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Sum of arbitrarily dependent random variables
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Abstract

In many classic problems of asymptotic analysis, it appears that the scaled average
of a sequence of F -distributed random variables converges to G-distributed limit in
some sense of convergence. In this paper, we look at the classic convergence prob-
lems from a novel perspective: we aim to characterize all possible limits of the sum
of a sequence of random variables under different choices of dependence structure.
We show that under general tail conditions on two given distributions F and G, there
always exists a sequence of F -distributed random variables such that the scaled av-
erage of the sequence converges to a G-distributed limit almost surely. We construct
such a sequence of random variables via a structure of conditional independence.
The results in this paper suggest that with the common marginal distribution fixed
and dependence structure unspecified, the distribution of the sum of a sequence of
random variables can be asymptotically of any shape.
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1 Introduction

Consider a convergence problem of the following type:∑n
i=1Xi − an

bn
→ X in some sense of convergence as n→∞, (1.1)

where X, Xi, i ∈ N are random variables, and an, bn, n ∈ N are real numbers, typically
with bn → ∞. Convergence problems of type (1.1) are arguably the most classic prob-
lems in probability, dating back to the first time probability theory was established in
Ars Conjectandi. The laws of large numbers and central limit theorems all belong to the
type of (1.1).

The classic setting for (1.1) consists of three key elements:

(i) the marginal distributions of Xi, i ∈ N, typically chosen as identical, say F , with
some conditions;
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(ii) the dependence structure in the sequence {Xi, i ∈ N}, typically chosen as inde-
pendence, conditional independence, time series models (AR, MA, etc...), or other
specific structures;

(iii) the limiting random variable X or its distribution, and the type of convergence.

Note that the real numbers bn and an, however, are chosen for normalization purpose
when the conditions in (i) and (ii) are given; hence we do not emphasize their influence
on the convergence in (1.1). In the following, we briefly recall some of the basic exam-
ples of (1.1). Our inspiration comes from those rather simple examples, and the reader
is kindly advised to bear the triviality for the moment.

(a) The most fundamental example in probability theory would be the Strong Law of
Large Numbers: in (i) we set F to have finite mean; in (ii) we set the dependence
structure as independence; with normalizing constants bn = n and an = 0, in (iii)
we obtain that the almost sure (a.s.) limit is the mean of F .

(b) From the viewpoint of statistics, the most prominent example would probably be the
Central Limit Theorem: in (i) we set F to have finite variance σ2; in (ii) we set the
dependence structure as independence; with normalizing constants bn = σ

√
n and

an = nE[X1], in (iii) we obtain that the weak limit is a standard normal distribution.

(c) Another example, appearing extensively in Bayesian statistical inference, is about
the conditional independence: in (i) we set F to have a finite mean; in (ii), we
introduce a random variable Θ, and conditional on Θ = θ ∈ R, let Xi, i ∈ N be iid
with distribution Fθ; with normalizing constants bn = n and an = 0, in (iii) we obtain
that the a.s. limit is a random variable µΘ, where µθ is the mean of Fθ, θ ∈ R.

(d) The last example is about stable distributions: in (i) we set F to have a tail order α 6
2, which implies E[|X1|α+ε] = ∞ and E[|X1|α−ε] < ∞ for all ε > 0; in (ii) we set the
dependence structure as independence; with normalizing constants bn = n1/α and
an = nE[X1]I{α>1}, in (iii) we obtain that the weak limit is an α-stable distribution.
This is a fundamental result in the study of stable distributions, with the Central
Limit Theorem as a special case. Moreover, and more importantly, we obtain that
if the dependence structure in (ii) is chosen as iid, then the limit in (iii) has to be
α-stable no matter how we choose F in (i).

The reader might have noticed that examples (a)-(c) have a lot in common: we fix (i)
and (ii), and then obtain (iii). In example (d), more is studied: when the dependence
in (ii) is fixed as independence, we can determine what distribution in (iii) is a possible
limit. This can be interpreted as a compatibility problem of the choices in (ii) and (iii).
We remark that if the sum of the sequence in (1.1) is replaced by the maximum of
the sequence, it leads to the study of extreme value distributions and their domains of
attraction; see e.g. Chapter 1 of de Haan and Ferreira (2006).

The above discussion motivates us to look at the convergence problem in (1.1) from
another perspective: what if (i) and (iii) are given, and (ii) is unknown (a typical setting
called uncertain dependence)? That is, consider the compatibility problem of (i) and
(iii). Let us phrase the problem precisely below.
(Q) For univariate distributions F and G, determine whether there exist a sequence of
random variables {Xi, i ∈ N}, Xi ∼ F , a random variable X ∼ G, and real sequences
an ∈ R, bn ∈ R+, n ∈ N such that

Sn − an
bn

→ X in some sense of convergence as n→∞, (1.2)
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where Sn =
∑n
i=1Xi.

For instance, if G is chosen as degenerate, then F can be any distribution with finite
α-moment, α > 0, with dependence structure in (ii) being independence and bn chosen
as max{n1/α+ε, n}, for some ε > 0; if G is chosen as a normal distribution, then F can
be any distribution with finite second moment, with dependence structure in (ii) being
independence and bn chosen as bn1/2 for some b ∈ R; for any G, F can be chosen as
G itself, with dependence structure in (ii) being comonotonicity, i.e. X1, X2, . . . are a.s.
identical, and bn = n.

