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Abstract

The best-response dynamics is an example of an evolutionary game where players
update their strategy in order to maximize their payoff. The main objective of this
paper is to study a stochastic spatial version of this game based on the framework of
interacting particle systems in which players are located on an infinite square lattice.
In the presence of two strategies, and calling a strategy selfish or altruistic depend-
ing on a certain ordering of the coefficients of the underlying payoff matrix, a simple
analysis of the nonspatial mean-field approximation of the spatial model shows that
a strategy is evolutionary stable if and only if it is selfish, making the system bistable
when both strategies are selfish. The spatial and nonspatial models agree when at
least one strategy is altruistic. In contrast, we prove that in the presence of two
selfish strategies and in any spatial dimension, only the most selfish strategy remains
evolutionary stable. The main ingredients of the proof are monotonicity results and a
coupling between the best-response dynamics properly rescaled in space with boot-
strap percolation to compare the infinite time limits of both systems.
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1 Introduction

The framework of evolutionary game theory, which describes the dynamics of pop-
ulations of individuals identified to players, has been initiated by theoretical biologist
Maynard Smith and first appeared in his work with Price [7]. Each individual-player
is characterized by one of a finite number n of possible strategies and is attributed a
payoff that is calculated based on the strategy of the surrounding players and an n× n
payoff matrix. The most popular model of evolutionary game is probably the so-called
replicator equation reviewed in [3], a system of deterministic differential equations for
the frequencies of players holding a given strategy. This paper is a sequel of the sec-
ond author’s work [5] continuing the analytical study of evolutionary games based on
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Best-response dynamics

the framework of interacting particle systems which, in contrast with the replicator
equation, also includes stochasticity and space in the form of local interactions.

Model description – The version of the best-response dynamics we consider in this
paper is a continuous-time Markov chain whose state at time t is a spatial configuration

ηt : Zd −→ {1, 2} := the set of strategies.

In words, each point of the d-dimensional square lattice is occupied by exactly one
player who is characterized by her strategy. The spatial structure is included in the form
of local interactions assuming that each player’s payoff only depends on the strategy of
her 2d neighbors. More precisely, having a two by two payoff matrix A = (aij) where aij
is interpreted as the payoff of a player holding strategy i interacting with a player
holding strategy j, each configuration is turned into a so-called payoff landscape that
attributes a payoff to each vertex as follows:

φ(x, ηt) := (a11N1(x, ηt) + a12N2(x, ηt)) 1{ηt(x) = 1}
+ (a21N1(x, ηt) + a22N2(x, ηt)) 1{ηt(x) = 2} for all x ∈ Zd

where Nj(x, ηt) is the number of type j neighbors of vertex x, i.e.,

Nj(x, ηt) := card {y ∈ Zd : y ∼ x and ηt(y) = j}

where the binary relationship ∼ indicates that two vertices are neighbors. In the tra-
ditional framework of evolutionary game theory, each strategy is often interpreted as a
trait and each payoff defined through the payoff landscape as a fitness or reproduction
success. In particular, evolutionary game theory makes the implicit assumption that
players are not rational decision-makers who can choose their strategy and that the
evolution of the system is driven by births and deaths. In contrast, the best-response
dynamics assumes that players are rational decision-makers changing their strategy in
order to maximize their payoff. Specifically, we assume that each player updates her
strategy at an exponential rate one choosing to change her strategy if and only if it
increases her payoff. In particular, in case of a tie, i.e., the player would not change her
payoff by changing her strategy, nothing happens. More precisely, letting

φ1(x, ηt) := a11N1(x, ηt) + a12N2(x, ηt) for all x ∈ Zd

φ2(x, ηt) := a21N1(x, ηt) + a22N2(x, ηt) for all x ∈ Zd
(1.1)

be the payoff that the player at x would receive if she followed strategy 1 and 2, respec-
tively, the best-response dynamics is formally described by the Markov generator

