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Abstract

We show that if an interlacing particle system in a two-dimensional lattice is a de-
terminantal point process, and the correlation kernel can be expressed as a double
integral with certain technical assumptions, then the moments of the fluctuations of
the height function converge to that of the Gaussian free field. In particular, this
shows that a previously studied random surface growth model with a reflecting wall
has Gaussian free field fluctuations.
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1 Introduction

We begin by describing a particle system which was introduced in [4].
Particle System. Introduce coordinates on the plane as shown in Figure 1. Denote

the horizontal coordinates of all particles with vertical coordinate m by ym1 > ym2 > · · · >
ymk , where k = b(m + 1)/2c. There is a wall on the left side, which forces ymk ≥ 0 for m
odd and ymk ≥ 1 for m even. The particles must also satisfy the interlacing conditions
ym+1
k+1 < ymk < ym+1

k for all meaningful values of k and m.

By visually observing Figure 1, one can see that the particle system can be inter-
preted as a stepped surface. We thus define the height function at a point to be the
number of particles to the right of that point.

Define a continuous time Markov chain as follows. The initial condition is a single
particle configuration where all the particles are as much to the left as possible, i.e.
ymk = m − 2k + 1 for all k,m. This is illustrated in the left-most iamge in Figure 2.
Now let us describe the evolution. We say that a particle ymk is blocked on the right
if ymk + 1 = ym−1

k−1 , and it is blocked on the left if ymk − 1 = ym−1
k (if the corresponding

particle ym−1
k−1 or ym−1

k does not exist, then ymk is not blocked).
Each particle has two exponential clocks of rate 1

2 ; all clocks are independent. One
clock is responsible for the right jumps, while the other is responsible for the left jumps.
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GFF in interlacing particles

Figure 1:
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When the clock rings, the particle tries to jump by 1 in the corresponding direction.
If the particle is blocked, then it stays still. If the particle is against the wall (i.e.
ym

[m+1
2 ]

= 0) and the left jump clock rings, the particle is reflected, and it tries to jump to

the right instead.
When ymk tries to jump to the right (and is not blocked on the right), we find the

largest r ∈ Z≥0 t {+∞} such that ym+i
k = ymk + i for 0 ≤ i ≤ r, and the jump consists

of all particles
{
ym+i
k

}r
i=0

moving to the right by 1. Similarly, when ymk tries to jump to
the left (and is not blocked on the left), we find the largest l ∈ Z≥0 t {+∞} such that

ym+j
k+j = ymk − j for 0 ≤ j ≤ l, and the jump consists of all particles

{
ym+j
k+j

}l
j=0

moving to
the left by 1.

In other words, the particles with smaller upper indices can be thought of as heavier
than those with larger upper indices, and the heavier particles block and push the
lighter ones so that the interlacing conditions are preserved.

Figure 2: First three jumps

Figure 2 depicts three possible first jumps: Left clock of y1
1 rings first (it gets reflected

by the wall), then right clock of y5
1 rings, and then left clock of y1

1 again.
In terms of the underlying stepped surface, the evolution can be described by saying

that we add possible “sticks” with base 1× 1 and arbitrary length of a fixed orientation
with rate 1/2, remove possible “sticks” with base 1 × 1 and a different orientation with
rate 1/2, and the rate of removing sticks that touch the left border is doubled.1

A computer simulation of this dynamics can be found at
http : //www.math.caltech.edu/papers/Orth_Planch.html.

1This phrase is based on the convention that is a figure of a 1 × 1 × 1 cube. If one uses the dual
convention that this is a cube-shaped hole then the orientations of the sticks to be added and removed have
to be interchanged, and the tiling representations of the sticks change as well.
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GFF in interlacing particles

This particle system has important connections to the representation theory of the
orthogonal groups, to the Kardar–Parisi–Zhang equation from mathematical physics,
and to random lozenge tilings. The interested eader is referred to the introduction of
[4].

Limit shape A very natural question about this random surface is to ask if it satisfies
a law of large numbers and central limit theorem. In other words, in the large N limit,
the random surface should converge to a deterministic limit shape, and the fluctuations
around this limit shape should be a reasonably nice object. This paper will prove that
the flucutations are described by the Gaussian free field, but first let us describe the
limit shape, which was proved in Proposition 5.6 of [4].

Let H(x, n, t) denote the height function, i.e. the number of particles to the right of
(x, n) at time t. Define h to be

h(ν, η, τ) := lim
N→∞

1

N
EH(νN, bηNc, τN).

Thus, h describes the deterministic limit shape. It can be described explicitly as follows.
Let G(z) = G(ν, η, τ ; z) be the function

G(ν, η, τ ; z) = τ
z + z−1

2
+ η log

(
z + z−1

2
− 1

)
− ν log z. (1.1)

There is an explicit (in the sense that it can be written in terms of algebraic functions)
connected domain D consisting of all triples (ν, η, τ) such that G(ν, η, τ ; z) has a unique
critical point in the region H − D = {z : =z > 0 and |z| > 1}. This induces a map
Ω : D → H−D by sending (ν, η, τ) to the critical point of G(z). Then

h(ν, η, τ) = =
(
S(Ω(ν, η, τ))

2π

)
.

Outside of D, the limit shape is trivial – that is, if ν is too large, then there are no
particles to the right of (νN, ηN) at time τN , so the height function is zero. If η is
too small, then all the particles are to the right of (νN, ηN) at time tN , so the height
function is η/2. In the literaure, D is called the liquid region and the triples (ν, η, τ)

outside of D is called the frozen region.

Gaussian free field fluctuations In order to describe the fluctuations, let us review
the Gaussian free field. A comprehensive survey can be found in [13]. The Gaussian free
field is a Gaussian probability measure on a suitable class of distributions on a domain
D ⊂ Rd. More precisely, given compactly supported smooth test functions {φm}∞m=1,
the random variables {GFF(φm)}∞m=1 are mean zero Gaussians with covariance

E[GFF(φm1
)GFF(φm2

)] =

∫
D×D

φm1
(z1)φm2

(z2)G(z1, z2)dz1dz2, (1.2)

where G(z1, z2) is the Green function for the Laplacian on D with Dirichlet boundary
conditions.

