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Abstract

In this work, we investigate the fine regularity of Lévy processes using the 2-micro-
local formalism. This framework allows us to refine the multifractal spectrum deter-
mined by Jaffard and, in addition, study the oscillating singularities of Lévy processes.
The fractal structure of the latter is proved to be more complex than the classic mul-
tifractal spectrum and is determined in the case of alpha-stable processes. As a
consequence of these fine results and the properties of the 2-microlocal frontier, we
are also able to completely characterise the multifractal nature of the linear frac-
tional stable motion (extension of fractional Brownian motion to α-stable measures)
in the case of continuous and unbounded sample paths as well. The regularity of
its multifractional extension is also presented, indirectly providing an example of a
stochastic process with a non-homogeneous and random multifractal spectrum.
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1 Introduction

The study of sample path continuity and Hölder regularity of stochastic processes
is a very active field of research in probability theory. The existing literature provides
a variety of uniform results on local regularity, especially on the modulus of continuity,
for rather general classes of random fields (see e.g. Marcus and Rosen [36], Adler and
Taylor [2] on Gaussian processes and Xiao [52] for more recent developments).

On the other hand, the structure of pointwise regularity is generally more complex
as the latter often tends to behave erratically as time passes. This type of sample
path behaviour was first put into light on Brownian motion by Orey and Taylor [39]
and Perkins [40]. They respectively studied fast and slow points which characterize
logarithmic variations of the pointwise modulus of continuity, and proved that the sets of
times with a given pointwise regularity have a distinct fractal geometry. Khoshnevisan
and Shi [29] have recently extended this study of fast points to fractional Brownian
motion.
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Lévy processes with a jump compound also present an interesting pointwise be-
haviour. Indeed, Jaffard [26] has proved that despite the random variations of the
pointwise exponent, the level sets of the latter show a specific fractal structure. This
seminal work has been enhanced and extended by Durand [19], Durand and Jaffard [20]
and Barral et al. [12]. Particularly, the latter have proved that Markov processes have
a range of admissible pointwise behaviours wider and richer than Lévy processes. In
the aforementioned works, multifractal analysis happens to be the key concept to study
and characterise the local fluctuations of the pointwise regularity. In order to be more
specific, we recall a few definitions.

Definition 1.1 (Pointwise exponent). A function f : R→ Rd belongs to Cαt , where t ∈ R
and α > 0, if there exist C > 0, ρ > 0 and a polynomial Pt of degree less than α such
that

∀u ∈ B(t, ρ); ‖f(u)− Pt(u)‖ ≤ C|t− u|α.
The pointwise Hölder exponent of f at t is then defined by αf,t = sup{α ≥ 0 : f ∈ Cαt },
where by convention sup{∅} = 0.

Multifractal analysis is interested in the fractal geometry of the level sets of the
pointwise exponent, which are also called the iso-Hölder sets of f :

Eh =
{
t ∈ R : αf,t = h

}
for every h ∈ R+ ∪ {+∞}. (1.1)

The geometry of the collection (Eh)h∈R+ is then studied through its Hausdorff dimen-
sion, defining for that purpose the local spectrum of singularities df (h, V ) of f :

df (h, V ) = dimH(Eh ∩ V ) for every h ∈ R+ ∪ {+∞} and V ∈ O, (1.2)

where O designates the collection of nonempty open sets of R and dimH is the Hausdorff
dimension, with the usual convention dimH(∅) = −∞ (we refer to [23] for the complete
definition of the latter).

Even though (Eh)h∈R+
are random sets, stochastic processes such as Lévy processes

[26], Lévy processes in multifractal time [10] and fractional Brownian motion have a
deterministic multifractal spectrum. Furthermore, these random fields are also said to
be homogeneous since the quantity dX(h, V ) is independent of the open set V for any
h ∈ R+. In addition, when the pointwise exponent is constant along sample paths, the
spectrum is described as degenerate, i.e. its support is reduced to a single point (e.g.
the Hurst exponent H in the case of f.B.m.). Nevertheless, note that Barral et al. [12]
and Durand [18] have provided examples of respectively Markov jump processes and
wavelet random series with a non-homogeneous and random spectrum of singularities.

As outlined in Equations (1.1) and (1.2), multifractal analysis usually focuses on
the structure of pointwise regularity. Unfortunately, as presented by Meyer [38], the
pointwise Hölder exponent suffers of a couple of drawbacks: it lacks of stability under
the action of pseudo-differential operators and it is not always characterised by the
wavelets coefficients. In addition, several simple deterministic examples such as the
Chirp function t 7→ |t|α sin

(
|t|−β

)
show that it does not fully capture the local geometry

and oscillations of a function.
Several approaches, such as the oscillating, chirp and weak scaling exponents intro-

duced by Arneodo et al. [5] and Meyer [38], have emerged in the literature to address
the limits of the pointwise exponent and supplement the latter by characterising other
aspects of the local regularity. Interestingly, the aforementioned concepts are embraced
by a single framework called 2-microlocal analysis. It was first introduced by Bony [15]
in the deterministic frame to study singularities of generalised solutions of PDEs. Sev-
eral authors have then investigated in [25, 27, 38, 34] this framework more deeply,
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determining in particular the close connection between the 2-microlocal formalism and
the previous scaling exponents. More recently, Herbin and Lévy Véhel [24] have de-
veloped a stochastic approach of this framework to investigate the fine regularity of
stochastic processes such as Gaussian processes, martingales and stochastic integrals.

Similarly to the pointwise Hölder exponent, the introduction of this formalism starts
with the definition of appropriate functional spaces, named 2-microlocal spaces. We
begin with a simpler, but narrower, definition to give an intuition of these concepts.

Definition 1.2. Suppose t ∈ R, s′ ∈ R and σ ∈ (0, 1) such that σ − s′ /∈ N. A function

f : R → Rd belongs to the 2-microlocal space Cσ,s
′

t if there exist C > 0, ρ > 0 and a
polynomial Pt such that for all u, v ∈ B(t, ρ):∥∥f(u)− Pt(u)− f(v) + Pt(v)

∥∥ ≤ C|u− v|σ(|u− t|+ |v − t|)−s′ . (1.3)

In addition, Pt is unique if its degree is supposed to be smaller than σ− s′. In this case,
it corresponds to the Taylor polynomial of order bσ − s′c of f at t.

The 2-microlocal spaces are therefore parametrised by a pair (s′, σ) of real numbers
and we clearly observe on Equation (1.3) that they extend the underlying ideas of the
classic Hölder spaces. To define these elements for any σ ∈ R \ Z, we need to slightly
complexify the form of the increments considered.

Definition 1.3. Suppose t ∈ R and b < t is fixed. In addition, consider s′ ∈ R, σ ∈ R \Z
and k ∈ Z such that σ − s′ /∈ N and σ + k ∈ (0, 1). A function f : R→ Rd belongs to the

2-microlocal space Cσ,s
′

t if there exist C > 0, ρ > 0 and a polynomial Pt,k such that for
all u, v ∈ B(t, ρ):∥∥Ikb+f(u)− Pt,k(u)− Ikb+f(v) + Pt,k(v)

∥∥ ≤ C|u− v|σ+k
(
|u− t|+ |v − t|

)−s′
, (1.4)

where Ikb+f designates the derivative of order −k when k ≤ 0 and the iterated integral
of order k when k > 0, i.e.

(
Ikb+f

)
(u) := 1/Γ(k − 1)

∫ u
b

(u− s)k−1f(s) ds.

The time-domain characterisation (1.3)-(1.4) of 2-microlocal spaces has first been
obtained by Kolwankar and Lévy Véhel [32] in the case σ ∈ (0, 1) and then extended
by Seuret and Lévy Véhel [48] and Echelard [21] to σ ∈ R \ Z. Note that the previous
characterisation does not depend on the value of the constant b, since a modification of
the latter simply induces an adjustment of the polynomial Pt.

Even though we restrict ourselves to usual functions in Definitions 1.2-1.3, 2-microlocal
spaces were originally introduced by Bony [15] for tempered distributions S ′(R). The
first definition given by Bony [15] relies on the Littlewood–Paley decomposition of dis-
tributions, and thereby corresponds to a description in the Fourier space. Another
characterisation based on wavelet coefficients has also been presented by Jaffard [25].
In addition, note that the previous characterisation is in fact equivalent the localised
2-microlocal spaces which are also defined for distributions in D′(R) (we refer to [38]
for a more precise distinction between global and local definitions of the 2-microlocal
spaces).

One major property of the 2-microlocal spaces is their stability under the action of
pseudo-differential operators. In particular, as proved by Jaffard and Meyer [27, Th
1.1], they satisfy

∀α > 0; f ∈ Cσ,s
′

t ⇐⇒ Iα+f ∈ C
σ+α,s′

t , (1.5)

where the fractional integral of f of order α ≥ 0 is defined by:
(
Iα+f

)
(u) := 1/Γ(α)

∫
R

(u−
s)α−1

+ f(s) ds. Note that the latter definition of the operator Iα+ coincides with the frac-
tional integral presented in [27] for tempered distributions (we refer to the book of
Samko et al. [44] for an extensive study of the subject).
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Similarly to the pointwise Hölder exponent, the introduction of 2-microlocal spaces
leads naturally to the definition of a regularity tool named the 2-microlocal frontier:

∀s′ ∈ R; σf,t(s
′) = sup

{
σ ∈ R : f ∈ Cσ,s

′

t

}
.

Due to several inclusion properties of the 2-microlocal spaces, the map s′ 7→ σf,t(s
′) is

well-defined and satisfies the following properties:

• σf,t(·) is a concave non-decreasing function;

• σf,t(·) has left and right derivatives between 0 and 1.

Furthermore, as a consequence of Equation (1.5), σf,t(·) is stable under the action of
pseudo-differential operators. As a function, the 2-microlocal frontier σf,t(·) offers a
richer and more complete description of the local regularity and cover in particular the
usual Hölder exponents:

α̃f,t = σf,t(0) and αf,t = − inf{s′ : σf,t(s
′) ≥ 0},

where the last equality has been proved by Meyer [38] under the assumption ω(h) =

O (1/|log(h)|) on the modulus of continuity of f (recall that ω(h) := supu,v∈R:|u−v|≤δ |f(u)−
f(v)|). Several other scaling exponents previously outlined can also be retrieved from
the frontier: the chirp and weak scaling exponents introduced by Meyer [38] are given
by:

βcf,t =

{
dσf,t
ds′

∣∣∣∣
s′→−∞

}−1

− 1 and βwf,t = lim
s′→−∞

σf,t(s
′)− s′;

These two elements characterise the asymptotic regularity of a function after a large
number of integrations, and the latter was been specifically introduced to supplement
the pointwise exponent in multifractal analysis. The oscillating exponent defined by
Arneodo et al. [5] can also be retrieved from the 2-microlocal frontier:

βof,t =

{
dσf,t
ds′

∣∣∣∣
s′=−αf,t−

}−1

− 1.

This scaling exponent aims to capture the oscillating behaviour by studying the regular-
ity after infinitesimal integrations. Note that the original definition of these exponents
are based on Hölder spaces (see [47] for an extensive review).

In the stochastic framework, Brownian motion provides an example of a simple 2-
microlocal frontier: with probability one and for all t ∈ R

∀s′ ∈ R; σB,t(s
′) =

(1

2
+ s′

)
∧ 1

2
. (1.6)

Using the common terminology of Arneodo et al. [4] and Meyer [38], Brownian motion
is said to have cusp singularities: βwB,t = αB,t = α̃B,t and βoB,t = βcB,t = 0. On the other
hand, oscillating singularities appear when the slope of the frontier is strictly smaller
than 1 at s′ = −αf,t, or equivalently, when βwf,t > αf,t. This oscillating behaviour is well-
illustrated by the chirp function whose frontier and scaling exponents at 0 respectively
are equal to σf,0(s′) = (α+ s′)/(1 + β), αf,0 = α, βcf,0 = βof,0 = β and βwf,0 =∞.

In this paper, we combine the 2-microlocal formalism with the classic use of multi-
fractal analysis to obtain a finer and richer description of the regularity of Lévy pro-
cesses. Following the path of [26, 19, 20], we extend the multifractal description
(Section 2) to the aforementioned scaling exponents and the 2-microlocal frontier. We
present in particular how this formalism allows to capture and describe the oscillating
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singularities of Lévy processes. The fractal structure of the latter is determined for a
class of Lévy processes which includes alpha-stable processes.

This finer analysis of the sample path properties of Lévy processes happens to be
very useful for the study of another class of processes named linear fractional stable
motion (LFSM). The LFSM is a common α-stable self-similar process with stationary
increments which can be seen as the extension of the fractional Brownian motion to the
non-Gaussian frame. In Section 3, we completely characterize the multifractal nature
of the LFSM, unifying the geometrical description of the sample paths independently
of their boundedness. In addition, we also extend this analysis to the multifractional
generalisation of the LFSM.

1.1 Statement of the main results

As it is well known, an Rd-valued Lévy process (Xt)t∈R+
has stationary and indepen-

dent increments. Furthermore, its law is determined by the Lévy–Khintchine formula
(see e.g. [46]): for all t ∈ R+ and λ ∈ Rd, E[ei〈λ,Xt〉] = etψ(λ) where ψ is given by

∀λ ∈ Rd; ψ(λ) = i〈a, λ〉 − 1

2
〈λ,Qλ〉+

∫
Rd

(
ei〈λ,x〉 − 1− i〈λ, x〉1{‖x‖≤1}

)
π(dx).

In the previous expression, Q is a non-negative symmetric matrix and π is the Lévy
measure, i.e. a positive Radon measure on Rd \ {0} such that

∫
Rd

(1 ∧ ‖x‖2)π(dx) < ∞.
Throughout this paper, it will always be assumed that π(Rd) = +∞ since otherwise, the
Lévy process corresponds to the sum of a simple compound Poisson process with drift
and a Brownian motion whose regularity is well-known.

Sample path properties of Lévy processes are known to depend on the growth of the
Lévy measure near the origin. More precisely, Blumenthal and Getoor [14] have defined
the following exponents β and β′,

β = inf

{
δ ≥ 0 :

∫
Rd

(
1 ∧ ‖x‖δ

)
π(dx) <∞

}
and β′ =

{
β if Q = 0;

2 if Q 6= 0.
(1.7)

Owing to π’s definition, β, β′ ∈ [0, 2]. Pruitt [42] proved that αX,0
a.s.
= 1/β when Q = 0.

Note that several other exponents have been introduced in the literature to study the
sample path properties of Lévy processes (see e.g. [30, 31] for some recent develop-
ments).

Jaffard [26] has studied the spectrum of singularities of Lévy processes under the
following assumption on the measure π,∑

j∈N
2−j
√
Cj log(1 + Cj) <∞, where Cj =

∫
2−j−1<‖x‖≤2−j

π(dx). (1.8)

Under the Hypothesis (1.8), Theorem 1 in [26] states that the multifractal spectrum of
a Lévy process X is almost surely equal to

∀V ∈ O; dX(h, V ) =


βh if h ∈ [0, 1/β′);

1 if h = 1/β′;

−∞ if h ∈ (1/β′,+∞].

(1.9)

Durand [19] has extended this result to Hausdorff g-measures, where g is a gauge func-
tion, and Durand and Jaffard [20] have generalized the study to multivariate Lévy fields.