Lf(ηt) =
∑
x 1{φ1(x, ηt) > φ2(x, ηt)} [f(ηx,1t )− f(ηt)]

+
∑
x 1{φ1(x, ηt) < φ2(x, ηt)} [f(ηx,2t )− f(η)]

(1.2)

where the configuration ηx,it is obtained from ηt by setting to i the strategy at x and
leaving the strategy at the other vertices unchanged. Note that, for any given vertex x,
the difference between the two alternative payoffs in (1.1) can be written as

φ1(x, ηt)− φ2(x, ηt) = (a11N1(x, ηt) + a12N2(x, ηt))− (a21N1(x, ηt) + a22N2(x, ηt))

= (a11 − a21)N1(x, ηt)− (a22 − a12)N2(x, ηt).

In particular, the dynamics only depends on a1 := a11−a21 and a2 := a22−a12 rather than
all four coefficients of the payoff matrix so the Markov generator (1.2) can be written
as

Lf(ηt) =
∑
x 1{a1N1(x, ηt) > a2N2(x, ηt)} [f(ηx,1t )− f(ηt)]

+
∑
x 1{a1N1(x, ηt) < a2N2(x, ηt)} [f(ηx,2t )− f(ηt)].

(1.3)
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Best-response dynamics

Since the behavior of the system strongly depends on the sign of a1 and a2, it is conve-
nient to use the terminology introduced in [4, 5] by declaring strategy i to be

• altruistic when ai < 0, meaning that a player with strategy i confers a lower
payoff to a player following the same strategy than to a player following the other
strategy,

• selfish when ai > 0, meaning that a player with strategy i confers a higher pay-
off to a player following the same strategy than to a player following the other
strategy.

Mean-field approximation – To understand the role of space in the long-term behavior
of the best-response dynamics, the first step is to look at the deterministic nonspatial
version, or mean-field approximation, of the process (1.3). This mean-field model is
obtained under the assumption that the population is well-mixing, and more precisely
by looking at the process on the complete graph in which any two players are neighbors
and then taking the limit as the number of vertices tends to infinity. This results in a
system of differential equations for the frequency of players holding strategy i that we
denote by ui. In the absence of a spatial structure, the payoff that a player would
receive if she followed strategy 1 and 2, respectively, is

φ1(u1, u2) = a11 u1 + a12 u2 and φ2(u1, u2) = a21 u1 + a22 u2

which can be viewed as the nonspatial analog of (1.1). Also, under the evolution rules
of the best-response dynamics, either each type 1 player or each type 2 player changes
her strategy at an exponential rate one depending on whether φ1 − φ2 is negative or
positive, respectively. Then, rescaling time by the number of vertices and taking the
limit as the number of vertices tends to infinity gives the following differential equation
for the frequency of type 1 players:

u′1(t) = u2 1{φ1(u1, u2) > φ2(u1, u2)} − u1 1{φ1(u1, u2) < φ2(u1, u2)}
= u2 1{a1 u1 > a2 u2} − u1 1{a1 u1 < a2 u2}
= u2 1{(a1 + a2)u1 > a2} − u1 1{(a1 + a2)u1 < a2}

(1.4)

where we used that u1 + u2 = 1. Letting u∗ := a2 (a1 + a2)−1, we have

u′1(t) = +u2 when (u1 > u∗ and a1 + a2 > 0) or (u1 < u∗ and a1 + a2 < 0)

u′1(t) = −u1 when (u1 > u∗ and a1 + a2 < 0) or (u1 < u∗ and a1 + a2 > 0)

which shows the following four possible regimes:

• when strategy 1 is selfish and strategy 2 altruistic, strategy 1 wins in the sense
that starting from any initial condition u1(t)→ 1 as t→∞.

• when strategy 1 is altruistic and strategy 2 selfish, strategy 2 wins in the sense
that starting from any initial condition u1(t)→ 0 as t→∞.