Formally, one could attempt to set φm = δzm for zm ∈ D in order to define the
Gaussian free field at a point. However (1.2) would imply that GFF(z) has variance
G(z, z), which is undefined for d ≥ 2. However, for pairwise distinct points z1, . . . , zk one
expects from Wick’s theorem

E[GFF(z1) . . .GFF(zk)] =

{∑
σ

∏k/2
i=1 G(zσ(2i−1), zσ(2i)), k even

0, k odd
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GFF in interlacing particles

where the sum is over all fixed point free involutions σ on {1, . . . , k}. This can be made
into a rigorous statement:

E[GFF(φ1) . . .GFF(φk)] =

∫
Dn
E[GFF(z1) . . .GFF(zk)]

k∏
i=1

φi(zi)dzi.

Furthermore, these moments uniquely determine the Gaussian free field.

Theorem 1.1. Let κj = (νj , ηj , τ) ∈ D for 1 ≤ j ≤ k. Define

HN (ν, η, τ) :=
1

N
(H(νN, bηNc, τN)− EH(νN, bηNc, τN))

and let Ωj = Ω(κj). Then

lim
N→∞

E(HN (κ1) · · ·HN (κk)) =

{∑
σ

∏k/2
i=1 G(Ωσ(2i−1),Ωσ(2i)), k even

0, k odd

where the sum is over all fixed point free involutions σ on {1, . . . , k} and G is the Green’s
function for the Laplacian on H−D with Dirichlet boundary conditions:

G(z, w) =
1

2π
log

(
z + z−1 − w̄ − w̄−1

z + z−1 − w − w−1

)
. (1.3)

Idea of proof and generalization The proof uses a very specific property of the
interacting particle system, namely that it is a determinantal point process. There are
several previous examples of determinantal point processes having Gaussian free field
fluctuations [2, 6, 7, 12]. (See also [9]The essential idea in these proofs is similar..
One takes an explicit formula for the correlation kernel K(x, y), and then asymptotic
analysis on K(x, x) provides information about the limit shape while asymptotics of
K(x, y), x 6= y provides information about the fluctuations. In [4], an explicit formula for
the correlation kernel was proved, enabling steepest descent analysis.

It is thus natural to ask: given a determinantal point process with an explicit corre-
lation kernel, is there a general statement that the fluctuations of the height function
are governed by the Gaussian free field? The answer is yes.

Theorem 1.2. Suppose we are given a particle system on Z×Z≥1 which is a determi-
nantal point process with correlation kernel

K(x1, n1, x2, n2, t) ≈
(

1

2πi

)2 ∫
Γ1

∫
Γ2

exp(NG(ν1, η1, τ, u))

exp(NG(ν2, η2, τ, w))
f(u,w)dwdu,

where Γ1,Γ2 are steepest descent paths. We make certain technical assumptions about
K (see Definition below).

Let D ⊂ R3 be the liquid region and let Ω : D → C send (ν, η, τ) to the critical point
of G(ν, η, τ, z). If HN denotes the scaled and centered random height function of the
particle system, then for κ1, . . . ,κk ∈ D with Ωj = Ω(κj)

E[HN (κ1) . . . HN (κk)]→


∑
σ

k/2∏
j=1

G(Ωσ(j),Ωσ(j+1)), k even

0, k odd,
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where

G(z, w) =
1

2π

∫ z

z̄

∫ w

w̄

f(u, v)f(v, u)

G′ν(u)G′ν(v)
dudv, (1.4)

with G′ν denoting (∂2/∂ν∂z)G.

The rigorous details are in Section 2. In particular, the formula for G in (1.3) follows
from (1.4) with S as in (1.1) and

f(u, v) =
1

v

1− u−2

v + v−1 − u− u−1
.

Outline of paper In section 2.1, we state precisely the assumptions on the determi-
nantal point process, as well as explain why these assumptions are natural. In sections
2.2 and 2.3, we prove Theorem 1.4. In section 3, we show that Theorem 1.1 follows
once we prove that the interacting particle system with a reflecting wall satisfies the
necessary technical assumptions. In section 3.2 and 3.3, we show that the necessary
technical assumptions indeed hold. Section 4 collects the asymptotic analysis needed
throughout the proofs.

2 General Results

2.1 Statement of the Main Theorem

Suppose we have a family of point processes on X = Z × Z≥1 which runs over time
t ∈ [0,∞). (Note that these are different co-ordinates from the introduction). In other
words, at any time t, the system selects a random subset X ⊂ X. If (x, n) ∈ X, then
we say that there is a particle at (x, n). For any k ≥ 1 and t ≥ 0, let ρtk : Xk → [0, 1] be
defined by

ρtk(x1, n1, . . . , xk, nk)

= P(There is a particle at (xj , nj) at time t for each j = 1, . . . , k).

Assume that there is a map K on X× X× [0,∞) such that

ρtk(x1, n1, . . . , xk, nk) = det[K(xi, ni, xj , nj , t)]1≤i,j≤k. (2.1)

The maps ρk and K are called the kth correlation function and the correlation kernel,
respectively.

A function c on X × X is called a conjugating factor if there exists another function
C on X such that

c(x, n, x′, n′) =
C(x, n)

C(x′, n′)
.

Note that if c is a conjugating factor, then

det[K(xi, ni, xj , nj , t)]1≤i,j≤k = det[c(xi, ni, xj , nj)K(xi, ni, xj , nj , t)]1≤i,j≤k. (2.2)

Two kernels K and K̃ are called conjugate if K̃ = cK for some conjugating factor c.

