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Local probabilities for random walks with negative
drift conditioned to stay nonnegative∗
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Abstract

Let {Sn, n ≥ 0} with S0 = 0 be a random walk with negative drift and let τx =
min {k > 0 : Sk < −x} , x ≥ 0. Assuming that the distribution of the i.i.d. increments
of the random walk is absolutely continuous with subexponential density we describe
the asymptotic behavior, as n→∞, of the probabilities P (τx = n) and P(Sn ∈ [y, y+
∆), τx > n) for fixed x and various ranges of y. The case of lattice distribution of
increments is considered as well.

Keywords: Random walk; negative drift; conditional local limit theorems; exit time; LaTeX.
AMS MSC 2010: Primary Primary 60G50, Secondary 60F10.
Submitted to EJP on April 1, 2014, final version accepted on September 9, 2014.

1 Introduction

Let {Sn, n ≥ 0} be a random walk with S0 = 0 and Sn = X1 + X2 + . . . + Xn for all
n ≥ 1, where X1, X2, . . . are independent copies of a random variable X. For each x ≥ 0

let τx denote the first passage time to (−∞,−x), that is,

τx = min {k > 0 : Sk < −x} .

The main purpose of the present note is to investigate the asymptotic behaviour, as
n→∞, of the probabilities P(Sn ∈ [y, y + ∆), τx > n) and P(Sn ∈ [y, y + ∆), τx = n+ 1)

for random walks with negative drift:

E [X] = −a < 0.

The driftless case attracted a lot of attention in the last decade and is well studied
in the literature, see [8, 9, 12, 13, 21, 22].
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Local probabilities for conditioned random walks

The study of the random walks with negative drift conditioned to stay nonnegative
was apparently initiated by Iglehart [17]. He has proved that if

E
[
XepX

]
= 0 for some p > 0 (1.1)

and E
[
X2epX

]
< ∞, then the sequence L{Sn|τ0 > n} converges weakly to a distribu-

tion on R+. Since no scaling is needed here, one have also an information on local
probabilities P(Sn ∈ [y, y + ∆), τ0 > n) for fixed y. An explicit expression for the limit of
the conditional probabilities P(Sn ∈ [y, y + ∆)|τ0 > n) can be found in Theorem 1.3 by
Keener [19].

Much less is known for the case when (1.1) is not valid. If the variance of X is finite
and the tail P(X > x) varies regularly with index −β < −2, then, as n→∞,

P(Sn ≥ un|τ0 > n)→ (1 + u/a)−β , u ≥ 0. (1.2)

This is a particular case of a conditional functional limit theorem proved by Durrett [14].
In contrast to Iglehart’s situation, for regularly varying tails one can not derive asymp-
totics for local probabilities from the integral limit theorem.

We are going to consider conditional local probabilities of the random walks having
heavy-tailed increments. More precisely, we shall work with the following classes of
functions and distributions.

We say that a function f : R → R+ is (asymptotically) locally constant and write
f ∈ L if

lim
x→∞

f(x+ h)

f(x)
= 1

for any h > 0. Further, see [18], Definition 3 and [2], Appendix B, we say that a function
f : R→ R+ belongs to the class Sd of subexponential densities if f ∈ L and

lim
x→∞

∫ x/2
0

f(y)f(x− y)dy

f(x)
=

∫ ∞
0

f(y)dy <∞.

A positive, measurable function f defined in a neighborhood of infinity is calledO−regu-
larly varying if

0 < lim inf
x→∞

f(xy)

f(x)
≤ lim sup

x→∞

f(xy)

f(x)
<∞.

Recall, finally, that f : R→ R+ is called almost decreasing (see Section 2.2 of [6]) if
f(x) ≥ c supy≥x f(y) for some positive constant c.

We assume in the sequel that the distribution of X is either absolutely continuous
or is supported by the integers Z (and not by a sublattice thereof). Let b(x) denote
the Lebesgue density of X in the absolute continuous case or the mass function in the
lattice case.

Theorem 1.1. Assume that E [|X|κ] <∞ for some 1 < κ ≤ 2, b(x) is almost decreasing,
xκb(x) either belongs to Sd or is O-regularly varying, and

lim
x→∞

sup
0≤t≤x1/κ

∣∣∣∣b(x− t)b(x)
− 1

∣∣∣∣ = 0. (1.3)

Then, for all x ≥ 0, y ≥ −x and each ∆ > 0 (in the lattice case all these variables should
be integer),

lim
n→∞

P (Sn ∈ [y, y + ∆), τx > n)

b(an)
= E [τx]

∫ y−x+∆

y−x
P

(
max
j≥1

Sj < z

)
dz.
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Local probabilities for conditioned random walks

All the conditions of this theorem are taken from [2], and they are sufficient for the
relation

P(Sn ∈ [y, y + ∆)) ∼ ∆nb(an+ y) uniformly in y ≥ −(a− ε)n
to be valid for every ε > 0, see Corollary 2.1 in [2]. This asymptotics for unconditioned
probabilities is one of the most important ingredients for the proof.