• when both strategies are altruistic, coexistence occurs in the sense that starting
from any initial condition u1(t)→ u∗ ∈ (0, 1) as t→∞.

• when both strategies are selfish, the system is bistable:

u1(t)→ 0 as t→∞ when u1(0) < u∗ ∈ (0, 1)

u1(t)→ 1 as t→∞ when u1(0) > u∗ ∈ (0, 1).
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In terms of evolutionary stable strategy, this indicates that, for well-mixing populations,
a strategy is evolutionary stable if it is selfish but not if it is altruistic. Recall that
an evolutionary stable strategy is defined as a strategy which, if adopted by a popula-
tion, cannot be invaded by any alternative strategy starting at an infinitesimally small
frequency.

Spatial stochastic model – We now return to the spatial model (1.3) looking at the
four parameter regions corresponding to the four possible regimes of the mean-field
approximation. Assuming first that strategy 1 is selfish and strategy 2 altruistic, we get

a1N1(x, ηt)− a2N2(x, ηt) = a1N1(x, ηt) + (−a2)(2d−N1(x, ηt)) > 0

for all x ∈ Zd and all configuration ηt. This shows that each type 2 player changes her
strategy at an exponential rate one whereas each type 1 player sticks to her strategy,
therefore strategy 1 wins, just as in the mean-field model, in the sense that for any
initial configuration

limt→∞ P (ηt(x) = 1) = 1 for all x ∈ Zd.

By symmetry, strategy 2 wins whenever strategy 1 is altruistic and strategy 2 selfish.
Note in particular that the “all 1” and “all 2” configurations are not necessarily absorb-
ing states for the process. This is due to the fact that, though the new strategy is chosen
based on the strategy of the neighbors, it is not chosen from the neighborhood. Looking
now at altruistic-altruistic interactions, whenever the player at x and all her neighbors
follow the same strategy,

a1N1(x, ηt)− a2N2(x, ηt) = + 2d a1 < 0 when ηt(x) = 1

a1N1(x, ηt)− a2N2(x, ηt) = − 2d a2 > 0 when ηt(x) = 2.

In either case, the player at x changes her strategy at an exponential rate one, indi-
cating that, as in the mean-field model, two altruistic strategies coexist in the sense
that

limt→∞ P (ηt(x) = ηt(y)) < 1 for all x, y ∈ Zd, x 6= y.

We now study the process when both strategies are selfish, a case more challenging
mathematically and also more interesting as it shows some important disagreements
between the spatial and nonspatial models. To confront our results for the spatial model
with the bistability displayed by its nonspatial counterpart, we consider the process
starting from the product measure with

P (η0(x) = 1) =: p for all x ∈ Zd

and compare the models when p = u1(0). The fact that the inclusion of space in the form
of local interactions strongly affects the long-term behavior of the system can be seen
in a specific parameter region using a standard coupling with the Richardson model [8].
Indeed, let

c(x, ηt) := limh→0 P (ηt+h(x) 6= ηt(x) | ηt). (1.5)

Then, when a1 > (2d− 1) a2 > 0 and N1(x, ηt) ≥ 1, we have

c(x, ηt | ηt(x) = 1) = 1 {a1N1(x, ηt) < a2N2(x, ηt)} ≤ 1 {a1 < (2d− 1) a2} = 0

c(x, ηt | ηt(x) = 2) = 1 {a1N1(x, ηt) > a2N2(x, ηt)} ≥ 1 {a1 > (2d− 1) a2} = 1

almost surely. These two inequalities imply that the set of type 1 players dominates
stochastically the set of infected sites in the Richardson model πt with initial configura-
tion

π0(x) = 1 {η0(x) = 1 and η0(y) = 1 for some y ∼ x}
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(a) a1 = 1.01 > a2 = 1 and p = 0.15 (b) a1 = 1.01 > a2 = 1 and p = 0.20

