogers, Z. Shi, Interacting Brownian particles and the Wigner law, Probab. Theory
Related Fields 95 (1993), no. 4, 555-570. MR-1217451
[22] H. Rost, M. E. Vares, Hydrodynamics of a one-dimensional nearest neighbor model, Particle
systems, random media and large deviations (Brunswick, Maine, 1984), 329-342, Contemp.
Math., 41, Amer. Math. Soc., Providence, RI, 1985. MR-0814722
[23] B. Schapira, The Heckman-Opdam Markov processes, Probab. Theory Related Fields 138
(2007), no. 3-4, 495-519. MR-2299717

Acknowledgments. We thank Makoto Katori and Dominique Lépingle for stimulating
discussions on particle systems, that inspired this work.

EJP 19 (2014), paper 119. ejp.ejpecp.org
Page 21/21


http://www.ams.org/mathscinet-getitem?mr=0991060
http://www.ams.org/mathscinet-getitem?mr=1132135
http://www.ams.org/mathscinet-getitem?mr=1440140
http://www.ams.org/mathscinet-getitem?mr=1875671
http://www.ams.org/mathscinet-getitem?mr=2446290
http://www.ams.org/mathscinet-getitem?mr=2566989
http://www.ams.org/mathscinet-getitem?mr=0148397
http://www.ams.org/mathscinet-getitem?mr=2641363
http://www.ams.org/mathscinet-getitem?mr=1678525
http://www.ams.org/mathscinet-getitem?mr=3076363
http://www.ams.org/mathscinet-getitem?mr=1011252
http://www.ams.org/mathscinet-getitem?mr=2222214
http://www.ams.org/mathscinet-getitem?mr=2882846
http://www.ams.org/mathscinet-getitem?mr=2771046
http://www.ams.org/mathscinet-getitem?mr=1871699
http://www.ams.org/mathscinet-getitem?mr=2792586
http://www.ams.org/mathscinet-getitem?mr=1131081
http://www.ams.org/mathscinet-getitem?mr=1131081
http://www.ams.org/mathscinet-getitem?mr=1725357
http://www.ams.org/mathscinet-getitem?mr=1217451
http://www.ams.org/mathscinet-getitem?mr=0814722
http://www.ams.org/mathscinet-getitem?mr=2299717
http://dx.doi.org/10.1214/EJP.v19-3842
http://ejp.ejpecp.org/

Electronic Journal of Probability
Electronic Communications in Probability

e Very high standards

Free for authors, free for readers

Quick publication (no backlog)

Low cost, based on free software (OJS?)

Non profit, sponsored by IMS?, BS?, PKP*
Purely electronic and secure (LOCKSS®)

Donate to the IMS open access fund® (click here to donate!)

e Submit your best articles to EJP-ECP

e Choose EJP-ECP over for-profit journals

10JS: Open Journal Systems http://pkp.sfu.ca/ojs/

2IMS: Institute of Mathematical Statistics http://www.imstat.org/

3BS: Bernoulli Society http://www.bernoulli-society.org/

4PK: Public Knowledge Project http://pkp.sfu.ca/

SLOCKSS: Lots of Copies Keep Stuff Safe http://www.lockss.org/

SIMS Open Access Fund: http://www.imstat.org/publications/open.htm


http://en.wikipedia.org/wiki/Open_Journal_Systems
http://en.wikipedia.org/wiki/Institute_of_Mathematical_Statistics
http://en.wikipedia.org/wiki/Bernoulli_Society
http://en.wikipedia.org/wiki/Public_Knowledge_Project
http://en.wikipedia.org/wiki/LOCKSS
https://secure.imstat.org/secure/orders/donations.asp
http://pkp.sfu.ca/ojs/
http://www.imstat.org/
http://www.bernoulli-society.org/
http://pkp.sfu.ca/
http://www.lockss.org/
http://www.imstat.org/publications/open.htm

	Introduction
	Assumptions and Main Result
	Stochastic description of the basic symmetric polynomials
	Symmetric polynomials of particles
	Non-explosion of solutions
	 Instant exit from a multiple degenerate point

	Polynomials of squares of differences between particles and collision times
	Symmetric polynomials of squares of differences between particles
	 Collision time when starting from a regular state
	Instant diffraction
	No collision after instant diffraction

	Existence and uniqueness of a non-colliding solution
	Examples and applications
	Identical coefficients
	Interacting Brownian particles
	 Brownian particles with nearest neighbor repulsion
	 Non-colliding Squared Bessel particles and related processes
	 Non-colliding Jacobi particles
	Hyperbolic particle systems

	References