Remark 1.2. Under much stronger conditions Theorem 1.1 was proved in [4].

Theorem 1.3. Assume that the conditions of Theorem 1.1 are fulfilled. Suppose addi-
tionally that, as x→∞,

P(X ≥ x) = O(xb(x)). (1.4)

Then, for every fixed x ≥ 0,

P (τx = n) ∼ aE [τx] b(an). (1.5)

The starting point in the proof of Theorem 1.1 is the Wiener-Hopf factorization. It
seems, however, that this method does not work in the case when y = yn → ∞. In
order to analyze this situation we use a probabilistic approach which requires stronger
restrictions on the jump distribution.

We consider the algebraic decay of the tail of X.

Theorem 1.4. Assume that E [|X|κ] < ∞ for some 1 < κ ≤ 2, b(x) is regularly varying
with index −β < −2. Then, for every sequence yn → ∞ as n → ∞ and any fixed x and
∆ > 0,

sup
y≥yn

∣∣∣∣P(Sn ∈ [y, y + ∆), τx > n)

b(an+ y)
−∆E [τx]

∣∣∣∣→ 0 as n→∞. (1.6)

This theorem is a local counterpart of Durrett’s result mentioned earlier.
The method we use to prove Theorem 1.4 works also for bounded values of y, but it

requires stronger, compared to Theorem 1.1, conditions on the function b(x).

2 Proof of Theorem 1.1

Since the proofs in absolutely continuous and lattice cases are almost identical, we
consider here only the first possibility.

We start with a series of auxiliary statements.
The first result is Corollary 2.1 from [2].

Lemma 2.1. Under the conditions of Theorem 1.1, for any fixed ε > 0 and ∆ > 0,

lim
n→∞

sup
y≥−(a−ε)n

∣∣∣∣P (Sn ∈ [y, y + ∆))

nb(na+ y)
− 1

∣∣∣∣ = 0. (2.1)

The next lemma can be found in Embrechts and Hawkes [15] or Asmussen et al [1].

Lemma 2.2. Let {βn, n ≥ 0} be a subexponential sequence with
∑∞
k=0 βk <∞.

1. If δn ∼ dβn, ηn ∼ eβn, then
∑n
i=0 δiηn−i ∼ cβn with c := d

∑∞
k=0 ηk + e

∑∞
k=0 δk as

n→∞.

2. If
∑∞
k=0 αkt

k = exp
(∑∞

k=0 βkt
k
)

for |t| < 1, then αn ∼ cβn with c :=
∑∞
k=0 αk as

n→∞.

The first statement of Lemma 2.2 follows from Proposition 3 of [1]. The second
statement of the Lemma follows from Theorem 1 of [15] or Theorem 7 of [1]. To apply
the results from [1] one should take there ∆ = (0, 1] and notice that for lattice random
variables subexponentiality of probability mass function is equivalent to Definition 2 of
[1] with ∆ = (0, 1].
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Local probabilities for conditioned random walks

Lemma 2.3. Put Z(x) = |log b(x)| . If the condition (1.3) is valid, then there exists a
constant c ∈ (0,∞) such that Z(x) ≤ cx1−1/κ for all sufficiently large x.

Proof. By (1.3) b(x) ≤ 2b(x− tx1/κ) for t ≤ 1. Now note that we can pick a sequence Ck
such that

x− Ckx1/κ − (x− Ckx1/κ)1/κ ≥ x− Ck+1x
1/κ. (2.2)

Indeed, observe that

x− Ckx1/κ − (x− Ckx1/κ)1/κ = x− Ckx1/κ − x1/κ(1− Ckx1/κ−1)1/κ

≥ x− Ckx1/κ − 0.51/κx1/κ

if Ckx1/κ−1 ≤ 0.5. Clearly one can take Ck = (k − 1)0.51/κ. Let k(x) be the maximal
integer such that Ckx1/κ−1 ≤ 0.5. It is not difficult to see that k(x) ∼ 0.5x1−1/κ as
x→∞. Then, using (2.2) we can iteratively use (1.3) to conclude that

b(x) ≤ 2b(x− C1x
1/κ) ≤ 22b(x− C1x

1/κ) ≤ . . . ≤ 2k(x)b(x− Ck(x)x
1/κ).

This implies b(x) ≤ 2k(x)b(0.5x). Applying the latter inequality iteratively we see that,
for a fixed x0

b(x) ≤ 2
∑log2 x
i=1 k(x2−i) sup

y≤x0

b(y).

Taking logarithms from both sides gives log b(x) ≤ cx1−1/κ. Inequality log b(x) ≥ −cx1−1/κ

can be proved similarly.

The next statement immediately follows from Theorem 2.2 of [3].