Figure 1: Best-response dynamics on a 300 × 300 lattice with periodic boundary con-
ditions starting from a product measure with density p of type 1 players in black. On
the left picture, the process hits an absorbing state in which both types are present,
whereas on the right picture, which shows a snapshot of the process at time 25, the
system is converging to the all black configuration: strategy 1 wins.

which, in turns, implies that strategy 1 wins whenever p > 0. This shows in particular
the existence of parameter regions in which, in contrast with the nonspatial model,
only the most selfish strategy is evolutionary stable for the spatial model. Returning
to general selfish-selfish interactions, the numerical simulations of the two-dimensional
process displayed in Figure 1 suggest that, when a1 is slightly larger than a2 and the
initial density p > 0 is small, the system fixates to a configuration in which the set of
type 1 players consists of a union of disjoint rectangles, indicating that strategy 1 is
unable to invade strategy 2. These simulations, however, are misleading due to the
finiteness of the graph, and it can be proved that, in any dimension, the most selfish
strategy always wins even when starting at a low density. More precisely, we have the
following theorem.

Theorem 1.1. – Assume that a1 > a2 > 0 and p > 0. Then,

limt→∞ P (ηt(x) = 1) = 1 for all x ∈ Zd.

In particular, while any selfish strategy is evolutionary stable in the nonspatial model,
only the most selfish strategy is evolutionary stable in the spatial model. The result in
one dimension directly follows from our coupling with the Richardson model since

(2d− 1) a2 = a2 when d = 1

while the general result relies on a combination of monotonicity results and coupling
arguments to compare the best-response dynamics with bootstrap percolation. More
precisely, we first prove that, in the presence of selfish-selfish interactions, the best-
response dynamics is attractive, which allows us to focus on the process starting from
a certain reduced configuration that consists of a union of hyperrectangles. The sec-
ond ingredient is to show that, for the process starting from this reduced configuration,
the set of type 1 players is a pure growth process, just like the Richardson model. This
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strong monotonicity result is then applied repeatedly to show that the best-response dy-
namics properly rescaled in space dominates stochastically bootstrap percolation with
parameter d. From this domination and a result due to Schonmann [9, Theorem 3.1],
we finally deduce that, unlike what Figure 1 suggests, the most selfish strategy indeed
invades the entire lattice.

2 Some monotonicity results

To avoid cumbersome notations, it is convenient to sometimes think of the state of
the process as a subset rather than a function by using the identification:

ηt ≡ {x ∈ Zd : ηt(x) = 1} ⊂ Zd.

One key ingredient is to think of the process as being constructed from a so-called
Harris’ graphical representation [2] which, in the case of the best-response dynamics,
reduces to a collection of independent Poisson processes. More precisely,

• for each x ∈ Zd, we let (Nt(x) : t ≥ 0) be a rate one Poisson process and

• we denote by Tn(x) := inf {t : Nt(x) = n} its nth arrival time.

The configuration at time t := Tn(x) is obtained from ηt− := lims↑t ηs by

adding x when a1N1(x, ηt−) > a2N2(x, ηt−)

removing x when a1N1(x, ηt−) < a2N2(x, ηt−).

An argument due to Harris [2] implies that the best-response dynamics starting from
any initial configuration can indeed be constructed using this rule. The next lemma
shows that, in the presence of selfish-selfish interactions, the best-response dynamics
is attractive.

Lemma 2.1. – The process with a1 > 0 and a2 > 0 is attractive:

P (x ∈ η̄t) ≤ P (x ∈ ηt) for all (x, t) ∈ Zd ×R+ whenever η̄0 ⊂ η0.

Proof. Let η̄t ⊂ ηt. Since a1 > 0 and a2 > 0,

a1N1(x, η̄t) ≤ a1N1(x, ηt) and a2N2(x, η̄t) ≥ a2N2(x, ηt). (2.1)

Let c(x, ηt) be defined as in (1.5). Using (2.1), we obtain that, for all x ∈ η̄t,

c(x, η̄t) = 1 {a1N1(x, η̄t) < a2N2(x, η̄t)}
≥ 1 {a1N1(x, ηt) < a2N2(x, ηt)} = c(x, ηt).