If a correlation kernel exists, the point process is called determinantal. On a discrete
space, a point process is determined uniquely by its correlation functions (see e.g. [10]).
Therefore, if we are given two determinantal point process on a discrete space with
conjugate kernels, they must have the same law.

The setZ×{n} is called the nth level. Given a subsetX ⊂ X, letmn be the cardinality
of the set X ∩ (Z×{n}). Assume that the numbers mn take constant finite values which
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are independent of the time parameter t. In words, this means that the number of
particles on the nth level is always mn. Further assume that mn ≤ mn+1 ≤ mn + 1 for

all n. Let x(n)
1 > x

(n)
2 > . . . > x

(n)
mn denote the elements of X ∩ (Z × {n}). A subset X is

called interlacing if

x
(n+1)
k+1 < x

(n)
k ≤ x(n+1)

k , when mn+1 = mn,

x
(n+1)
k+1 ≤ x(n)

k < x
(n+1)
k , when mn+1 = mn + 1.

Assume that at any time t, the system almost surely selects an interlacing subset. Let
δn equal mn+1 −mn.

Define the random height function by

h : X×R≥0 → Z≥0,

h(x, n, t) = |{(s, n) ∈ X : s > x}|.

In words, h counts the number of particles to the right of (x, n) at time t.

We wish to study the large-time asymptotics of this particle system. Let x = [Nν], n =

[Nη], t = Nτ , where N is a large parameter. Define D ⊂ R×R+ ×R+ to be

D := {(ν, η, τ) : lim
N→∞

ρt1(x, n) > 0}.

Let HN be defined by
HN : R×R+ ×R+ → R,

HN (ν, η, τ) := h(x, n, t)− Eh(x, n, t).

In words, HN is the fluctuation of the height function around its expectation.

Before stating the theorem, we need to state some more assumptions on the kernel.

Suppose the kernel K is conjugate to a kernel K̃ such that K̃ satisfies the following
property: There is a number L such that whenever x, x′ ≥ L,

K̃(x, n, x′, n′, t) + K̃(x, n, x′ − 1 + δn, n
′ + 1, t) + K̃(x, n, x′ + δn, n

′ + 1, t)

=

{
1, (x, n) = (x′, n′)

0, otherwise,
(2.3)

K̃(x, n, x′, n′, t) + K̃(x+ 1− δn, n− 1, x′, n′, t) + K̃(x− δn, n− 1, x′, n′, t)

=

{
1, (x, n) = (x′, n′)

0, otherwise.
(2.4)

Further suppose that for x′, x′′ > L,

K̃(x, n, x′, n′, t)K̃(x′′, n′′, x− 1 + δn, n+ 1, t)→ 0 as x→∞ (2.5)

K̃(x, n, x′, n′, t)K̃(x′′, n′′, x+ δn, n+ 1, t)→ 0 as x→∞ (2.6)

K̃(x, n, x− 1 + δn, n+ 1, t)→ 0 as x→∞ (2.7)

K̃(x, n, x+ δn, n+ 1, t)→ 1 as x→∞. (2.8)

Suppose G(ν, η, τ, z) is a complex-valued function on R × R+ × R+ × C. To save
space, we will sometimes write G(z). Expressions such as G′, Gν , G′ν will be shorthand
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for ∂G/∂z, ∂G/∂ν and ∂2G/∂z∂ν, respectively. Assume G(z) = G(z).Also suppose there
exists a differentiable map Ω from D to the upper half-plane H = {z ∈ C : =(z) > 0}
such that Ω is a critical point of G. In other words,

G′(ν, η, τ,Ω(ν, η, τ)) = 0 for all (ν, η, τ) ∈ D. (2.9)

Note that Ω need not be onto. For any (η, τ), if the set {ν ∈ R : (ν, η, τ) ∈ D} is nonempty,
let q2(η, τ) denote its supremum.

Definition 2.1. With the notation above, a determinantal point process on Z × Z≥1 is
normal if all of the following hold:

• For all η, τ > 0, the limit Ω(q2(η, τ)− 0, η, τ) exists and is a positive real number.

• For all η, τ > 0, as ν approaches q2(η, τ) from the left, G′′(ν, η, τ,Ω(ν, η, τ)) =

O((q2(η, τ)− ν)1/2).

• K is conjugate to some K̃ such that (2.3)-(2.8) hold for some integer L.

• Set t = Nτ , xj = [Nνj ] and nj = [Nηj ] for j = 1, 2, where (νj , ηj , τ) ∈ D. Let
Ωj denote Ω(νj , ηj , τ) and let Gj(z) denote G(νj , ηj , τ, z). If Ω1 6= Ω2 and k1,k2 are
finite integers, then as N →∞,

K̃(x1, n1 + k1, x2, n2 + k2, t) =(
1

2πi

)2 ∫
Γ1

∫
Γ2

exp(NG(ν1, η1, τ, z))

exp(NG(ν2, η2, τ, w))
fk1k2(u,w)dwdu+O(eNκ), (2.10)

where Γ1 and Γ2 are steepest descent paths, κ < <(G1(Ω1) − G2(Ω2)), and fkmkn
are complex-valued meromorphic functions satisfying the identity

fk1k2(z1, z2)fk2k3(z2, z3) . . . fkr−1kr (zr−1, zr)fkrk1(zr, z1)

= f(z1, z2)f(z2, z3) . . . f(zr−1, zr)f(zr, z1).

Here, we have written f for f00.

• For any l ≥ 3, the following indefinite integral satisfies∫
· · ·
∫ ∑

σ

l∏
i=1

f(zσ(i), zσ(i+1))

G′ν(zσ(i))
dzi ≡ 0, (2.11)

where the sum is taken over all l-cycles in Sl and the indices are taken cyclically.

• For any finite interval [a, b], G ∈ C2[a, b] and the Lesbesgue measure of the set
{x ∈ [a, b] : I ′(x) ∈ 2πZ+ [−δ, δ]} is O(δa) for some positive a.

