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Percolation on uniform infinite planar maps
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Abstract

We construct the uniform infinite planar map (UIPM), obtained as the n → ∞ local
limit of planar maps with n edges, chosen uniformly at random. We then describe how
the UIPM can be sampled using a “peeling” process, in a similar way as for uniform
triangulations. This process allows us to prove that for bond and site percolation on
the UIPM, the percolation thresholds are pbond

c = 1/2 and psite
c = 2/3 respectively. This

method also works for other classes of random infinite planar maps, and we show in
particular that for bond percolation on the uniform infinite planar quadrangulation,
the percolation threshold is pbond

c = 1/3.
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1 Introduction

1.1 Background and motivations

A lot of progress has been made in the past decade toward the understanding of sta-
tistical physics models in dimension 2. All these models, when examined at their critical
point, share a strong property of conformal invariance, a property which has been es-
tablished for a number of them, in the scaling limit. Without aiming at exhaustivity,
let us mention the Loop-Erased Random Walk [25], site percolation on the triangular
lattice [32], the Ising model of ferromagnetism [14] and its dual FK-Ising representa-
tion [33]. This property leads to a precise description of geometric objects in terms of
the Schramm-Loewner Evolution (SLE) processes introduced in [31], and subsequently
studied in a number of papers – let us mention the groundbreaking works [30, 23, 24],
to name but a few.

For percolation in particular, this led to the derivation of the so-called “arm ex-
ponents”, that describe the probability of observing disjoint long-range paths: for in-
stance, at criticality, the probability for a given vertex to be connected to distance n

follows a power law: it decays like n−α
′
1+o(1) as n → ∞, with α′1 = 5

48 . Combining
this new understanding with Kesten’s scaling relations [19], one can then describe the
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Percolation on uniform infinite planar maps

behavior of percolation not only at criticality, but also near criticality, i.e. through its
phase transition. Let us mention in particular that the density of the infinite connected
component decays as θ(p) = (p− pc)β+o(1) as p↘ pc, with β = 5

36 [34].
Such exponents had however been predicted much earlier by powerful but non-

rigorous methods, such as quantum gravity. Let us mention in particular the paper [1],
where arm exponents in their own right were first considered and derived. Random
graphs have been extensively used in the statistical physics literature, with a view to
analyzing random spatial processes such as percolation or the Ising model (see for
instance [9] and [10]). Studying these models in random geometries can provide a
useful insight on their behavior on Euclidean lattices such asZ2 or the triangular lattice.
Once derived the critical exponents in the random graph setting, the Knizhnik-Polyakov-
Zamolodchikov (KPZ) formula [20] predicts what the values of these exponents are for
(regular) Euclidean lattices.

Let us now make a bit more precise what is meant by random geometries. In the
following, we consider proper embeddings of finite connected graphs in the sphere S2,
where loops and multiple edges are allowed. A finite planar map is then an equivalence
class of such embeddings with respect to orientation-preserving homeomorphisms of
the sphere. A planar map is rooted if it has furthermore a distinguished oriented edge
~e = (v0, v1), which is then called the root edge (v0 being the root vertex). Faces of the
map are the connected components of the complement of the union of its edges, and a
map is a p-angulation if all its faces have degree p. In particular, when p = 3 (resp. 4),
we obtain triangulations (resp. quadrangulations).

The set of vertices of a given map will always be equipped with the graph distance.
From this point of view, a random planar map can be considered as a random discrete
metric space, giving a precise mathematical framework for two-dimensional quantum
gravity. In particular, it is believed that random planar maps provide a good approxima-
tion for continuous random surfaces. Recently, Le Gall [26] and Miermont [29] proved
that random planar p-angulations (for p = 3 or p > 4 even) properly rescaled converge
towards a universal random surface, called the Brownian Map, in analogy with the fact
that the Brownian motion arises as the scaling limit of discrete random walks.

In this paper, rather than dealing with continuous scaling limits, we consider local
limits of random maps as introduced in [7], which is a natural way to construct random
infinite planar graphs. We define the distance d as: for every pair of finite rooted maps
m,m′,

d (m,m′) = (1 + sup {r : Br(m) = Br(m
′)})−1

where, for r > 1, Br(m) is the planar map consisting of all edges of m that have at least
one vertex at distance strictly smaller than r from the root (and sup ∅ = 0 by convention).
We denote by (M, d) the completion of the space of all finite rooted maps with respect
to d. Elements ofM that are not finite maps are called infinite maps. Note that one can
extend the function defined for finite maps m 7→ Br(m) to a continuous function Br on
M. The ball Br(m) can be interpreted in a natural way as the union of the edges of m
that have a vertex at distance strictly smaller than r from the root.

In a pioneering work [5], Angel and Schramm constructed the uniform infinite pla-
nar triangulation (UIPT) as the local limit of uniformly distributed large triangulations.
Shortly after, Krikun [22] defined similarily the uniform infinite planar quadrangulation
(UIPQ): if qn is distributed according to the uniform measure on the set of all rooted
quadrangulations with n faces, then it is proved in [22] that the distribution of qn con-
verges weakly to a probability measure τ in the set of all probability measures on infinite
quadrangulations: the measure τ is the law of the UIPQ. Both the UIPT and the UIPQ
have been the focus of numerous works in recent years such as [3, 13, 15, 21, 27, 28],
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but it is fair to say that they are not yet fully understood. Statistical mechanics models
on planar maps are also starting to attract attention: see for example the recent proof
of recurrence for the simple random walk on the UIPQ [17], or the study of Ising and
Potts models from a combinatorial point of view [8, 11]. In this paper, we study in more
detail independent percolation on the UIPQ and the UIPM.

1.2 Organization of the paper and main results

In Section 2, we remind several important properties of planar quadrangulations
that will be instrumental in the present paper. We also describe a natural bijection be-
tween quadrangulations and planar maps. This bijection allows one to use properties
for quadrangulations in order to study planar maps. In particular, it provides an easy
way to construct the uniform infinite planar map (UIPM) from the uniform infinite pla-
nar quadrangulation (UIPQ). This bijection also behaves nicely through restrictions. In
particular, uniform infinite planar p-angulations could also be constructed in this way.

We then describe in Section 3 a “peeling process” similar to the process introduced
by Angel in [3] for triangulations. This process offers a useful description of the usual
exploration process, that follows the interface between black (occupied) and white (va-
cant) sites, as a simple Markov chain for which the transition probabilities are known
rather explicitly.

In [3], Angel used this description to study site percolation on the uniform infinite
planar triangulation (UIPT). The usual planar triangular lattice has a “self-matching”
property that suggests that for site percolation on this lattice, one has pc = 1/2, which
is a celebrated result of Kesten [18]. The UIPT is “stochastically” self-matching, and
it also holds in this case that pc = 1/2, in both annealed and quenched environments.
Similarly, Z2 has a self-duality property that implies that pc = 1/2 for bond percolation
on this lattice (strictly speaking, this is the actual result proved in [18]). The UIPM
happens to be “stochastically” self-dual too, and in Section 5 we use the peeling process
to prove that pbond

c = 1/2 a.s. in this case. Before that, we derive the site percolation
threshold on the UIPM in Section 4, where we show that psite

c = 2/3 a.s. In the last
part of Section 5, we explain how the method allows one to compute bond percolation
thresholds for other classes of random infinite planar maps. In particular, we show that
for bond percolation on the UIPQ, pbond

c = 1/3 a.s. The main result of our paper is thus
the following.

Theorem 1.1. For site and bond percolation on the UIPM, one has, respectively, psite
c =

2/3 and pbond
c = 1/2 almost surely. For bond percolation on the UIPQ, one has pbond

c = 1/3

almost surely.

To our knowledge, all the percolation thresholds known explicitly in the Euclidean
case are either 1/2, or can be related to 1/2 in some way (e.g. via a star-triangle
transformation). Here, the values 1/3 and 2/3 show up from the computations, but
there does not seem to be any direct heuristic explanation for them.

We would also like to mention that the value 1/3 for bond percolation on the UIPQ
echoes a similar result found in [4]. In this paper, Angel and Curien study bond perco-
lation on uniform infinite quandrangulations of the half-plane (that is, with an infinite
boundary), and prove that the threshold is also 1/3. Their proof relies on the peeling
process and is similar to ours, the main difference being that dealing with full plane
quadrangulations adds some technical difficulty. Indeed, the Markov chain studied in
Section 5 becomes, in their paper, a random walk for half-plane quadrangulations, with
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simpler transition probabilities. To the best of our knowledge, there is no simple argu-
ment to deduce percolation thresholds for the full plane from half-plane thresholds (or
the other way around).