Note that in question (Q), only the shape of the distributions F and G matters to
the compatibility, not the location or scale of them. Moreover, note that in all the above
examples (a)-(d), typically only moment conditions or tail conditions of F affect the limit
in (iii). Based on such an observation, one might naturally expect that the answer to
(Q) is generally positive, with only conditions on the moments or tail-behavior of F and
G. In this paper, we will show that this is indeed true.

Question (Q) concerns a fundamental question in multivariate dependence theory.
Needless to say dependence structures are of crucial importance in statistical analysis;
great challenges exist in both the modeling and the statistical inference of dependence
structures. More specifically, Question (Q) belongs in the area of distributions with
fixed margins, that is, the study on the probabilistic properties of a random vector
X := (X1, . . . , Xn) with F1, . . . , Fn fixed as its marginal distributions, while the depen-
dence structure of X can vary. Tchen (1980) studied inequalities for the joint distribu-
tion of X in the case of n = 2, which originated from the seminal work of Hoeffding
(1940) and Fréchet (1951) in this field. In general, the range of functionals of X with
varying dependence structure is still an open question; only limited explicit results are
available in the literature. We refer to Joe (1997) for many unsolved problems on dis-
tributions with fixed margins. For instance, Chaganty and Joe (2006) studied the range
for correlation matrices of X when F1, . . . , Fn are chosen as Bernoulli random variables;
even in that rather simple case, a full characterization of the correlation matrices is far
away from being clear. A collection of research developments in the area of distri-
butions with fixed margins can be found in DallŠAglio et al. (1991) and Cuadras and
Fortiana (2002). Research in this area often overlaps with the study of dependence
concepts and copulas; the interested reader is referred to Joe (1997) and Nelsen (2006)
for an overview on dependence concepts, copulas and their relation to problems of
distributions with fixed margins.

A particularly interesting and important topic in this area, also relevant to this paper,
is the probabilistic behavior of Sn := X1 + · · · + Xn. Makarov (1981) and Rüschendorf
(1982) considered the distribution function FSn

of Sn for n = 2 and obtained sharp
bounds on FSn

. Later developments of bounds on FSn
for n > 3 can be found in Em-

brechts and Puccetti (2006), Wang and Wang (2011), and Wang et al. (2013), with no
universal solution achieved yet. An overview of this topic with its connection to mass-
transportation theory is available in Rüschendorf (2013). Characterizing the set of
all possible distributions of Sn stands even more challenging and remains open; see
Bernard et al. (2014) for instance. The study of question (Q) addresses the set of possi-
ble distributions of Sn after scaling, in an asymptotic manner as n→∞. Given the rela-
tively large number of unsolved problems and considerable mathematical difficulties in
this area, relevant work has mainly focused on cases of finite n. No existing research
on the asymptotic analysis of questions of type (Q) is available up to our knowledge.
Note that in classic time series analysis, some linear or other parametric structures are
typically assumed for the sequence {Xi, i ∈ N}, and hence research in that direction is
mathematically different from question (Q).

In this paper, we give an answer to question (Q). In Section 2, we show that a
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stronger version of (Q),

(Q’) there exist Xi, i ∈ N, Xi ∼ F , XG ∼ G, some a ∈ R and b ∈ R+, s.t.
Sn
bn
−a a.s.→ XG,

holds for all non-degenerate distributions F with finite mean and bounded distributions
G, and hence the answer to (Q) is positive with a broad generality. The dependence
structure for (Q’) in this paper is a special construction of conditional independence. In
Section 3 we show that conditions on the asymptotic behavior of F and G are required
for (Q’) to hold when G is unbounded. We obtain a sufficient and necessary condition
for (Q’) when F is regular varying, and some sufficient conditions for (Q’) for general
distributions F and G. In Section 4 we draw our conclusions and highlight some future
research directions. We hope that the results in this paper would clearly deliver the
following message:

With marginal distributions of a sequence given, and its dependence structure
unspecified, the asymptotic distribution of the sum of the sequence can be of

arbitrary shape.

In other words, even when marginal distributions are accurate, a misspecified depen-
dence assumption could lead to a completely problematic asymptotic behavior in a clas-
sic problem of statistical analysis.

A direct application of the main results in this paper can be found in Quantitative
Risk Management, where statistical inference with dependence uncertainty is an im-
portant issue to consider; see McNeil et al. (2005). For instance, in modeling oper-
ational risk, individual risks (risks arising from different types of business lines) are
typically non-Gaussian distributed; modeling and statistical inference are usually quite
reliable for each of the individual risks. However, there is often not enough joint data
to make reliable inference for the (non-Gaussian) dependence structure between indi-
vidual risks. One may use conservative assumptions on the dependence structure to
model risk aggregation (sum) based on marginal data, and find corresponding quanti-
ties for capital requirements or stress testing purposes. However, it is well-known that
some commonly used “conservative dependence structures" such as the comonotonic-
ity is not meaningful in order to obtain a conservative estimate of a quantile (called a
Value-at-Risk in Finance) of Sn; we refer to Embrechts et al. (2013) and Embrechts et
al. (2014) for detailed illustrations on this topic. The results in this paper show that
such conservative modeling of risk aggregation has to consider all possible shapes of
the distribution of the sum, when the number of individual risks is large. For the pur-
pose of the current paper, we will focus on the theoretical aspects of the underlying
problem; applications will be left for future discussion.