In this work, we first establish in Proposition 2.3 a new proof of the multifractal
spectrum (1.9) which does not require Assumption (1.8). Results obtained by Durand
[19] on Hausdorff g-measure are also indirectly extended using this method.
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In order to refine and extend the spectrum of singularities (1.9) using the 2-microlocal
formalism, we are interested the fractal geometry of the collections of sets (Ẽh)h∈R+

and (Êh)h∈R+
respectively defined by

Ẽh =
{
t ∈ Eh : ∀s′ ∈ R; σX,t(s

′) = (h+ s′) ∧ 0
}

and Êh = Eh \ Ẽh.

The introduction of these two collections corresponds to the natural distinction pre-
sented in the literature [4, 5, 38] between two types of singularities: the family (Ẽh)h∈R+

gathers the cusp singularities of Lévy processes, i.e. times at which the slope of the
2-microlocal frontier is equal to 1, whereas the collection (Êh)h∈R+

regroups the oscil-
lating singularities of the process, i.e. when βwX,t > αX,t and βoX,t > 0.

In our first important result, we provide a general description of the fractal geometry
of these singularities.

Theorem 1.4. Suppose X is a Lévy process such that β > 0. Then, with probability
one, the cusp singularities (Ẽh)h∈R+ of X satisfy

∀V ∈ O; dimH(Ẽh ∩ V ) =


βh if h ∈ [0, 1/β′);

1 if h = 1/β′;

−∞ if h ∈ (1/β′,+∞].

(1.10)

Furthermore, the oscillating singularities (Êh)h∈R+
of X are such that

∀V ∈ O; dimH(Êh ∩ V ) ≤

{
2βh− 1 if h ∈ (1/2β, 1/β′);

−∞ if h ∈ [0, 1/2β] ∪ [1/β′,+∞],
(1.11)

where the 2-microlocal frontier at t ∈ Êh verifies σX,t(s′) ≤
(
h+s′

2βh

)
∧
(

1
β′ + s′

)
∧ 0 for all

s′ ∈ R.

Remark 1.5. Theorem 1.4 induces that dimH(Êh) < dimH(Ẽh) for every h ∈ [0, 1/β′].
Therefore, in terms of Hausdorff dimension, chirp oscillations that might appear on a
Lévy process are always singular compared to the common cusp behaviour.

We also note that even though sample paths of Lévy processes do not satisfy the
condition ω(h) = O(1/|log(h)|) outlined in the introduction, Theorem 1.4 nevertheless
ensures that the pointwise Hölder exponent can be retrieved from the 2-microlocal fron-
tier at any t ∈ R+ using the formula αX,t = − inf{s′ : σX,t(s

′) ≥ 0}. As a consequence,
the pointwise regularity of Lévy processes can also be characterised by its wavelet co-
efficients.

The determination of the 2-microlocal regularity of Lévy processes allows to deduce
the behaviour of several scaling exponents. In particular, we are interested in the mul-
tifractal spectrum of the weak scaling exponent, whose level sets are defined as:

Ewh =
{
t ∈ R : βwX,t = h

}
for every h ∈ R+ ∪ {+∞}.

Corollary 1.6. Suppose X is a Lévy process such that β > 0. Then, with probability
one

∀V ∈ O; dimH(Ewh ∩ V ) =


βh if h ∈ [0, 1/β′);

1 if h = 1/β′;

−∞ otherwise.

(1.12)

Furthermore, the oscillating exponent is such that βoX,t ≤ max
(
0, 2βh− 1

)
and

dimH

{
t ∈ Eh : βoX,t > 0

}
≤

{
2βh− 1 if h ∈ (1/2β, 1/β′);

−∞ otherwise.
(1.13)

Finally, the chirp scaling exponent satisfies βcX,t = 0 for all t ∈ R.
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According to Corollary 1.6, the multifractal spectrum associated to the weak scaling
exponent is the same as the classic one (1.9), despite the oscillating singularities which
might exist. We also note that the latter do not influence the chirp scaling exponent,
showing that chirp oscillations tend to disappear after multiple integrations.

Following the ideas presented by Meyer [38], it is also natural to investigate geo-
metrical properties of the sets (Eσ,s′)σ,s′∈R defined by

Eσ,s′ =
{
t ∈ R+ : ∀u′ > s′; X· ∈ Cσ,u

′

t and ∀u′ < s′; X· /∈ Cσ,u
′

t

}
.

This collection of sets can be seen as the level sets of the 2-microlocal frontier for a
fixed σ.

Corollary 1.7. Suppose X is a Lévy process such that β > 0. Then, with probability
one and for all σ ∈ R−,

∀V ∈ O; dimH(Eσ,s′ ∩ V ) =


βs if s ∈ [0, 1/β′);

1 if s = 1/β′;

−∞ otherwise.

(1.14)

where s denotes the common 2-microlocal parameter s = σ − s′. Furthermore, for all
s′ ∈ R, E0,s′ = E−s′ and Eσ,s′ is empty if σ > 0.

As for the weak scaling exponent, we obtain in Corollary 1.7 a multifractal spectrum
which takes the same form as Equation (1.9) (note that the latter corresponds to the
case σ = 0). In addition, the oscillating singularities are also not captured by these
scaling exponents and the spectrum associated.

Theorem 1.4 provides an upper bound for the Hausdorff dimension of the oscillating
singularities of a general Lévy process. In Section 2.3, we obtain the exact estimates
for a specific class of Lévy processes, proving in particular that the Blumenthal–Getoor
exponent does not entirely characterise the structure of these chirp oscillations.

Proposition 1.8. Suppose π is a Lévy measure on R such that π(R±) = 0 and X is a
Lévy process with generating triplet (a,Q, π). Then, with probability one, Êh = ∅ for all
h ∈ R+, i.e.

∀t ∈ R+, ∀s′ ∈ R; σX,t(s
′) =

(
αX,t + s′

)
∧ 0.

Note in particular that subordinators do not have oscillating singularities, which is
quite understandable because of their monotonicity.

Nevertheless, these singularities might appear as well for a rather natural class of
processes containing alpha-stable Lévy processes.

Theorem 1.9. Suppose X is a Lévy process parametrised by (0, 0, π), where the Lévy
measure π has the following form

π(dx) = a1 |x|−1−α1 1R+dx+ a2 |x|−1−α2 1R−dx, (1.15)

and a1, a2 > 0 and α1, α2 ∈ (0, 2).
Then, the Blumenthal–Getoor exponent of π is equal to β = max(α1, α2) and with

probability one, the oscillating singularities of X satisfy

∀V ∈ O; dimH(Êh ∩ V ) =

{
(α1 + α2)h− 1 if h ∈

(
1/(α1 + α2), 1/β

)
;

−∞ otherwise.
(1.16)

One of the interesting aspects of the previous result is to show that the Hausdorff
dimension of the oscillating singularities of Lévy processes is not necessarily governed
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by the Blumenthal–Getoor exponent, but also takes into account the symmetrical aspect
of the Lévy measure. Furthermore, Theorem 1.9 proves that the upper bound obtained
in Theorem 1.4 is optimal, since in the case of an alpha-stable process, with probability
one

∀V ∈ O; dimH(Êh ∩ V ) =

{
2αh− 1 if h ∈ (1/2α, 1/α) and βα ∈ (−1, 1);

−∞ otherwise,
(1.17)

where βα ∈ [−1, 1] denotes the skewness of the alpha-stable distribution. Note that
owing to Proposition 1.8, when skewness βα is equal to 1 or −1, the process does not
have oscillating singularities.

The fine 2-microlocal structure presented Theorems 1.4 and 1.9 happens to be inter-
esting outside the scope of Lévy processes. More precisely, it allows to characterize the
multifractal nature of the linear fractional stable motion (LFSM). The latter is a frac-
tional extension of alpha-stable Lévy processes and is usually defined by the following
stochastic integral (see e.g. [45])

Xt =

∫
R

{
(t− u)

H−1/α
+ − (−u)

H−1/α
+

}
Mα(du), (1.18)

where Mα is an alpha-stable random measure parametrised by α ∈ (0, 2) and βα ∈
[−1, 1], and H ∈ (0, 1) is the Hurst exponent. Several regularity properties have been
determined in the literature. In particular, sample paths are known to be nowhere
bounded [35] if H < 1/α and Hölder continuous when H > 1/α. In this latter case,
Takashima [51], Kôno and Maejima [33] proved that the pointwise and local Hölder
exponents satisfy almost surely H − 1/α ≤ αX,t ≤ H and α̃X,t = H − 1/α. Throughout
this paper, we will assume that α ∈ [1, 2), which is required to obtain Hölder continuous
sample paths (H > 1/α).

Using an alternative representation of LFSM presented in Proposition 3.1, we en-
hance the aforementioned regularity results and obtain a precise description of the
multifractal structure of the LFSM.

Theorem 1.10. Suppose X is a linear fractional stable motion parametrized by α ∈
[1, 2), βα ∈ [−1, 1] and H ∈ (0, 1). Then, with probability one and for all σ ≤ H − 1

α

∀V ∈ O; dimH(Eσ,s′ ∩ V ) =

{
α(s−H) + 1 if s ∈

[
H − 1

α , H
]
;

−∞ otherwise.
(1.19)

where s = σ − s′. When σ > H − 1
α , Eσ,s′ is empty for all s′ ∈ R.

In addition, the weak scaling exponent satisfies with probability one

∀V ∈ O; dimH(Ewh ∩ V ) =

{
α(h−H) + 1 if h ∈

[
H − 1

α , H
]
;

−∞ otherwise.
(1.20)

Finally, the chirp scaling exponent βcX,t is equal to 0 for all t ∈ R.

Therefore, we observe that the multifractal structure presented in Theorem 1.10
corresponds to the spectrum of alpha-stable processes translated by a factor H − 1

α .
Interestingly, we also note that on the contrary to usual Hölder exponents, the weak
scaling exponent and the 2-microlocal formalism allow to describe the multifractal na-
ture of the LFSM independently of the continuity of its sample paths, unifying the con-
tinuous (H > 1

α ) and unbounded (H < 1
α ) cases (see Figure 1). In the latter case, the

2-microlocal domain is located strictly below the s′-axis, implying that sample paths are
nowhere bounded. Nevertheless, the proof of Theorem 1.10 ensures in this case the
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existence of a modification of the LFSM such that the sample paths are distributions in
D′(R) whose 2-microlocal regularity can be studied as well.

In addition, the classic multifractal spectrum can be explicated when sample paths
are Hölder continuous.

Corollary 1.11. Suppose X is a linear fractional stable motion parametrized by α ∈
[1, 2), βα ∈ [−1, 1] and H ∈ (0, 1), with H > 1/α. Then, with probability one, the
multifractal spectrum of X is given by

∀V ∈ O; dX(h, V ) =

{
α(h−H) + 1 if h ∈

[
H − 1

α , H
]
;

−∞ otherwise.
(1.21)

An equivalent multifractal structure is presented in Proposition 3.2 for a similar
class of processes called fractional Lévy processes (see [13, 37, 16]).

s
′

σ

0−1

−
1

2

dimH(Eσ,s′) = α(s−H) + 1

1

2

1

2

−H + 1

α

H −
1

α

−H

s = σ − s
′

(a) Continuous sample paths (H > 1
α

)

s
′

σ

0−1

−
1

2

dimH(Eσ,s′) = α(s−H) + 1

1

2

1

2

H −
1

α

−
1

2
−

1

α

s = σ − s
′

(b) Unbounded sample paths (H < 1
α

)

Figure 1: Domains of admissible 2-microlocal frontiers for the LFSM

The LFSM admits a natural multifractional extension which has been introduced
and studied in [49, 50, 17]. The definition of the linear multifractional stable motion
(LMSM) is based on Equation (1.18), where the Hurst exponent H is replaced by a
function t 7→ H(t). Stoev and Taqqu [49] and Ayache and Hamonier [6] have obtained
lower and upper bounds on Hölder exponents which are similar to LFSM results: for
all t ∈ R+, H(t) − 1/α ≤ αX,t ≤ H(t) and α̃X,t = H(t) − 1/α almost surely. Ayache
and Hamonier [6] have also investigated the existence of an optimal local modulus of
continuity.

Theorem 1.10 can be generalized to the LMSM in the continuous case. More pre-
cisely, we assume that the Hurst function satisfies the following assumption,

H : R→
(

1
α , 1

)
is δ-Hölderian, with δ > sup

u∈R
H(u). (H0)

Since the LMSM is clearly a non-homogeneous process, it is natural to focus on the
study of the spectrum of singularities localized at t ∈ R+, i.e.

∀t ∈ R+ dX(h, t) = lim
ρ→0

dX(h,B(t, ρ)) = lim
ρ→0

dimH(Eh ∩B(t, ρ)).

Theorem 1.12. Suppose X is a linear multifractional stable motion parametrized by
α ∈ (1, 2), βα ∈ [−1, 1] and an (H0)-Hurst function H.

Then, with probability one, for all t ∈ R and for all σ < H(t)− 1
α ,

lim
ρ→0

dimH

(
Eσ,s′ ∩B(t, ρ)

)
=

{
α
(
s−H(t)

)
+ 1 if s ∈

[
H(t)− 1

α , H(t)
]
;

−∞ otherwise.
(1.22)

EJP 19 (2014), paper 101.
Page 9/37

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-3393
http://ejp.ejpecp.org/


Fine regularity of Lévy processes and linear (multi)fractional stable motion

where s = σ− s′. Furthermore, the set Eσ,s′ ∩B(t, ρ) is empty for any σ > H(t)− 1
α and

ρ > 0 sufficiently small.

Theorem 1.12 extends the results presented in [49, 50], and also ensures that the
localized multifractal spectrum is equal to

∀t ∈ R+; dX(h, t) =

{
α
(
h−H(t)

)
+ 1 if h ∈

[
H(t)− 1

α , H(t)
]
;

−∞ otherwise.
(1.23)

Moreover, we observe that Proposition 3.1 and Theorem 1.12 still hold when the Hurst
function H(·) is a continuous random process. Thereby, similarly to the works of Barral
et al. [12] and Durand [18], it provides a class stochastic processes whose spectrum of
singularities, given by Equation (1.23), is non-homogeneous and random.

2 Lévy processes

In this section, X will designate a Lévy process parametrized by the generating
triplet (a,Q, π). The Lévy-Itō decomposition states that it can be represented as the
sum of three independent processes B, N and Y , where B is a d-dimensional Brownian
motion, N is a compound Poisson process with drift and Y is a Lévy process character-
ized by

(
0, 0, π(dx)1{‖x‖≤1}

)
.

Without any loss of generality, we restrict the study to the time interval [0, 1]. Fur-
thermore, as outlined in the introduction, we also assume that the Blumenthal–Getoor
index β is strictly positive. As noted by Jaffard [26], the component N does not affect
the regularity of X since its trajectories are piecewise linear with a finite number of
jumps. Sample path properties of Brownian motion are well-known and therefore, we
first focus in this section on the study of the jump process Y .