2 Main tools

2.1 Quadrangulations and planar maps

Recall that a finite planar map is a quadrangulation if all its faces have degree 4, that
is 4 adjacent edges. Note that the underlying graph of a quadrangulation is bipartite.
A planar map is a quadrangulation with a boundary or with holes if all its faces have
degree 4, except for a number of distinguished faces which can be arbitrary even-sided
polygons (we assume these boundaries to be simple, i.e. the polygons are not “folded”).
In the case when there is only one hole, of perimeter 2p, we obtain what is called a
quadrangulation of the 2p-gon. For every integer n > 0, we denote by Qn the set of all
rooted quadrangulations with n faces. We also denote by Qpn the set of all quadrangula-
tions of the 2p-gon with n inner faces, such that the external face contains the root edge
and lies on the right-hand side of it. The completion of the set Qf of all rooted finite
quadrangulations for the distance d (defined in the introduction) is denoted by Q; it is
a subset of M. Elements of Q∞ = Q \ Qf are called infinite rooted quadrangulations.
Similarily, we denote the set of finite (resp. infinite) quadrangulations of the 2p-gon by
Qpf (resp. Qp∞). We refer to [15] for more details.

For our purpose, when dealing with quadrangulations, it turns out to be more con-
venient to work with faces rather than with edges, which leads us to introduce the new
distance d? onM defined by

d? (m,m′) = (1 + sup {r : B?r (m) = B?r (m′)})−1

for all rooted maps m, m′, where, for r > 1, we denote by B?r (m) the planar map
obtained as the union of all faces of m that have at least one vertex at distance strictly
smaller than r from the root. Note that if m is a quadrangulation, then B?r (m) is a
quadrangulation with (possibly adjacent) holes.

Let us stress that if maps with faces of arbitrarily large degrees are considered, then
the distances d and d? give rise to two different topologies. However, when restricted to
quadrangulations, the two distances are equivalent (more generally, this holds true for
closed sets of maps with faces of bounded degree). Indeed, for every q ∈ Q and r > 1,
one has

Br(q) ⊂ B?r (q) ⊂ Br+2(q),

where m ⊂ m′ means that the edge set of m is included in the edge set of m′ (we
will use this notation throughout the paper). Therefore, Q can also be seen as the
completion of Qf for the distance d?.

If we are given a quadrangulation with holes, it is natural to construct a full quad-
rangulation of the sphere by filling its holes of degree 2p with quadrangulations of
the 2p-gon. However, one has to make sure that filling the holes with different quad-
rangulations leads to different maps. This can be ensured by dealing only with rigid
quadrangulations, as in [5]: we say that a rooted quadrangulation with holes q is rigid
if no quadrangulation of the sphere includes two different copies of q with coinciding
roots. As stated in [6], an easy adaptation of Lemma 4.8 of [5] yields that any rooted
quadrangulation with holes is rigid.
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2.2 UIPQ and UIPM

As we already mentioned, the law of the UIPQ can be constructed as the weak local
limit of uniform measures on large quadrangulations. Recently, Curien and Miermont
[16] constructed similar measures for quadrangulations with a boundary. More pre-
cisely, if qpn is distributed according to the uniform measure on Qpn, then the distribution
of qpn converges weakly to a probability measure τp in the set of all probability measures
on (Qp, d?): the measure τp is the law of the uniform infinite planar quadrangulation of
the 2p-gon.

There is a natural bijection between rooted quadrangulations and rooted planar
maps, which we now describe (see Figure 1). Starting from a quadrangulation, its
bipartite structure allows one to divide its set of vertices into two sets: circle-vertices
are the vertices which are at an even distance from the root vertex (including the root
vertex itself), and square-vertices are the vertices at an odd distance. Now, draw an
edge between any two circle-vertices on the same face: we produce in this way a planar
map with n edges, rooted at the edge corresponding to the face (in the initial quadran-
gulation) which is on the left hand-side of the root edge. Making explicit the reverse
map is straightforward: it suffices to add one square-vertex on each face, and connect
it to all vertices of this face. This bijection is used throughout the paper.

Figure 1: The bijection between quadrangulations and planar maps.

This bijection maps the uniform measure on rooted quadrangulations with n faces to
the uniform measure on rooted planar maps with n edges. Therefore, it can be used to
define a (random) uniform infinite planar map (UIPM), whose law is just the weak limit
of the uniform measure on rooted planar maps with n edges for the distance d. Indeed,
it is easy to check that this bijection is continuous for the topologies considered (note
that we could possibly use the distance d? to construct the UIPM, but this approach
would require controlling the degree of faces, which makes it slightly less direct).

Note also that this bijection maps the circle-vertices onto the vertices of the final
map, while the square-vertices are mapped to faces. The dual graph of the random
map can thus be obtained by simply choosing to draw edges between square-vertices,
instead of between circle-vertices. This also corresponds to re-rooting the original quad-
rangulation by reversing orientation of the root edge.

The planar map so obtained is thus “stochastically” self-dual (because the uniform
infinite quadrangulation is invariant under the previous re-rooting, or because the dual
of a random uniform planar map with n edges has the same law), which seems to indi-
cate that the bond percolation threshold on this map is pc = 1/2, as in the case of Z2

(see [18]) which is “truly” self-dual.

2.3 Counting quadrangulations

In this short section, we collect some enumeration results for quadrangulations that
are instrumental for our purpose. We refer the reader to [12] for proofs.
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If we denote by an,p the number of quadrangulations of the 2p-gon with n internal
faces rooted on the boundary face, one has (see [12], equation (2.11)):

an,p = 3n−p
(3p)!

p!(2p− 1)!

(2n+ p− 1)!

(n− p+ 1)!(n+ 2p)!
. (2.1)

Actually, the exact value of an,p is not needed, but only its asymptotic behavior in n for
p fixed and the values of the generating series in n at their convergence radius. That is,
we need the value of Cp defined by

an,p ∼
n→∞

Cp12nn−5/2, (2.2)

which is Cp =
1

2
√
π

(
2

3

)p
(3p)!

p!(2p− 1)!
. (2.3)

And we need the value of Zp defined by the value of the generating series

Zp(t) :=
∑
n>0

an,pt
n

at 1/12, which is the convergence radius of this series for each fixed p. This value is

Zp := Zp(1/12) = 2

(
2

3

)p
(3p− 3)!

p!(2p− 1)!
. (2.4)

Following [5, 6], we define the free distribution on rooted quadrangulations of a
2p-gon as the probability measure µp that assigns the weight

µp(q) =
12−n

Zp(1/12)

to each quadrangulation q of the 2p-gon having n internal faces and rooted on its bound-
ary face.

2.4 Spatial Markov property for the UIPQ

We now state the spatial Markov property of the UIPQ, grouping into a unique lemma
all the properties that are needed.

Lemma 2.1. Let us denote by q∞ the UIPQ, and let q be a rigid quadrangulation with
n internal faces and k boundary faces, with perimeters 2p1, . . . , 2pk.

(i) One has

τ (q ⊂ q∞) =
12−n

C1

(
k∏
i=1

Zpi

)
k∑
i=1

Cpi
Zpi

. (2.5)

When q ⊂ q∞ holds, let us denote by qi the component of the UIPQ in the i-th
face.

(ii) Almost surely, only one of these components is infinite: the probability that it is qj
is given by the j-th term in the previous sum, i.e.

τ (q ⊂ q∞,qj is infinite) =
12−n

C1
Cpj

 k∏
i=1
i 6=j

Zpi

 . (2.6)

(iii) If we condition on the event that {q ⊂ q∞}, and that the external faces of q all
contain finitely many vertices of q∞, except (possibly) the j-th one, then
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– the quadrangulations (qi)16i6k are independent,
– qj has the same distribution as the UIPQ of the 2pj-gon,
– and for i 6= j, qi is distributed as the free quadrangulation of a 2pi-gon.

This spatial Markov property is proved in [5] for uniform triangulations, and a
strictly identical proof applies in our setting of quadrangulations.

3 Peeling process for quadrangulations

We now describe the peeling process, a growth process that can be used to sam-
ple planar maps. It has first been used in physics [2] to derive heuristics for the scaling
limit of 2-dimensional quantum gravity. Later, Angel [3] adapted this process to triangu-
lations, and used it to study volume growth and site percolation on the UIPT. Benjamini
and Curien [6] adapted this process to quadrangulations in order to prove that the sim-
ple random walk on the UIPQ is subdiffusive. We will make extensive use of this process
to study both site and bond percolation on the UIPM associated with the UIPQ.