(2.2)

Similarly, for all x /∈ ηt, we have

c(x, η̄t) = 1 {a1N1(x, η̄t) > a2N2(x, η̄t)}
≤ 1 {a1N1(x, ηt) > a2N2(x, ηt)} = c(x, ηt).

(2.3)

The inequalities (2.2)–(2.3) show that condition (B14) in Liggett [6] are satisfied, which
proves that, in the presence of selfish-selfish interactions, the process is attractive.

In addition to attractiveness, a key ingredient to prove our theorem is to replace the
initial configuration η0 with a specific reduced initial configuration η̄0. To define this
new initial configuration, we introduce the following collection of hypercubes:

Hz := 2z + {0, 1}d for all z ∈ Zd.
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Then, given η0, we say that Hz is a type 1 hypercube whenever Hz ⊂ η0 and define

η̄0 := {x ∈ Zd : x ∈ Hz and Hz ⊂ η0 for some z ∈ Zd}
= the union of all type 1 hypercubes.

(2.4)

Note that η̄0 ⊂ η0 therefore, according to Lemma 2.1,

P (x ∈ η̄t) ≤ P (x ∈ ηt) for all (x, t) ∈ Zd ×R+.

In particular, it suffices to prove the theorem for the modified process η̄t that we call
from now on the sparse best-response dynamics. The main reason for working with this
process appears in the next lemma which states that, starting from any configuration
that consists of a union of hypercubes, the process can only increase. This somewhat
strong result is due in part to the fact that, while the time of the updates are random,
the outcome at each update is deterministic.

Lemma 2.2. – Assume that a1 > a2 > 0. Then, P (η̄s ⊂ η̄t for all s < t) = 1.

Proof. Let Φ be the function defined on the set of configurations by

Φ(ηt) := {x ∈ Zd : a1N1(x, ηt) > a2N2(x, ηt)

or (x ∈ ηt and a1N1(x, ηt) = a2N2(x, ηt))}.
(2.5)

In words, while ηt represents the set of vertices following strategy 1, configuration Φ(ηt)

can be seen as the set of vertices that will become or stay of type 1 at the next update
provided the configuration in their neighborhood does not change by the time of the
update. Note that, due to the presence of selfish-selfish interactions: a1 > 0 and a2 > 0,
we have

ηt ⊂ η′t implies that N1(x, ηt) ≤ N1(x, η′t) and N2(x, ηt) ≥ N2(x, η′t)

implies that a1N1(x, ηt)− a2N2(x, ηt) ≤ a1N1(x, η′t)− a2N2(x, η′t)

implies that Φ(ηt) ⊂ Φ(η′t)

(2.6)

indicating that the function Φ is nondecreasing. In addition, for any configuration η̄0
obtained by reduction of an arbitrary initial configuration using the partition into hy-
percubes, since each type 1 player has at least d type 1 neighbors and a1 > a2 > 0, we
also have

x ∈ η̄0 implies that N1(x, η̄0) ≥ d and N2(x, η̄0) ≤ d
implies that a1N1(x, η̄0) > a2N2(x, η̄0)

implies that x ∈ Φ(η̄0)

(2.7)

indicating that η̄0 ⊂ Φ(η̄0). Monotonicity (2.6) and the generalization of (2.7) to all times
are the main two ingredients to establish the lemma that we prove by induction. Since
the lattice is infinite, the time of the first update does not exist. Also, in order to prove
the result inductively, the next step is to use an idea of Harris [2] to break down the
lattice into finite islands that do not interact with each other for a short time. More
precisely, we do the following construction:

• we let ε > 0 be small and, for each vertex x such that T1(x) < ε, draw a line
segment between x and each of its 2d nearest neighbors.