Lemma 2.4. If P(Sn > y)/P(Sn > 0) → 1 for every y > 0 and P(Sn > 0)/n is a
subexponential sequence then, as n→∞,

P (τx > n) ∼ E [τx]
P (Sn ≥ 0)

n
. (2.3)

Moreover, under the conditions of Theorem 1.1,

P (τx > n) ∼ E [τx]P(X ≥ na).

Indeed, the conditions of Theorem 1.1 of the present paper correspond to the con-
ditions of Theorem 2.1 of [3]. Additional conditions of Lemma 2.4 correspond to the
conditions of Theorem 1.2 of [3] for α = γ = 0.

We define

Ln := min
0≤k≤n

Sk, Mn := max
1≤k≤n

Sk

and

Tn = min{0 ≤ k ≤ n : Sk = Ln}, (2.4)

and specify two renewal functions

u(x) = 1 +

∞∑
k=1

P(−Sk ≤ x,Mk < 0), x ≥ 0,

v(x) = 1 +

∞∑
k=1

P(Sk < x,Lk ≥ 0), x ≥ 0.
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Lemma 2.5. Assume that all the conditions of Theorem 1.1 are fulfilled. Then, for any
λ > 0, as n→∞,

E
[
eλSn ;Tn = n

]
= E

[
eλSn ;Mn < 0

]
∼ K1(λ)b(an), (2.5)

E
[
e−λSn ; τ0 > n

]
= E

[
e−λSn ;Ln ≥ 0

]
∼ K2(λ)b(an), (2.6)

where

K1(λ) =
1

λ
exp

{ ∞∑
n=1

1

n
E
[
eλSn ;Sn < 0

]}

=
1

λ

(
1 +

∞∑
n=1

E
[
eλSn ;Mn < 0

])
=

∫ ∞
0

e−λxu(x)dx (2.7)

and

K2 (λ) =
1

λ
exp

{ ∞∑
n=1

1

n
E
[
e−λSn ;Sn ≥ 0

]}

=
1

λ

(
1 +

∞∑
n=1

E
[
e−λSn ;Ln ≥ 0

])
=

∫ ∞
0

e−λzv(z)dz. (2.8)

Proof. We first check the validity of (2.5). Since the random walks {Sk : k = 0, 1, . . . , n}
and {S′k := Sn − Sn−k : k = 0, 1, . . . , n} have the same law and the event {Tn = n} for
{Sk} corresponds to the event {Mn < 0} for {S′k}, the equality in (2.5) follows from the
mentioned duality. To go further we set Z(x) = |log b (x)| and evaluate the quantity

E
[
eλSn ;Sn < 0

]
= E

[
eλSn ;−2λ−1Z(an) ≤ Sn < 0

]
+O

(
b2(an)

)
. (2.9)

Clearly, for any h > 0, ∑
0≤k≤2λ−1h−1Z(an)

e−λ(k+1)hP (−(k + 1)h ≤ Sn ≤ −kh)

≤ E
[
eλSn ;−2λ−1Z(an) ≤ Sn < 0

]
≤

∑
0≤k≤2λ−1h−1Z(an)

e−λkhP (−(k + 1)h ≤ Sn ≤ −kh) .

Note that according to Lemma 2.3, Z(x) ≤ cx1−1/κ for sufficiently large x. With this in
view we have by Lemma 2.1,

lim
n→∞

sup
0≤k≤2λ−1h−1Z(na)

∣∣∣∣P (−(k + 1)h ≤ Sn < −kh)

nhb(an)
− 1

∣∣∣∣ = 0.

Thus, ∑
0≤k≤2λ−1h−1Z(an)

e−λkhP (−(k + 1)h ≤ Sn ≤ −kh)

= (1 + o(1))nhb(an)
∑

0≤k≤2λ−1h−1Z(na)

e−λkh

= nb(an)(1 + o(1))h×
∞∑
k=0

e−λkh

= nb(an)(1 + o(1))
h

1− e−λh
.
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Local probabilities for conditioned random walks

By similar arguments we get∑
0≤k≤2λ−1h−1Z(an)

e−λ(k+1)hP (−(k + 1)h ≤ Sn < −kh)

= (1 + o(1))nhb(an)
∑

0≤k≤2λ−1h−1Z(na)

e−λ(k+1)h

= nb(an)(1 + o(1))h×
∞∑
k=0

e−λ(k+1)h

= nb(an)(1 + o(1))
he−λh

1− e−λh
.

Now

he−λh

1− e−λh
≤ lim inf

n→∞

E
[
eλSn ;−2λ−1Z(an) ≤ Sn < 0

]
nb(an)

≤ lim sup
n→∞

E
[
eλSn ;−2λ−1Z(an) ≤ Sn < 0

]
nb(an)

≤ h

1− e−λh

and letting h ↓ 0 we get that, as n→∞,

E
[
eλSn ;−2λ−1Z(an) ≤ Sn < 0

]
∼ λ−1nb(an).