Let q∞ be the UIPQ. The peeling process is a sequence (qn)n>0 of (finite) random
quadrangulations with simple boundary, such that:

• q0 is the root edge of q∞ and one has q0 ⊂ q1 ⊂ · · · ⊂ qn ⊂ · · · ⊂ q∞.

• Let Fn be the fitration generated by q0,q1, . . . ,qn. Then conditionally on Fn, the
part of q∞ that has not been discovered yet, that is q∞ \ qn, is a UIPQ of the
|∂qn|-gon.

Let us now describe the conditional distribution of qn+1 knowing Fn, and write down
explicit transition probabilities. First, we have to choose an oriented edge e on ∂qn. Any
choice, deterministic or random, is acceptable as long as it depends only on Fn, and qn
lies on the right hand side of e. The map q∞ \ qn rooted at e is a UIPQ of the |∂qn|-gon.
Let p = |∂qn| /2, and denote the vertices of ∂qn by x1, . . . , x2p so that e = (x2p, x1) (see
Figure 2). Now, let us reveal the face of q∞ \qn containing e. Following the orientation
given by e, we denote the vertices of this face by (x2p, x1, y0, y1). Four cases may occur,
depending on whether y0 and / or y1 belong to ∂qn: we now describe qn+1 in each case,
and give the corresponding probability.

x2p x1 x2p x1 x2p x1 x2p x1

y0y1 y0

y1 = x2i+1

y1

y0 = x2i y0 = x2i
y1 = x2j+1

ql

qr

qr

qr

ql

ql

qm

Figure 2: Discovering a new face during the peeling process. Note that y1 can coincide
with x1, and y0 can coincide with x2p – in the second and third cases, respectively.

(1) y0, y1 /∈ ∂qn (Figure 2, left). In this case, we set qn+1 to be the union of qn and
the face discovered. Therefore, q∞ \ qn+1 is a quadrangulation of a 2(p + 1)-gon,
and the spatial Markov property ensures that conditionally on this event and Fn,
the map q∞ \ qn+1 is a UIPQ of the 2(p+ 1)-gon. Hence, conditionally on Fn, this
event has probability

τ (y0, y1 /∈ ∂qn|Fn) = τp (y0, y1 /∈ ∂qp) = lim
N→∞

aN−1,p+1

aN,p
=
Cp+1

12Cp
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(using (2.2)).

(2) y0 /∈ ∂qn and y1 = x2i+1 with 0 6 i 6 p− 1 (Figure 2, middle left). In this case, the
new face divides the remaining part of q∞ into two separate quadrangulations:
qrn with perimeter 2(i + 1) and qln with perimeter 2(p − i). Conditionally on this
event and Fn, exactly one of these two quadrangulations is infinite. If it is qrn, the
spatial Markov property ensures that it is a UIPQ of the 2(i + 1)-gon, while qln is
independent of qrn and is a free quadrangulation of the 2(p − i)-gon. We set qn+1

to be the union of qn, the face discovered, and qln, so that q∞ \ qn+1 = qrn. Using
(2.6), the probability of this event is given by

τ (y0 /∈ ∂qn, y1 = x2i+1,q
r
n infinite |Fn) =

Zp−iCi+1

12Cp
.

If qln is infinite, the situation is similar, and we set qn+1 to be the union of qn, the
face discovered, and qrn, so that q∞ \ qn+1 = qln. The corresponding probability is

τ
(
y0 /∈ ∂qn, y1 = x2i+1,q

l
n infinite

∣∣Fn) =
Cp−iZi+1

12Cp
.

(3) y1 /∈ ∂qn and y0 = x2i with 1 6 i 6 p (Figure 2, middle right). The situation
is similar to the second case, and conditionally on this event and Fn, either qrn =

q∞\qn+1 is a UIPQ of the 2i-gon, or qln = q∞\qn+1 is a UIPQ of the 2(p+1−i)-gon.
The respective probabilities are:

τ (y1 /∈ ∂qn, y0 = x2i,q
r
n infinite |Fn) =

Zp+1−iCi
12Cp

,

τ
(
y1 /∈ ∂qn, y0 = x2i,q

l
n infinite

∣∣Fn) =
Cp+1−iZi

12Cp
.

(4) y0 = x2i and y1 = x2j+1 with 1 6 i 6 j 6 p − 1 (Figure 2, right). In this case, the
new face divides the remaining part of q∞ into three separate quadrangulations:
qrn with perimeter 2i, qmn with perimeter 2(j − i+ 1), and qln with perimeter 2(p−
j). Here again, the spatial Markov property ensures that conditionally on the
corresponding event and Fn, exactly one of these quadrangulations is infinite,
and we set qn+1 to be the union of qn, the face discovered, and the other two
finite quadrangulations. The corresponding probabilities are given by:

τ (y0 = x2i, y1 = x2j+1,q
r
n infinite |Fn) =

Zp−jZj−i+1Ci
12Cp

,

τ (y0 = x2i, y1 = x2j+1,q
m
n infinite |Fn) =

Zp−jCj−i+1Zi
12Cp

,

τ
(
y0 = x2i, y1 = x2j+1,q

l
n infinite

∣∣Fn) =
Cp−jZj−i+1Zi

12Cp
.

Let us insist on the fact that the peeling procedure that we just described, and its
transition probabilities, do not depend on the choice of the edge e, provided that at
each step n, this choice depends only on Fn. This will allow us to study both site and
bond percolation on the UIPM by following the percolation interface along the way. This
peeling procedure also allowed Benjamini and Curien [6] to study the simple random
walk on the UIPQ.

A more straightforward yet very useful consequence of this fact is that the se-
quence (|∂qn|, |qn|)n>0 is a homogeneous Markov chain whose transition probabilities
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do not depend on the particular peeling process performed. For instance, let us write
|∂qn+1| = |∂qn| + 2Xn for every n > 0. Then one has, for this increment Xn, using the
transition probabilities of the peeling process that we derived explicitly,

P
(
Xn = 1

∣∣|∂qn| = 2p
)

=
Cp+1

12Cp
(3.1)

(corresponding to case (1) above), and for every k = 0, . . . , p− 1,

P
(
Xn = −k

∣∣|∂qn| = 2p
)

= 4
Cp−kZk+1

12Cp
+ 3

Cp−k
12Cp

k∑
i=1

ZiZk+1−i (3.2)

(combining cases (2) and (3) for the first term, and (4) for the second term). Of partic-
ular interest is the following asymptotics proven in Theorem 5 of [6]:

Lemma 3.1. If q0,q1, . . . ,qn, . . . is generated by a peeling procedure of the UIPQ, then
one has

|∂qn| ≈ n2/3,

|qn| ≈ n4/3,

where, if (Yn)n>0 is a random process, Yn ≈ nα means that for some constant κ > 0,
Ynn

−α logκ(n)→∞ and Ynn−α log−κ(n)→ 0 almost surely.

This property is proved in [6] by using geometric properties of the UIPQ, without
appealing to the peeling process directly. However, it should also be possible to prove
these asymptotics by using the explicit transition probabilities for the peeling process,
and the enumeration results of Section 2.3. An easy consequence of Lemma 3.1 – ac-
tually, only the fact that |∂qn| → ∞ a.s. – that will be useful for our purpose is the
following:

Corollary 3.2. Let q0,q1, . . . ,qn, . . . be generated by a peeling procedure of the UIPQ,
and set |∂qn+1| = |∂qn|+ 2Xn for every n > 0. Then one has

E [Xn|Fn] −→
n→∞

0.

Proof. For p > 0 and 0 6 k 6 p− 1, one can easily derive from (3.2):

P
(
Xn = −k

∣∣|∂qn| = 2p
)

=

(
p− 1

2

)
k

(p− 1)k(
p− 1

3

)
k

(
p− 2

3

)
k

qk

where (x)k = x(x− 1) · · · (x− k + 1) and

qk =
1

3
Zk+1

(
2

9

)k
+

1

4

k∑
i=1

ZiZk+1−i

(
2

9

)k
. (3.3)

Therefore, the probabilities P
(
Xn = −k

∣∣|∂qn| = 2p
)

are increasing in p and converge
to qk. Let us denote by X a random variable with law given by

P (X = −k) = qk, for k > 0,

P (X = 1) = lim
p→∞

P
(
Xn = 1

∣∣|∂qn| = 2p
)

= 3/8.