Throughout the paper, we consider a standard atomless probability space (Ω,A,P).
In a standard atomless probability space, there exist random vectors with any distri-
bution. We denote by F the set of all univariate distributions on R, and by Fp the set
of univariate distributions on R with finite p-th moment, p ∈ (0,∞]. For simplicity, for
any distribution F , we use XF for an F -distributed random variable. We denote the
pseudo-inverse function of any non-decreasing function F by F−1, that is

F−1(t) = inf{x ∈ R : F (x) > t}, t ∈ (0, 1], and F−1(0) = sup{x ∈ R : F (x) = 0}.

We also denote the essential supremum of a random variable X by sup(X), i.e.

sup(X) = inf{x ∈ R : P(X 6 x) = 1}.

To be consistent with the laws of large numbers, and for some technical ease, in this
paper we focus on the cases when F has finite mean.
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2 Sum of arbitrarily dependent random variables

First, we formally define a property considered in question (Q’), which is the main
objective of this paper.

Definition 2.1. F ∈ F is said to be shape-compatible with G ∈ F if there exist a
sequence of random variables {Xi ∼ F, i ∈ N}, a random variable XG ∼ G, and real
numbers a ∈ R and b ∈ R+, such that as n→∞,

Sn
bn
− a a.s.→ XG, (2.1)

where and throughout the rest of the paper, Sn =
∑n
i=1Xi. We denote by F ↪→ G if F is

shape-compatible with to G. We say F ↪→ G at rate b, where b is given in (2.1).

In the above definition, we call F an initial distribution, and G a target distribution.
It is clear that if F ↪→ G then (Q) in the introduction also holds true for F and G. By
definition, the property F ↪→ G is invariant under linear transformation. In this section,
we assume the initial distribution F is has finite mean. The main result in this section
addresses the generality of (2.1), summarized in the following theorem.

Theorem 2.2. Suppose F ∈ F1 is non-degenerate. Then F ↪→ G for all bounded
distributions G.

We proceed to prove this theorem step by step. We first give a useful lemma. In
many places below, we will assume the means of F and G are equal without loss of
generality, so that the normalizing constant a in (2.1) can be set as zero.

Lemma 2.3. For any F ∈ F1 and G ∈ F , if F ↪→ G at rate b, then F ↪→ G at rate c for
all 0 < c 6 b.

Proof. By definition, there exist Xi ∼ F, i ∈ N, XG ∼ G, a ∈ R and b ∈ R+ such that∑n
i=1Xi

bn
− a a.s.→ XG.

We can assume the means of F and G are both zero (implying a = 0). We will construct
a sequence {Yi, i ∈ N} such that the averaged partial sum converges a.s. to XG at the
rate c 6 b. The idea is to show that part of the sequence {Yi, i ∈ N} can be treated
as zero, and the rest part can be taken as {Xi, i ∈ N}. Denote d = b/c > 1, and let
di = bdic > i, i ∈ N. Also denote for n ∈ N,

t(n) = #{dj 6 n : j ∈ N} 6 n.

It is easy to see that

lim
n→∞

t(n)

n
=

1

d
=
c

b
.

Let Zi, i ∈ N be iid random variables with distribution F . Let

Yi =

{
Xj i ∈ {dj 6 n : j ∈ N};

Zi−t(i) otherwise.

We can check ∑n
i=1 Yi
cn

=

∑t(n)
i=1 Xi

cn
+

∑n−t(n)
i=1 Zi
cn

.

By the law of large numebrs, we have

lim
n→∞

∑n−t(n)
i=1 Zi
cn

= 0 a.s.
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Therefore, we have∑n
i=1 Yi
cn

=

∑t(n)
i=1 Xi

cn
+

∑n−t(n)
i=1 Zi
cn

=

∑t(n)
i=1 Xi

t(n)b
+

∑n−t(n)
i=1 Zi
cn

a.s.→ XG.

Since each of Xi, Zi, i ∈ N is distributed as F , Yi is also distributed as F , i ∈ N. The
sequence {Yi, i ∈ N} satisfies ∑n

i=1 Yi
cn

a.s.→ XG,

i.e. F ↪→ G at rate c.

The following lemma establishes the shapability from F to any two-point distribu-
tions. Part (a) is crucial to the proof of the main theorem in this section, and part (b)
will be used later in Section 3.

Lemma 2.4. Suppose F ∈ F1 is non-degenerate, then F ↪→ G for all two-point distri-
butions. Moreover, if the means of F,G are both zero, then

(a) F ↪→ G at rate c = E[|XF |]/(2 sup |XG|);

(b) if F is also a two-point distribution, on {r1, r2}, r1 < r2, and G is supported on
{q1, q2}, q1 < q2, then F ↪→ G at rate c = min{r1/q1, r2/q2}.

Proof. Without loss of generality we assume F and G both have mean zero. Let q1 and
q2, with q1 < q2, be the two points at which G is supported, that is, for some p ∈ (0, 1),
P(XG = q1) = p, P(XG = q2) = 1 − p and q1p + q2(1 − p) = 0. It is immediate that
q2/q1 = p/(p− 1).

Denote by Fp the distribution of F−1(Up), where Up ∼ U[p, 1] and by Gp the dis-
tribution of F−1(Vp), where Vp ∼ U[0, p]. Now let Xi, i ∈ N be iid random variables
distributed as Fp and Yi, i ∈ N be iid random variables distributed as Gp. It is easy to
see that

E[X1] =
1

1− p
E[(XF − F−1(p))+] + F−1(p),

E[Y1] = −1

p
E[(F−1(p)−XF )+] + F−1(p),

and

(1− p)E[X1] + pE[Y1] = E[XF ] = 0.