It is well-known that the process Y can be represented as a compensated integral
with respect to a Poisson measure J(dt, dx) of intensity L1 ⊗ π:

Yt = lim
ε→0

[∫
[0,t]×D(ε,1)

xJ(ds,dx)− t
∫
D(ε,1)

xπ(dx)

]
, (2.1)

where for all 0 ≤ a < b, D(a, b) := {x ∈ Rd : a < ‖x‖ ≤ b}. Moreover, as presented in
[46, Th. 19.2], the convergence is almost surely uniform on any bounded interval. In
the rest of this section, for any m ∈ R+, Y m will denote the Lévy process:

Y mt = lim
ε→0

[∫
[0,t]×D(ε,2−m)

xJ(ds,dx)− t
∫
D(ε,2−m)

xπ(dx)

]
. (2.2)

In the following proofs, c and C will denote positive constants which can change
from a line to another. More specific constants will be written c1, c2, . . . Finally, we
will write un � vn when there exists two constants c1, c2 independent of n such that
c1 vn ≤ un ≤ c2 vn for every n ∈ N.

2.1 Pointwise exponent

We extend in this section the multifractal spectrum (1.9) to any Lévy process. To
begin with, we prove two technical lemmas that will be extensively used in the rest of
the article.

Lemma 2.1. For any δ > β, there exists a positive constant c(δ) such that for all m ∈ R+

P

(
sup
t≤2−m

∥∥Y m/δt

∥∥
1
≥ m2−m/δ

)
≤ c(δ)e−m.
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Proof. Let δ > β. We observe that for any m ∈ R+,{
sup
t≤2−m

∥∥Y m/δt

∥∥
1
≥ m2−m/δ

}
=

⋃
ε∈{−1,1}d

{
sup
t≤2−m

〈
ε, Y

m/δ
t

〉
≥ m2−m/δ

}
Hence, it is sufficient to prove that there exists c(δ) > 0 such that for any ε ∈ {−1, 1}d,

P

(
sup
t≤2−m

〈
ε, Y

m/δ
t

〉
≥ m2−m/δ

)
≤ c(δ)e−m.

Let λ = 2m/δ and Mt = eλ〈ε,Y
m/δ
t 〉 for all t ∈ R+. According to Theorem 25.17 in [46],

we have E[Mt] = exp
{
t
∫
D(0,2−m/δ)

(
eλ〈ε,x〉− 1−λ〈ε, x〉

)
π(dx)

}
. Furthermore, we observe

that for all s ≤ t ∈ R+,

E[Mt | Fs ] = Ms exp

{
(t− s)

∫
D(0,2−m/δ)

(
eλ〈ε,x〉 − 1− λ〈ε, x〉

)
π(dx)

}
≥Ms,

since for any y ∈ R, ey − 1 − y ≥ 0. Hence, M is a positive submartingale, and using
Doob’s inequality (Theorem 1.7 in [43]), we obtain

P

(
sup
t≤2−m

〈
ε, Y

m/δ
t

〉
≥ m2−m/δ

)
= P

(
sup
t≤2−m

Mt ≥ em
)
≤ e−mE[M2−m ].

For all y ∈ [−1, 1], we note that ey − 1− y ≤ y2. Thus, for any m ∈ R+,

E[M2−m ] ≤ exp

{
2−m

∫
D(0,2−m/δ)

λ2〈ε, x〉2π(dx)

}
≤ exp

{
2−m

∫
D(0,2−m/δ)

λ2‖x‖2π(dx)

}
.

If β < 2, let us set γ > 0 such that β < γ < 2 and γ < δ. Then,

2−m
∫
D(0,2−m/δ)

λ2‖x‖2π(dx) = 2−m(1−2/δ)

∫
D(0,2−m/δ)

‖x‖γ · ‖x‖2−γπ(dx)

≤ 2−m(1−2/δ)2−m/δ(2−γ)

∫
D(0,1)

‖x‖γπ(dx)

= 2−m(1−γ/δ)
∫
D(0,1)

‖x‖γπ(dx) ≤
∫
D(0,1)

‖x‖γπ(dx),

since γ < δ. If β = 2, we simply observe that

2−m
∫
D(0,2−m/δ)

λ2‖x‖2π(dx) ≤ 2−m(1−2/δ)

∫
D(0,1)

‖x‖2π(dx) ≤
∫
D(0,1)

‖x‖2π(dx),

as δ > 2. Therefore, there exists c(δ) > 0 such that for all m ∈ R+, E[M2−m ] ≤ c(δ),
concluding the proof of this lemma.

Lemma 2.2. Suppose δ > β. Then, with probability one, there exist c1 > 0 and M(ω) >

0 such that

∀u, v ∈ [0, 1] : |u− v| ≤ 2−m;
∥∥Y m/δu − Y m/δv

∥∥ ≤ c1m2−m/δ (2.3)

for any m ≥M(ω).

Proof. We first note that for any m ∈ R+ and any δ > β,{
sup

u,v∈[0,1]:|u−v|≤2−m

∥∥Y m/δu − Y m/δv

∥∥ ≥ 3m2−m/δ
}

⊆
2m−1⋃
k=0

{
sup
t≤2−m

∥∥Y m/δt+k2−m − Y
m/δ
k2−m

∥∥ ≥ m2−m/δ
}
.
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Therefore, the stationarity of Lévy processes and Lemma 2.1 yield

P

(
sup

u,v∈[0,1]:|u−v|≤2−m

∥∥Y m/δu − Y m/δv

∥∥ ≥ 3m2−m/δ
)
≤ 2mc(δ)e−m = c(δ)e−cm.

Using the latter estimate and Borel–Cantelli lemma, we obtain Equation (2.3).

Let us recall the definition of the collection of random sets (Aδ)δ>0 introduced by Jaf-
fard [26]. For every ω ∈ Ω, S(ω) denotes the countable set of jumps of Y·(ω). Moreover,
for any ε > 0, let Aεδ be

Aεδ =
⋃

t∈S(ω)

‖∆Yt‖≤ε

[
t− ‖∆Yt‖δ, t+ ‖∆Yt‖δ

]
.

Then, the random set Aδ is defined by Aδ = lim supε→0+ Aεδ. As noted in [26], if t ∈ Aδ,
we necessarily have αY,t ≤ 1

δ . The other side inequality is obtained in the next statement
which extends Proposition 2 from [26].

Proposition 2.3. Suppose δ > β. Then, with probability one, for all t ∈ [0, 1] \ S(ω):

t /∈ Aδ =⇒ αY,t ≥ 1
δ .

Proof. Suppose ω ∈ Ω, t /∈ Aδ, u ∈ [0, 1] and m ∈ N such that 2−(m+1)δ ≤ |t− u| < 2−mδ.
Since t /∈ Aδ, there exists ε0 > 0 such that for all ε ≤ ε0, t /∈ Aεδ. The component∫

[t,u]×D(ε0,1)

xJ(ds,dx)− (u− t)
∫
D(ε0,1)

xπ(dx)

is piecewise linear, and therefore does not influence the pointwise exponent αY,t. With-
out any loss of generality, we may assume that 2−m ≤ ε0. Then, for any jump ∆Ys such
that ‖∆Ys‖ ∈ [2−m, ε0], we have ‖∆Ys‖δ ≥ 2−mδ ≥ |t− u|, implying that∫

[t,u]×D(2−m,ε0)

xJ(ds,dx) = 0.

Furthermore, using Lemma 2.2, we obtain∥∥Y mu − Y mt ∥∥ ≤ cm2−m ≤ c log
(
|t− u|−1

)
|t− u|1/δ,

assuming that |t−u| is sufficiently small. Therefore, the remaining term to estimate cor-
responds to −(u− t)

∫
D(2−m,ε0)

xπ(dx). To study the latter, we distinguish two different
cases, depending on the polynomial component we subtract in Definition 1.1.

1. If δ ≥ 1, let us set Pt ≡ 0. Then,∥∥∥∥(u− t)
∫
D(2−m,ε0)

xπ(dx)

∥∥∥∥ ≤ c |t− u|∫
D(2−m,ε0)

‖x‖δ · ‖x‖1−δ π(dx)

≤ c |t− u| · 2−m(1−δ)
∫
D(2−m,ε0)

‖x‖δ π(dx) ≤ c |t− u|1/δ.

2. If δ < 1 (and thus β < 1), we set Pt(u) ≡ −(u − t)
∫
D(0,ε0)

π(dx), which corresponds

to the linear drift of the Lévy process. We observe that −(u− t)
∫
D(2−m,ε0)

xπ(dx)−
Pt(u) = (u − t)

∫
D(0,2−m)

xπ(dx). Then, similarly to the previous case, the latter
satisfies∥∥∥∥(u− t)

∫
D(0,2−m)

xπ(dx)

∥∥∥∥ ≤ c |t− u|∫
D(0,2−m)

‖x‖δ · ‖x‖1−δ π(dx)

≤ c |t− u| · 2−m(1−δ)
∫
D(0,2−m)

‖x‖δ π(dx) ≤ c |t− u|1/δ.

EJP 19 (2014), paper 101.
Page 12/37

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-3393
http://ejp.ejpecp.org/


Fine regularity of Lévy processes and linear (multi)fractional stable motion

Therefore, owing to the previous estimates, we have proved that ‖Yu − Yt − Pt(u)‖ ≤
c0 log

(
|t−u|−1

)
|t−u|1/δ, where the constant c0 is independent of u. The latter inequality

and Definition 1.1 prove that αY,t ≥ 1
δ .

Proposition 2.3 ensures that almost surely

∀h > 0; Eh =

( ⋂
δ<1/h

Aδ

)
\
( ⋃
δ>1/h

Aδ

)
\ S and E0 =

(⋂
δ>0

Aδ

)
∪ S. (2.4)

Furthermore, since the estimate of the Hausdorff dimension obtained in [26] does not
rely on Assumption (1.8), the Lévy process Y satisfies with probability one

∀V ∈ O; dimH(Eh ∩ V ) =

{
βh if h ∈ [0, 1/β];

−∞ otherwise.

2.2 2-microlocal frontier of Lévy processes

We now aim to refine the multifractal spectrum of Lévy processes by studying their
2-microlocal structure. Let us begin with a few basics remarks and estimates on their
2-microlocal frontier. Firstly, according to [38, Th. 3.13], with probability one, for all
t ∈ [0, 1] and for any −s′ < αY,t, the sample path Y·(ω) belongs to the 2-microlocal space

C0,s′

t . Furthermore, owing to the density of the set of jumps S(ω) in [0, 1], necessarily

Y·(ω) /∈ Cσ,s
′

t for any σ > 0 and all s′ ∈ R. Hence, since the 2-microlocal frontier is a
concave function with left- and right-derivatives between 0 and 1, with probability one
and for all t ∈ [0, 1]:

∀s′ ∈ R+; σY,t(s
′) ≥ (αY,t + s′) ∧ 0 and σY,t(s

′) ≤ 0.

Therefore, we are interested in obtaining finer estimates of the negative component of
the 2-microlocal frontier of Y . As outlined in the introduction and Definitions 1.2-1.3,
we need to analyse the following type of increments in the neighbourhood of t:∥∥∥∥∫ u

b

(u− s)k−1
+ Ys ds− Pt,k(u)−

∫ v

b

(v − s)k−1
+ Ys ds+ Pt,k(v)

∥∥∥∥ (2.5)

where b < t is fixed and k ≥ 1. The polynomial component to be subtracted can be
estimated using our work on the pointwise exponent. Indeed, when k = 0, the Pt,0 ≡ Pt
where the latter has been presented in the proof of Proposition 2.3,. Then, the consis-
tency of the definition of the 2-microlocal spaces imposes that Pt,k−1 must correspond
to the derivative of Pt,k. This last property shows that the form of Pt,k can be inductively
deduced from the knowledge of the polynomial Pt.

For the sake of readability, we divide the proof of Theorem 1.4 and its corollaries in
several technical lemmas. To begin with, we present simple estimates on the jumps of
a Lévy process.

Lemma 2.4. For any ε > 0, there exists an increasing sequence (mn)n∈N such that with
probability one, for all t ∈ [0, 1] and for every n ≥ N(ω)

∃u ∈ B(t, 2−mnα); ‖∆Yu‖ ≥ 2−mn and J
(
B(u, 2−mnγ)×D(2−mn(1+ε), 1)

)
= 1,

where α = β(1− 2ε) and γ = β(1 + 4ε).

Proof. Suppose m ∈ N, ε > 0, α = β(1− 2ε) and γ = β(1 + 4ε). Let I be an interval such
that I = I1 ∪ I2 ∪ I3, where I1, I2, I3 are three consecutive and disjoint intervals of size
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2−mγ . Then, we are interested in the following event:

A =
{
J
(
I1, D(2−m, 1)

)
= 0
}
∩
{
J
(
I3, D(2−m, 1)

)
= 0
}
∩{

J
(
I2, D(2−m, 1)

)
= 1
}
∩
{
J
(
I,D(2−m(1+ε), 2−m)

)
= 0
}
,

Since J is a Poisson measure, A corresponds to the intersection of independent events
whose probability is equal to

P(A) = 2−mγπ(D(2−m, 1)) · exp
(
−3 · 2−mγπ(D(2−m, 1))− 3 · 2−mγπ(D(2−m(1+ε), 2−m))

)
.

As described in [14], β can be defined by β = inf
{
δ ≥ 0 : lim supr→0 r

δπ
(
D(r, 1)

)
< ∞

}
.

Therefore, there exists r0 > 0 such that for all r ∈ (0, r0], π
(
D(r, 1)

)
≤ r−β(1+ε). Hence,

for any m ∈ N sufficiently large:

P(A) ≥ 2−mγπ(D(2−m, 1)) exp
(
−2−mβε+1

)
≥ 2−mγ−1 π

(
D(2−m, 1)

)
.

Furthermore, according to the definition of β, there also exists an increasing sequence
(mn)n∈N such that for all n ∈ N, π(D(2−mn , 1)) ≥ 2mnβ(1−ε). Therefore, along this
sequence, we obtain P(A) ≥ 2−mn5βε−1 for every n ∈ N.

Let now consider an interval I of size 2−mnα. There exist at most 2−mnα+mnγ disjoint
sub-intervals I of size 3 ·2−mnγ . We designate by B the event where A is not satisfied by
all these sub-elements I. Owing to the previous estimate of P(A) and the independence
of these different events, we obtain

P(B) =
(
P(Ac)

)2mn(γ−α)

≤
(
1− 2−mn5βε−1

)2mn(γ−α)

.

Note that γ − α = 6βε. Hence, log
(
P(B)

)
≤ −2−mn5βε−1 · 2mn6βε = −2mnβε−1 and the

probability P(B) satisfies P(B) ≤ exp
(
−2mnβε−1

)
.

Finally, we know there exist at most 2mnα+1 disjoint intervals I of size 2−mnα inside
[0, 1]. We denote by Bn the event where B is satisfied for one of the previous interval I.
Since Bn is the reunion of events, we obtain

P(Bn) ≤ 2mnα+1 · exp
(
−2mnβε−1

)
≤ exp

(
−2mnβε−1 + cmnα

)
.

Hence,
∑
n∈NP(Bn) < ∞ and owing to Borel–Cantelli lemma, with probability one,

there exists N(ω) such that for every n ≥ N(ω), ω ∈ Bcn. The latter inclusion means that
for every interval I previously defined, there exists a sub-element I such that the event
A is satisfied on I, therefore proving this lemma.