Since |∂qn| → ∞ almost surely as n grows, an argument of dominated convergence
shows that E [Xn|Fn] converges to E[X].
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Now, let us show that E[X] = 0. To this aim, we introduce the series

Z(x) =
∑
k>1

Zkx
k,

with convergence radius 2/9. The series Z ′(x) corresponds to the generating series of
ternary trees, and classical arguments (see [12], (5.29)) yield

Z(x) = −2

3
+

2

3
2F1

(
−2

3
,−1

3
;

1

2
;

9x

2

)
,

and Z ′(x) = 4

√
2

9x
sin

(
1

3
arcsin

(√
9x

2

))
.

This allows one to compute the generating function of the numbers qk from (3.3):

∑
k>0

qkx
k =

9

2x

(
Z(2x/9)

3
+
Z(2x/9)2

4

)
.

With the value Z(2/9) = 1/3, this implies readily that
∑
k>0 qk = 5/8 and the proba-

bilities in the definition of X add up to 1. From here, the value Z ′(2/9) = 2 and basic
computations give

∑
k>1

kqk =
1

3
Z ′
(

2

9

)
+

1

4

(
Z2
)′(2

9

)
− 3

2
Z

(
2

9

)
− 9

8
Z

(
2

9

)2

=
3

8
.

To conclude this section, let us stress that the peeling procedure for the UIPQ also
provides a sampling of the UIPM. Indeed, consider (qn)n>0 a peeling-generated se-
quence for the UIPQ. For every n > 0, we can associate to qn, which is a quadrangula-
tion with a boundary, a map mn by a slight modification of the bijection of Section 2.2:
there is an edge of mn inside each face of qn except for the boundary face. We obtain
in this way an increasing sequence of maps, which are all submaps of m∞.

Note that different quadrangulations qn may produce the same map mn. In fact
there is more information on the UIPM in qn than in mn, since qn also gives information
on the faces of m∞. Indeed, let us consider two edges of mn. Considering only mn, it
is not possible to say if the two edges are part of the same face in m∞. However, this
information is available in qn: the two edges belong to the same face of m∞ iff their
associated quadrangles share a common square-vertex in qn. This is not problematic
for our purpose, since we are not interested in the sequence (mn)n>0 by itself.

4 Site percolation on the UIPM

In this section, we consider Bernoulli site percolation on the UIPM: the vertices are
colored, independently of each other, black with probability q, and white with probabil-
ity (1− q). We prove the first part of Theorem 1.1: for site percolation on the UIPM, the
percolation threshold is almost surely

psite
c = 2/3.
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4.1 Exploration process

Consider m∞ the UIPM, and q∞ the associated UIPQ. Suppose that each vertex
of m∞ is colored independently at random, black with probability q and white with
probability (1− q) (in q∞, this corresponds to a coloring of circle-vertices only). We are
interested in percolation of the origin, i.e. the existence of an infinite black connected
component containing the origin.

We also assume for simplicity that the root vertex of m∞ – which is also the root
vertex of q∞ – is colored black. We can sample percolation on the UIPM simultaneously
with a peeling process of the UIPQ: each time a new vertex of the UIPM is added, we
color it randomly, independently of all previous steps. Note that if at some step n, all
the vertices of the UIPM that are on the boundary ∂qn are white, then these vertices
separate from infinity (in m∞) the root vertex, which therefore does not percolate (for
black sites).

Now, recall that we can choose where the next quadrangle is revealed at each step
of the peeling process. In particular, we can let this choice depend on the percolation
configuration sampled so far. On the one hand, if all the vertices of the UIPM that are
on the boundary ∂qn have the same color, then we can make an arbitrary choice. On
the other hand, if there are white and black vertices on ∂qn, then we can ensure that
∂qn remains divided in two arcs: one arc with black vertices only, and the other one
with white vertices only. If we then follow the orientation of the boundary, there is a
unique choice of three consecutive vertices x2p, x1, and x2, where x2p and x2 are black
and white respectively, and x1 is a square-vertex between them. We then reveal the
quadrangle on the left side of the oriented edge (x2p, x1) (see Figure 3).

If this rule is followed, it is easy to see that all black vertices on ∂qn belong to the
percolation cluster containing the root vertex of m∞, as long as the boundary does
not become totally white, which corresponds to detecting a white circuit. However,
note that white vertices of ∂qn do not necessarily belong to the same white cluster, so
black and white sites do not play symmetric roles in this process: one cannot simply
use the symmetry q ↔ 1 − q. The connectedness of white sites corresponds to “∗-
connectedness”, as it is usually called for percolation on planar graphs such as Z2.

x2p x1 x2p x1 x2p x1

y0

y1 = x2i+1

y1

y0 = x2i y0 = x2i

y1 = x2j+1

x2p x1

y0y1

Figure 3: This figure shows how percolation is sampled during the peeling process.
The arrows on each figure indicate the possible rerootings for the next peeling step.
Note that in the middle right case, if y0 = x2i is white and if the quadrangulation on the
right is infinite, then a circuit of white vertices separates the root vertex from infinity,
so percolation does not occur.

Let us denote by Bn the number of black vertices on ∂qn, Wn the number of white
vertices, and by Fn the filtration generated by q0,q1, · · · ,qn and their coloring. Recall
that Xn denotes the increment size of the boundary length conditionally on Fn, and that
its distribution is given by (3.1), (3.2). We now give the explicit transition probabilities
of Bn conditionally on Fn. In order to simplify notation, we write |∂qn| = 2p.
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(1) When Xn = 1, the face discovered has two new vertices, among them one be-
longing to the UIPM, that gets color black or white (see Figure 3, left for an
illustration). Therefore,

Bn+1 =

{
Bn + 1 with probability qCp+1

12Cp
,

Bn with probability (1− q)Cp+1

12Cp
.

We now consider the event Xn = −k 6 0 for some k ∈ {0, . . . , p − 1}, that is, some
vertices are removed from ∂qn. Let us discuss the different cases that may occur,
according to Section 3.

(2) y0 /∈ ∂qn and y1 ∈ ∂qn (Figure 3, middle left). The vertex y0 belongs to the unex-
plored part of the UIPM, and it is colored black or white (with the corresponding
probabilities), independently of previously chosen colors.

On the one hand, if the quadrangulation qln is infinite (this corresponds to i = k on
Figure 3, i.e. y1 = x2k+1), then black vertices are removed if and only if p−k < Bn,
and in this case ∂qn+1 has no white vertices. If p− k > Bn, then no black vertex is
removed and Bn+1 = Bn. Hence, Bn+1 = min (Bn, p− k) in this case.

On the other hand, if qrn is infinite (this corresponds to i = p − k − 1, i.e. y1 =

x2(p−k)−1), then |∂qln| = 2(k + 1) and the number of black vertices removed is
min (Bn, k + 1). In addition, one black vertex is added with probability q. This gives
Bn+1 = max (Bn − k − 1, 0) + 1 with probability q, and Bn+1 = max (Bn − k − 1, 0)

with probability (1− q).

(3) y0 ∈ ∂qn and y1 /∈ ∂qn (Figure 3, middle right). The situation is very similar to (2),
except that no new colored vertex is added. If the quadrangulation qln is infinite
(so that i = k + 1), then one has Bn+1 = min (Bn, p− k), and if qrn is infinite (so
that i = p− k), then Bn+1 = max (Bn − k, 0).

(4) y0, y1 ∈ ∂qn (Figure 3, right). If qrn is infinite (so that i = p − k), the situation is
identical to the corresponding case in (3) and Bn+1 = max (Bn − k, 0), while if qln
is infinite (so that j = k), the situation is identical to the corresponding case in (2)
and Bn+1 = min (Bn, p− k).

Finally, if qmn is infinite, then there is 1 6 m 6 k such that |∂qln| = 2m (this
corresponds to j = p−m and i = k −m+ 1), and Bn+1 = max (Bn −m, 0).

For each of the previous cases, the corresponding probabilities have been deter-
mined in Section 3. We deduce that conditionally on |∂qn| = 2p, and when Xn = −k:

Bn+1 =



min (Bn, p− k) w. p. 2
Cp−kZk+1

12Cp
+

Cp−k

12Cp

∑k
i=1 ZiZk+1−i,

max (Bn − k, 0) w. p. Cp−kZk+1

12Cp
+

Cp−k

12Cp

∑k
i=1 ZiZk+1−i,

max (Bn − k − 1, 0) + 1 w. p. qCp−kZk+1

12Cp
,

max (Bn − k − 1, 0) w. p. (1− q)Cp−kZk+1

12Cp
,

max (Bn − i, 0) w. p. Cp−k

12Cp
ZiZk+1−i for 1 6 i 6 k.

EJP 19 (2014), paper 79.
Page 12/27

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-2675
http://ejp.ejpecp.org/


Percolation on uniform infinite planar maps

4.2 Derivation of psite
c

We now show that psite
c = 2/3 a.s. We first prove that black vertices do not percolate

when q < 2/3, and then that they percolate when q > 2/3. We denote by C∞ the event
that the root vertex is in an infinite black cluster.