It follows that E[X1]/E[Y1] = p/(p − 1) = q2/q1. Also note that E[X1] > 0 and E[Y1] < 0,
since F is not degenerate. Let A be a random event, with P(A) = 1− p, independent of
{Xi, i ∈ N} and {Yi i ∈ N}. Denote

Zi = IAXi + IAcYi.

Take

b =
E[X1]

q2
=
E[Y1]

q1
,

and by the law of large numbers we have∑n
i=1 Zi
bn

= IA

∑n
i=1Xi

n

q2

E[X1]
+ IAc

∑n
i=1 Yi
n

q1

E[Y1]

a.s.→ IAq2 + IAcq1
d
= G.

Thus F ↪→ G at rate b. Further,
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(a) if p > F (0), then E[X1] > E[(XF )+], and b = E[X1]/q2 > E[(XF )+]/q2. If p < F (0),
then E[Y1] 6 E[(XF )−], and b = E[Y1]/q1 > −E[(XF )−]/|q1|. Note that

E[(XF )+]− E[(XF )−] = E[|XF |]

and

E[(XF )+] + E[(XF )−] = E[XF ] = 0.

Thus,

E[(XF )+] = −E[(XF )−] =
E[|XF |]

2
.

In summary, b > E[|XF |]/(2 max{q2, |q1|}) = E[|XF |]/(2 sup |XG|) = c, and hence
F ↪→ G at rate c.

(b) When F is also a two-point distribution, it is obvious that we have either X1 = r2 or
Y1 = r1. In either cases, b = r2/q2 or b = r1/q1. Hence, b > min{r2/q2, r1/q1} = c and
F ↪→ G at rate c.

The next lemma states that if F and G can both be decomposed into a mixture of a
collection of distributions with mean zero, say Fa, Ga, a ∈ A with Fa ↪→ Ga for each a,
then F ↪→ G. This would be the key step of proving Theorem 2.2.

Lemma 2.5. Suppose that A is a non-empty set, distributions Fa ∈ F1 have the same
mean for a ∈ A, and distributions Ga ∈ F1 have the same mean for a ∈ A. Suppose
Fa ↪→ Ga at rate ca > ε for each a ∈ A and some ε > 0. Let H be any probability measure
on A, then F :=

∫
A
FadH(a) and G :=

∫
A
GadH(a) are distributions and F ↪→ G at rate

ε.

Proof. It is obvious that F andG are distributions. Without loss of generality we assume
Fa and Ga, a ∈ A all have the same mean. By Lemma 2.3, for each a ∈ A, Fa ↪→ Ga
at rate ε, and thus there exist X(a)

i ∼ Fa, i ∈ N and W (a) ∼ Ga such that T (a)
n :=

1
εn

∑n
i=1X

(a)
i

a.s.→ W (a), as n→∞. Let Y : Ω→ A be a random variable with distribution
H. Let Zi, i ∈ N be a random variable defined as

Zi(ω) = (X
(Y )
i )(ω) = X

(Y (ω))
i (ω), ω ∈ Ω,

for which we write Zi = X
(Y )
i . Using the same notation, let W = W (Y ) and Tn =

1
εn

∑n
i=1 Zi. It follows that

P(Zi 6 t) =

∫
A

P(X
(a)
i 6 t)dH(a) =

∫
A

Fa(t)dH(a) = F (t), t ∈ R,

P(W 6 t) =

∫
A

P(W (a) 6 t)dH(a) =

∫
A

Ga(t)dH(a) = G(t), t ∈ R,

and

P
(

lim
n→∞

Tn = W
)

=

∫
A

P
(

lim
n→∞

T (a)
n = W (a)

)
dH(a) =

∫
A

dH(a) = 1.

Thus we obtain F ↪→ G.

Remark 2.6. If we choose Fa = F , then we obtain that the set of distributions with
mean zero and with which F are shape-compatible is a convex set.
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The following lemma gives a representation of any distributions with finite mean
as a mixture of two-point distributions. This lemma together with Lemmas 2.4-2.5 will
eventually lead to a complete proof of Theorem 2.2.

Lemma 2.7. Each distribution F with mean µ has the following representation:

F =

∫ 1

0

Fada,

where Fa, a ∈ (0, 1) are two-point (not necessarily distinct) distributions with mean µ.

Proof. We show this lemma by construction. We first assume P(XF = µ) = 0. Let

HF (s) =

∫ s

0

(F−1(t)− µ)dt, s ∈ [0, 1], (2.2)

and denote ν = F (µ). It is easy to see that the function HF is bounded, continuous on
[0, 1], strictly decreasing on [0, ν], strictly increasing on [ν, 1], HF (0) = HF (1) = 0, and
the minimum value of H(s) is attained at c := HF (ν) < 0. Moreover, HF is a convex
function and hence is almost everywhere (a.e.) differentiable on [0, 1]. For each s ∈ [c, 0],
define

AF : [c, 1]→ [0, ν], AF (HF (s)) = s, s ∈ [0, ν], (2.3)

and

BF : [c, 1]→ [ν, 1], BF (HF (s)) = s, s ∈ [ν, 1], (2.4)

i.e. AF and BF are the inverse functions of HF on the two intervals [0, ν] and [ν, 1],
respectively. Note that since HF is continuous and convex, and has an a.e. non-zero
derivative, AF and BF are continuous and a.e. differentiable on [c, 0]. Let

KF (s) =


1 s > 0,

BF (s)−AF (s) c 6 s < 0,

0 s < c.