The following remarks will help explain the definition.

Remark 2.2. (1) The assumption that Ω(q2(η, τ) − 0, η, τ) > 0 occurs naturally. One
often finds that for k1 6= k2 ∈ Z,

lim
N→∞

K([Nν] + k1, [Nη], [Nν] + k2, [Nη], Nτ) =
1

2πi

∫ Ω

Ω̄

dz

zk1−k2+1
=
=(Ωk2−k1)

π(k2 − k1)
,

where the contour crosses the positive real line. By setting Ω = eiϕ, we see that the
right hand side reduces to the ubiquitous sine kernel. When k1 = k2 = 0, we see that

lim
N→∞

ρNτ1 ([Nν], [Nη]) =
1

2π
(log Ω− log Ω̄) =

arg Ω(ν, η, τ)

π
.

EJP 19 (2014), paper 72.
Page 7/31

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-3732
http://ejp.ejpecp.org/


GFF in interlacing particles

Since the left hand side equals zero, we expect arg Ω(q2(η, τ)− 0, η, τ) = 0.
(2) Since G(z) = G(z), this means that G has a critical point at both Ω and Ω̄.

As Ω approaches the real line, the two critical points coalesce into a triple zero, so
G′′(t, η, τ) converges to 0 as t approaches q2(η, τ). We need a control for how quickly
this convergence to 0 occurs, in order to order to control the behavior near the boundary
of D. More specifically, it controls the bound in Proposition 4.8.

There is a heuristic understanding for why (2) should hold. The function G has
two critical points which coalesce into a triple zero. The simplest example of such a
function is G(t, x) = x3/3− tx as t approaches 0. In this case, the solution to G′(t, x) = 0

is Ω(t, x) = t1/2. Then G′′(t,Ω(t, x)) = 2t1/2.
(3) Assumptions (2.3)–(2.8) will be elucidated when we interpret the particles as

lozenges. In particular, see remark 2.6.
(4) It is common for the kernel to be expressed in this form; previous examples are

[4] and [2]. If the kernel has a different expression with the same asymptotics as in
Propositions 4.4 and 4.8, the results still hold.

(5) In particular, (2.11) holds if there always exist u-substitutions and an expression
Y such that ∫

· · ·
∫ l∏

i=1

f(zi, zi+1)

G′ν1(zi)
dzi =

∫
· · ·
∫ l∏

i=1

1

Y (ui)− Y (ui+1)
dui,

where zl+1 = z1 and ul+1 = u1. This is because of Lemma 7.3 in [9], which refers back
to [5], which says that ∑

σ

l∏
i=1

1

Y (uσ(i))− Y (uσ(i+1))
= 0.

(6) This is a technical lemma which allows Lemma 4.1 to be applied.

We can now state the main theorem.

Theorem 2.3. Suppose we are given a normal determinantal point process. For 1 ≤
j ≤ k, let κj = (νj , ηj , τ) be distinct points in D , and let Ωj = Ω(νj , ηj , τ). Define the
function G on the upper half-plane to be

G(z, w) =

(
1

2π

)2 ∫ z

z̄

∫ w

w̄

f(z1, z2)f(z2, z1)

G′ν(z1)G′ν(z2)
dz2dz1

Then

lim
N→∞

E(HN (κ1) · · ·HN (κk)) =


∑
σ∈Fk

k/2∏
j=1

G(Ωσ(2j−1),Ωσ(2j)), k is even

0, k is odd,

where Fk is the set of all involutions in Sk without fixed points.

Remark 2.4. We note that these are the moments of a linear family of Gaussian random
variables: see Appendix A. Using the results of [14], it should be possible to show that
HN (κ)/

√
VarHN (κ) converges to a Gaussian, but this was not pursued.

2.2 Algebraic steps in proof of Theorem 2.3

The most natural way to view X is as a square lattice. However, it turns out that a
hexagonal lattice is more useful. To obtain the hexagonal lattice, take the nth level and
shift it to the right by (n+ 1)/2−mn. See Figure 3.
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GFF in interlacing particles

Figure 3: In this example, the integers mn equal 1, 1, 1, 2, 3, 3, 4 . . .. The black line on the

left represents the points where x = 0. Examples of x(n)
k are x(3)

1 = 1, x
(4)
1 = 3, x

(7)
2 = 4.

Figure 4: Lozenges of types I,II, and III, respectively. Note that lozenges of type I occur
exactly at the same places as particles.

Figure 3 also shows that the particle system can be interpreted as lozenges. Each
lozenge is a pair of adjacent equilateral triangles. See Figure 4.

By setting the location of each triangle to be the midpoint of its horizontal side,
each lozenge can be viewed as a pair (x, n, x′, n′), where the black triangle is located
at (x, n) and the white triangle is located at (x′, n′). For example, in Figure 3 there
are lozenges (1, 3, 1, 3), (2, 3, 2, 4), and (0, 3, 1, 4). The three types of lozenges can be
described as follows. For lozenges of type I, (x′, n′) = (x, n). For lozenges of type II,
(x′, n′) = (x− 1 + δn, n+ 1). For lozenges of type III, (x′, n′) = (x+ δn, n+ 1). Note that
a lozenge of type I is just a particle.

We say that (x, n, x′, n′) ∈ X × X is viable if (x′, n′) = (x, n), (x − 1 + δn, n + 1), or
(x + δn, n + 1). A sequence (x1, n1, x

′
1, n
′
1), . . . , (xk, nk, x

′
k, n
′
k) of viable elements is non-

overlapping if (x1, n1), . . . , (xk, nk) are all distinct from each other and (x′1, n
′
1), . . . , (x′k, n

′
k)

are also all distinct from each other. We do, however, allow the possibility of (xi, ni) =

(x′j , n
′
j).

The statement and proof of the next proposition are similar to Theorem 5.1 of kn:BF.