The previous lemma will help us to obtain a uniform upper bound on the 2-microlocal
frontier of Y .

Lemma 2.5. With probability one, for all t ∈ [0, 1], the 2-microlocal frontier of Y at t
satisfies

∀s′ ∈ R; σY,t(s
′) ≤

( 1

β
+ s′

)
∧ 0. (2.6)

Proof. Let us first observe that to obtain an upper bound of the 2-microlocal frontier
of the Rd-valued Y = (Y1, . . . , Yd) process, it is sufficient to prove this bound holds for
one component Yi. Furthermore, we also know that each of these components is an
one-dimensional Lévy process and there exists i ∈ {1, . . . , d} such that the Blumenthal–
Getoor exponent of Yi is equal to β. Hence, considering these two remarks, we may
assume without any loss of generality that we study only one component, and thus
d = 1.

Let us set t ∈ [0, 1]. We need to evaluate the size of the increments described in
Equation (2.5). To begin with, let us determine the form of the local process Y (u, k) :=
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(
Ikb+Y

)
(u) − Pt,k(u) used. We know that when k = 0, the polynomial component is

described in Proposition 2.3, and thus we define the local process Y (s, 0) in the neigh-
bourhood of t as following:

∀u ∈ R; Y (u, 0) = Yu − Yt − Pt(u).

Then, since the polynomial component must correspond to the Taylor development of
the process at t, we define the elements Y (·, k) by induction:

∀u ∈ R; Y (u, k) =

∫ u

t

Y (s, k − 1) ds.

One can easily verify that the derivative of Y (·, k) is Y (·, k − 1) and Y (t, k) = 0, prov-
ing that the Taylor development of Y (·, k) at t is P ≡ 0. Therefore, this construction
procedure ensures that the difference between Y (·, k) and Ikb+Y corresponds to the
polynomial function appearing in the definition of the 2-microlocal spaces.

Hence, we need to show in this proof that for any k ∈ N, the increments of the
process Y (·, k) are sufficiently large in the neighbourhood of t. More precisely, we will
show by induction that there exist tn,k →n t, ρn,k > 0 and δn,k > 0 such that for every
k ∈ N and all n ∈ N:

∀u ∈ [tn,k, tn,k + ρn,k); |Y (u, k)| ≥ δn,k. (2.7)

To initialize the induction with k = 0, we make use of the estimate obtained in Lemma 2.4:
there exists an increasing sequence (mn)n∈N such that with probability one, for all
t ∈ [0, 1] and for every n ≥ N(ω)

∃v ∈ B(t, 2−mnα); |∆Yv| ≥ 2−mn and J
(
B(v, 2−mnγ)×D(2−mn(1+ε), 1)

)
= 1,

where α = β(1− 2ε) and γ = β(1 + 4ε). Since the reasoning which follows is completely
symmetric, we may assume without any loss of generality that v ≥ t and ∆Yv ≥ 0. Let
us set n ≥ N(ω) and a proper v ≥ t. We know there is no other jump of size greater
than 2−mn(1+ε) inside the ball B(v, 2−mnγ). Therefore, for all u ∈ B(v, 2−mnγ),

Yu − Yv = −∆Yv1{u<v} − (u− v)

∫
D(2−mn(1+ε),1)

xπ(dx) + Y mn(1+ε)
u − Y mn(1+ε)

v .

Furthermore, according to Lemma 2.2, the norm of the latter increment satisfies:∣∣Y mn(1+ε)
u − Y mn(1+ε)

v

∣∣ ≤ c1mn2−mn(1+ε),

as we note that |u− v| ≤ 2−mnβ(1+4ε) = 2−mn(1+ε)β(1+4ε)/(1+ε) with β(1 + 4ε)/(1 + ε) > β.
Then, similarly to the proof of Proposition 2.3, we distinguish two different cases.

1. If β ≥ 1, Pt ≡ 0 and thus Y (u, 0) = Yu−Yt. Let us first assume that Y (v, 0) ≥ 2−mn−1

and set tn,0 = v and ρn,0 = 2−mnγ . Then, for all u ∈ [tn,0, tn,0 + ρn,0):

|Y (u, 0)| ≥ |Y (v, 0)| −
∣∣Y mn(1+ε)
u − Y mn(1+ε)

v

∣∣− ∣∣∣∣(u− v)

∫
D(2−mn(1+ε),1)

xπ(dx)

∣∣∣∣.
Using the estimates presented in Proposition 2.3, we obtain an upper bound of the
last term:∣∣∣∣(u− v)

∫
D(2−mn(1+ε),1)

xπ(dx)

∣∣∣∣ ≤ c 2−mnγ · 2−mn(1+ε)(1−β(1+ε)) ≤ c 2−mn(1+ε),

EJP 19 (2014), paper 101.
Page 15/37

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-3393
http://ejp.ejpecp.org/


Fine regularity of Lévy processes and linear (multi)fractional stable motion

since −γ + β(1 + ε)2 = −β(2ε − ε2) < 0. Hence, |Y (u, 0)| ≥ 2−mn−1 − c 2−mn(1+ε) ≥
2−mn−2 for any n sufficiently large.

Let now assume that Y (v, 0) ≤ 2−mn−1. Since ∆Yv ≥ 2−mn , we necessarily have
Y (v−, 0) ≤ −2−mn−1. Then, we set in this case tn,0 = v − 2−mnγ and ρn,0 = 2−mnγ ,
and obtain as well |Y (u, 0)| ≥ 2−mn−1 − c 2−mn(1+ε) ≥ 2−mn−2.

2. If β < 1, Pt(u) ≡ −(u − t)
∫
D(0,1)

π(dx). Similarly to the previous case, we first

assume that Y (v, 0) ≥ 2−mn−1 and set tn,0 = v and ρn,0 = 2−mnγ . Then, for all
u ∈ [tn,0, tn,0 + ρn,0]:

|Y (u, 0)| ≥ |Y (v, 0)| −
∣∣Y mn(1+ε)
u − Y mn(1+ε)

v

∣∣− ∣∣∣∣(u− v)

∫
D(0,2−mn(1+ε))

xπ(dx)

∣∣∣∣,
where the latter element satisfies∣∣∣∣(u− v)

∫
D(0,2−mn(1+ε))

xπ(dx)

∣∣∣∣ ≤ c 2−mnγ · 2−mn(1+ε)(1−β(1+ε)) ≤ c 2−mn(1+ε).

Hence, |Y (u, 0)| ≥ 2−mn−1 − c 2−mn(1+ε) ≥ 2−mn−2 for any n sufficiently large. In
the case Y (v, 0) ≤ 2−mn−1, we observe that Y (v−, 0) ≤ −2−mn−1. Therefore, setting
tn,0 = v − 2−mnγ and ρn,0 = 2−mnγ , we obtain |Y (u, 0)| ≥ 2−mn−1 − c 2−mn(1+ε) ≥
2−mn−2.

Therefore, in both cases, we have proved that

∀u ∈ [tn,0, tn,0 + ρn,0); |Y (u, 0)| ≥ δn,0,

where ρn,0 = 2−mnγ , δn,0 = 2−mn−1 and B(tn,0, ρn,0) ⊂ B(t, 2−mnα+1).

Let now assume that Equation (2.7) is satisfied for k ∈ N. Without any loss of gen-
erality, we may suppose that Y (u, k) ≥ δn,k on the interval [tn,k, tn,k + ρn,k) (otherwise,
simply consider the process −Y (u, k) in the following reasoning). In this case, the func-
tion u 7→

∫ u
t
Y (s, k) ds is strictly increasing on the previous interval.

Let us first assume that
∫ tn,k+ρn,k/2

t
Y (s, k) ds ≥ 0. In this case, we set tn,k+1 = tn,k +

3/4ρn,k, ρn,k+1 = ρn,k/4 and δn,k+1 = ρn,kδn,k/4. Then, for all u ∈ [tn,k+1, tn,k+1 + ρn,k+1)

Y (u, k + 1) ≥
∫ u

tn,k+ρn,k/2

Y (s, k) ds ≥ (u− tn,k − ρn,k/2) δn,k

≥ ρn,kδn,k/4 = δn,k+1,

In the other case
∫ tn,k+ρn,k/2

t
Y (s, k) ds ≤ 0, we consider the set of parameters tn,k+1 =

tn,k, ρn,k+1 = ρn,k/4 and δn,k+1 = ρn,kδn,k/4. Then, for all u ∈ [tn,k+1, tn,k+1 + ρn,k+1)

Y (u, k + 1) ≤ −
∫ tn,k+ρn,k/2

u

Y (s, k) ds ≤ −(tn,k + ρn,k/2− u) δn,k

≤ −ρn,kδn,k/4 = −δn,k+1,

Therefore, assuming that Equation (2.7) holds for k ∈ N, we have proved that it
also does for k + 1, with ρn,k+1 = ρn,k/4, δn,k+1 = ρn,kδn,k/4 and B(tn,k+1, ρn,k+1) ⊂
B(tn,k, ρn,k) ⊂ B(t, 2−mnα+1).

Finally, the lower bound on Yn,k presented in Equation (2.7) will now allow us to ob-
tain the expected bound on the 2-microlocal frontier. Owing to the previous definitions,
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for every k ∈ N, |tn,k − t| ≤ 2−mnα+1 and there exist ck > 0 independent of n ∈ N such
that δn,k = ck 2−mn kγ · 2−mn . Hence, for every n ∈ N,

|Y (tn,k, k)− Y (t, k)| ≥ δn,k ≥ ck 2−mn(1+kγ) ≥ ck |tn,k − t|(1+kγ)/α,

where we recall that α = β(1−2ε) and γ = β(1+4ε). This last inequality proves that the
pointwise exponent of Y (·, k) at t satisfies αY (·,k),t ≤ (1 + kγ)/α →ε→0 1/β + k. Owing
to the Definition 1.3 of the 2-microlocal spaces, the latter induces that with probability
one, for any t ∈ [0, 1] and all s′ ∈ R, σY,t(s′) ≤

(
1
β + s′

)
∧ 0.

As we have obtained a uniform upper bound on the 2-microlocal frontier, we now
study more precisely the regularity of Y at times where αY,t < 1/β. To begin with, we
prove a simple lemma related to the number of jumps inside an small interval.

Lemma 2.6. Suppose δ > β, ε > 0 and k ∈ N are such that δ > β(1 + 2ε)(k+ 1)/k. Then,
with probability one, there exists M(ω) such that:

∀t ∈ [0, 1]; J
(
B(t, 2−mδ), D(2−m(1+ε), 1)

)
≤ k, (2.8)

for every m ≥M(ω).

Proof. Let m ∈ N and I be an interval of size 2−mδ+2. Since J is a Poisson random
measure,

P
(
J
(
I,D(2−m(1+ε), 1)

)
> k

)
= exp(−λm)

{ +∞∑
`=k+1

λ`m
`!

}
,

where λm = 2−mδ+2 π
(
D(2−m(1+ε), 1)

)
≤ 2−mδ+2+mβ(1+2ε) → 0. Hence, we obtain the

inequality P
(
J
(
I,D(2−m(1+ε), 1)

)
> k

)
≤ c λk+1

m .
Considering a covering of the interval [0, 1] with d2mδe overlapping sub-elements I of

size 2−mδ+2, we denote by Bm the event where at least one of these intervals has more
than k jumps inside. Then,

P(Bm) ≤ c 2mδ · λk+1
m ≤ c 2mδ−mδ(k+1)+mβ(k+1)(1+2ε).

Since δk > β(1 + 2ε)(k + 1), there exists γ > 0 such P(Bm) ≤ c 2−mγ . Therefore,∑
m∈NP(Bm) < ∞ and owing to Borel–Cantelli lemma, there exists M(ω) such that

for every m ≥ M(ω), J
(
I,D(2−m(1+ε), 1)

)
≤ k. Finally, since we consider intervals I

of size 2−mδ+2 covering [0, 1] and overlapping, we have proved that for all t ∈ [0, 1],
J
(
B(t, 2−mδ), D(2−m(1+ε), 1)

)
≤ k.

In the next lemma, we start with the study of the 2-microlocal frontier of Y at points
t ∈ [0, 1] where αY,t ∈ [0, 1/2β].

Lemma 2.7. With probability one, for all h ∈ [0, 1/2β], the singularities of Y satisfy
Ẽh = Eh and Êh = ∅, i.e. for all t ∈ Eh

∀s′ ∈ R; σY,t(s
′) = (αY,t + s′) ∧ 0.

Proof. Suppose h ∈ [0, 1/2β] and t ∈ Eh \ S(ω) (t is not a jump time). Since we already
know that σY,t(s′) ≥ (h + s′) ∧ 0, we need to only prove the other side inequality. For
that purpose, we will proceed similarly to the proof of Lemma 2.5.

More precisely, let us set ε > 0 and δ > max
(
2β(1 + 2ε), 1/(h+ ε)

)
. Since t ∈ Eh and

owing to Equation (2.4), there exist two sequences (vn)n∈N and (mn)n∈N such that

∀n ∈ N; vn ∈ B
(
t, 2−mn/(h+ε)

)
and

∥∥∆Yvn
∥∥ ≥ 2−mn .
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Without any loss of generality, we may assume that vn ≥ t. Furthermore, owing to
Lemma 2.6 with k = 1, J

(
B(vn, 2

−mnδ), D(2−mn(1+ε), 1)
)

= 1, i.e. there is no other
jump larger than 2−mn(1+ε) in the neighbourhood of vn. Then, similarly to the proof of
Lemma 2.5, we need to distinguish two different cases.

1. If β ≥ 1, Pt ≡ 0 and thus Y (u, 0) = Yu − Yt. Consider n ∈ N and first assume
that ‖Y (vn, 0)‖ ≥ 2−mn−1. Let us also set tn = vn and ρn = 2−mnδ. Then, for all
u ∈ [tn, tn + ρn):

‖Y (u, 0)‖ ≥ ‖Y (vn, 0)‖ −
∥∥Y mn(1+ε)

u − Y mn(1+ε)
vn

∥∥− ∥∥∥∥(u− vn)

∫
D(2−mn(1+ε),1)

xπ(dx)

∥∥∥∥.
Still using the estimates presented in the proof of Proposition 2.3, we know that the
last two terms are upper bounded by c 2−mn(1+ε), proving that ‖Y (u, 0)‖ ≥ 2−mn−2

for any n sufficiently large. The case ‖Y (vn, 0)‖ ≤ 2−mn−1 is treated completely
similarly, using tn = vn − 2−mnδ and ρn = 2−mnδ.

2. If β < 1, Pt(u) ≡ −(u− t)
∫
D(0,1)

π(dx). Assuming first that ‖Y (vn, 0)‖ ≥ 2−mn−1. we

still set tn = vn and ρn = 2−mnδ. Then, for all u ∈ [tn, tn + ρn):

‖Y (u, 0)‖ ≥ ‖Y (vn, 0)‖ −
∥∥Y mn(1+ε)

u − Y mn(1+ε)
vn

∥∥− ∥∥∥∥(u− vn)

∫
D(0,2−mn(1+ε))

xπ(dx)

∥∥∥∥,
As previously, the last two terms are upper bounded by c 2−mn(1+ε), proving that
‖Y (u, 0)‖ ≥ 2−mn−2 for any n sufficiently large. The case ‖Y (vn, 0)‖ ≤ 2−mn−1 is
treated similarly using tn = vn − 2−mnδ and ρn = 2−mnδ.