(2.5)

KF (s) is continuous, increasing, KF (c) = 0, and KF (0) = 1, hence it is a continuous
distribution function on [c, 0]. For s ∈ (c, 0), define

W1(s) = F−1(AF (s)), W2(s) = F−1(BF (s)),

and

uF (s) =
µ−W1(s)

W2(s)−W1(s)
.

It is easy to see that uF (s) ∈ [0, 1] for s ∈ (c, 0).

Now, for s ∈ (c, 0), let Gs be a two-point distribution on {W1(s),W2(s)} with proba-
bility {1− uF (s), uF (s)} respectively. We can check that the mean of Gs is µ:

W1(s)(1− u(s)) +W2(s)u(s) = W1(s)
W2(s)− µ

W2(s)−W1(s)
+W2(s)

µ−W1(s)

W2(s)−W1(s)
= µ.

Let

G =

∫ 0

c

GsdKF (s).
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We can check for x 6 µ,

G(x) =

∫ 1

c

Gs(x)dKF (s)

=

∫ 0

c

(1− u(s))I{W1(s)6x}dKF (s)

=

∫ 0

c

(1− u(s))I{W1(s)6x}dKF (s)

=

∫ 0

c

W2(s)− µ
W2(s)−W1(s)

I{W1(s)6x}d(BF (s)−AF (s)).

Since BF and AF are the inverse functions of HF , we have a.e.

dBF (s) =
1

H ′F (BF (s))
ds =

1

W2(s)− µ
ds,

and

dAF (s) =
1

H ′F (AF (s))
ds =

1

W1(s)− µ
ds.

Thus

G(x) =

∫ 0

c

W2(s)− µ
W2(s)−W1(s)

I{W1(s)6x}
W1(s)−W2(s)

(W2(s)− µ)(W1(s)− µ)
ds

=

∫ 0

c

1

µ−W1(s)
I{W1(s)6x}ds

= −
∫ ν

0

1

µ− F−1(AF (HF (t)))
I{W1(HF (t))6x}dHF (t)

= −
∫ ν

0

1

µ− F−1(t)
(F−1(t)− µ)I{F−1(t)6x}dt

= F (x).

Similarly, we can show that G(x) = F (x) for x > µ. Thus,

F =

∫ 0

c

GsdKF (s).

Let Fa = GK−1
F (a) for a ∈ (0, 1). Through substituting s by K−1

F (a), we obtain

F =

∫ 1

0

Fada.

Finally we comment on the case P(XF = µ) = p > 0. If p = 1 then we simply take
Fa = Pµ, where Pµ is the degenerate distribution at µ. If p < 1, then the distribution of
XF |XF 6= µ is well-defined; we denoted it by F̂ . Note that F̂ has a representation

F̂ =

∫ 1

0

F̂ada,

where F̂a, a ∈ (0, 1) are two-point distributions with mean µ. By taking Fa = F̂(a−p)/(1−p)
for a ∈ (p, 1) and Fa = Pµ for a ∈ (0, p], we obtain the representation of F as

F = (1− p)F̂ + pPµ =

∫ 1

p

F̂(a−p)/(1−p)da+

∫ p

0

Pµda =

∫ 1

0

Fada.

The proof is complete.
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Now we are finally ready to complete the proof of Theorem 2.2.

Proof of Theorem 2.2. Without loss of generality we assume the means of F and G are
both zero. By Lemma 2.7, G has representation

G =

∫ 1

0

Gada,

where Ga, a ∈ (0, 1) are two-point distributions with mean zero. Since the support
of Ga is bounded by the support of G, by Lemma 2.4, we have that F ↪→ Ga at rate
E[|XF |]/(2 sup(XG)) > 0. Lemma 2.5 and the representation of G lead to the conclusion
that F ↪→ G at rate E[|XF |]/(2 sup(XG)).

The constructed dependence structure among X1, . . . , Xn in the proof of Lemmas
2.4 and 2.5 can be explained as follows. The probability space is divided into infinitely
many subsets. The random variables Xi, i ∈ N are conditionally independent on each of
the subset, with 1

bn

∑n
i=1Xi converging to a point in the support of G; more specifically,

the limiting points appear in pair through the construction in Lemma 2.7. We remark
that the dependence structure which accommodates F ↪→ G is not unique in general;
for example the conditional independence can be replaced by any type of conditional
negative dependence, as long as 1

bn

∑n
i=1Xi converges a.s. to its mean conditionally on

the corresponding subset of the probability space.

Remark 2.8. From the proofs, we can see that Theorem 2.2 still holds if the a.s. con-
vergence in Definition 2.1 is replaced by an L1 convergence, since the convergence in
our proof is obtained by the Strong Law of Large Numbers. The L1 convergence how-
ever highly relies on the fact that we restrict F to have finite mean. To allow a more
general framework for future study - especially to allow F to have infinite mean - we
frame our discussion in terms of a.s. convergence in this paper.

3 Unbounded target distributions

3.1 Necessary conditions

In this section we consider the case when G ∈ F1 has unbounded support. Without
loss of generality we can assume the means of F and G are the same in our discussion.