Combining this with (2.9) and the fact that b(n) = o(n) due to the existence of the first
moment, we conclude that, as n→∞

E
[
eλSn ;Sn < 0

]
∼ λ−1nb(an). (2.10)

We know by the Baxter identity that

1 +

∞∑
n=1

tnE
[
eλSn ;Mn < 0

]
= exp

{ ∞∑
n=1

tn

n
E
[
eλSn ;Sn < 0

]}
,

see, for example, Chapter XVIII.3 in [16] or Chapter 8.9 in [6]. From (2.10), Theo-
rem 1.4.3 in [7] and (ii) of Lemma 2.2 we deduce

E
[
eλSn ;Mn < 0

]
∼ K1(λ)b(an),

where K1(λ) is given by (2.7). This proves the equivalence in (2.5).
The proof of (2.6) follows the same line by using the Baxter identity

1 +

∞∑
n=1

tnE
[
e−λSn ;Ln ≥ 0

]
= exp

{ ∞∑
n=1

tn

n
E
[
e−λSn ;Sn ≥ 0

]}
. (2.11)

Lemma 2.6. Under the conditions of Theorem 1.1, as n→∞,

P (Sn ∈ [y, y + ∆), Ln ≥ 0) ∼ b(an)

∫ y+∆

y

v(z) dz (2.12)

and

P (−Sn ∈ [y, y + ∆),Mn < 0) ∼ b(an)

∫ y+∆

y

u(z) dz. (2.13)
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Proof. Lemma 2.5, the extended continuity theorem for Laplace transforms (see [16],
Ch.XIII.1, Theorem 2) and the boundness of u(x) and v(x) on each finite interval of the
nonnegative semi-axis lead to

P (Sn ∈ [y, y + ∆), Ln ≥ 0) ∼ b(an)

∫ y+∆

y

v(z) dz

and

P (−Sn ∈ [y, y + ∆),Mn < 0) ∼ b(an)

∫ y+∆

y

u(z) dz.

The next lemma is a crucial step in proving Theorem 1.1.

Lemma 2.7. Under the conditions of Theorem 1.1, for x ≥ 0 and θ > 0,

E[e−θSn , Ln ≥ −x] ∼ b(an)u(x)e−θx
∫ ∞

0

e−θzv(z) dz , (2.14)

and

E[eθSn ,Mn < x] ∼ b(an)v(x)eθx
∫ ∞

0

e−θzu(z) dz. (2.15)

Proof. The same as earlier, Lemma 2.5 and the extended continuity theorem for Laplace
transforms imply, as n→∞,

E[eθSn ;Mn < 0, Sn > −x]

b(an)
→
∫ x

0

e−θzu(z) dz , (2.16)

E[eθSn ;Ln ≥ 0, Sn < x]

b(an)
→
∫ x

0

eθzv(z) dz , (2.17)

which for finite x ≥ 0 are valid for every θ ∈ R+, since the limit measures involved here
have densities with respect to the Lebesgue measure.

Next we fix some x > 0. By the total probability formula we may write

E[eθSn ;Mn < x]

=

n−1∑
i=0

E[eθSn ;S0 ≤ Si, . . . , Si−1 ≤ Si, Si < x , Si > Si+1, . . . , Si > Sn]

+ E[eθSn ;S0 ≤ Sn, . . . , Sn−1 ≤ Sn, Sn < x]. (2.18)

Now we can apply the duality arguments. Since the random walks {Sk : k = 0, 1, . . . , n}
and {S′k := Sn − Sn−k : k = 0, 1, . . . , n} have the same law, the measures P{S0 ≤
Si, . . . , Si−1 ≤ Si, Si ∈ dy} and P{S1 ≥ 0, . . . , Si ≥ 0, Si ∈ dy} are equal. Moreover, by
the Markov property, P{Si > Si+1, . . . , Si > Sn, Sn ∈ dz|Si = y} = P{S1 < 0, . . . , Sn−i <

0, Sn−i ∈ dz|S0 = y}. Hence we can continue (2.18) to obtain

E[eθSn ;Mn < x] =

n∑
i=0

E[eθSi ;Li ≥ 0, Si < x] ·E[eθSn−i ;Mn−i < 0] .

This formula combined with (2.16), (2.17) and the equations (note that v(z) is left con-
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tinuous for z > 0 and that v(0) = v(0−) = 1)

1 +

∞∑
k=1

E[eθSk ;Lk ≥ 0, Sk < x]

= 1 +

∫
(0,x)

eθz dv(z) = eθxv(x)− θ
∫ x

0

eθzv(z) dz ,

1 +

∞∑
k=1

E[eθSk ;Mk < 0] = θ

∫ ∞
0

e−θzu(z) dz

imply by means of Lemma 2.2 i) for θ > 0 and x > 0

E[eθSn ;Mn < x]

b(an)
→ v(x)eθx

∫ ∞
0

e−θzu(z) dz .

The second statement can be proved using similar arguments.