Let us first consider q < 2/3. We start by noting that

P (C∞ ∩ {Bn = 1 infinitely often}) = 0, (4.1)

which follows from the observation that

P (C∞|Bn = 1) 6 1− c

for some universal constant c > 0. Indeed, if Bn = 1 and Xn 6 −1, then black ver-
tices disappear on the next step with probability at least 1/2. Hence, Bn+1 = 0 with
probability at least

1

2
P
(
Xn 6 −1

)
=

1

2

(
1− 4

9
− 3

8
+ o(1)

)
(using the distribution of X). This implies that

P (C∞ ∩ {Bn = 1 at least k times}) 6 (1− c)k,

by conditioning on the first k such times, and (4.1) follows readily.

We will now assume that P (C∞) > 0. As we have just observed, we can suppose that
a.s., Bn > 2 for n large enough. We introduce a modified Markov chain (B′n) obtained
by “simplifying” (Bn), in particular by allowing it to take negative values (and coupled
in a natural way). More precisely, we consider the chain with the following transition
probabilities, conditionally on |∂qn| = 2p:

B′n+1 =

{
B′n + 1 with probability qCp+1

12Cp
,

B′n with probability (1− q)Cp+1

12Cp

(corresponding to Xn = 1), and

B′n+1 =


B′n w. p. 2

Cp−kZk+1

12Cp
+

Cp−k

12Cp

∑k
i=1 ZiZk+1−i,

B′n − k w. p. (1 + q)
Cp−kZk+1

12Cp
+

Cp−k

12Cp

∑k
i=1 ZiZk+1−i,

B′n − k − 1 w. p. (1− q)Cp−kZk+1

12Cp
,

B′n − i w. p. Cp−k

12Cp
ZiZk+1−i for 1 6 i 6 k

for every k = 0, . . . , p− 1 (corresponding to Xn = −k).
Now, let us note that the increment (B′n+1−B′n) is equal to the increment (Bn+1−Bn)

except in the following three cases.

• Bn+1 = min (Bn, p− k) and Bn > p− k: in this case,

Bn+1 −Bn = min(Bn, p− k)−Bn = (p− k)−Bn < 0 = B′n+1 −B′n.

• Bn+1 = max (Bn − k − 1, 0) + 1 and Bn− k− 1 < 0: in this case, Bn+1 = 1, which is
ruled out by (4.1) (for n large enough).

• In each of the remaining three sub-cases, when Bn − k < 0, Bn − k − 1 < 0, or
Bn − i < 0 (resp.): this means that the number of black vertices gets negative, so
that percolation does not occur.
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Therefore, conditionally on C∞, one has Bn 6 B′n+O(1). We will see that almost surely,
B′n → −∞, and therefore there exists n such that Bn = 0. This will imply that the
probability that percolation occurs is 0. One has:

E
[
B′n+1 −B′n

∣∣|∂qn| = 2p
]

= qP (Xn = 1||∂qn| = 2p)−
p−1∑
k=0

k

(
2
Cp−kZk+1

12Cp
+
Cp−k
12Cp

k∑
i=1

ZiZk+1−i

)

− (1− q)
p−1∑
k=0

Cp−kZk+1

12Cp
−
p−1∑
k=1

k∑
i=1

i
Cp−k
12Cp

ZiZk+1−i

=

(
q − 1

2

)
P (Xn = 1||∂qn| = 2p) +

1

2
E [Xn||∂qn| = 2p]

− (1− q)
p−1∑
k=0

Cp−kZk+1

12Cp
+

p−1∑
k=1

k∑
i=1

(
k

2
− i
)
Cp−k
12Cp

ZiZk+1−i

=

(
q − 1

2

)
Cp+1

12Cp
+

1

2
E [Xn||∂qn| = 2p]

− (1− q)
p−1∑
k=0

Cp−kZk+1

12Cp
− 1

2

p−1∑
k=1

k∑
i=1

Cp−k
12Cp

ZiZk+1−i.

Corollary 3.2, and the computations performed in its proof, ensure that a.s.

E
[
B′n+1 −B′n

∣∣Fn] −→ (
q − 1

2

)
3

8
− (1− q)1

8
− 1

2

1

24
=
q

2
− 1

3

as n → ∞. Therefore, E
[
B′n+1 −B′n

∣∣Fn] is negative and bounded away from 0 for n
large enough. This suffices to prove that B′n → −∞ almost surely, and percolation does
not occur.

Now, let us take a value q > 2/3. As mentioned earlier, one cannot simply exchange
the roles of black and white sites to prove that Wn stays small, and that consequently
black vertices percolate. However, using Xn = (Wn+1 − Wn) + (Bn+1 − Bn), we can
obtain: conditionally on |∂qn| = 2p,

Wn+1 =

{
Wn + 1 w. p. (1− q)Cp+1

12Cp
,

Wn w. p. qCp+1

12Cp
,

and on the event Xn = −k (for k ∈ {0, . . . , p− 1}),

Wn+1 =



max (Wn − k, 0) w. p. 2
Cp−kZk+1

12Cp
+

Cp−k

12Cp

∑k
i=1 ZiZk+1−i,

min (Wn, p− k) w. p. Cp−kZk+1

12Cp
+

Cp−k

12Cp

∑k
i=1 ZiZk+1−i,

min (Wn, p− k − 1) w. p. qCp−kZk+1

12Cp
,

min (Wn, p− k − 1) + 1 w. p. (1− q)Cp−kZk+1

12Cp
,

max (Wn − (i− 1), 0) w. p. Cp−k

12Cp
ZiZk+1−i for 1 6 i 6 k.

In a similar way as for B′n, we consider the process W ′n, coupled with Wn and with
increments given conditionally on |∂qn| = 2p by:

W ′n+1 =

{
W ′n + 1 w. p. (1− q)Cp+1

12Cp
,

W ′n w. p. qCp+1

12Cp
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(corresponding to Xn = 1), and for every k ∈ {0, . . . , p− 1},

W ′n+1 =


W ′n + 1 w. p. (1− q)Cp−kZk+1

12Cp
,

W ′n w. p. (1 + q)
Cp−kZk+1

12Cp
+

Cp−k

12Cp

∑k
i=1 ZiZk+1−i,

W ′n − k w. p. 2
Cp−kZk+1

12Cp
+

Cp−k

12Cp

∑k
i=1 ZiZk+1−i,

W ′n − (i− 1) w. p. Cp−k

12Cp
ZiZk+1−i for 1 6 i 6 k

(corresponding to Xn = −k). Then, conditionally on the event {Wn > 0,∀n > 0}, the
increments of W ′n are bigger than the increments of Wn. As n→∞, one has

E
[
W ′n+1 −W ′n

∣∣Fn] −→ 1

3
− q

2
:= −α < 0,

from which one can easily deduce that a.s. Wn = O(lnn): we now provide an explicit
proof for the sake of completeness.

If we write ∆n = W ′n+1 −W ′n, we obtain, for N large enough: for all n > N ,

E
[
∆n|Fn

]
6 −α

2
.

We first claim that it implies: there exists λ > 0 small enough so that for all n > N ,

E[eλ∆n |Fn−1] 6 1. (4.2)

In order to prove (4.2), let us start by noting that

E[|∆n|5/4|Fn−1] 6M (4.3)

for some universal constant M : this follows from the fact that for any fixed k, the
probabilities P

(
Xn = −k

∣∣|∂qn| = 2p
)

are increasing in p and converge to qk, which is
of order qk ∼ ck−5/2 – using (2.4) and (3.3). We can then use that for some constants
C1, C2 > 0,

ex 6 1 + C1x+ C2|x|5/4

for all x 6 1: since ∆n 6 1 by definition, we obtain

E[eλ∆n |Fn−1] 6 1 + C1λE[∆n|Fn−1] + C2|λ|5/4E[|∆n|5/4|Fn−1],

which (using (4.3)) is at most 1 for λ small enough.
Now, for any fixed constant C > 0, we can write: for all n > m > N ,

P

( n∑
l=m

∆l > C lnn|Fm
)

6 e−λC lnnE

[
exp

(
λ

n∑
l=m

∆l

)∣∣Fm],
and

E

[
exp

(
λ

n∑
l=m

∆l

)∣∣Fm] = E

[
exp

(
λ

n−1∑
l=m

∆l

)
E[eλ∆n |Fn−1]

∣∣Fm] 6 E

[
exp

(
λ

n−1∑
l=m

∆l

)∣∣Fm],
by using (4.2). By iterating this reasoning, we find

P

( n∑
l=m

∆l > C lnn|Fm
)

6 e−λC lnn,

which allows one to conclude, by using a Borel Cantelli argument (choosing a large
enough C in the beginning). Since Bn +Wn = |∂qn| ≈ n2/3, we deduce that Bn ≈ n2/3:
in particular, black vertices percolate.
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5 Bond percolation on the UIPM

In this section, we study bond percolation, instead of site percolation, on the UIPM:
each edge is open with probability q, and closed with probability (1−q), independently of
other edges. We prove the second part of Theorem 1.1: the corresponding percolation
threshold is almost surely

pbond
c = 1/2.