We have proved in both cases that for all u ∈ [tn, tn + ρn), with n sufficiently large,
‖Y (u, 0)‖ ≥ 2−mn−2. Reproducing the reasoning detailed in the proof of Lemma 2.5,
there exists sn such that for every n ∈ N, sn ∈ B(t, 2−mn/(h+ε)) and

‖Y (sn, 1)‖ ≥ c 2−mn · 2−mnδ ≥ |t− sn|(h+ε)(1+δ).

Hence, αY (·,1),t ≤ (h + ε)(1 + δ). Considering the limit ε → 0 and δ → 1/h, we obtain
αY (·,1),t ≤ h+ 1. The latter inequality is sufficient to prove that σY,t(s′) = (h+ s′)∧ 0 for
all s′ ∈ R.

To conclude this proof, let us consider the case t ∈ S(ω). We observe that for all
u ≥ t, ∫ u

t

Ys ds = (u− t)Yt +

∫ u

t

(Ys − Yt) ds with

∥∥∥∥∫ u

t

(Ys − Yt) ds

∥∥∥∥ = o(|t− u|),

as Y is right-continuous. Similarly, for all u ≤ t,
∫ t
u
Ys ds = (t − u)Yt− + o(|t − u|).

Therefore, since ∆Yt = Yt − Yt− 6= 0, there does not exist a polynomial Pt which can
cancel both terms (u− t)Yt and (t−u)Yt−, proving that σY,t(s′) = s′ ∧ 0 for all s′ ∈ R.

In the last technical lemma, we focus on the particular case αY,t ∈ (1/2β, 1/β) and
try to distinguish oscillating singularities from the common cusp behaviour.

Lemma 2.8. With probability one, for all h ∈ (1/2β, 1/β), Y satisfies

∀V ∈ O; dimH(Ẽh ∩ V ) = βh and dimH(Êh ∩ V ) ≤ 2βh− 1 (< βh). (2.9)

Furthermore, for any t ∈ Êh and all s′ ∈ R, σY,t(s′) ≤ (h+ s′)/2βh.
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Proof. On the contrary to the previous lemma, we know that some oscillating singulari-
ties might appear at a given time t. Hence, the first step in this proof is to isolate these
behaviours and estimate the fractal dimension of the corresponding set of times.

For that purpose, let us set δ ∈ (β, 2β) and ε > 0. We are interested in the double-
jump configurations, i.e. when two jumps larger than 2−m(1+ε) are sufficiently close.
More precisely, suppose I is an interval of size 2−mδ+1 and pm designates the probability
of obtaining at least two jumps larger than 2−m(1+ε) inside I. Then,

pm = P
(
J
(
I,D(2−m(1+ε), 1)

)
≥ 2

)
≤ c 2−m2δ · 2m2β(1+2ε)

where we may assume that δ > β(1 + 2ε). We consider d2mδe consecutive, but disjoint,
intervals of size 2−mδ+1 which are sufficient to cover [0, 1]. Then, if we denote by N1

m the
number of intervals with the previous configuration, it follows a Binomial distribution
of parameters d2mδe and pm. Moreover, Chernoff’s inequality induces that

P
(
N1
m ≥ c0 2−mδ+m2β(1+2ε)

)
≤ exp

(
−c 2−mδ+m2β

)
,

where 2β > δ. Let us consider now the same configurations of intervals translated by
2−mδ and denote by N2

m the corresponding Binomial random variable. Owing to the
previous estimate and Borel–Cantelli lemma, with probability one, there exists M(ω)

such that for every m ≥M(ω), N1
m ≤ c0 2−mδ+m2β(1+2ε) and N2

m ≤ c0 2−mδ+m2β(1+2ε).
Then, let Tm index the previous intervals with a double-jump configuration and

F (δ, ε) designate the following set:

F (δ, ε) = lim sup
m→∞

⋃
I∈Tm

[
c(I)− 2−mδ+2, c(I) + 2−mδ+2

]
,

where c(I) denotes the center of any interval I ∈ Tm. Using a simple covering based
on intervals of size 2−mδ, we can obtain an upper bound for the Hausdorff dimension of
F (δ, ε). More precisely, for any m0 ∈ N, the series

+∞∑
m=m0

c |Tm| ·
(
2−mδ

)γ ≤ c +∞∑
m=m0

2−m(δ(1+γ)−2β(1+2ε)),

converges when δ(1+γ) > 2β(1+2ε), i.e. γ > 2β(1+2ε)/δ−1. Therefore, dimH F (δ, ε) ≤
2β(1 + 2ε)/δ − 1 almost surely.

Let now set h ∈ (1/2β, 1/β). We aim to prove that Êh ⊂ F (δ, ε) for any δ < 1/h and
ε > 0. For that purpose, we need to show that for every t ∈ Eh \F (δ, ε), the 2-microlocal
frontier at t satisfies σY,t(s′) ≤ (h + s′). As t ∈ Eh, there exist two sequences (vn)n∈N
and (mn)n∈N such that

∀n ∈ N; vn ∈ B
(
t, 2−mn/(h+ε)

)
and

∥∥∆Yvn
∥∥ ≥ 2−mn .

We may assume that ε is sufficiently small to satisfy 2−mn/(h+ε) ≤ 2−mδ, i.e. δ < 1/(h+ε).
Furthermore, since t /∈ F (δ, ε), for every m sufficiently large, there is no double-jump
configuration in the neighbourhood of t and vn, meaning that J

(
B(vn, 2

−mnδ), D(2−mn(1+ε), 1)
)

=

1: there does not exist other jump larger than 2−mn(1+ε) in the neighbourhood of vn.
Therefore, we obtain the configuration presented in the proof of Lemma 2.7, and as the
latter remains valid,

∀s′ ∈ R; σY,t(s
′) ≤ (h+ s′).

This upper bound shows that Êh ⊂ F (δ, ε), and considering the limits δ → 1/h and
ε → 0, it induces the inequality dimH Êh ≤ 2βh − 1. Furthermore, since 2βh − 1 < βh

and Eh = Ẽh ∪ Êh, we have also proved that dimH Êh = βh.
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To conclude this lemma, we obtain an upper bound of the 2-microlocal frontier in
the case t ∈ Êh. Since the sketch of the proof is similar to Lemmas 2.5 and 2.7, we
only present the main elements. Still using the previous two sequences (vn)n∈N and
(mn)n∈N, Lemma 2.6 induces that

J
(
B(vn, 2

−mn2β(1+3ε)), D(2−mn(1+ε), 1)
)

= 1.

Then, using the methodology presented in Lemma 2.7, there exists (sn)n∈N such that
for every n ∈ N, sn ∈ B(t, 2−mn/(h+ε)) and

‖Y (sn, 1)‖ ≥ c 2−mn · 2−mn2β(1+3ε) ≥ |t− sn|(h+ε)(1+2β(1+3ε)),

Hence, αY (·,1),t ≤ (h + ε)(1 + 2β(1 + 3ε)) →ε→0 h(1 + 2β), and using the reasoning
presented in Lemma 2.7, we obtain σY,t ≤ (h+ s′)/2βh for all s′ ∈ R.

Before finally proving Theorem 1.4 and its corollaries, we recall the following result
on the increments of a Brownian motion. The proof can be found in [1, Eq. (8.8.26)].

Lemma 2.9. Let B be a d-dimensional Brownian motion. There exists an event Ω0 of
probability one such that for all ω ∈ Ω0, ε > 0, there exists h(ω) > 0 such that for all
ρ ≤ h(ω) and t ∈ [0, 1], we have

sup
u,v∈B(t,ρ)

{
‖Bu −Bv‖

}
≥ ρ1/2+ε.

Proof of Theorem 1.4. We use the notations introduced at the beginning of the section.
As previously said, the compound Poisson process N can be ignored since it does not
influence the final regularity. Furthermore, if Q = 0, and therefore B ≡ 0 and β′ = β,
Lemmas 2.5, 2.7 and 2.8 on the component Y yields Theorem 1.4.

Otherwise, the Lévy process X corresponds to the sum of the Brownian motion B

and the jump component Y . Still using Lemmas 2.5, 2.7 and 2.8, it is sufficient to prove
that with probability one and for all t ∈ [0, 1], σX,t = σB,t ∧ σY,t. Owing to the definition
of 2-microlocal frontier, we already know that σX,t ≥ σB,t ∧ σY,t. Furthermore, when
σB,t(s

′) 6= σY,t(s
′), the upper bound is straightforward, and thus σX,t(s′) = σB,t(s

′) ∧
σY,t(s

′).
Therefore, to obtain Theorem 1.4, we have to prove that with probability one, for

all t ∈ [0, 1], σX,t ≤ σB,t = s′ 7→
(
1/2 + s′

)
∧ 1/2. For that purpose, we distinguish two

different cases.

1. If β′ = β = 2, we only need to slightly modify the proof of Lemma 2.5. More
precisely, owing to Lévy’s modulus of continuity, the increments of the Brownian
motion satisfy:

∀u, v : |u− v| ≤ 2−mnγ ; ‖Bu −Bv‖ ≤ cmn2−mnγ/2 = cmn2−mn(1+4ε),

since γ = β(1 + 4ε). Therefore, the term due to the increments of the Brownian
motion does not influence the rest of the estimates presented in the proof, ensuring
that σX,t(s′) ≤ (1/2 + s′) ∧ 0, for all s′ ∈ R.

2. If β < 2, let δ = 2 and ε > 0. According to Lemma 2.6, there exist k ∈ N and
M(ω) ∈ N such that for all m ≥ M , there are at most k jumps of larger than
2−m(1+3ε) in any interval of size 2−mδ. Hence, there always exists a sub-interval
I of size c0 2−δm with no jump greater than 2−m(1+3ε) inside.

Still using Lemma 2.2, we know that for all m ≥M(ω)

∀u, v ∈ [0, 1] : |u− v| ≤ 2−δm;
∥∥Y m(1+3ε)

u − Y m(1+3ε)
v

∥∥ ≤ c1m2−m(1+3ε).
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Let us set t ∈ [0, 1] and I be one of the previous interval of size c0 2−δm. According
to Lemma 2.9, there exist u, v ∈ I such that ‖Bu −Bv‖ ≥ c0 2−m(1+2ε). Then,

‖Xu −Xv‖ ≥ ‖Bu −Bv‖ −
∥∥Y m(1+3ε)

u − Y m(1+3ε)
v

∥∥− |u− v| · ∥∥∥∥∫
D(2−m(1+3ε),1)

xπ(dx)

∥∥∥∥,
where |u−v|·

∥∥∫
D(2−m(1+3ε),1)

xπ(dx)
∥∥ ≤ c 2−m(1+3ε). Hence, we obtain a lower bound

of the increments on the interval I, ensuring that the rest of the proof presented in
Lemma 2.5 holds similarly.

Proof of Corollary 1.6. Recall that βwX,t = lims′→−∞ σX,t(s
′)− s′. Using the global upper

bound on the 2-microlocal frontier proved in Theorem 1.4, we know that βwX,t ≤ 1/β′

with probability one. In addition, owing to the geometrical properties of the frontier,
we observe that for every h ∈ [0, 1/β′]

∀h ∈ [0, 1/β′); Ẽh ⊆ Ewh ⊆ Ẽh ∪
⋃
h′<h

Êh′ .

The first inclusion clearly shows that dimH(Ewh ∩ V ) ≥ dimH(Ẽh ∩ V ) = βh. In addition,
we also know that for every h′ < h, dimH Êh′ ≤ 2βh′ − 1 < βh, which proves the other
side inequality.

To obtain the upper bound on the oscillating exponent, we only need to note that
according to its characterisation based on the 2-microlocal frontier,

∀h ∈ [0, 1/β′);
{
t ∈ Eh : βoX,t > 0

}
= Êh.

Finally, the chirp exponent is equal to zero because of the global upper bound σX,t(s′) ≤(
1/β′ + s′

)
.

Proof of Corollary 1.7. Owing to upper bound on the 2-microlocal frontier obtained in
Theorem 1.4, the case σ = 0 corresponds to the classic spectrum of singularity. Hence,
let us set σ < 0. We recall that s denotes the parameter σ − s′. If s ≥ 1/β′ or s < 0, the
result is straightforward using Theorem 1.4 and properties of the 2-microlocal frontier.

Therefore, we suppose that s ∈ [0, 1/β′) and note that Eσ,s′ = {t ∈ R+ : σX,t(s
′) = σ},

since the negative component of the 2-microlocal frontier of X can not be constant.
Hence, similarly to the previous corollary, Eσ,s′ satisfies

∀s ∈ [0, 1/β′); Ẽs ⊆ Eσ,s′ ⊆ Ẽs ∪
⋃
h<s

Êh.

These two inclusions lead to the same estimates, and therefore the expected equality
on the Hausdorff dimension.

2.3 Oscillating singularities of some classes of Lévy processes

In this section, we aim to understand more precisely the oscillating singularities of
Lévy processes captured by the collection of sets (Êh)h∈R+

. Note that to simplify our
presentation, we assume that d = 1.

Let us begin with the proof of Proposition 1.8 where we present a class Lévy pro-
cesses with no chirp oscillations. Recall that in this case, we consider Lévy measures
such that π(R±) = 0.
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Proof of Proposition 1.8. In order to prove that Êh = ∅ for all h ∈ R+, we extend
Lemma 2.7 to any h ∈ [0, 1/β). We may assume without any loss of generality that
π(R−) = 0. We still consider the two sequences (vn)n∈N and (mn)n∈N such that

∀n ∈ N; vn ∈ B
(
t, 2−mn/(h+ε)

)
and

∣∣∆Yvn ∣∣ ≥ 2−mn .

where we suppose that vn ≥ t and Y designates the jump component. In addition, we
first assume that β ≥ 1 and Y (vn, 0) ≥ 2−mn−1, and we set tn = vn and ρn = 2−mnδ.
Then, since the Lévy process only has positive jumps, for all u ∈ [tn, tn + ρn),

|Y (u, 0)| ≥ |Y (vn, 0)| −
∣∣Y mn(1+ε)
u − Y mn(1+ε)

vn

∣∣− ∣∣∣∣(u− vn)

∫
D(2−mn(1+ε),1)

xπ(dx)

∣∣∣∣,
According to the proof presented in Lemma 2.7, this inequality is sufficient to show
that σY,t(s′) ≤ (αX,t + s′) ∧ 0. The cases Y (vn, 0) ≤ 2−mn−1 and β ≤ 1 are then treated
similarly, proving that the 2-microlocal frontier of the process X is equal to (αX,t + s′)∧
0.

Proposition 1.8 proves in particular that Lévy subordinators, in which case β ≤ 1,
only have cusp singularities.

The second important class of Lévy processes we consider are characterised by the
following alpha-stable like Lévy measure

π(dx) = a1 |x|−1−α1 1R+
dx+ a2 |x|−1−α2 1R−dx,

where a1, a2 > 0 and α1, α2 ∈ (0, 2).
The proof of Theorem 1.9 is rather technical and will be divided in several parts

for the sake of readability. To begin with, we present two simple technical lemmas
related to the Binomial distribution. Recall that Chernoff’s inequality states that for
any ε ∈ (0, 1),

P
(
N ≤ np(1− ε)

)
≤ exp

(
−np ε2/2

)
. (2.10)

and
P
(
N ≥ np(1 + ε)

)
≤ exp

(
−np ε2/2

)
. (2.11)

where N follows a Binomial distribution of parameters n and p.