Proof of Theorem 1.1. By the same arguments that have been used to deduce (2.12)
and (2.13) from (2.5) and (2.6), we infer from (2.14) that

P(Sn ∈ [y, y + ∆), Ln ≥ −x)

b(an)
∼ u(x)

∫ y+∆

y

v(z − x)dz. (2.19)

It remains to rewrite u and v in terms of maxj≥1 Sj and E[τx]. Applying the duality,
we get

v(z) = 1 +

∞∑
k=1

P(Sk < z,Lk ≥ 0)

= 1 +

∞∑
k=1

P
(
Sk < z, k is a (weak ascending) ladder epoch

)
.

Define τ+ = min{k ≥ 1 : Sk ≥ 0}. From the factorization identity, see e.g. Section
XVIII.3 of [16],

1− s = (1−E[sτ0 ])
(

1−E[sτ
+

; τ+ <∞]
)

we infer that
P(τ+ =∞) = 1/E[τ0].

Then

v(z)

E[τ0]
= P(τ+ =∞)

(
1 +

∞∑
k=1

P
(
Sk < z, k is a (weak ascending) ladder epoch

))

= P(τ+ =∞) +

∞∑
k=1

P
(
Sk < z, k is the last (weak ascending) ladder epoch

)
= P

(
max
j≥1

Sj < z

)
. (2.20)

Define
σ(x) := min{k ≥ 1 : χ1 + . . .+ χk > x},

where χi are independent copies of the first strict descending ladder height. Then, by
the Wald identity,

Eσ(x) =
E[τx]

E[τ0]
.

EJP 19 (2014), paper 88.
Page 8/17

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-3426
http://ejp.ejpecp.org/


Local probabilities for conditioned random walks

Furthermore,

Eσ(x) =

∞∑
k=0

P(σ(x) > k) = 1 +

∞∑
k=1

P(χ1 + . . .+ χk ≤ x)

= 1 +

∞∑
l=1

P(Sl ≥ −x, l is a strict descending ladder epoch).

By the duality, for each l ≥ 1,

P(Sl ≥ −x, l is a strict descending ladder epoch) = P(Sl ≥ −x,Ml < 0)

and, recalling the definition of u(x), we finally get

u(x) =
E [τx]

E [τ0]
. (2.21)

Combining (2.19)–(2.21) completes the proof.

3 Local limit theorem for the first exit moment from the positive
semi-axis

3.1 Proof of (1.5) for x = 0

We write in this subsection τ for τ0. Setting λ = 0 in (2.11) and differentiating the
result with respect to t, one can easily get

P(τ > n) =
1

n

n−1∑
k=0

P(τ > k)P(Sn−k > 0).

Hence it follows that

P(τ = n) = P(τ > n− 1)−P(τ > n)

=
1

n− 1

n−2∑
k=0

P(τ > k)P(Sn−1−k > 0)− 1

n

n−1∑
k=0

P(τ > k)P(Sn−k > 0)

=

(
1

n− 1
− 1

n

)
(n− 1)P(τ > n− 1)

+
1

n

(
n−2∑
k=0

P(τ > k)P(Sn−1−k > 0)−
n−1∑
k=0

P(τ > k)P(Sn−k > 0)

)

=
1

n
(P(τ > n− 1)−P(τ > n− 1)P(S1 > 0))

+
1

n

n−2∑
k=0

P(τ > k)(P(Sn−1−k > 0)−P(Sn−k > 0)).

As a result,

P(τ = n) =
1

n
P(τ > n− 1)P(S1 ≤ 0) (3.1)

+
1

n

n−2∑
k=0

P(τ > k) (P(Sn−1−k > 0)−P(Sn−k > 0)) .

By Lemma 2.4,
P(τ > n) ∼ E [τ ]P (X ≥ na) , n→∞.
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Therefore, for any fixed integer A, as n→∞,

1

n
P(τ > n− 1)P(S1 ≤ 0) +

1

n

n−2∑
k=n−A

P(τ > k) (P(Sn−1−k > 0)−P(Sn−k > 0))

∼ E [τ ]
P (X ≥ na)

n

(
1−P(S1 > 0) +

n−2∑
k=n−A

(P(Sn−1−k > 0)−P(Sn−k > 0))

)

∼ E [τ ]
P (X ≥ na)

n
(1−P(SA > 0)).

Since the random walk under consideration has a negative drift, we can select for any
fixed ε > 0 a sufficiently large A to meet the inequality P(SA > 0) ≤ ε. In fact, we can
assume that k ≤ n−A(n)→∞. As a result,

1

n
P(τ > n− 1)P(S1 ≤ 0) +

1

n

n−2∑
k=n−A(n)

P(τ > k) (P(Sn−1−k > 0)−P(Sn−k > 0))

∼ E [τ ]
P (X ≥ na)

n
(1 + o(1)). (3.2)

Now we analyze the difference

P(Si−1 > 0)−P(Si > 0) = P(Si−1 > 0, Si ≤ 0)−P(Si−1 ≤ 0, Si > 0).