5.1 Exploration process

In this section, we describe how to sample bond percolation on the UIPM simulta-
neously with a peeling process of the UIPQ. This is similar to the exploration process
for site percolation described in Section 4.1, but small adaptations are needed for the
process to actually follow the boundary of the percolation cluster of the root vertex. We
will assume for simplicity that the root edge of m∞ is open.

Let us consider the UIPM m∞, and q∞ the associated UIPQ. Let us denote by
q0,q1, . . . ,qn the peeling process for q∞, and m0,m1, . . . ,mn the associated submaps
of m∞. Each time a new face of q∞ is discovered, the corresponding edge of m∞ is
opened with probability q, and closed with probability (1 − q) independently of all pre-
vious steps. The percolation interfaces between open and closed edges can be viewed
as a random tiling of q∞, as illustrated in Figure 4.

Open Closed

Figure 4: The exploration process can be seen as a random tiling of the quadrangles
that are successively discovered.

It is possible to adapt the peeling process in order to follow percolation interfaces.
Let m0

n denote the set of vertices connected to the root vertex of mn by open paths lying
in mn: this is the part of the cluster of the root m0

∞ discovered before time n with the
peeling procedure. The choice of the next quadrangle to reveal is very similar to what
we did for site percolation. Recall that on the quadrangulation, circle-vertices belong to
the associated map, while square-vertices lie on the dual of this map. On the one hand,
if all circle-vertices of ∂qn belong to m0

n, or if, on the contrary, no circle-vertex of ∂qn
belongs to m0

n, then we can make an arbitrary choice for the next step. On the other
hand, if some, but not all, circle-vertices of ∂qn belong to m0

n, then we can find three
vertices x2p, x1, x2 (in this order) such that x2p belongs to m0

n, but not x2 (see Figure
5): we reveal the quadrangle on the left side of the edge (x2px1). Provided that this
procedure is followed during the peeling process, then the vertices of ∂qn ∩m0

n form
an arc of ∂qn.

Now, let An denote the number of vertices of ∂qn that belong to m0
n. If there exists

n such that An = 0, then the root vertex does not percolate, and Ak = 0 for all k > n.
On the other hand, if (An) is unbounded, then percolation does occur. Let Fn denote
the filtration generated by q0, . . . ,qn and bond percolation on them. Let n > 0, and
suppose that An > 0. Following a similar strategy as for site percolation, we give
explicit transition probabilities for An conditionally on Fn. Recall that Xn denotes the
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x2p x1x2p x1 x2p x1

Figure 5: Configurations obtained by following the exploration process during the
peeling procedure. Left: No vertex of the boundary belongs to the explored part of
the cluster of the root, so that percolation does not occur. This corresponds to An = 0.
Middle: All vertices of the boundary belong to the explored part of the cluster of the
root. This corresponds to An = p. Right: The vertices on the left belong to the explored
part of the cluster of the root, whereas the vertices on the right do not belong to the
discovered part of the cluster of the root. This corresponds to 0 < An < p.

increment size for the boundary length conditionally on Fn, and that its distribution is
given by (3.1), (3.2). Let us also set |∂qn| = 2p, as before.

(1) When Xn = 1, let us denote by (x2p, x1, y0, y1) the face discovered: it has two
new vertices, and a new edge (x2p, y0) of the UIPM. With probability q, the new
edge is open and there is an open path joining y0 to the root vertex in mn+1. With
probability (1−q), this edge is closed and y0 does not belong to the part discovered
of the cluster of the root (note that y0 may still belong to the cluster of the root, if
some of the edges that connect it to the root have not yet been discovered). This
yields

An+1 =

{
An + 1 with probability qCp+1

12Cp
,

An with probability (1− q)Cp+1

12Cp

(see Figure 6 for an illustration).

x2p x1

y0y1

x2p x1

y0y1

x2p x1

y0y1

Open Closed

Figure 6: Evolution of the exploration process in case (1), when two new vertices are
discovered.

Suppose now that Xn = −k. We discuss the different cases that appeared in Section
3.

EJP 19 (2014), paper 79.
Page 17/27

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-2675
http://ejp.ejpecp.org/


Percolation on uniform infinite planar maps

(2) y0 /∈ ∂qn and y1 ∈ ∂qn (see Figure 7). The situation is somewhat similar to site
percolation, except that the vertices of ∂qn∩mn that do not belong to m0

n may still
be connected to it by not-yet-discovered open edges. We claim that, except for y0,
a vertex of ∂qn+1 ∩m∞ belongs to m0

n+1 if and only if it belongs to m0
n. Indeed,

the two parts qln and qrn can only be connected by the new edge or by vertices of
mn, therefore, filling the finite part with a mix of open and closed edges will not
change whether vertices on the boundary of the infinite one belong or not to m0

n.
This gives the same transitions as for site percolation:

An+1 =


min (An, p− k) (if qln is infinite),

max (An − k − 1, 0) + 1 with probability q (if qrn is infinite),

max (An − k − 1, 0) with probability (1− q) (if qrn is infinite).

x1 x1 x2p x1x2px1x2p

y0

y1 = x2i+1

y0

y1 = x2i+1

x2p

y0

y1 = x2i+1

y0

y1 = x2i+1

Figure 7: Evolution of the exploration process in case (2): on the first two pictures, the
new edge is open, while on the two other ones, it is closed. One has i = k when qln is
infinite, and i = p− k − 1 when qrn is infinite.

(3) y0 ∈ ∂qn and y1 /∈ ∂qn. Here the situation is similar, except for a notable difference
when y0 /∈m0

n. Indeed, in this case one can have y0 ∈m0
n+1 even if the new bond is

closed. This happens when qrn is infinite: filling e.g. qln with open edges connects
y0 to the root vertex by a path of open edges belonging to qn+1 as long as there is
at least one vertex of ∂qn that belongs to m0

n. On the other hand, filling qln with
closed edges leaves y0 disconnected from the root vertex in qn+1, and percolation
does not occur (see Figure 8 for an illustration). The corresponding probabilities
depend on qln, but their exact values will not be needed. Note that if qln is infinite,
then y0 stays disconnected from the root vertex in qn+1 if y0 /∈m0

n.

The transitions are thus given by:

An+1 =



min (An, p− k) with probability (1− q) (if qln is infinite),

min (An + 1, p− k) with probability q (if qln is infinite),

An − k if An − k > 0 (if qrn is infinite),

0 with probability > 0 if An − k 6 0 (if qrn is infinite),

1 with probability > 0 if An − k 6 0 (if qrn is infinite).

(4) y0, y1 ∈ ∂qn. If qln is infinite, then the situation is simple and a vertex of ∂qn+1

belongs to m0
n+1 iff it belongs to m0

n. We thus obtain An+1 = min (An, p− k) in
this case.
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x2p x1

y1

y0 = x2(p−k)

x2p x1

y1

y0 = x2(p−k)

x2p x1

y1

y0 = x2(k+1)

∞ ∞
∞

Closed Open

Figure 8: Evolution of the exploration process in case (3), when y0 /∈ m0
n. Left: y0 /∈

m0
n+1 and percolation does not occur. Middle: y0 ∈m0

n+1. Right: y0 /∈m0
n+1.

If qrn is infinite, then the situation is identical to case (3) (when qrn is infinite),
which gives

An+1 =


An − k if An − k > 0,

0 with probability > 0 if An − k 6 0,

1 with probability > 0 if An − k 6 0.

Finally, when qmn is infinite, let us write y0 = x2i (1 6 i 6 k). If p− i 6 An − 1, then
every vertex of ∂qmn ∩m∞ is in m0

n. In this case we have An+1 = p − k. Suppose
now that p− i > An. The (k − i+ 1) circle-vertices of ∂qln are not in ∂qn+1, which
means that max (An − k + i− 1, 0) vertices in ∂qn+1 belong to m0

n. These vertices
also belong to m0

n+1, and in addition, the vertex y0 belongs to m0
n+1 iff the new

edge is open. To sum up, the transitions in this final situation are:

An+1 =


p− k if An > p− i,
max (An − k + i− 1, 0) + 1 with probability q if An 6 p− i,
max (An − k + i− 1, 0) with probability (1− q) if An 6 p− i.