Lemma 2.10. Suppose N follows a Binomial distribution with parameters n and p.
Then, there exists c > 0 such that when n > c and p < 1/c,

P
(

#
{

empty intervals of size ≥ 1/pLL(1/p)
}
≥ npLL(1/p)h(p)4

)
≥ 1− exp

(
−np/8 LL(1/p)2

)
,

using the notations: LL(1/p) := log(log(1/p)) and h(p) := exp(−1/LL(p)).

Proof. To obtain this lower bound, we first estimate the probability of obtaining an
empty interval of size of l0 = b1/pLL(1/p)c. Setting p0 := (1− p)l0 , we note that

log(p0) ≥ 1

pLL(1/p)
log(1− p) ≥ −2

LL(1/p)
.

Therefore, p0 ≥ h(p)2 when c is sufficiently large.
Let n0 denote the number of disjoint sub-intervals of size l0 and N0 be a r.v. following

a Binomial distribution of parameters n0 and p0. Owing to Chernoff’s inequality,

P
(
N0 ≥ n0p0 h(p)

)
≥ 1− exp

(
−n0p0 g(p)2/2

)
,
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where g(p) := 1 − h(p). Note that n0 ≥ npLL(1/p)h(p) and g(p) � 1/LL(1/p) when c is
large enough. Therefore, using the previous estimates,

P
(
N0 ≥ npLL(1/p)h(p)4

)
≥ 1− exp

(
−np/8 LL(1/p)2

)
,

proving the lemma.

Lemma 2.11. Suppose N follows a Binomial distribution with parameters n and p.
Then, there exists c > 0 such that when n > c and p < 1/c

P
(

#
{

successes spaced by ≥ 1/p
}
≥ np/6

)
≥ 1− exp

(
−np/16

)
.

Proof. The sketch of the proof is similar to Lemma 2.10. The set {1, . . . , n} can be
divided in n0 intervals of size l0 = d1/pe. The probability p0 of obtaining at least a
success in one of these intervals is equal to:

p0 = 1− (1− p)1/p −→p→0 1− e−1 ≥ 1/2.

Furthermore, only considering one third of the previous intervals, i.e. n0/3, we consider
the Binomial distribution B(n0/3, p0). Still using Chernoff’s inequality, we obtain

P
(
N0 ≥ np/6

)
≥ 1− exp

(
−np/16

)
,

which concludes the proof.

Proof of Theorem 1.9. As observed in the proofs of Theorem 1.4 and Proposition 1.8,
chirp singularities appear when a compensation phenomena between jumps exists.
Hence, the main goal of the proof is to characterise in more details this particular
behaviour in the case of the Lévy measure considered. Firstly, we clearly note the
Blumenthal–Getoor exponent β of π is equal to max(α1, α2).

Hausdorff dimension (upper-bound). To obtain a tighter upper bound for the Haus-
dorff dimension, we need to enhance the estimates presented in Lemma 2.8. We have
observed in the proof of Proposition 1.8 that oscillating singularities do not appear
when there are jumps of the same sign. Hence, we are interested in the double-jump
configurations with jumps of opposite signs.

Suppose δ ∈ (β, α1+α2), ε > 0 and I is an interval of size 2−jδ+1. We are interested in
the following type of configurations: J

(
I, (2−j(1+ε), 1]

)
≥ 1 and J

(
I, [−1,−2−j(1+ε))

)
≥ 1.

The probability pj of such an event satisfies:

pj ≤ 2−jδ2jα1(1+ε) · 2−jδ2jα2(1+ε) = 2−j2δ+j(α1+α2)(1+ε).

Using this probability, the rest of the proof is rather similar to Lemma 2.8. We con-
sider d2jδe consecutive, but disjoint, intervals of size 2−jδ+1 sufficient to cover [0, 1] and
we denote by N1

j the number of intervals with the previous configuration. Owing to
Chernoff’s inequality,

P
(
N1
j ≥ c0 2−jδ+j(α1+α2)(1+ε)

)
≤ exp

(
−c 2−jδ+j(α1+α2)

)
,

where (α1 + α2) > δ. Consider now the same configurations of intervals translated
by 2−jδ and denote by N2

j the corresponding Binomial random variable. Using Borel–
Cantelli lemma, with probability one, there exists M(ω) such that for every j ≥ M(ω),
N1
j ≤ c0 2−jδ+j(α1+α2)(1+ε) and N2

j ≤ c0 2−jδ+j(α1+α2)(1+ε). Using the same notation Tj ,
we define

F (δ, ε) = lim sup
j→∞

⋃
I∈Tj

[
c(I)− 2−jδ+2, c(I) + 2−jδ+2

]
,
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where c(I) denotes the center of any interval I ∈ Tj . Then, for any j0 ∈ N

+∞∑
j=j0

c |Tj | ·
(
2−jδ

)γ ≤ c +∞∑
j=j0

2−j(δ(1+γ)−(α1+α2)(1+ε)),

is finite when δ(1 + γ) > (α1 + α2)(1 + ε), i.e. γ > (α1 + α2)(1 + ε)/δ − 1. Therefore,
dimH F (δ, ε) ≤ (α1 + α2)(1 + ε)/δ − 1.

The rest of the proof of Lemma 2.8 does not change, proving that for any δ < 1/h

and ε > 0, Êh ⊂ F (δ, ε). Therefore, with probability one,

∀h ∈
(
1/(α1 + α2), 1/β

)
; dimH Êh ≤ (α1 + α2)h− 1.

Finally, when h /∈
(
1/(α1 + α2), 1/β

)
, the proof of Lemma 2.7 can also be similarly

adapted to prove that Êh = ∅ with probability one.

Construction (lower-bound). In order to prove the lower bound for the Hausdorff
dimension, we need to construct a proper set of times with oscillating singularities.

For our construction procedure, we will need a set of parameters p = (δ, δ′, δ′′, γ, ρ)

such that δ′ < δ < δ′′ ∈ (β, α1 + α2), δ < γ ∈ (β, α1 + α2), δ′ <
√
βδ and δ >

√
δ′δ′′. In

addition, we also define the sequence jn = (δ/δ′)n →∞.

The first step consists in constructing collections of intervals such that for any t

inside, there is no jump ∆Xu satisfying |∆Xu| ≥ 2−j and |u − t| ≤ 2−jδ for every
j ∈ {0, . . . , j0}, where j0 is a given index. More precisely, we define by induction a
collection, indexed by the random variables Sn, of disjoint intervals of size 2−jnδ in the
following way. Suppose Sn is defined such that for every t inside an interval, there is
no jump greater than 2−jn+1 closer than 2−jnδ of t. In every interval of size 2−jnδ, we
consider consecutive sub-intervals of size 2−jn+1δ with no jumps greater than 2−jn+2

inside. Removing the left and right elements of these collections, we obtain the family
Sn+1, which corresponds to the offspring of Sn. Owing to this construction procedure,
we know that the remaining intervals satisfy the expected property, i.e. for any t inside,
there is no jump greater than 2−jn+2 closer than 2−jn+1δ.

In order to determine the number of this type of intervals, we need to estimate the
law of |Sn+1| conditionally to |Sn|. For any n ∈ N, let us denote by pn+1 the probability
of obtaining at least one jump greater than 2−jn+2 inside an interval of size 2−jn+1δ.
Note that for every n sufficiently large, an interval of size 2−jnδ can be divided in at
least 2−jnδ/2−jn+1δh(pn+1) = 2jn+1(δ−δ′)h(pn+1) sub-intervals. Furthermore, let Mn+1

designate the following random variable:

Mn+1 = #
{

family ≥ 1/pn+1 LL(1/pn+1) of consecutive empty intervals of size 2−jn+1
}
.

According to Lemma 2.10,

P
(
Mn+1 ≥ s0 2jn+1δpn+1 LL(1/pn+1)h(pn+1)5

∣∣ |Sn| ≥ s0 2jnδ
)

≥ 1− exp
(
−s0 2jn+1δpn+1/8 LL(1/pn+1)2

)
,

for any s0 ∈ R+ such that s0 2jnδ ≥ 1. As previously outlined, for every collection of
consecutive empty intervals, we remove the extremal elements to constitute the family
Sn+1. Noting that 1/pn+1 LL(1/pn+1)−2 ≥ h(pn+1)/pn+1 LL(1/pn+1) for any n sufficiently
large, we therefore obtain

P
(
|Sn+1| ≥ s0 2jn+1δh(pn+1)6

∣∣ |Sn| ≥ s0 2jnδ
)

≥ 1− exp
(
−s0 2jn+1δpn+1/8 LL(1/pn+1)2

)
.
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Furthermore, the probability of obtaining an empty interval of size 2−jn+1δ is equal to:

qn+1 := P
(
J
(
[0, 2−jn+1δ]×D

(
2−jn+2 , 2−jn+1

))
= 0

)
� exp

(
−c 2jn+2β−jn+1δ

)
= exp

(
−c 2−jn+1δ(1−β/δ′)

)
−→ 1.

Hence, pn+1 = 1 − qn+1 � 2−jn+1δ(1−β/δ′) for any n sufficiently large, and there exists
c1 > 0 such that

P
(
|Sn+1| ≥ s0 2jn+1δh(pn+1)6

∣∣ |Sn| ≥ s0 2jnδ
)
≥ 1− exp

(
−c1 s0 2jn+1βδ/δ

′
/(n+ 1)2

)
.

Furthermore, note 2jn+1βδ/δ
′−jnδ = 2jn+1(βδ/δ′−δ′). Since we have assumed that δ′ <

√
βδ

and s0 2jnδ ≥ 1, there exists r > 0 such that

P
(
|Sn+1| ≥ s0 2jn+1δh(pn+1)6

∣∣ |Sn| ≥ s0 2jnδ
)
≥ 1− exp

(
−2jn+1r

)
.

Therefore, by induction, the law of |Sn+m| satisfies

P

(
|Sn+m| ≥ s0 2jn+mδ

m∏
k=1

h(pn+k)6

∣∣∣∣ |Sn| ≥ s0 2jnδ
)
≥

m∏
k=1

(
1− exp

(
−2jn+kr

))
.

Finally, we note that
∏m
k=1 h(pn+k)6 ≥ exp

(
−c
∑m
k=1 1/(n + k)

)
≥ exp

(
−c log(n + m)

)
,

implying that

P
(
|Sn+m| ≥ s0 2jn+mδ−c2 log(n+m)

∣∣∣ |Sn| ≥ s0 2jnδ
)
≥

m∏
k=1

(
1− exp

(
−2jn+kr

))
, (2.12)

where c2 is a constant independent of n and m.

The previous bound gives us an estimate of the probability of obtaining intervals
without any jump in a given neighbourhood. Using this estimate, we will be able to con-
struct our main collection of nested intervals indexed by (T`)`∈N such that a most scales
2−jn , there is no jump in the neighbourhood, and at specific ones 2−jn(`) , a particular
double-jump configuration appears. To construct this collection, let us first define this
sequence

(
n(`)

)
`∈N:

n(0) = 1 and n(`+ 1) = 2n(`) ∀` ∈ N.

For every ` ∈ N, we are interested in the following type of configuration: in an in-
terval of size 2−jn(`)δ/3, there exist two jumps ∆Xu and ∆Xv of opposite sign inside
the middle third and such that |u − v| ≤ 2−jn(`)γ , |∆Xu|, |∆Xv| ∈ [2−jn(`)−1, 2−jn(`) ] and
|∆Xv − ∆Xu| ≤ 2−jn(`)ρ. Using the independence property on the Poisson measure J ,
the probability r` of the previous event can be lower bounded by

r` � exp
(
−c 2−jn(`)δ+jn(`)+1β

)
· 2−jn(`)(δ−α1) · 2−jn(`)(γ−α2−1+ρ)

� 2−jn(`)(δ+γ−α1−α2−1+ρ).

The collection of intervals T` is constructed by induction. T0 is initialised with the
singleton corresponding to the interval [0, 1]. Then, assuming T` is defined, for any I ∈
T`, we consider the sub-intervals of size 2−jn(`+1)δ with a double-jump configuration and
with no jump in the neighbourhood at all intermediate scales 2−jn , n(`) < n < n(`+ 1).
Note that if none satisfy the previous conditions, we avoid the extinction of the tree by
selecting a single sub-interval of size 2−jn(`+1)δ.

We aim to estimate the size of T`+1 conditionally to T`. For any I ∈ T`, we denote
by c(I) the middle point between the two jump times inside I. Then, for every integer

EJP 19 (2014), paper 101.
Page 25/37

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-3393
http://ejp.ejpecp.org/


Fine regularity of Lévy processes and linear (multi)fractional stable motion

k ∈ [jn(`)δ, jn(`)δ
′′], we want to estimate the number double-jumps configurations inside

the interval of size 2−k:

Ik :=
[
c(I)− 2−k, c(I)− 2−k−1

)
∪
(
c(I) + 2−k−1, c(I) + 2−k

]
. (2.13)

We designate by Sn(`)+1,k the number of sub-intervals of size 2−jn(`)+1δ inside Ik which
are empty. Using Chernoff’s inequality, the latter satisfies

P
(
|Sn(`)+1,k| ≥ 2jn(`)+1δ−k−2

)
≥ 1− exp

(
−2jn(`)+1δ−k−4

)
≥ 1− exp

(
−2jn(`)+1r

)
.

The last inequality is due to jn(`)+1δ− k ≥ jn(`)+1δ− jn(`)δ
′′ > jn(`)+1r, if r is sufficiently

small. Therefore, using the estimates obtained previously,

P
(
|Sn(`+1)−1,k| ≥ 2jn(`+1)−1δ−c3n(`)−k

)
≥
n(`+1)−1∏
k=1

(
1− exp

(
−2jn(`)+kr

))
≥
(
1− exp

(
−2jn(`)r

))n(`+1)
,

where c3 is a positive constant and we recall that n(` + 1) = 2n(`). An interval of
size 2−jn(`+1)−1δ can be divided in at least 2jn(`+1)(δ−δ′)−1 sub-intervals. Hence, if M`,k

denotes the number of double-jump configurations existing among the sub-intervals of
Sn(`+1)−1,k, Lemma 2.11 and the estimate of r` induce that

P
(
|M`,k| ≥ 2−jn(`+1)(δ+γ−α1−α2−1+ρ) · 2jn(`+1)δ−c3n(`)−k−4

)
≥
(
1− exp

(
−2jn(`)r

))n(`+1)+1
.