This construction naturally induces a partition of the lattice into clusters, where two
vertices belong to the same cluster if there is a sequence of line segments connecting
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them. In addition, since the probability of two neighbors x ∼ y being connected by a
line segment

P (there is a line segment between x and y)

= P (min(T1(x), T1(y)) < ε) = 1− e−2ε

can be made arbitrarily small by choosing time ε > 0 small, Theorem 1.33 in [1] implies
that there exists ε > 0 small, fixed from now on, such that each cluster is almost surely
finite. Letting A be an arbitrary, necessarily finite, cluster, we have the following two
properties:

(a) the configuration in A at time ε only depends on the initial configuration of the
process and its graphical representation restricted to the cluster A.

(b) whenever (x ∈ A and Nx 6⊂ A) or (x ∈ Ac and Nx 6⊂ Ac) where Nx refers to
the interaction neighborhood of vertex x, the strategy at x is not updated before
time ε.

Now, since A is finite, the number of updates in A up to time ε is almost surely finite
and therefore can be ordered. Let the times of these updates and their corresponding
locations be

s0 := 0 < s1 < s2 < · · · < sm < ε and x1, x2, . . . , xm ∈ A.

By (a) and the definition of the function Φ, we have

x1 ∈ η̄s1 if and only if x1 ∈ Φ(η̄0).

But according to (2.7), we also have η̄0 ⊂ Φ(η̄0) therefore

(x1 ∈ η̄s0 implies x1 ∈ η̄s1) so (η̄s0 ∩A) ⊂ (η̄s1 ∩A) ⊂ (Φ(η̄s0) ∩A). (2.8)

This, together with (b) and the monotonicity of Φ in (2.6), implies

(Φ(η̄s0) ∩A) ⊂ (Φ(η̄s1) ∩A) and (η̄s1 ∩A) ⊂ (Φ(η̄s1) ∩A). (2.9)

The last inclusion in (2.9) allows us to repeat the same reasoning to get (2.8)–(2.9) at
the next update time, and so on up to time sm. Using in addition the obvious fact that
the configuration in the cluster A does not change between two consecutive updates
implies that the property to be proved holds at all times smaller than ε so we have

(η̄s ∩A) ⊂ (η̄t ∩A) and (η̄t ∩A) ⊂ (Φ(η̄t) ∩A) for all s < t ≤ ε. (2.10)

This only proves the result for the process restricted to A and up to time ε. To extend
the result across the lattice and for all times, we first use that the set of all the clusters
forms a partition of the lattice and sum (2.10) over all the possible clusters:

η̄s =
⋃
A (η̄s ∩A) ⊂

⋃
A (η̄t ∩A) = η̄t for all s < t ≤ ε

η̄ε =
⋃
A (η̄ε ∩A) ⊂

⋃
A (Φ(η̄ε) ∩A) = Φ(η̄ε).

(2.11)

This first inclusion proves the lemma up to time ε while the second inclusion can be
used, together with the fact that the process is Markov, to restart the argument and
extend the result inductively up to time 2ε, then 3ε, and so on. This proves the result at
all times.
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3 Coupling with bootstrap percolation

This section is devoted to the proof of the theorem, which relies on a coupling be-
tween bootstrap percolation and the best-response dynamics. Bootstrap percolation
with parameter m is the discrete-time process whose state at time t is a spatial config-
uration

ξt : Zd −→ {0, 1} where 0 = empty and 1 = occupied

that evolves deterministically as follows: for all z ∈ Zd and t ∈ N,

ξt(z) = 1 implies that ξt+1(z) = 1

ξt(z) = 0 implies that ξt+1(z) = 1 if and only if card {w ∼ z : ξt(w) = 1} ≥ m.

In view of Lemma 2.2 for the sparse best-response dynamics and the evolution rules of
bootstrap percolation, both processes are almost surely monotone, therefore the limits

η̄∞ := limt→∞ η̄t and ξ∞ := limt→∞ ξt exist.