Proposition 2.5. Suppose the kernel K is conjugate to some K̃ such that (2.3)-(2.8)
hold for some L. If t ≥ 0, x1, x

′
1, . . . , xk, x

′
k > L, and (x1, n1, x

′
1, n
′
1), . . . , (xk, nk, x

′
k, n
′
k) is

a sequence of non-overlapping viable elements of X× X, then

P(There is a lozenge (xj , nj , x
′
j , n
′
j) at time t for each j = 1, . . . , k)

= det[K̃(xi, ni, x
′
j , n
′
j , t)]1≤i,j≤k. (2.12)

Remark 2.6. The equations (2.3)–(2.8) can now be intuitively understood. Equation
(2.3) says that each black triangle is located in exactly one of the three lozenges around
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it, and equation (2.4) makes an identical statement for white triangles. Equations (2.5)
and (2.7) say that lozenges of type II almost surely do not occur far to the right of the
particles, with (2.5) controlling the off-diagonal entries in the determinant and (2.7)
controllling the diagonal entries. Similarly, equations (2.6) and (2.8) says that lozenges
of type III almost surely do occur far to the right of the particles. This intuition will be
exploited in the proof of Thereom 2.5.

Proof. We proceed by induction on the number of lozenges that are not of type I. When
this number is zero, the statement reduces to (2.1) and (2.2).

For any set S = {(x1, n1, x
′
1, n
′
1), . . . , (xk, nk, x

′
k, n
′
k)} of non-overlapping, viable ele-

ments, let P (S) and D(S) denote the left and right hand sides of (2.12), respectively.
First, as a preliminary statement, it is not hard to prove that if (xk+1, nk+1) 6= (xr, nr)

for 1 ≤ r ≤ k, then

D(S ∪ {(xk+1, nk+1, xk+1, nk+1)}) +D(S ∪ {(xk+1, nk+1, xk+1 − 1 + δn, nk+1 + 1)})
+D(S ∪ {(xk+1, nk+1, xk+1 + δn, nk+1 + 1)}) = D(S). (2.13)

One simply expands the determinant in the left–hand–side as a sum over permutations
σ ∈ Sk+1. One then uses (2.3) to show that the sum over the σ fixing k + 1 equals D(S),
while the sum over the sigma not fixing k + 1 equals 0. Note that if D is replaced by P
in (2.13), the statement is immediate, since the black triangle at (xk+1, nk+1) must be
contained in exactly one lozenge.

In a similar manner, if (x′k+1, n
′
k+1) 6= (x′r, n

′
r) for 1 ≤ r ≤ k, then (2.4) implies that

D(S ∪ {(xk+1, nk+1, xk+1, nk+1)}) +D(S ∪ {(xk+1 + 1− δn, nk+1 − 1, xk+1, nk+1)})
+D(S ∪ {(xk+1 − δn, nk+1 − 1, xk+1, nk+1)}) = D(S). (2.14)

Again, the statement holds if D is replaced by P .

In order to prove the induction step, it suffices to prove that D and P still agree if
we add a lozenge of type II or type III to S. Let us do type II, as type III is similar.
Suppose that (x, n, x − 1 + δn, n + 1) is viable and that S ∪ {(x, n, x − 1 + δn, n + 1)} is
non-overlapping. Then equation (2.13) is equivalent to

D(S ∪ {(x, n, x− 1 + δn, n+ 1)})
= D(S)−D(S ∪ {(x, n, x, n)})−D(S ∪ {(x, n, x+ δn, n+ 1)}), (2.15)

and the same holds for P instead of D. By the induction hypothesis,

D(S) = P (S),

D(S ∪ {(x, n, x, n)}) = P (S ∪ {(x, n, x, n)})
D(S ∪ {(x+ δn, n+ 1, x+ δn, n+ 1)}) = P (S ∪ {(x+ δn, n+ 1, x+ δn, n+ 1)}).

Thus, (2.15) implies

D(S ∪ {(x, n, x− 1 + δn, n+ 1)})− P (S ∪ {(x, n, x− 1 + δn, n+ 1)}))
= −D(S ∪ {(x, n, x+ δn, n+ 1)}) + P (S ∪ {(x, n, x+ δn, n+ 1)}).

Assume for now that (x′r, n
′
r) 6= (x + δn, n + 1) for 1 ≤ r ≤k. Then we cam apply
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equation (2.14), which implies that

D(S ∪ {(x, n, x− 1 + δn, n+ 1)}) = D(S)

−D(S ∪ {(x+ δn, n+ 1, x+ δn, n+ 1)})−D(S ∪ {(x+ 1, n, x+ δn, n+ 1)}), (2.16)

and the same statement holds for P . Thus,

−D(S ∪ {(x, n, x+ δn, n+ 1)}) + P (S ∪ {(x, n, x+ δn, n+ 1)})
= D(S ∪ {(x+ 1, n, x+ δn, n+ 1)})− P (S ∪ {(x+ 1, n, x+ δn, n+ 1)}).

If S ∪ {(x + 1, n, x + δn, n + 1)} is non-overlappinng, then (2.15) is again applicable.
We repeatedly apply (2.15) and (2.16) as often as possible. First, suppose that this can
be done indefinitely. Then

|D(S ∪ {(x, n, x− 1 + δn, n+ 1)})− P (S ∪ {(x, n, x− 1 + δn, n+ 1)})|
= lim
M→∞

|D(S∪{(x+M,n, x−1+δn+M,n+1)})−P (S∪{(x+M,n, x−1+δn+M,n+1)})|.

Since lozenges of type II almost surely do not appear when we look far to the right of
the particles,

lim
M→∞

P (S ∪ {(x+M,n, x− 1 + δn +M,n+ 1)}) = 0.

By expanding the determinant into a sum over Sk+1, (2.5) and (2.7) imply that

lim
M→∞

D(S ∪ {(x+M,n, t, x− 1 + δn +M,n+ 1)}) = 0.