As we have seen above, shapability is obtained unconditionally for bounded target
distributions. One might expect a similar generality for unbounded target distributions.
We will first show that some conditions on the asymptotic behavior of F and G are nec-
essary for F ↪→ G to hold. We first recall the definition of tail indices of a distribution.

Definition 3.1. The right tail-index of a distribution F is defined as

α+
F = sup{p ∈ [0,∞) : E[(XF )p+] <∞},

and the left tail-index of a distribution F is defined as

α−F = sup{p ∈ [0,∞) : E[(−XF )p+] <∞}.

Note that here we do not assume that F is regular varying, hence the notion of
the tail indices is slightly different from that in classic extreme value theory (see, for
example, de Haan and Ferreira, 2006, Chapter 3). When F is regular varying, our
definition coincides with the traditional definition used in extreme value theory.

Lemma 3.2. Suppose F,G ∈ F1 and F ↪→ G, then α+
F 6 α+

G and α−F 6 α−G.
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Proof. By F ↪→ G, there exist Xi ∼ F , i ∈ N, XG ∼ G, a ∈ R and b ∈ R+ such that∑n
i=1Xi

bn
− a a.s.→ XG.

The case when α+
F = 1 is trivial since α+

G > 1 for all G ∈ F1; we assume αF > 1 in the
following. For any 1 < α < αF , we have by Fatou’s lemma,

|(XG)+|α 6 lim inf
n→∞

∣∣∣∣∣ (
∑n
i=1Xi)+

bn

∣∣∣∣∣
α

6 lim inf
n→∞

n∑
i=1

∣∣∣∣ (Xi)+

bn

∣∣∣∣
α

=
1

b
|(XF )+|α <∞.

This shows E[(XG)α+] < ∞ for all 1 < α < α+
F ; thus we have α+

G > α+
F . The case for

α−G > α−F is obtained by symmetry.

Lemma 3.2 tells us that for F ↪→ G it is necessary for F to have a relatively heavier
tail. This can be characterized more precisely using the tail integrals of F−1 and G−1.
Denote by

ΦF (t) =

∫ 1

t

F−1(s)ds, Φ̄F (t) =

∫ t

0

F−1(s)ds, t ∈ [0, 1],

for any distribution F ∈ F1.

Lemma 3.3. Suppose F,G ∈ F1 and F ↪→ G, then

lim sup
t→1

ΦG(t)

ΦF (t)
<∞, (3.1)

and

lim sup
t→0

Φ̄G(t)

Φ̄F (t)
<∞, (3.2)

Proof. We only show (3.1). Let Xi ∼ F , i ∈ N, XG ∼ G and b ∈ R+ such that

1

bn

n∑
i=1

Xi
a.s.→ XG,

and let Fn be the distribution function of 1
n

∑n
i=1Xi. Note that

1

n

n∑
i=1

Xi ≺cx X1,

where ≺cx stands for the convex order (see Shaked and Shanthikumar, 2007, Theorem
3.A.36 for this simple fact). By the consistency of Φ(·) with convex order, we have that
ΦFn

(t) 6 ΦF (t); see Theorem 3.A.5 of Shaked and Shanthikumar (2007). It follows from
1
bn

∑n
i=1Xi

a.s.→ XG and Fatou’s lemma that

lim sup
t→1

ΦG(t)

ΦFn
(t)

6 b,

and hence (3.1) follows.

In the following we show that for F or G being a regular varying distribution, (3.1)-
(3.2) can be written as a ratio between F−1(t) and G−1(t). We denote by L the set of
regular varying distributions F with tail indices less than one, i.e. there exist α, β ∈
(0, 1), such that F satisfies that as t→ 0,

F−1(t) ∼ −t−αL1(1/t),
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and as t→ 1,

F−1(t) ∼ (1− t)−βL2(1/(1− t)),

where L1, L2 are two slowly varying functions (see de Haan and Ferreira, 2006, Section
1.2).

Lemma 3.4. Suppose F ∈ L and F ↪→ G, then

lim sup
t→1

G−1(t)

F−1(t)
<∞, (3.3)

and

lim sup
t→0

G−1(t)

F−1(t)
<∞, (3.4)

Proof. We only show (3.3). Suppose

F−1(t) ∼ (1− t)−βL(t)

where L1 is a slowly varying function, and β ∈ (0, 1). Let Xi ∼ F , i ∈ N, XG ∼ G, and
b ∈ R+ such that

1

bn

n∑
i=1

Xi
a.s.→ XG,

and let Fn be the distribution function of 1
n

∑n
i=1Xi. Similar arguments as in the proof

of Lemma 3.3 lead to

F−1
n (t) 6

1

1− t
ΦFn

(t) 6
1

1− t
ΦF (t).

By Karamata’s Theorem (see de Haan and Ferreira, 2006, Theorem B.1.5), we have

lim
t→1

1
1−tΦF (t)

F−1(t)
=

β

β − 1
.

It follows from 1
bn

∑n
i=1Xi

a.s.→ XG that

lim sup
t→1

G−1(t)

F−1
n (t)

<∞,

and hence

lim sup
t→1

G−1(t)

F−1(t)
=

β

β − 1
lim sup
t→1

G−1(t)
1

1−tΦF (t)
6

β

β − 1
lim sup
t→1

G−1(t)

F−1
n (t)

<∞.

Note that in the above lemma we did not assume G is also regular varying. If we
assume that F,G ∈ L, then (3.3)-(3.4) are immediately equivalent to (3.1)-(3.2) by Kara-
mata’s theorem.