Here, we again identify configurations with the set of vertices in state 1. From now on,
we call the two limit sets above, the infinite time limits of the sparse best-response
dynamics and bootstrap percolation, respectively. To prove the theorem, we first rely
on the monotonicity results of the previous section to show that the infinite time limit of
the sparse best-response dynamics properly rescaled in space dominates its counterpart
for bootstrap percolation. The main ingredient is to couple both systems using the key
function introduced in (2.5). Based on this coupling, we can directly deduce the theorem
from its analog for bootstrap percolation on the infinite lattice starting from a product
measure, a result due to Schonmann [9, Theorem 3.1].

Lemma 3.1. – Assume that a1 > a2 > 0. Then,

Φn(η̄s) := (Φ ◦ Φ ◦ · · · ◦ Φ)(η̄s) ⊂ η̄∞ almost surely for all s > 0 and n ≥ 0.

Proof. We prove the result by induction with respect to n.

Base case – This follows from Lemma 2.2 which gives

P (Φ0(η̄s) ⊂ η̄∞) = P (η̄s ⊂ η̄∞) ≥ P (η̄s ⊂ η̄t for all s < t) = 1.

Inductive step – Assume Φn(η̄s) ⊂ η̄∞ and x ∈ Φn+1(η̄s) \ Φn(η̄s). Then,

Ty := inf {T > 0 : y ∈ η̄T } <∞ a.s. for all y ∈ Φn(η̄s) and

τx := max {Ty : y ∼ x and y ∈ Φn(η̄s)} <∞ a.s.
(3.1)

In addition, the choice of x implies that

a1N1(x,Φn(η̄s)) > a2N2(x,Φn(η̄s)) since x ∈ Φ (Φn(η̄s)) \ Φn(η̄s) (3.2)

while a new application of Lemma 2.2 gives

N1(x, η̄t) ≥ N1(x,Φn(η̄s)) and N2(x, η̄t) ≤ N2(x,Φn(η̄s)) (3.3)

for all t > τx. Combining (3.2)–(3.3) and using that a1 > 0 and a2 > 0, we get

a1N1(x, η̄t) ≥ a1N1(x,Φn(η̄s))

> a2N2(x,Φn(η̄s)) ≥ a2N2(x, η̄t) for all t > τx.
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It follows that, given that the player at vertex x follows strategy 2 after time τx, she
switches to strategy 1 at rate one. This together with (3.1) implies that

Tx = inf {t > 0 : x ∈ η̄t} <∞ a.s. therefore x ∈ η̄∞. (3.4)

Finally, using consecutively (2.6) and (2.11) and then (3.4), we deduce that

Φn(η̄s) ⊂ Φ (Φn(η̄s)) = Φn+1(η̄s)

and Φn+1(η̄s) = (Φn+1(η̄s) \ Φn(η̄s)) ∪ Φn(η̄s) ⊂ η̄∞

which shows the result at step n+ 1 and completes the proof.

We are now ready to prove that the infinite time limit of the best-response dynamics
properly rescaled in space dominates the infinite time limit of bootstrap percolation.
More precisely, we look at the best-response dynamics viewed at the hypercube level
by introducing

ζt : Zd −→ {0, 1} where ζt(z) := 1{Hz ⊂ η̄t} for all z ∈ Zd. (3.5)

From now on, we call this process the hypercubic best-response dynamics. Identify-
ing once more configurations with the set of vertices in state 1 and using again the
monotonicity of the sparse best-response dynamics given by Lemma 2.2, we note that

ζ∞ := limt→∞ ζt = limt→∞ {z : Hz ⊂ η̄t}
= {z : Hz ⊂ limt→∞ η̄t} = {z : Hz ⊂ η̄∞}

(3.6)

therefore the infinite time limit ζ∞ is well-defined.

Lemma 3.2. – Assume that a1 > a2 > 0 and m = d. Then,

ξ∞ ⊂ ζ∞ almost surely whenever ξ0 = ζ0.