We observe that the intervals Ik are disjoints for different integers k. Hence, the prob-
ability of the intersection of the previous event for every k ∈ [jn(`)δ, jn(`)δ

′′] satisfies

P

( jn(`)δ
′′⋂

k≥jn(`)δ

|M`,k| ≥ 2jn(`+1)(α1+α2−γ+1−ρ)−c4n(`)−k
)

≥
(
1− exp

(
−2jn(`)r

))(n(`+1)+1)2βjn(`) ,

since we assume that δ′′ ≤ α1 + α2 ≤ 2β. The previous construction procedure leads to
estimate of size of T`+1. Therefore, conditionally to the event

{
|T`| ≥ k02jn(`)(α1+α2−γ+1−ρ)−2jn(`−1)δ

}
,

we obtain

P
(
|T`+1| ≥ k02jn(`+1)(α1+α2−γ+1−ρ)−2jn(`)δ

∣∣∣ |T`| ≥ k02jn(`)(α1+α2−γ+1−ρ)−2jn(`−1)δ
)

≥
(
1− exp

(
−2jn(`)r

))(n(`+1)+1) 2βjn(`) 2
jn(`)c

≥
(
1− exp

(
−2jn(`)r

))2jn(`)c5

.

For any `0 ∈ N, we know that the construction ensures that |T`0 | ≥ 1 almost surely.
Hence, choosing k0 = 2−c6jn(`0) , with the proper constant c6, we obtain that the follow-
ing lower bound

P

( ⋂
`>`0

|T`| ≥ 2jn(`)(α1+α2−γ+1−ρ)−2jn(`−1)δ−c6jn(`0)

)
≥
∏
`>`0

(
1− exp

(
−2jn(`−1)r

))2jn(`−1)c5

.

Considering the logarithm of the right term, we observe∑
`>`0

log
(
1− exp

(
−2jn(`−1)r

))2jn(`−1)c5

≥ −
∑
`>`0

2jn(`−1)c5 · exp
(
−2jn(`−1)r

)
−→`0→∞ 0.

Hence, the previous probability converges to 1 for any set of parameters p = (δ, δ′, δ′′, ρ).
Since the family of events considered is increasing with `0, it implies that almost surely
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there exists `0(ω) such that |T`| ≥ 2jn(`−1)(α1+α2−γ+1−ρ)−2jn(`)δ−c6jn(`0) for all ` > `0(ω).
Furthermore, owing to the construction procedure described previously, we also know
that for any I ∈ T`, every interval Ik defined in Equation (2.13) contains at least
2jn(`+1)(α1+α2−γ+1−ρ)−c4n(`)−k proper double-jump configurations.

Hausdorff dimension (lower-bound). The previous estimates now allow us to study
more precisely the oscillating behaviour of the Lévy process. Suppose h ∈ (1/(α1 +

α2), 1/β) and p is a set of parameters such that δ < 1/h < δ′′ and 1/h < γ. Then, let us
define the set of interest G(h,p) as following:

G(h,p) =
⋂
`>`0

⋃
I∈T`

{[
c(I)− 2−jn(`)/h+1, c(I)− 2−jn(`)/h−1

]
∪
[
c(I) + 2−jn(`)/h−1, c(I) + 2−jn(`)/h+1

]}
, (2.14)

where c(I) still denotes the middle point of any double-jump interval I ∈ T` and `0(ω)

corresponds to the random index previously defined. Owing to the construction of
the tree T , we note that G(h,p) corresponds to to the intersection of collections T`,h
of nested intervals of size 3 · 2−jn(`)/h−1. Furthermore, according to the estimates
obtained in the previous paragraph, we know that every I ∈ T`,h contains at least
2jn(`+1)(α1+α2−γ+1−ρ)−c4n(`)−jn(`)/h−1 sub-elements separated by 2jn(`+1)(γ−α1−α2−1+ρ).

In order the estimate the Hausdorff dimension of the set G(h,p), we construct by
induction a mass measure µ on it. To begin with, µ`0 attributes an equivalent weight on
every interval I ∈ T`0,h. Then, similarly to the procedure on Cantor’s set, µ`+1 is defined
on the intervals I ∈ T`+1,h such that the weight µ`(I), I ∈ T`,h, is equally distributed on
its offspring. The measure µ is then defined as the limit of the sequence (µ`)`≥`0 , which
clearly exists since the cumulative distribution functions uniformly converge on [0, 1].

Since every I ∈ T`,h contains at least 2jn(`+1)(α1+α2−γ+1−ρ)−c4n(`)−jn(`)/h elements,

∀I ∈ T`,h; µ(I) ≤
∏̀

k=`0+1

2−jn(k)(α1+α2−γ+1−ρ)+c4n(k−1)+jn(k−1)/h

≤ 2−jn(`)(α1+α2−γ+1−ρ)+c7jn(`−1) ,

since we note that n(`) ≤ jn(`) and
∑`
k=1 jn(k) ≤ c jn(`) for any ` ∈ N.

As we aim to use the usual mass distribution principle to determine a gauge function
g such that the Hausdorff measure Hg of G(h,p) is positive, we need to obtain an upper
bound of µ

(
B(t, r)

)
for any t ∈ [0, 1] and r > 0 sufficiently small. There exists ` ∈ N

such that 2−jn(`)/h ≤ r < 2−jn(`−1)/h and without any loss of generality, we may assume
that ` > `0. Furthermore, as r < 2−jn(`−1)/h, we may also suppose that B(t, r) ⊂ I
where I ∈ T`−1,h (otherwise, consider the intersection B(t′, r′) between B(t, r) and
the closest element I). Since the sub-intervals I ∈ T`,h, with I ⊂ I are separated
by at least 2jn(`+1)(γ−α1−α2−1+ρ), we know that the ball B(t, r) intersects with at most
r 2jn(`)(γ−α1−α2−1+ρ)+1 of them. Hence, since µ(I) has the same value for every I ∈ T`,h
with I ⊂ I, we obtain

µ
(
B(t, r)

)
≤ r 2jn(`)(γ−α1−α2−1+ρ)+1µ(I)

≤ r 2jn(`−1)/h+c4n(`−1)+1µ(I),

as µ(I) ≤ µ(I)/2jn(`)(α1+α2−γ+1−ρ)−c4n(`−1)−jn(`−1)/h. In addition, we know that µ(I) ≤
2−jn(`−1)(α1+α2−γ+1−ρ)+c7jn(`−2) and jn(`−2) ≤ n(`− 1), inducing

µ
(
B(t, r)

)
≤ r 2−jn(`−1)(α1+α2−γ+1−ρ)+jn(`−1)/h+c8n(`−1),
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Furthermore, as γ > β, 1/h > β and ρ > 1, α1 + α2 − γ − 1/h+ 1− ρ < 0, 1− (α1 + α2 −
γ + 1 − ρ)h > 0 and r1−(α1+α2−γ+1−ρ)h ≤ 2−jn(`−1)/h+jn(`−1)(α1+α2−γ+1−ρ)). Finally, since

jn(`−1) =
(
δ/δ′

)n(`−1) ≤ c log
(
1/r
)
, there exist c9, c10 > 0 such that for all t ∈ [0, 1] and

r > 0

µ
(
B(t, r)

)
≤ c9 log(1/r)c10 r(α1+α2−γ+1−ρ)h.

Using the mass distribution principle (see [22] for instance), this inequality proves that
G(h,p) has a positive g-Hausdorff measure, where the gauge function g is defined by
g(r) = log(1/r)c10 r(α1+α2−γ+1−ρ)h.

Therefore, if we restrict ourselves to rational parameters p, we have proved that
with probability one, for all h ∈ (1/(α1 +α2), 1/β), dimH G(h,p) ≥ (α1 +α2− γ+ 1− ρ)h.

2-microlocal frontier (lower-bound). In this last step of the proof, we aim to show
that the 2-microlocal frontier of every t ∈ G(h,p) has a chirp oscillation shape.

Let us set ω ∈ Ω and t ∈ G(h,p). As previously outlined in this work, we know that
we may ignore the component of Lévy process which corresponds to the jumps of size
greater than 2−jn(`0) . Furthermore, owing to the construction of the set G(h,p), we
know that for every ` ∈ N, the distance between t and the closest jump time s such that
|∆Xs| ∈ [2−jn(`)−1, 2−jn(`) ], satisfies

2−jn(`)/h−2 ≤ |s− t| ≤ 2−jn(`)/h+1.

Therefore, owing to the characterisation (2.4) of the set Eh, G(h,p) ⊂ Eh, i.e. αX,t = h.
We aim to prove that the 2-microlocal frontier of X at t shows a chirp oscillation

behaviour: σX,t(s′) > h + s′ for all s′ < −h. Similarly to the proof of Theorem 1.4, we
therefore investigate the regularity of the integral of X. In addition, we assume that
β ≥ 1, as the proof in the other case β < 1 is completely similar.

Let us set u ∈ R, ε > 0 and h′ := h(1 + ε) > h. There exist m > 0 such that
2−(m+1)/h′ < |t− u| ≤ 2−m/h

′
. Furthermore, let ` ∈ N be the greatest integer such that

jn(`) ≤ m. We have to distinguish two different cases depending on the value of m.
Let us first suppose that jn(`)(1 + ε) ≤ m. Since 1/h′ > β, Lemma 2.2 implies that

∀v ∈ B(t, |u− t|); |Xm
v −Xm

t | ≤ cm2−m ≤ c log
(
|u− t|−1

)
|u− t|h

′
.

Furthermore, we note that |t− u| ≤ 2−jn(`)(1+ε)/h′ = 2−jn(`)/h, implying there is no jump
time s such that |∆Xs| ≥ 2−m and s ∈ B(t, |u − t|). Using in addition the estimates on
the drift obtained in Proposition 2.3, we obtain

∀v ∈ B(t, |u− t|); |Xv −Xt| ≤ c log
(
|u− t|−1

)
|u− t|h

′
.

Therefore, ∣∣∣∣∫ u

t

(Xv −Xt) dv

∣∣∣∣ ≤ c log
(
|u− t|−1

)
|u− t|1+h′ ,

where we recall that h′ > h.
We now consider the second case jn(`) ≤ m ≤ jn(`)(1 + ε). As previously, we know

that for all v ∈ B(t, |u − t|), |Xm
v − Xm

t | ≤ c log
(
|u − t|−1

)
|u − t|h′ . Nevertheless, in

this case, there might exist a double-jump of size 2−jn(`) inside the interval B(t, |u− t|).
Owing to the construction of the set G(h,p), the contribution of the double-jump to
|
∫ u
t

(Xv −Xt) dv| is upper-bounded by

2−jn(`) · 2−jn(`)γ + 2−jn(`)ρ |u− t| ≤ c |u− t|h
′(1+γ)/(1+ε) + c |u− t|ρ h

′/(1+ε)+1

= c |u− t|h(1+γ) + c |u− t|ρh+1.
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In the previous exponents, we note that ρ > 1 and γ > 1/h, implying that ρh+ 1 > h+ 1

and h(1 + γ) > h+ 1. Hence, we have proved there exists ε0 > 0 such that∣∣∣∣∫ u

t

(Xv −Xt) dv

∣∣∣∣ ≤ c |u− t|1+h+ε0 ,

for all u in the neighbourhood of t. This last inequality proves that the regularity at t is
singular, as the 2-microlocal frontier must satisfy

∀s′ ≤ −h; σX,t(s
′) ≥ s′ + h

1 + ε0
.

Therefore, with probability one, for all h ∈ (1/(α1 + α2), 1/β), G(h,p) ⊂ Êh, and
dimH Êh ≥ (α1 +α2−γ+1−ρ)h. Considering rational parameters such that γ → 1/h and
ρ → 1, we obtain dimH Êh ≥ (α1 + α2)h − 1. Finally, since the previous reasoning holds
on any interval [a, b] where a, b ∈ Q, with probability one, we have proved the expected
lower bound for the Hausdorff dimension:

∀V ∈ O, ∀h ∈ (1/(α1 + α2)), 1/β); dimH(Êh ∩ V ) ≥ (α1 + α2)h− 1.

3 Linear (multi)fractional stable motion

The linear fractional stable motion (LFSM) is a stochastic process that has been
considered by several authors: Maejima [35], Takashima [51], Kôno and Maejima [33],
Samorodnitsky and Taqqu [45], Ayache et al. [8], Ayache and Hamonier [6]. Its general
integral form is defined by

Xt =

∫
R

{
a+
[
(t− u)

H−1/α
+ − (−u)

H−1/α
+

]
+a−

[
(t− u)

H−1/α
− − (−u)

H−1/α
−

]}
Mα(du), (3.1)

where H ∈ (0, 1), (a+, a−) ∈ R2 \ (0, 0) and Mα is an α-stable random measure on R with
Lebesgue control measure λ and skewness intensity βα(·) ∈ [−1, 1]. Throughout this
paper, it is assumed that βα is constant, and equal to zero when α = 1. In this context,
for any Borel set A ⊂ R, the characteristic function of Mα(A) is given by

E
[
eiθMα(A)

]
=

{
exp
{
−λ(A)|θ|α

(
1− iβα sign(θ) tan(απ/2)

)}
if α ∈ (0, 1) ∪ (1, 2);

exp
{
−λ(A)|θ|

}
if α = 1.

For the sake of readability, we consider in the rest of the section the particular case
(a+, a−) = (1, 0) (even though as stated in [45], the law of the process depends on
values (a+, a−) chosen).

To begin with, we present in the next statement an alternative representation for
the two-parameter field (t,H) 7→ X(t,H) =

∫
R

{
(t − u)

H−1/α
+ − (−u)

H−1/α
+

}
Mα(du). In

the case H ≥ 1/α, the formula has been previously obtained by Takashima [51].

Proposition 3.1. For all t ∈ R and H ∈ (0, 1), the random variable X(t,H) satisfies

X(t,H)
a.s.
=


CH

∫
R

Lu

{
(t− u)

H−1/α−1
+ − (−u)

H−1/α−1
+

}
du if H ∈

(
1
α , 1

)
;

Lt if H = 1
α

CH

∫
R

{
(Lu − Lt)(t− u)

H−1/α−1
+ − Lu(−u)

H−1/α−1
+

}
du if H ∈

(
0, 1

α

]
,

(3.2)
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where CH = H − 1/α and L is an α-stable Lévy process defined by

∀t ∈ R+ Lt = Mα([0, t]) and ∀t ∈ R− Lt = −Mα([t, 0]).

Proof. For the sake of completeness, we explicit the proof for any H ∈ (0, 1), even
though the first case can be found in [51]. Suppose t ∈ R and H ∈ (0, 1). Since
(Lt)t∈R is an α-stable Lévy process, it has càdlàg sample paths. According to [3] (chap.
4.3.4), the theory of the stochastic integration based α-stable Lévy processes coincide
integrals with respect to α-stable random measure. Therefore, the r.v. X(t,H) is almost

surely equal to
∫
R

{
(t− u)

H−1/α
+ − (−u)

H−1/α
+

}
dLu. Let ε > 0 and b < t. Using a classic

integration by parts, we obtain

Lt−εε
H−1/α − Lb(t− b)H−1/α =

∫ t−ε

b

(t− u)H−1/α dLu

−
(
H − 1

α

)∫ t−ε

b

Lu(t− u)H−1/α−1 du. (3.3)

1. If H ∈
(

1
α , 1

)
, H−1/α > 0. Hence,

∫ t−ε
b

Lu(t−u)H−1/α−1 du almost surely converges

to
∫ t
b
Lu−(t−u)H−1/α−1 du when ε→ 0. Similarly,

∫ t−ε
b

(t−u)H−1/α dLu converges in
Lα(Ω). Therefore, using Equation (3.3) with t = 0 and b < 0, we obtain almost surely∫ t

b

{
(t− u)H−1/α − (−u)H−1/α

}
dLu = CH

∫ t

b

Lu

{
(t− u)H−1/α−1 − (−u)H−1/α−1

}
du

− Lb
{

(t− b)H−1/α − (−b)H−1/α
}
.