Applying Lemma 2.1, we obtain

P(Si−1 > 0, Si ≤ 0) =

∫ 0

−∞
P(Xi ∈ dy)P(Si−1 ∈ (0,−y])

∼ (i− 1)

∫ 0

−∞
P(Xi ∈ dy)

∫ −y
0

b((i− 1)a+ z)dz

= (i− 1)

∫ ∞
0

dzb((i− 1)a+ z)P(Xi ≤ −z).

Since b(x) is almost decreasing, we have∫ ∞
A

dzb((i− 1)a+ z)P(Xi ≤ −z) ≤ Cb((i− 1)a)

∫ ∞
A

P(Xi ≤ −z)dz.

Using long-tailedness, we deduce that, as i→∞,∫ A

0

dzb((i− 1)a+ z)P(Xi ≤ −z) ∼ b((i− 1)a)

∫ A

0

P(Xi ≤ −z)dz.

Hence, letting A→∞, we conclude that

P(Si−1 > 0, Si ≤ 0) ∼ (i− 1)b((i− 1)a)E
[
X−
]
, (3.3)

where X− = max(0,−X). Next, for any ε ∈ (0, a) we have

P(Si−1 ≤ 0, Si > 0) =

∫ ∞
0

P(Xi ∈ dy)P(Si−1 ∈ (−y, 0])

=

∫ (a−ε)i

0

P(Xi ∈ dy)P(Si−1 ∈ (−y, 0])

+

∫ ∞
(a−ε)i

P(Xi ∈ dy)P(Si−1 ∈ (−y, 0]). (3.4)
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Repeating the arguments used to derive (3.3), we obtain, as i→∞,∫ (a−ε)i

0

P(Xi ∈ dy)P(Si−1 ∈ (−y, 0]) ∼ (i− 1)b((i− 1)a)E
[
X+
]
. (3.5)

We split the second integral in (3.4) into three parts∫ ∞
(a−ε)i

P(Xi ∈ dy)P(Si−1 ∈ (−y, 0]) =

∫ ∞
ai+Ai1/κ

P(Xi ∈ dy)P(Si−1 ∈ (−y, 0])

+

∫ ai+Ai1/κ

ai−Ai1/κ
P(Xi ∈ dy)P(Si−1 ∈ (−y, 0])

+

∫ ai−Ai1/κ

(a−ε)i
P(Xi ∈ dy)P(Si−1 ∈ (−y, 0]).

By the insensitivity assumption (1.3), the second integral admits the estimate∫ ai+Ai1/κ

ai−Ai1/κ
P(Xi ∈ dy)P(Si−1 ∈ (−y, 0]) ≤ Cb(ai)2Ai1/κ = o((i− 1)b((i− 1)a)),

while for the first we have

lim
A→∞

lim
i→∞

1

P(X ≥ (i− 1)a)

∫ ∞
ai+Ai1/κ

P(Xi ∈ dy)P(Si−1 ∈ (−y, 0]) = 1.

The evaluation of the third integral requires more delicate arguments based on a
number of results we borrow from [2]. First we note that according to Lemma 6.2 of
[2], the sequence hi := i1/κ is a truncation sequence, see formula (4) in [2] for more
detail. Hence we may apply Lemma 2.5 of the mentioned article to conclude that, as
i→∞,

P(Si > x) = P(Si > x,max
k≤i

Xk ≤ hi)

+ i(1 + o(1))P(Si > x,X1 > hi, max
2≤k≤i

Xk ≤ hi)

uniformly in x. Consequently,∫ ai−Ai1/κ

(a−ε)i
P(Xi ∈ dy)P(Si−1 ∈ (−y, 0])

≤
∫ ai−Ai1/κ

(a−ε)i
P(Xi ∈ dy)P(Si−1 > −y,max

k<i
Xk ≤ hi)

+ i(1 + o(1))

∫ ai−Ai1/κ

(a−ε)i
P(Xi ∈ dy)P(Si−1 > −y,X1 > hi, max

2≤k<i
Xk ≤ hi).

Applying Lemma 7.1 from [2] to the centered random walk Sn + na, we obtain

P(Si−1 > −y,max
k<i

Xk ≤ hi) ≤ C exp

{
− (ai− y)

hi

}
.

Furthermore, using (1.3), one can get, for all sufficiently large i,

b(y)

b(ai)
≤ C

∏
k≤ (ai−y)

hi

b(y + khi))

b(y + (k + 1)hi)
≤ C exp

{
ε

(ai− y)

hi

}
.
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These bounds imply

1

b(ai)

∫ ai−Ai1/κ

(a−ε)i
P(Xi ∈ dy)P(Si−1 > −y,max

k<i
Xk ≤ hi)

≤ C
∫ ai−Ai1/κ

(a−ε)i
exp

{
−(1− ε) (ai− y)

hi

}
dy = O(hi).

It is easy to see that

∫ ai−Ai1/κ

(a−ε)i
P(Xi ∈ dy)P(Si−1 > −y,X1 > hi, max

2≤k<i
Xk ≤ hi)

≤ P(Si > 0, X1 > (a− ε)i,X2 > hi, max
3≤k≤i

Xk ≤ hi).