Proof. Let z ∈ Zd and s > 0, and assume that

ζs(z) = 0 and card {w ∼ z : ζs(w) = 1} ≥ m = d. (3.7)

Recalling (3.5), this indicates that there are at least m = d hypercubes adjacent to Hz

that are completely occupied by players of type 1. Invoking the invariance by symmetry
of the best-response dynamics, we may assume without loss of generality that

Hz−ej ⊂ η̄s for j = 1, 2, . . . , d where ej := jth unit vector. (3.8)

Since a1 > a2 > 0, we also have

Φ(η̄s) ⊃ {x ∈ Zd : N1(x, η̄s) ≥ N2(x, η̄s)} = {x ∈ Zd : N1(x, η̄s) ≥ d}. (3.9)

Combining (3.8)–(3.9) together with Lemma 2.2 and some basic geometry, we get

2z + {x ∈ {0, 1}d :
∑
j=1,2,...,d xj < n} ⊂ Φn(η̄s) for n = 1, 2, . . . , d+ 1. (3.10)

For an illustration in three dimensions, we refer to Figure 2 where configuration η̄s
consists of the union of three hypercubes. In particular, taking n = d+ 1 gives

Hz = 2z + {x ∈ {0, 1}d :
∑
j=1,2,...,d xj ≤ d} ⊂ Φd+1(η̄s).

Applying Lemma 3.1, we then obtain

Hz ⊂ Φd+1(η̄s) ⊂ η̄∞ therefore ζt(z) = 1 for some time t <∞ a.s. (3.11)
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Figure 2: Picture of the progression η̄s → Φ(η̄s) → Φ2(η̄s) → Φ3(η̄s) starting from
the union of three hypercubes adjacent to the same hypercube. The figure gives an
illustration of the inclusions in (3.10).

in view of (3.6). In addition, since the hypercubic process clearly inherits the mono-
tonicity property of the sparse best-response dynamics given by Lemma 2.2,

ζs(z) = 1 implies that P (ζt(z) = 1 for all t > s) = 1. (3.12)

In summary, (3.12) and the fact that (3.7) implies (3.11) indicate that: for the hypercubic
process, once a vertex is occupied it remains occupied forever, and if an empty vertex
has at least d occupied neighbors then it becomes occupied after an almost surely finite
time. Recalling the evolution rules of bootstrap percolation with parameter m = d, the
result follows.

Combining the previous lemma with a result of Schonmann [9, Theorem 3.1] on
bootstrap percolation on the infinite lattice, we now deduce Theorem 1.1:

limt→∞ P (ηt(x) = 1) = 1 for all x ∈ Zd when a1 > a2 > 0 and p > 0.

Proof. To begin with, we consider bootstrap percolation with parameterm starting from
the product measure with density q. That is, the initial configuration satisfies

P (ξ0(z1) = ξ0(z2) = · · · = ξ0(zn) = 1) = qn for z1, z2, . . . , zn ∈ Zd all distinct.

Whether the set of occupied vertices ultimately covers the entire lattice depends on the
initial density and the fact that bootstrap percolation is clearly attractive motivates the
introduction of the following critical value for the initial density:

qc := inf {q ∈ [0, 1] : P (ξ∞ = Zd) = 1}.

Schonmann [9, Theorem 3.1] proved that, when m ≤ d we have qc = 0, therefore

P (ξ∞ = Zd) = 1 whenever m = d and q > 0.

In particular, taking q := p2
d

so that

P (ζ0(z) = 1) = P (η̄0(x) = 1 for all x ∈ Hz) = p2
d

= q = P (ξ0(z) = 1),

assuming that p > 0 and applying Lemmas 2.1 and 3.2, we get

limt→∞ P (ηt(x) = 1) ≥ limt→∞ P (η̄t(x) = 1) = P (x ∈ η̄∞)

≥ P (η̄∞ = Zd) = P (ζ∞ = Zd) ≥ P (ξ∞ = Zd) = 1

which completes the proof of Theorem 1.1.
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