In the next section, we show that (3.3)-(3.4) turn out to be also sufficient for F ↪→ G

for regular varying F .

3.2 Regular varying distributions

By Lemma 2.7, we can find the representations for F and G:

F =

∫ 1

0

Fada, and G =

∫ 1

0

Gada,
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where Fa, Ga, a ∈ (0, 1) are two-point distributions with the same mean. Assume
P(XF = E[XF ]) = 0 for the moment. It is clear that Fa ↪→ Ga by Lemma 2.4 since
Fa and Ga are both two-point distributions for each a. Hence, to establish F ↪→ G one
needs to control the rate of Fa ↪→ Ga for each a. To this consideration, it suffices to
have

lim sup
a→1

sup
t∈[0,1]

G−1
a (t)

F−1
a (t)

<∞. (3.5)

Note that both F−1
a and G−1

a only take two values, hence t in (3.5) can be chosen as t = 0

and t = 1. Also note that for c < 1, Ga, a ∈ [0, c] has bounded support, and therefore we
have that

1

1− c

∫ c

0

Fada ↪→ 1

1− c

∫ c

0

Gada (3.6)

always holds at a positive rate (Theorem 2.2), as long as 1
1−c

∫ c
0
Fada is not degenerate.

Hence, we only need to control the rate in Fa ↪→ Ga asymptotically as a→ 1. Thus, the
case when P(XF = E[XF ]) > 0 would not be problematic, and we keep the assumption
P(XF = E[XF ]) = 0 in this section for the ease of discussion.

To deal with the possibly infinite support of distributions, the right tail and the left
tail need to be discussed separately. We first consider the case of one-side bounded
distributions.

Lemma 3.5. Suppose F,G ∈ F1, F−1(0) > −∞, G−1(0) > −∞, and

lim sup
a→1

G−1(BG(K−1
G (a)))

F−1(BF (K−1
F (a)))

<∞, (3.7)

where BF , BG, KF and KG are defined in (2.2)-(2.5). Then F ↪→ G.

Proof. Without loss of generality we assume P(XF = E[XF ]) = 0, and F,G have mean
zero and are non-degenerate. By the representation in Lemma 2.7, one has

F =

∫ 1

0

Fada, and G =

∫ 1

0

Gada.

By Lemma 2.4 (b), we have Fa ↪→ Ga at rate

εa = min

{
F−1(AF (K−1

F (a)))

G−1(AG(K−1
G (a)))

,
F−1(BF (K−1

F (a)))

G−1(BG(K−1
G (a)))

}
> 0.

By (3.7), 0 > F−1(0) > −∞, and 0 > G−1(0) > −∞, we have

lim inf
a→1

εa > 0.

It then follows that ε := infa∈(c,1) εa > 0 for some c ∈ (0, 1) and Fa ↪→ Ga at rate ε for
a ∈ (c, 1). By (3.6) and Lemma 2.5, we have that Fa ↪→ Ga.

By Lemma 3.5, in order to show that F ↪→ G for one-side bounded distributions F
and G, it remains to show (3.7).

Lemma 3.6. Suppose F ∈ L or G ∈ L, F−1(0) > −∞, G−1(0) > −∞, and

lim sup
t→1

G−1(t)

F−1(t)
<∞. (3.8)

Then F ↪→ G.
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Proof. Without loss of generality we can assume that F and G have mean zero. Denote
ΦF (a) =

∫ 1

a
F−1(t)dt and ΦG(a) =

∫ 1

a
G−1(t)dt for a ∈ (0, 1). By the definition of BF and

KF , we have

dBF (K−1
F (a))

da
=

1

F−1(BF (K−1
F (a)))

× 1

K ′F (K−1
F (a))

=
1

F−1(BF (K−1
F (a)))

× 1

(F−1(BF (K−1
F (a))))−1 + (F−1(AF (K−1

F (a))))−1

=
1

1 + F−1(BF (K−1
F (a)))/F−1(AF (K−1

F (a)))
.

It follows that

dΦF (BF (K−1
F (a)))

da
= F−1(BF (K−1

F (a)))
dBF (K−1

F (a))

da

=
1

(F−1(BF (K−1
F (a))))−1 + (F−1(AF (K−1

F (a))))−1

→ F−1(0),

as a→ 1. By L’Hospital’s rule, we have

lim
a→1

ΦF (BF (K−1
F (a)))

ΦG(BG(K−1
G (a)))

=
F−1(0)

G−1(0)
∈ R+. (3.9)

By (3.8), one obtains

lim sup
a→1

ΦG(BF (K−1
F (a)))

ΦF (BF (K−1
F (a)))

<∞, (3.10)

and

lim sup
a→1

ΦG(BG(K−1
G (a)))

ΦF (BG(K−1
G (a)))

<∞. (3.11)

(3.9)-(3.11) lead to

lim sup
a→1

ΦG(BF (K−1
F (a)))

ΦG(BG(K−1
G (a)))

<∞, (3.12)

and

lim sup
a→1

ΦF (BF (K−1
F (a)))

ΦF (BG(K−1
G (a)))

<∞, (3.13)

Since F−1 or G−1 is a regular varying function, ΦF or ΦG is also a regular varying
function. In either case, (3.12) or (3.13) implies

lim sup
a→1

1−BF (K−1
F (a))

1−BG(K−1
G (a))

<∞. (3.14)

(i) In the case of F−1 being regular varying, (3.14) implies

lim sup
a→1

F−1(BG(K−1
G (a)))

F−1(BF (K−1
F (a)))

<∞,

from which, along with (3.8), we obtain

lim sup
a→1

G−1(BG(K−1
G (a)))

F−1(BF (K−1
F (a)))

<∞.
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(ii) In the case of G−1 being regular varying, (3.14) implies

lim sup
a→1

G−1(BG(K−1
G (a)))

G−1(BF (K−1
F (a)))

<∞,

from which, along with (3.8), we obtain

lim sup
a→1

G−1(BG(K−1
G (a)))

F−1(BF (K−1
F (a)))

<∞,

In both cases, (3.7) holds. By Lemma 3.6 we have F ↪→ G.