Now suppose that (2.15) and (2.16) can only be applied finitely many times. This
means that D(S ∪ {(x, n, x − 1 + δn, n + 1)}) − P (S ∪ {(x, n, x − 1 + δn, n + 1)}) equals
either

D(S ∪ {(x+M,n, x+M + δn, n+ 1)})− P (S ∪ {(x+M,n, x+M + δn, n+ 1)})

or

D(S ∪ {(x+M + 1, n, x+M + δn, n+ 1)})− P (S ∪ {(x+M + 1, n, x+M + δn, n+ 1)})

In the first case, S ∪ {(x+M + 1, n, x+M + δn, n+ 1)} is non non-overlapping. This
implies D(S ∪ {(x + M + 1, n, x + M + δn, n + 1)}) = 0 (because two of the rows are
idential) and P (S ∪{(x+M + 1, n, x+M + δn, n+ 1)}) = 0 (because a triangle cannot be
in two different lozenges at the same time). Thus, D and P agree. A similar argument
holds in the second case. Thus, D and P agree whenever a lozenge of type II is added
to S.

An identical argument holds for type III lozenges, except that we use (2.6) and (2.8)
instead of (2.5) and (2.7).

We have been describing a lozenge as a pair (x, n, x′, n′). It can also be described as
(x′, n′, λ), where (x′, n′) is the location of the white triangle and λ ∈ {I, II, III} is the
type of the loznege. Thus the proposition can be restated as the following statement.

Corollary 2.7. For any non–overlapping (x′1, n
′
1, λ1), . . . , (x′k, n

′
k, λk),

P(There is a lozenge (x′j , n
′
j , λj) at time t for each j = 1, . . . , k)

= det[Kλ(x′i, n
′
i, λi, x

′
j , n
′
j , t)]1≤i,j≤k,
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where

Kλ(x, n, λ, x′, n′, t) =


K̃(x, n, x′, n′, t), when λ = I

K̃(x− δn−1, n− 1, x′, n′, t), when λ = II

K̃(x− δn−1 − 1, n− 1, x′, n′, t), when λ = III

Proof. This is a result of the correspondences

(x′, n′, I) iff (x′, n′, x′, n′),

(x′, n′, II) iff (x′ − δn′−1, n
′ − 1, x′, n′),

(x′, n′, III) iff (x′ − δn′−1 − 1, n′ − 1, x′, n′).

There are two different formulas for the height function. One formula is

h(x, n) =
∑
s>x

1(lozenge of type I at (s, n)). (2.17)

It is possible to only use (2.17) to complete the proof. However, when there are multiple
points on one level, i.e. not all η1, . . . , ηk are distinct, the computation becomes much
more complicated. This is because lozenges of type I will appear in multiple sums of the
form (2.17). We can avoid this difficulty by introducing another formula for the height
function:

h(x, n) = h(x+ δn + δn+1 + . . .+ δn′−1, n
′) +Hn,n′(x), (2.18)

where, for n < n′,

Hn,n′(x) = −
n′∑

p=n+1

1(lozenge of type II at (x+ δn + δn+1 . . .+ δp−1, p)). (2.19)

Therefore, the expression

E

 k∏
j=1

[h(xj , nj)− E(h(xj , nj))]

 (2.20)

can be expressed as a sum of terms of the form

E

 k′∏
j=1

[h(xj , nj)− E(h(xj , nj))]

k∏
l=k′+1

[Hnl,n′l
(xl)− E(Hnl,n′l

(xl))]

 . (2.21)

Lemma 2.8. Assume that the following sets are disjoint:

{(s, nj) : s > xj}, 1 ≤ j ≤ k′

{(xl + δnl + δnl+1 . . .+ δp−1, p) : nl + 1 ≤ p ≤ n′l}, k′ + 1 ≤ l ≤ k.

Then

(2.21) =
∑
s1>x1

· · ·
∑

sk′>xk′

n′
k′+1∑

pk′+1=nk′+1+1

· · ·
n′k∑

pk=nk+1

det

[
A11 A12

A21 A22

]
, (2.22)
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where the matrix blocks are:

A11 = [(1− δij)K̃(si, ni, sj , nj , t)]1≤i,j≤k′

A12 = [K̃(si, ni, xj , pj , t)]1≤i≤k′, k′+1≤j≤k

A21 = [−K̃(xi − δpi−1, pi − 1, sj , nj , t)]k′+1≤i≤k, 1≤j≤k′

A22 = [−(1− δij)K̃(xi − δpi−1, pi − 1, xj , pj , t)]k′+1≤i,j≤k

Proof. By applying Corollary 2.7 to (2.17) and (2.19), we see that

E

 k′∏
j=1

h(xj , nj)

k∏
l=k′+1

Hnl,n′l
(xl)


equals the right hand side of (2.22) with the (1 − δij) terms removed. It is well-known
that subtracting the expectation corresponds to putting zeroes on the diagonal. For
example, this is noticed in the proof of Theorem 7.2 of [9].

Write the determinant in (2.22) as a sum over permutations σ in Sk. If the cycle
decomposition of σ contains the cycle (c1 c2 . . . cr) of length r and M denotes the
matrix in the right hand side of (2.22), then the contribution from σ is∑

s1

· · ·
∑
sk′

∑
pk′+1

· · ·
∑
pk

sgn(σ)Mc1c2Mc2c3 . . .Mcrc1(· · · )(· · · ),

where (· · · )(· · · ) correspond to other cycles of σ. Let ψcι denote scι if 1 ≤ cι ≤ k′, and pcι
if k′ < cι ≤ k. Since the sum over ψcι only affects the matrix terms Mcι−1cι and Mcιcι+1

,
the contribution from σ is(−1)r−1

∑
ψc1

· · ·
∑
ψcr

Mc1c2Mc2c3 . . .Mcrc1

( . . . ), (2.23)

where (. . .) denote other cycles. In other words, the contribution from σ can be ex-
pressed as a product over the cycles in the cycle decomposition of σ.