To bound this probability we apply estimates from [2]. Applying the first display on
page 1958 of [2] we obtain,

P(Si > 0, X1 > (a− ε)i,X2 > hi, max
3≤k≤i

Xk ≤ hi)

≤ o(1/i)P(X2 + · · ·+Xi > 0, X2 > hi, max
3≤k≤i

Xk ≤ hi).

Applying the third display on page 1958 of [2] gives

P(Si > 0, X1 > (a− ε)i,X2 > hi, max
3≤k≤i

Xk ≤ hi)

= (1/β)o(1/i)P(Si > 0, X1 > hi, max
2≤k≤i

Xk ≤ hi) = o(P(Si > 0)/i),

where β = 2−1P(X1 + x > 0) > 0. Noting that (2.1) yields P(Si > 0) ∼ iP(X1 ≥ ai), we
get

∫ ai−Ai1/κ

(a−ε)i
P(Xi ∈ dy)P(Si−1 > −y,X1 > hi, max

2≤k<i
Xk ≤ hi) = o(P(X1 ≥ ai)).

As a result,

P(Si−1 ≤ 0, Si > 0) ∼ (i− 1)b((i− 1)a)E
[
X+
]

+ P(X1 ≥ ai). (3.6)

Combining (3.3) and (3.6), we deduce, as i→∞,

P(Si−1 > 0)−P(Si > 0) ∼ aib(ia)−P (X ≥ ia) .

Then,

1

n

n−A(n)∑
k=0

P(τ > k) (P(Sn−1−k > 0)−P(Sn−k > 0))

∼ 1

n

n−A(n)∑
k=0

P(τ > k) (a(n− k)b((n− k)a)−P (X ≥ (n− k − 1)a)) .
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For the second term we have

− 1

n

n−A(n)∑
k=0

P(τ > k)P (X ≥ (n− k − 1)a)

∼ −P (X ≥ na)

n

A(n)∑
k=0

P(τ > k) +
1

n

n−A(n)∑
k=A(n)

P(τ > k)P (X ≥ (n− k − 1)a)

∼ −EτP (X ≥ na)

n
+

1

n

n−A(n)∑
k=A(n)

P (X ≥ ka)P (X ≥ (n− k − 1)a)

∼ −EτP (X ≥ na)

n
.

In the second equivalence we used the second assertion of Lemma 2.4. In the third
equivalence we used the subexponentiality of the tail of X. This term will be canceled
with (3.2).

Finally, choosing A(n) = hn = n1/κ (here and in what follows we agree to consider
n1/κ as

[
n1/κ], i.e, as a positive integer number) and taking into account (1.3), we get

P(τ = n) =
1

n

n−A(n)∑
k=0

P(τ > k)a(n− k)b((n− k)a) + o

(
P (X ≥ an)

n

)

= ab(na)

A(n)∑
k=0

P(τ > k) +
E [τ ]

n

n−A(n)∑
k=A(n)

P (X ≥ ka) a(n− k)b((n− k)a)

+ o

(
P (X ≥ an)

n

)
.

Using again the estimate (4) from [2], we obtain

E [τ ]

n

n−A(n)∑
k=A(n)

P (X ≥ ka) a(n− k)b((n− k)a) ≤ aE [τ ]

n−A(n)∑
k=A(n)

P (X ≥ ka) b((n− k)a)

= o(P(X ≥ an)/n).

Recalling the condition (1.4), we get the desired result.

3.2 Proof of (1.5) for x > 0

By the total probability formula

P(Tn = n) = P(Tn = n, Sn ≥ −x) + P(τx = n).
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Then decomposing the event {Tn = n, Sn ≥ −x} = ∪n−1
i=0 {τ0 = n − i, Tn = n, Sn ≥ −x}

we obtain

P(τx = n) =

n−1∑
i=0

P(τ0 = n− i)P(Si ≥ −x;Ti = i)−P(Sn ≥ −x;Tn = n)

=

n1/κ∑
i=0

P(τ0 = n− i)P(Si ≥ −x;Ti = i)

+

n−n1/κ∑
i=n1/κ+1

P(τ0 = n− i)P(Si ≥ −x;Ti = i)

+

n∑
i=n−n1/κ+1

P(τ0 = n− i)P(Si ≥ −x;Ti = i)−P(Sn ≥ −x;Tn = n).

Applying (1.5) with x = 0, we get

n1/κ∑
i=0

P(τ0 = n− i)P(Si ≥ −x;Ti = i)

∼

( ∞∑
i=0

P(Si ≥ −x;Ti = i)

)
aE [τ0] b(an) = au(x)E [τ0] b(an) = aE [τx] b(an).