Theorem 3.7. Suppose F ∈ L or G ∈ L,

lim sup
t→1

G−1(t)

F−1(t)
<∞, (3.15)

and

lim sup
t→0

G−1(t)

F−1(t)
<∞. (3.16)

Then F ↪→ G.

Proof. Without loss of generality we assume that F and G have mean zero, and P(XF =

0) = P(XG = 0) = 0. Let p = P(XG > 0), Up ∼ U[p, 1], Vp ∼ U[0, p] be two random vari-
ables, and b = E[G−1(Up)]/E[F−1(Up)] > 0. Denote by Fp the distribution of bF−1(Up),
by F̂p the distribution of bF−1(Vp), by Gp the distribution of G−1(Up), and by Ĝp the
distribution of G−1(Vp). By Lemma 3.6 we have Fp ↪→ Gp. Similarly, we have F̂p ↪→ Ĝp.
By noting that the mean of Fp is equal to the mean of Gp, and the mean of F̂p is equal
to the mean of Ĝp, we have, by the same argument in Lemma 2.5, that

pF̂p + (1− p)Fp ↪→ pĜp + (1− p)Gp = G.

Since pF̂p + (1− p)Fp is the distribution of bXF , we conclude that F ↪→ G.

Remark 3.8. By Lemma 3.2, we can see that (3.15)-(3.16) are necessary and sufficient
conditions for F ↪→ G to hold for F ∈ L and arbitrary G.

3.3 General distributions

In this section we drop the assumption of regular variation in F or G. It turns out
that a stronger condition is sufficient for F ↪→ G to hold. We give two results. The first
result is for one-side bounded distributions.

Proposition 3.9. Suppose non-degenerate distributions F,G ∈ F1 have means µF , µG,
respectively, F−1(0) > −∞, G−1(0) > −∞, and

lim sup
t→1

G−1(t)

F−1(t)
<
µG −G−1(0)

µF − F−1(0)
. (3.17)

Then F ↪→ G.

Proof. Without loss of generality we assume that F and G have mean zero. The case
G−1(1) < ∞ is covered by Theorem 2.2, and in the following we assume G−1(1) = ∞.
By (3.9) and (3.15) we have

lim sup
a→1

ΦG(BF (K−1
F (a)))

ΦG(BG(K−1
G (a)))

< 1. (3.18)
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It is easy to check that ΦG is a strictly decreasing function if G−1(1) = ∞. Thus, we
have BG(K−1

G (a))) < BF (K−1
F (a))) for a close to 1. Note that G−1 is non-decreasing, it

follows that

lim sup
a→1

G−1(BG(K−1
G (a)))

F−1(BF (K−1
F (a)))

6 lim sup
a→1

G−1(BF (K−1
F (a)))

F−1(BF (K−1
F (a)))

<
G−1(0)

F−1(0)
.

Thus, (3.7) holds, and by Lemma 3.6 we conclude that F ↪→ G.

Finally, we give a general sufficient condition for F ↪→ G based on Proposition 3.9.

Theorem 3.10. Suppose F,G ∈ F1 satisfy

lim
t→1

G−1(t)

F−1(t)
= 0, (3.19)

and

lim
t→0

G−1(t)

F−1(t)
= 0. (3.20)

Then F ↪→ G.

Proof. Using the same notation as in the proof of Theorem 3.7, we have, by (3.19)-(3.20)
and Proposition 3.9, that Fp ↪→ Gp and F̂p ↪→ Gp. The argument in the proof of Theorem
3.7 leads to the conclusion that F ↪→ G.

Theorem 3.10 tells us that F ↪→ G holds as long as F has a strictly heavier tail
compared to G.

4 Conclusion

In this paper, we show that for any distributions F and G under general conditions,
it is possible to find a sequence of random variables with common marginal distribution
F such that the scaled average of this sequence converges almost surely to the distri-
bution G. The random variables in this sequence are conditionally independent. This
result adds to the study of distributions with fixed margins. The conclusion in this paper
is clear: for a classic convergence problem with marginal distribution given, the shape
of the limiting distribution can be anything, depending on the dependent structure.

We list some future research directions on the compatibility problem studied in this
paper:

(a) cases when the initial distribution does not have finite mean or is not regular vary-
ing;

(b) problems in which the almost sure convergence is replaced by a weak convergence
and the normalizing sequences are allowed to be arbitrary;

(c) characterizing the set of dependence structures which leads to a given limit;

(d) the compatibility problem of replacing the sum by the maximum or another function
of the sequence of random variables;

(e) the compatibility problem with constraints on the dependence structure of the se-
quence of random variables;

(f) generalization of the obtained results to the setting of sequences of random vectors;

(g) applications of the results to time series analysis.

We believe that some of the above questions are challenging and important to modern
statistical analysis.
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