Note that if σ fixes any points, then the correponding contribution is zero because
all the diagonal entries are zero.

2.3 Analysis steps in proof of Theorem 2.3

In (2.22), set xj = [Nνj ], nl = [Nηl], and t = Nτ . Our goal is to find the limit of (2.22)
as N → ∞. Expanding the determinant into a sum over σ ∈ Sk, we just saw that the
contribution from a fixed σ is of the form (2.23). First note that if any of the ψci denotes
pci , then ∑

ψc1

· · ·
∑
ψcr

Mc1c2Mc2c3 . . .Mcrc1 → 0.

This is because eachMcjcj+1
is proportional to 1/N (by Proposition 4.4, soMc1c2Mc2c3 . . .Mcrc1

is proportional to N−r, but the sum is only taken over O(Nr−1) terms. Therefore, (2.20)
can be expressed as a single term of the form in (2.21), and in this term k′ = k.

Now we will prove (stated as Theorem 2.10 below) that

∑
sc1

· · ·
∑
scr

Mc1c2Mc2c3 . . .Mcrc1 →
(

1

2π

)r ∫ Ω1

Ω̄1

dz1 · · ·
∫ Ω̄r

Ω̄r

dzr
f(z1, z2)

G′ν(z1)
. . .

f(zr, zr)

G′ν(zr)
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Once this is proven, (2.11) implies that the total contribution from Sk −Fk equals zero.
When l = 2, then the right hand side is just G(Ω1,Ω2), completing the proof of Theorem
2.3.

Recall the definitions of G and Ω from section 2.1. Set θ : D → [0, π) to be

θ(ν, η, τ) =
1

2
argG′′(ν, η, τ,Ω(ν, η, τ)).

Proposition 2.9. For i = 1, 2, 3, let (νi, ηi, τ) ∈ D, xi = [Nνi], ni = [Nηi] and t = Nτ .
For i = 1, 3, let Gi(z) denote G(νi, ηi, τ, z), let θi denote θ(νi, ηi, τ) and let Ωi denote
Ω(νi, ηi, τ). Let Γ+ := {Ω(ν, η2, τ) : ν2 ≤ ν < q2(η2, τ)} and Γ− = Γ̄+. Let G′ν(z) =

(∂2/∂z∂v)G(ν2, τ2, τ, z). Then∑
y>[Nν2]

K(x1, n1, y, n2, t)K(y, n2, x3, n3, t)

= o

(
1

N

)
+

eN<((G1(Ω1)−G3(Ω3)))

2πN
√
|G′′1(Ω1)|

√
|G′′3(Ω3)|

∫
Γ+∪Γ−

dz

2πG′ν1(z)

×
[
f(Ω1, z)f(z,Ω3)

eiN=(G1(Ω1))−iθ1

eiN=(G3(Ω3))+iθ3
+ f(Ω̄1, z)f(z,Ω3)

e−iN=(G1(Ω1))+iθ1

eiN=(G3(Ω3))+iθ3

+ f(Ω1, z)f(z, Ω̄3)
eiN=(G1(Ω1))−iθ1

e−iN=(G3(Ω3))−iθ3
+ f(Ω̄1, z)f(z, Ω̄3)

e−iN=(G1(Ω1))+iθ1

e−iN=(G3(Ω3))−iθ3

]
. (2.24)

Proof. Let G2(z) denote G([y/N ], η2, τ, z), let θ2 denote θ([y/N ], η2, τ) and Ω2 denote
Ω(y/N, η2, τ). Fix some β ∈ (−1/2, 0) and split up the sum into two parts: the first part
is from bNν2c to bN(q2 − Nβ)c, while the second sum is from bN(q2 − Nβ)c to bNq2c.
Since there are no particles to the right of Nq2 in the limit N → ∞, the sum from Nq2

to ∞ can be ignored. It is common to refer to the first sum as the bulk and the second
sum as the edge. First examine the bulk. By Proposition 4.4,

K(x1, n1, y, n2, t)K(y, n2, x3, n3, t)

=
eN<((G1(Ω1)−G2(Ω2)))

2πN
√
|G′′1(Ω1)|

√
|G′′2(Ω2)|

eN<((G2(Ω2)−G3(Ω3)))

2πN
√
|G′′2(Ω2)|

√
|G′′3(Ω3)|

×
[
f(Ω1,Ω2)f(Ω2,Ω3)

eiN=(G1(Ω1))−iθ1

eiN=(G2(Ω2))+iθ2

eiN=(G2(Ω2))−iθ2

eiN=(G3(Ω3))+iθ3
+ 	

]
+O(G′′2(Ω2)−4N−3) +O(G′′2(Ω2)−7N−4), (2.25)

where 	 denotes the other fifteen terms that occur in the sum. First let us examine the
error term in the bulk.

By (2) of Definition 2.1, each term in the error is bounded by (Nβ/2)−4N−3 and
(Nβ/2)−7N−4, respectively. There are ∼ N terms, and since β > −1/2, we must have
−2β − 3 + 1 < −1 and −7β/2− 4 + 1 < −1. Therefore the sum is o(1/N).

Now let us return to the main term in the bulk. For eight of the sixteen terms
in 	, the expression eiN=(G2(Ω2)) cancels in the numerator and the denominator. By
Proposition 4.2, these eight terms are o(1/N). By Proposition 4.3, the other eight terms
equal
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eN<((G1(Ω1)−G3(Ω3)))

2πN
√
|G′′1(Ω1)|

√
|G′′3(Ω3)|

∫ ∞
ν2

e−2iθ2

2π|G′′2(Ω2)|

×
[
f(Ω1,Ω2)f(Ω2,Ω3)

eiN=(G1(Ω1))−iθ1

eiN=(G3(Ω3))+iθ3
+ . . .