Here we use the following duality arguments in the first equality

P(Si ≥ −x;Ti = i) = P(Si ≥ −x;S1 > Si, . . . , Si−1 > Si)

= P(Si ≥ −x; 0 > Si−1, . . . , 0 > S1)

and (2.21) in the second equality. Recalling (2.13) and taking into account our insensi-
tivity condition (1.3), we conclude that

n∑
i=n−n1/κ+1

P(τ0 = n− i)P(Si ≥ −x;Ti = i)−P(Sn ≥ −x;Tn = n) = o(b(an)).

Finally, since b(x) is subexponential, there exists a positive constant C(x) such that

n−n1/κ∑
i=n1/κ+1

P(τ0 = n− i)P(Si ≥ −x;Ti = i) ∼ C(x)

n−n1/κ∑
i=n1/κ+1

b(ai)b((n− i)a) = o(b(an)).

This completes the proof of (1.5).

4 Proof of Theorem 1.4

For diversity, we give a proof in the lattice case and assume that, as n→∞,

P (X = n) ∼ l(n)n−β , β > 2.

Fix an ε ∈ (0, 1/2) and introduce

η := min{k ≥ 1 : Xk ≥ ε(an+ y)}.

Then for y > −x

P(Sn = y, τx > n) = P(Sn = y, η > n, τx > n) +

n∑
k=1

P(Sn = y, η = k, τx > n).
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By the Markov property,

P(Sn = y, η = k, τx > n) =

∞∑
z=−x+1

P(Sk−1 = z, η > k − 1, τx > k − 1)

×
∑

w≥ε(an+y)

P(Xk = w)P(Sn−k = y, τx > n− k|S0 = z + w). (4.1)

Note that

P(Sn = y, η = k, τx > n)

≤ sup
w≥ε(an+y)

P(X = w)

∞∑
z=−x+1

P(Sk−1 = z, τx > k − 1)
∑

w≥ε(an+y)

P(Sn−k = y − z − w)

≤ Cε−βP(X = an+ y)P(τx > k − 1) (4.2)

uniformly in k and y.
We next investigate the behavior of P(Sn = y, η = k, τx > n) for every fixed k. Define

A(y) = {w : |w − an− y| ≤ ε(an+ y)},
B(y) = {w : w ≥ ε(an+ y) and w /∈ A(y)}.

It is not difficult to see that, for every fixed z and all sufficiently large n,∑
w∈B(y)

P(Xk = w)P(Sn−k = y, τx > n− k|S0 = z + w)

≤ Cε−βP(X = an+ y)
∑

w∈B(y)

P(Sn−k = y − w − z)

≤ Cε−βP(X = an+ y)P(|Sn−k − a(n− k)| > εn).

Applying the law of large numbers, we conclude that, uniformly in y,∑
w∈B(y)

P(Xk = w)P(Sn−k = y, τx > n− k|S0 = z + w) = o(P(X = an+ y)). (4.3)

Since P(X = n) is regularly varying with index −β, we have

lim sup
n→∞

sup
w∈A(y)

∣∣∣∣ P(X = w)

P(X = an+ y)
− 1

∣∣∣∣ ≤ εβ . (4.4)

Fix some sequence yn → ∞. Inverting the time (S̃i := X̃1 + . . . + X̃i, where X̃j :=

−Xn−k−j+1 for j = 1, 2, . . . , n− k), we obtain, for y ≥ yn,

∑
w∈A(y)

P(Sn−k = y, τx > n− k|S0 = z + w)

=
∑

w∈A(y)

P(S̃n−k = y − w − z, min
j≤n−k

S̃j ≥ −x− y)

≥
∑

w∈A(y)

P(S̃n−k = y − w − z)−P( min
j≤n−k

S̃j < −yn).

Since S̃j has a positive drift, P(minj≤n−k S̃j < −yn) → 0 as n → ∞. Hence, recalling
the definition of A(y) and using the law of large numbers, we see that∑

w∈A(y)

P(Sn−k = y, τx > n− k|S0 = z + w)→ 1
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uniformly in y ≥ yn. Combining this relation with (4.3) and (4.4), we obtain

lim sup
n→∞

∣∣∣∣P(Sn = y, η = k, τx > n)

P(X = an+ y)
−P(τx > k − 1)

∣∣∣∣ ≤ εβ .
From this pointwise convergence and (4.2) we infer that

lim
ε→0

lim sup
n→∞

∣∣∣∣∣
n∑
k=1

P(Sn = y, η = k, τx > n)

P(X = an+ y)
−E [τx]

∣∣∣∣∣ = 0 (4.5)

uniformly in y ≥ yn. Thus, it remains to consider P(Sn = y, η > n, τx > n). Here
it suffices to apply one of the Fuk-Nagaev inequalities, see Theorem 1.2 [20] and its
proof,

P(Sn = y, η > n, τx > n) ≤ P(Sn ≥ y, η > n) ≤
(

e2nE [|X|κ]

εκ−1(an+ y)κ

)1/2ε

.

Choosing ε sufficiently small, we conclude that

P(Sn = y, η > n, τx > n) = o(P(X = an+ y)). (4.6)

Combining (4.5) and (4.6), we obtain (1.6).
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