5.2 Derivation of pbond
c

Suppose now q < 1/2, and consider the modified Markov chain (A′n) with conditional
transition probabilities given Fn: if Xn = 1,

A′n+1 =

{
A′n + 1 with probability qCp+1

12Cp
,

A′n with probability (1− q)Cp+1

12Cp
.

(5.1)

If Xn = −k, we set

A′n+1 =

{
A′n with probability (2− q)Cp−kZk+1

12Cp
+

Cp−k

12Cp

∑k
i=1 ZiZk+1−i,

A′n + 1 with probability qCp−kZk+1

12Cp

(5.2)

(corresponding to qln infinite),

A′n+1 =

{
A′n − k with probability (1 + q)

Cp−kZk+1

12Cp
+

Cp−k

12Cp

∑k
i=1 ZiZk+1−i,

A′n − k − 1 with probability (1− q)Cp−kZk+1

12Cp

(5.3)
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(corresponding to qrn infinite), and

A′n+1 =

{
A′n − k + i with probability qCp−k

12Cp
ZiZk+1−i for 1 6 i 6 k,

A′n − k + i− 1 with probability (1− q)Cp−k

12Cp
ZiZk+1−i for 1 6 i 6 k

(5.4)

(corresponding to qmn infinite).

In a similar way as for site percolation, we can write

E
[
A′n+1 −A′n

∣∣|∂qn| = 2p
]

= qP (Xn = 1||∂qn| = 2p)−
p−1∑
k=0

k

(
1

2
P (Xn = −k||∂qn| = 2p)− 1

2

k∑
i=1

Cp−k
12Cp

ZiZk+1−i

)

− (1− q)
p−1∑
k=0

Cp−kZk+1

12Cp
+ q

p−1∑
k=0

Cp−kZk+1

12Cp

+

p−1∑
k=1

k∑
i=1

(−k + i)
Cp−k
12Cp

ZiZk+1−i − (1− q)
p−1∑
k=1

k∑
i=1

Cp−k
12Cp

ZiZk+1−i

=

(
q − 1

2

)
P (Xn = 1||∂qn| = 2p) +

1

2
E [Xn||∂qn| = 2p]

+ (2q − 1)

p−1∑
k=0

Cp−kZk+1

12Cp
+

p−1∑
k=1

k∑
i=1

(
−k

2
+ i

)
Cp−k
12Cp

ZiZk+1−i

+ (q − 1)

p−1∑
k=0

k∑
i=1

Cp−k
12Cp

ZiZk+1−i

=

(
q − 1

2

)
P (Xn = 1||∂qn| = 2p) +

1

2
E [Xn||∂qn| = 2p]

+ (2q − 1)

p−1∑
k=0

Cp−kZk+1

12Cp
+

(
q − 1

2

) p−1∑
k=0

k∑
i=1

Cp−k
12Cp

ZiZk+1−i,

which is negative and stays bounded away from 0 as n→∞. Using a domination of An
by A′n as we did for site percolation, we deduce that percolation does not occur a.s.,
and An “stays small”. Here we can then use directly a symmetry argument, and deduce
that pc = 1/2 a.s.

5.3 Bond percolation on quadrangulations

In this last part, we would like to mention that the previous reasoning can easily
be adapted to study bond percolation on various classes of maps, in particular on p-
angulations, as soon as one has counting formulas such as (2.1) at one’s disposal.

For example, the previous peeling process can be used for bond percolation on the
UIPQ: we now describe explicitly the exploration process in this case. We consider
percolation with parameter q, and will follow the boundary of a cluster of open edges by
exploring only the neighboring closed edges, and leaving “undetermined” the remaining
ones. More precisely, conditionally on |∂qn| = 2p, the boundary ∂qn will consist in this
case of a certain number An of vertices of the UIPQ connected to the root edge by
open edges belonging to ∂qn (that is, these vertices belong to q0

n, the set of vertices
connected to the root vertex of qn by open paths lying in qn, as in Section 5.1). When
An > 0, the An vertices are connected by (An−1) open edges followed by 1 closed edge,
and Un = 2p − An undetermined edges. Note that Un also counts the number of “free”
vertices that can get connected in a later step to the open cluster that we are following.

EJP 19 (2014), paper 79.
Page 20/27

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-2675
http://ejp.ejpecp.org/


Percolation on uniform infinite planar maps

x2p x1

y0y1
x2(p+1)

x1

closed edge

open edge

undetermined edge

new open edges

Figure 9: Exploration process for bond percolation on the UIPQ. At each step, we ex-
plore iteratively the available “undetermined” edges until we find a closed one. The
remaining boundary edges are then left undetermined.

If we reach An = 0, we stop the process: in this case, we know that the root cluster has
been fully explored and contains only finitely many edges, so that percolation does not
occur.

At each step, we reveal a quadrangle (x2p, x1, y0, y1) as before, lying on the left hand-
side of the unique closed edge e = (x2p, x1), and we explore successively the undeter-
mined edges following x2p on ∂qn+1, until we find a closed one (or no undetermined
edge remains, in which case we can consider the edge explored last to be closed with-
out any loss of generality). A certain number of new vertices get connected in this
way, which follows a geometric distribution with parameter q, truncated by the num-
ber of free vertices N : let us introduce the notation Gq(N) for such a distribution (i.e.
P (Gq(N) = k) = qk(1− q) for 0 6 k < N , and = qN for k = N ).

(1) When y0, y1 /∈ ∂qn, i.e. Xn = 1, we simply have Un + 2 = 2p− An + 2 free vertices
at our disposal. This yields

An+1 = An
(⊥⊥)
+ Gq(2p−An + 2)

(see Figure 9 for an illustration).

Let us now assume that Xn = −k.

(2) In the case when y0 /∈ ∂qn and y1 ∈ ∂qn, we obtain:

– if qln is infinite,

An+1 =

An
(⊥⊥)
+ Gq(2(p− k)−An) (if An < 2(p− k)),

2(p− k) (if An > 2(p− k)),

– if qrn is infinite,

An+1 =



[
An − (2k + 1)

] (⊥⊥)
+ Gq(2p−An + 1) (if An > 2k + 2),

0 w.p. > 0 (if An < 2k + 2),

1
(⊥⊥)
+ Gq(2(p− k)− 1) w.p. > 0 (if An < 2k + 2).
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(3) In the case when y0 ∈ ∂qn and y1 /∈ ∂qn, we obtain:

– if qln is infinite,

An+1 =

An
(⊥⊥)
+ Gq(2(p− k)−An) (if An < 2(p− k)− 1),

2(p− k)− 1
(⊥⊥)
+ Gq(1) (if An > 2(p− k)− 1),

– if qrn is infinite,

An+1 =



[
An − 2k

] (⊥⊥)
+ Gq(2p−An) (if An > 2k + 1),

0 w.p. > 0 (if An < 2k + 1),

1
(⊥⊥)
+ Gq(2(p− k)− 1) w.p. > 0 (if An < 2k + 1).

(4) In the case when y0, y1 ∈ ∂qn, we obtain transitions of the same type as in case
(2) (when qln is infinite) or in case (3) (when qrn is infinite) – note however that
the corresponding (unevaluated) probabilities differ. Finally, if qmn is infinite, let
us write y0 = x2i (1 6 i 6 k). Then

An+1 =



2(p− k) (if An > 2(p− i)),

[
An − 2(k − i)− 1

]
(⊥⊥)
+ Gq(2(p− i) + 1−An) (if 2(k − i) + 2 6 An 6 2(p− i)),

0 w.p. > 0 (if An < 2(k − i) + 2),

1
(⊥⊥)
+ Gq(2(p− k)− 1) w.p. > 0 (if An < 2(k − i) + 2).

We can prove, in the same way as for site and bond percolation on the UIPM, that if
percolation occurs, then we fall only finitely many times into one of the cases when one
returns to either 0 or 1 before exploring undetermined edges. This is because if at a
certain time n, we reach either 0 or 1 (plus an independent geometric random variable),
then An+1 = 0 with a probability at least c, for some universal constant c > 0 (and in
this case, percolation does not occur).