When b → −∞, the left-term clearly converges to X(t,H) in Lα(Ω). According
to [42], we know that almost surely for any ε > 0, lim supu→−∞|Lu|/|u|1/α+ε = 0.
Furthermore, we also have (t − u)H−1/α−1 − (−u)H−1/α−1 ∼−∞ (−u)H−1/α−2 and
(t − b)H−1/α − (−b)H−1/α ∼−∞ (−b)H−1/α−1. Therefore, as H < 1 and using the
dominated convergence theorem, the right-term almost surely converges to the ex-
pected integral.

2. If H ∈
(
0, 1

α

)
, we observe that Equation (3.3) can be slightly transformed into

(Lt−ε − Lt)εH−1/α − (Lb − Lt)(t− b)H−1/α

=

∫ t−ε

b

(t− u)H−1/α dLu −
(
H − 1

α

)∫ t−ε

b

(Lu − Lt)(t− u)H−1/α−1 du.

According to [42], αY,t
a.s.
= 1/α. Therefore, up to an extracted sequence, the previous

expression almost surely converges when ε → 0, and using a similar formula for
t = 0, we obtain∫ t

b

{
(t− u)H−1/α − (−u)H−1/α

}
dLu

= CH

∫ t

b

{
(Lu − Lt)(t− u)H−1/α−1 − Lu(−u)H−1/α−1

}
du

− Lb
{

(t− b)H−1/α − (−b)H−1/α
}

+ Lt(t− b)H−1/α.

The property lim supu→−∞|Lu|/|u|1/α+ε = 0 and the previous equivalents finally
prove Equation (3.2).
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To end this proof, let us consider the integral representation in the particular case
H = 1/α. In fact, Equation (3.2) is a slightly misuse since the expression does not
exist. Nevertheless, we prove that it converges almost surely to X(t, 1/α) = Lt when
H → 1/α.

Suppose first that H ↗ 1/α and rewrite X(t,H) as

X(t,H) = CH

∫
R

{
(Lu − Lt1u≥b)(t− u)

H−1/α−1
+ − Lu(−u)

H−1/α−1
+

}
du+ Lt(t− b)H−1/α,

The first component of the expression converges to zero since CH →H→1/α 0 and αY,t
a.s.
=

1/α. As the second part simply converges to Lt, we get the expected limit. The case
H ↘ 1/α is treated similarly.

Note that Picard [41] has determined a similar representation for fractional Brown-
ian motion.

Proof of Theorem 1.10. Let us set H ∈ (0, 1) and α ∈ [1, 2). In order to obtain the
multifractal structure of the LFSM, we first relate the 2-microlocal frontier of X at t to
the frontier of the alpha-stable process L.

1. If H > 1/α, we note that the representation obtained in Proposition 3.1 is defined
almost surely for all t ∈ R. Therefore, let us set ω ∈ Ω and t ∈ R. As previously, we
can assume that t ∈ [0, 1]. Then,

Xt = CH

∫ t

b

Lu(t− u)
H−1/α−1
+ du+ CH

∫ 0

b

Lu(−u)
H−1/α−1
+ du

+ CH

∫ b

−∞
Lu

{
(t− u)

H−1/α−1
+ − (−u)

H−1/α−1
+

}
du,

where b < 0 is fixed. The second term is simply a constant that does not influence
the regularity. Similarly, using the dominated convergence theorem, we note that
the third one is a smooth function on the interval [0, 1] which has no impact on the
2-microlocal frontier.

Therefore, we only need to focus on the first term. Let us define the process Yu =

Lu1{u≥t}. Since the 2-microlocal spaces and frontier presented in Definitions 1.2
and 1.3 are localised at a point t, we necessarily have σL,t = σY,t. Furthermore, we
note that

Zt := CH

∫ t

b

Lu(t− u)
H−1/α−1
+ du = CH

∫
R

Yu(t− u)
H−1/α−1
+ du =

(
I
H−1/α
+ Y

)
(t)

Owing to the property of stability of 2-microlocal spaces under fractional integration
(see see Theorem 1.1 in [28]), we obtain σZ,t = σY,t +H − 1/α, and therefore σX,t =

σL,t +H − 1/α.

2. If 0 < H < 1/α, we first observe that according to the multifractal spectrum of
alpha-stable processes, dimH({t ∈ R : αL,t ≤ 1/α−H}) < 1. Hence, for almost every
ω ∈ Ω, Formula (3.2) is well-defined almost everywhere on R. Anywhere else, we
may simply assume that X(t,H) is set to zero. We will explain later why the value 0

at these particular times does not modify the 2-microlocal frontier.

Similarly to the previous case H > 1/α, the regularity of X only depends on the
behaviour of the component

Z : t 7−→ CH

∫ t

b

(Lu − Lt)(t− u)
H−1/α−1
+ du.
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One might recognize a Marchaud fractional derivative (see e.g. [44]). Let us modify
this expression to exhibit a more classic form of fractional derivative. For almost all
s ∈ [0, 1] and ε > 0, we have∫ s−ε

b

Lu(s− u)H−1/α du = CH

∫ s−ε

b

Lu du

∫ s

u+ε

(v − u)H−1/α−1 dv + εH−1/α

∫ s−ε

b

Lu du

= CH

∫ s−ε

b

du

∫ s

u+ε

(Lu − Lv)(v − u)H−1/α−1 dv

+ εH−1/α

∫ s−ε

b

Lu du+ CH

∫ s−ε

b

du

∫ s

u+ε

Lv(v − u)H−1/α−1 dv

The last two terms are equal to

εH−1/α

∫ s−ε

b

Lu du− εH−1/α

∫ s

b+ε

Lv dv +

∫ s

b+ε

Lv(v − b)H−1/α dv,

which converges to
∫ s
b
Lv(v−b)H−1/αdv as ε→ 0 sinceH−1/α > −1. Similarly, as we

consider times at which αL,s > 1/α−H, the dominated convergence theorem implies
that the first term converges to CH

∫ s
b

dv
∫ v
b

(Lu − Lv)(v − u)H−1/α−1 du. Therefore,∫ s

b

Lu(s−u)H−1/α du = CH

∫ s

b

dv

∫ v

b

(Lu−Lv)(v−u)H−1/α−1 du+

∫ s

b

Lv(v−b)H−1/α dv.

According to classic real analysis results, the previous expression is differentiable
almost everywhere on the interval [0, 1], and therefore

Zt
a.e.
=

d

dt

∫ t

b

Lu(t− u)H−1/α du− Lt(t− b)H−1/α,

for almost all t ∈ [0, 1]. Note that the last two formulas ensure that Z· ∈ L1
loc(R), and

thus X· ∈ L1
loc(R) with probability one.

Let us now explain in which sense we investigate the 2-microlocal regularity of X.
As previously outlined in the introduction, in the case H < 1/α, sample paths of
LFSM are nowhere bounded. As a consequence, it is meaningless to consider the
usual Hölder regularity. On the other hand, the 2-microlocal formalism has been
introduced in a more general frame which are distributions D′(R). Since we have
previously proved that X· ∈ L1

loc(R), with probability one, X· is a distribution whose
2-microlocal frontier is well-defined. We refer to [38] for a complete presentation
of the 2-microlocal spaces for distributions. Also note that in this context, we can
modify the values of Xt on the negligible set {t ∈ R : αL,t ≤ 1/α − H} without
modifying X· in the sense of distributions.

Then, let first consider the term Y : t 7→
∫ t
b
Lu(t − u)H−1/α du. Since H − 1/α >

−1, it is a Riemann–Liouville fractional integral of order H − 1/α + 1 > 0. Hence,
using the techniques previously presented, we obtain that σY,t = σL,t + H − 1/α +

1. Furthermore, the almost everywhere derivative d
dt

∫ t
b
Lu(t − u)H−1/α du coincide

with the derivative in the sense distribution. Still using the stability of 2-microlocal
spaces, the 2-microlocal frontier of the latter is therefore equal to σL,t + H − 1/α.
In addition, the 2-microlocal frontier of t 7→ Lt(t − b)H−1/α is equal to σL,t (the
multiplication with a locally smooth function having no effect). Hence, as σL,t >
σL,t+H−1/α, we have proved that σZ,t = σL,t+H−1/α, and thus σX,t = σL,t+H−1/α

with probability one.
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Therefore, in both cases, with probability one and for all t ∈ [0, 1],

∀s′ ∈ R; σX,t(s
′) = σL,t(s

′) +H − 1/α.

Then, using the same reasoning as in the proof of Corollary 1.7, we observe that

∀s ∈ [0, 1/α]; Ẽs−H+1/α(L) ⊆ Eσ,s′(X) ⊆ Ẽs−H+1/α(L) ∪
⋃

h<s−H+1/α

Êh(L).

for any σ < H − 1/α. Furthermore, since L is an alpha-stable process, Theorem 1.4
induces that

dimH Ẽs−H+1/α(L) = α
(
s−H + 1/α

)
= α(s−H) + 1

and dimH Êh(L) < α(s + H)− 1 for every h < s−H + 1/α. These two estimates clearly
prove the spectrum presented in Equation (1.19). Finally, the spectrum of singularity
for the weak scaling exponent is obtained similarly.

Another class of processes similar to the LFSM has been introduced and studied in
[13, 37, 16]. Named fractional Lévy processes, it is defined by

Xt =
1

Γ(d+ 1)

∫
R

{
(t− u)d+ − (−u)d+

}
L(du),

where d ∈ (0, 1/2) and L is a Lévy process enjoying Q = 0 (no Brownian component),
E[L(1)] = 0 and E[L(1)2] < +∞. Owing to this last assumption on L, LFSMs are not
fractional Lévy processes. Nevertheless, their multifractal regularity can be determined
as well.

Proposition 3.2. Suppose X is a fractional Lévy process parametrized by d ∈ (0, 1/2).
Then, with probability one and for all σ ≤ d,

∀V ∈ O; dimH(Eσ,s′ ∩ V ) =

{
β(s− d) if s ∈

[
d, d+ 1

β

]
;

−∞ otherwise.
(3.4)

where β designates the Blumenthal–Getoor exponent of the Lévy process L. Further-
more, for all s′ ∈ R, Eσ,s′ is empty if σ > d.

Proof. Marquardt [37] has established (Theorem 3.4) a representation of fractional
Lévy processes equivalent to Proposition 3.1:

Xt =
1

Γ(d)

∫
R

Lu

{
(t− u)d−1

+ − (−u)d−1
+

}
du.

Based on this result, a straightforward adaptation of the proof of Theorem 1.10 yields
Equation (3.4).

Similarly to the LFSM, this statement refines regularity results established in [13,
37] and proves that the multifractal spectrum of a fractional Lévy process is equal to

∀V ∈ O; dX(h, V ) =

{
β(h− d) if h ∈

[
d, d+ 1

β

]
;

−∞ otherwise.
(3.5)

Let us finally conclude this section with the proof of Theorem 1.12.

EJP 19 (2014), paper 101.
Page 33/37

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-3393
http://ejp.ejpecp.org/


Fine regularity of Lévy processes and linear (multi)fractional stable motion

Proof of Theorem 1.12. Suppose (Xt)t∈R is a linear multifractional stable motion with
α ∈ (1, 2) and Hurst function H(·) ∈ (1/α, 1). According to the representation obtained
in Proposition 3.1, Xt is almost surely equal to X(t,H(t)).

To begin with, we use the uniform estimate of the local Hölder exponent obtained
by Ayache and Hamonier [6, Th. 8.1] to obtain an upper bound on the 2-microlocal
frontier. The latter have proved that with probability one and for all t ∈ R, α̃X,t =

H(t) − 1/α. In addition, the 2-microlocal frontier is known to satisfy the inequality
σX,t ≤ lim infu→t α̃X,u for any t ∈ R, which proves that σX,t ≤ H(t)−1/α with probability
one.

Let us now set ω ∈ Ω and t ∈ R and decompose X into two parts:

Xu = X(u,H(t)) +
(
X(u,H(u))−X(u,H(t))

)
.

According to the proof of Theorem 1.10, we already know that the 2-microlocal frontier
of the first component X(·, H(t)) is equal to σL,t + H(t) − 1/α. As a consequence, we
have to prove that the second term Yu := X(u,H(u))−X(u,H(t)) is negligible in terms
of 2-microlocal regularity. For that purpose, we observe that for any u, v ∈ B(t, ρ)

Yu − Yv = X(u,H(u))−X(u,H(t))−X(v,H(v)) +X(v,H(t))

=

∫ H(u)

H(t)

∂HX(u, h) dh−
∫ H(v)

H(t)

∂HX(v, h) dh.

Therefore, since H is δ-Hölderian,

|Yu − Yv| ≤
∫ H(u)

H(t)

∣∣∂HX(u, h)− ∂HX(v, h)
∣∣dh+

∫ H(v)

H(u)

∣∣∂HX(v, h)
∣∣dh

≤ c |u− t|δ · |u− v|γ + c |u− v|δ

where γ < infu∈B(t,ρ)H(u) − 1/α and δ > supu∈RH(u). Using Definition 1.2 of the 2-
microlocal spaces, this inequality proves that σY,t ≥

(
δ + s′

)
∧
(
H − 1/α

)
for all s′ ∈ R.

Since δ > H(t), σX,t ≤ H(t)− 1/α and σL,t(s′) ≤ (1/α+ s′)∧ 0, we therefore obtain with
probability one and for all t ∈ R

∀s′ ∈ R; σX,t(s
′) = σL,t(s

′) +H(t)− 1/α.

Since the 2-microlocal frontier of the LMSM is simply a translation of the frontier of
the alpha-stable process L, determining the multifractal spectrum of the LMSM is then
equivalent to the study of the iso-Hölder values of L along a continuous function f :

R 7→ [0, 1/α]. This non-trivial problem has recently been solved by Barral and Seuret
[11, Th. 1.4] who proved that with probability one that for all t ∈ R and any ρ > 0

dimH

{
u ∈ B(t, ρ) : αL,u = f(u)

}
= α max

B(t,ρ)
f.

The multifractal structure described in Equation (1.22) is then a direct consequence of
this equality and the strictly lower Hausdorff dimension of the oscillating singularities
of L.

Remark 3.3. In the case H(·) does not satisfy the assumption δ > supt∈RH(t), the
proof of Theorem 1.12 can be modified to extend the statement and generalize results
obtained in [50]. This complete study is made in [9] for the multifractional Brownian
motion. For the sake of clarity, we prefer to focus in this work on (H0)-Hurst functions
and the multifractal structure of the LMSM presented in Theorem 1.12.
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Remark 3.4. Even though it is assumed all along this section that H(·) is deterministic,
owing to the deterministic representation presented in Proposition 3.1, Theorems 1.10
and 1.12 still hold if H(·) is a continuous random process independent of the alpha-
stable noise. Hence, based on these results, a class of random processes with random
and non-homogeneous multifractal spectrum can be easily constructed. A similar exten-
sion of the multifractional Brownian motion has been introduced and studied by Ayache
and Taqqu [7].
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