We now prove that qc = 1/3. Let us first assume q < 1/3, and dominate An by
A′n obtained by replacing all truncated geometric distributions by non-truncated ones
(denoted by Gq in the following), and allowing it to take negative values as before. We
first have, when Xn = 1,

A′n+1 = A′n
(⊥⊥)
+ Gq with probability

Cp+1

12Cp
. (5.5)

If Xn = −k, we set

A′n+1 = A′n
(⊥⊥)
+ Gq with probability 2

Cp−kZk+1

12Cp
+
Cp−k
12Cp

k∑
i=1

ZiZk+1−i (5.6)

(corresponding to qln infinite),

A′n+1 =

A
′
n − 2k

(⊥⊥)
+ Gq with probability Cp−kZk+1

12Cp
+

Cp−k

12Cp

∑k
i=1 ZiZk+1−i,

A′n − (2k + 1)
(⊥⊥)
+ Gq with probability Cp−kZk+1

12Cp

(5.7)
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(corresponding to qrn infinite), and

A′n+1 = A′n − 2(k − i)− 1
(⊥⊥)
+ Gq with probability

Cp−k
12Cp

ZiZk+1−i for 1 6 i 6 k (5.8)

(corresponding to qmn infinite). We can then write

E
[
A′n+1 −A′n

∣∣|∂qn| = 2p
]

=
q

1− q

(
Cp+1

12Cp
+

p−1∑
k=0

(
2
Cp−kZk+1

12Cp
+

k∑
i=1

Cp−k
12Cp

ZiZk+1−i

))

+

p−1∑
k=0

(
−(2k + 1) +

q

1− q

)
Cp−kZk+1

12Cp

+

p−1∑
k=0

(
−2k +

q

1− q

)(
Cp−kZk+1

12Cp
+

k∑
i=1

Cp−k
12Cp

ZiZk+1−i

)

+

p−1∑
k=1

k∑
i=1

(
−2(k − i)− 1 +

q

1− q

)
Cp−k
12Cp

ZiZk+1−i

=
q

1− q +

p−1∑
k=0

−k
(

4
Cp−kZk+1

12Cp
+ 3

k∑
i=1

Cp−k
12Cp

ZiZk+1−i

)
−
p−1∑
k=0

Cp−kZk+1

12Cp

+

p−1∑
k=1

k∑
i=1

(2i− (k + 1))
Cp−k
12Cp

ZiZk+1−i

=
q

1− q + E [Xn||∂qn| = 2p]− Cp+1

12Cp
−
p−1∑
k=0

Cp−kZk+1

12Cp

−→
p→∞

q

1− q −
1

2
,

which is negative and bounded away from 0. This implies that percolation does not
occur for q < 1/3.

To prove that percolation occurs for q > 1/3, we can, in the same way as in Section
4.2, compute the law of Un using the fact that 2Xn = (An+1 − An) + (Un+1 − Un). Here
we will need to carry on with the exploration process when An hits 0, that is Un = |∂qn|.
In this case, we simply choose one boundary edge arbitrarily, and continue. This yields,
conditionally on |∂qn| = 2p:

(1) When y0, y1 /∈ ∂qn:

Un+1 = Un + 2
(⊥⊥)
− Gq(Un + 2).

(2) When y0 /∈ ∂qn and y1 ∈ ∂qn:

– if qln is infinite,

Un+1 =

Un − 2k
(⊥⊥)
− Gq(Un − 2k) (if 2k < Un),

0 (if 2k > Un),

– if qrn is infinite,

Un+1 =



[
Un + 1

] (⊥⊥)
− Gq(Un + 1) (if 2(p− k) > Un + 2),

2(p− k) w.p. > 0 (if 2(p− k) < Un + 2),

2(p− k)− 1
(⊥⊥)
− Gq(2(p− k)− 1) w.p. > 0 (if 2(p− k) < Un + 2).
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(3) When y0 ∈ ∂qn and y1 /∈ ∂qn:

– if qln is infinite,

Un+1 =

Un − 2k
(⊥⊥)
− Gq(Un − 2k) (if 2k + 1 < Un),

1
(⊥⊥)
− Gq(1) (if 2k + 1 > Un),

– if qrn is infinite,

Un+1 =


Un

(⊥⊥)
− Gq(Un) (if 2(p− k)− 1 > Un),

2(p− k) w.p. > 0 (if 2(p− k)− 1 < Un),

2(p− k)− 1
(⊥⊥)
− Gq(2(p− k)− 1) w.p. > 0 (if 2(p− k)− 1 < Un).

(4) When y0, y1 ∈ ∂qn, we obtain transitions of the same type as in case (2) when qln
is infinite, and as in case (3) when qrn is infinite. Finally, if qmn is infinite, we write
y0 = x2i (1 6 i 6 k), and

Un+1 =



0 (if 2i > Un),

[
Un − 2i+ 1

]
(⊥⊥)
− Gq(Un − 2i+ 1) (if 2i 6 Un 6 2(p− k + i)− 2),

2(p− k) w.p. > 0 (if Un > 2(p− k + i)− 2),

2(p− k)− 1
(⊥⊥)
− Gq(2(p− k)− 1) w.p. > 0 (if Un > 2(p− k + i)− 2).

From here, computations are the same as with An, except that we have to take
extra care of the truncated geometric random variables. We consider the process (U ′n)

coupled with (Un), and with increments given conditionally on |∂qn| = 2p by

U ′n+1 =



U ′n + 2
(⊥⊥)
− Gq(Un + 2) w.p. Cp+1

12Cp
,

U ′n − 2k
(⊥⊥)
− Gq(Un − 2k) w.p. 2

Cp−kZk+1

12Cp
+
∑k
i=1

Cp−k

12Cp
ZiZk+1−i,

U ′n + 1
(⊥⊥)
− Gq(Un + 1) w.p. Cp−kZk+1

12Cp
,

U ′n
(⊥⊥)
− Gq(Un) w.p. Cp−kZk+1

12Cp
+
∑k
i=1

Cp−k

12Cp
ZiZk+1−i,

U ′n − 2i+ 1
(⊥⊥)
− Gq(Un − 2i+ 1) w.p. Cp−k

12Cp
ZiZk+1−i for 1 6 i 6 k

(we adopt the convention that for N 6 0, Gq(N) ≡ 0). Let us fix q > 1/3, and ε > 0. We
can write

E
[
U ′n+1 − U ′n

∣∣|∂qn| = 2p
]

= 2
Cp+1

12Cp
−
p−1∑
k=0

k

(
4
Cp−kZk+1

12Cp
+ 3

k∑
i=1

Cp−k
12Cp

ZiZk+1−i

)

+

p−1∑
k=1

k∑
i=1

(k + 1− 2i)
Cp−k
12Cp

ZiZk+1−i +

p−1∑
k=0

Cp−kZk+1

12Cp

− E [Gq(Vn)||∂qn| = 2p]

=
Cp+1

12Cp
+ E [Xn||∂qn| = 2p] +

p−1∑
k=0

Cp−kZk+1

12Cp
− E [Gq(Vn)||∂qn| = 2p] ,
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where the random variable Vn encodes the various truncations. We can then estimate
the last term by choosing C > 0 large enough such that E [Gq(C)] > q

1−q − ε and for all
p > 1, P (Xn < −C||∂qn| = 2p) < ε: on the event {Un > 3C}, we note that Vn > C if
Xn > −C, which implies

E [Gq(Vn)||∂qn| = 2p] >

(
q

1− q − ε
)
P (Xn > −C||∂qn| = 2p) >

(
q

1− q − ε
)

(1− ε) .

Hence,

E
[
U ′n+1 − U ′n

∣∣|∂qn| = 2p
]

6
Cp+1

12Cp
+ E [Xn||∂qn| = 2p] +

p−1∑
k=0

Cp−kZk+1

12Cp
−
(

q

1− q − ε
)

(1− ε)

−→
p→∞

1

2
−
(

q

1− q − ε
)

(1− ε) .

This shows that for q > 1/3, there exists a constant α > 0 (depending only on q) such
that: for n large enough,

E
[
U ′n+1 − U ′n

∣∣|∂qn| = 2p
]
6 −α < 0.

We now have to be a bit careful in order to conclude. We first note that U ′n+1 − U ′n >
Un+1−Un, except in two cases: when Un+1 = 0, and when Un+1 = 2(p−k) (i.e. An+1 = 0),
which is the case that we want to avoid. We need to show that this latter case occurs
only finitely many times: let us argue by contradiction, and introduce T1 < T2 < . . . the
corresponding infinite sequence of stopping times. Using the fact that the increments
U ′n − U ′m stay small when positive (of order O(log n)), and that at a given time Tk, the
boundary has size UTk

, we can show that |∂qn| stays of order O(log n), contradicting the
fact that it grows like n2/3. Hence, An > 0 for n large enough, so percolation occurs.
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