]
dν + o

(
1

N

)
,

where . . . represent the other seven terms. Of the eight total terms, four have f(·,Ω2)f(Ω2, ·)
and four have f(·, Ω̄2)f(Ω̄2, ·). For the four terms with the expression Ω2, make the sub-
stitution z = Ω(ν, η2, τ). The new integration path is Γ+. By taking the partial of (2.9)
with respect to ν and using the chain rule,

∂Ω

∂ν
= −G

′
ν(Ω)

G′′(Ω)
,

which implies
e−2iθ2

2π|G′′2(Ω2)|
dν =

dν

2πG′′2(Ω2)
= − dz

2πG′ν(z)
.

For the four terms with Ω̄2, make the substitution z = Ω̄(ν, η2, τ). The path of integration
is Γ−. Finally, the integral becomes

o

(
1

N

)
+

eN<((G1(Ω1)−G3(Ω3)))

2πN
√
|G′′1(Ω1)|

√
|G′′3(Ω3)|

∫
Γ+∪Γ−

dz

2πG′ν1(z)

×
[
f(Ω1, z)f(z,Ω3)

eiN=(G1(Ω1))−iθ1

eiN=(G3(Ω3))+iθ3
+ f(Ω̄1, z)f(z,Ω3)

e−iN=(G1(Ω1))+iθ1

eiN=(G3(Ω3))+iθ3

+ f(Ω1, z)f(z, Ω̄3)
eiN=(G1(Ω1))−iθ1

e−iN=(G3(Ω3))−iθ3
+ f(Ω̄1, z)f(z, Ω̄3)

e−iN=(G1(Ω1))+iθ1

e−iN=(G3(Ω3))−iθ3

]
.

Now we sum over the edge. By Proposition 4.8 and (2) of Definition 2.1, the sum is
bounded above by

q2N∑
y=(q2−Nβ)N

|G2(Ω2)−1|N−2 ≤
Nβ+1∑
y=0

( y
N

)1/2

N−2 = O(N3β/2−1).

As long as β < 0, the sum over the edge is also o(1/N).

Theorem 2.10. For i = 1, . . . , l, let (νi, ηi, τ) ∈ D and set xi = [Nνi], ni = Nηi. For i =

1, . . . , l, let Gi(z) denote G(νi, ηi, z), let θi denote θ(νi, ηi, τ) and let Ωi denote Ω(νi, ηi, τ).
Let Γ+

i := {Ω(ν, ηi, τ) : ν1 ≤ ν < q2(ηi, τ)} and Γ−i = Γ̄+
i . Then

∑
y1>[Nν1]

· · ·
∑

yl>[Nνl]

l∏
i=1

K(yi, xi, yi+1, xi+1, t)

→
(

1

2π

)l ∫
Γ+
1 ∪Γ−1

dz1 · · ·
∫

Γ+
l ∪Γ−l

dzl
f(z1, z2)

G′ν(z1)
. . .

f(zl, z1)

G′ν(zl)
.

The indices are taken cyclically.

Proof. By Proposition 4.4, the product has 4l terms. Each application of Proposition 2.9
decreases the number of terms by a factor of 4, so repeated applications of Proposition
2.9 yields the result.
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3 Specific Results

3.1 Particle system with a wall

We now return to the particle system with a reflecting wall described in the Introduc-
tion. For notational reasons, it is more convenient to use different co-ordinates. Instead
of labeling the levels as 1, 2, 3, . . ., it is more convenient to label them as (1,−1/2), (1, 1/2), (2,−1/2), (2, 1/2), . . ..
If the (n1, a1) is at least as high as the (n2, a2) level, then this will be denoted as
(n1, a1) D (n2, a2). This happens if and only if 2n1 + a1 ≥ 2n2 + a2. Using the nota-
tion of Section 2.2, m(n,a) = n and δ(n,a) = a + 1/2. Along the horizontal direction, we
will use a square lattice, so that the particles live on N instead of 2N or 2N+ 1.

Let ma1(dz) be defined by

ma1(dz)


dz

2iz
, a1 = −1/2,

−(z1/2 − z−1/2)2dz

4iz
, a1 = 1/2.

Let J(±1/2,−1/2)
s denote the (normalized) Jacobi polynomial with parameters (±1/2,−1/2).

The normalization is set so that for any nonzero complex number z, J(±1/2,−1/2)
s satisfies

J(−1/2,−1/2)
s

(
z + z−1

2

)
=
zs + z−s

2
, (3.1)

J(1/2,−1/2)
s

(
z + z−1

2

)
=
zs+1/2 − z−s−1/2

z1/2 − z−1/2
. (3.2)

Let W (a,−1/2)(s) be defined for nonnegative integers s by

W (a,−1/2)(s) =


2, if s > 0, a = − 1

2 ,

1, if s = 0, a = − 1
2 ,

1, if s ≥ 0, a = 1
2 .

Note that for a = ±1/2,

W (a,−1/2)(s1)

π

∮
|z|=1

J(a,−1/2)
s1

(
z + z−1

2

)
J(a,−1/2)
s2

(
z + z−1

2

)
ma(dz) = δs1s2 (3.3)

By Theorem 4.1 of [3], the correlation functions are determinantal with kernel

K(n1, a1, s1, n2, a2, s2, t)

=
W (a1,−1/2)(s1)

2π2i

∮ ∮
et(

z+z−1

2 )

et(
v+v−1

2 )
J(a1,−1/2)
s1

(
z + z−1

2

)
J(a2,−1/2)
s2

(
v + v−1

2

)
×

( z+z
−1

2 − 1)n1

(v+v−1

2 − 1)n2

1− v−2

z + z−1 − v − v−1
ma1(dz)dv

(3.4)
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+ 1(n1,a1)D(n2,a2)

(
W (a1,−1/2)(s1)

π

∮
J(a1,−1/2)
s1

(
z + z−1

2

)
J(a2,−1/2)
s2

(
z + z−1

2

)

×
(
z + z−1

2
− 1

)n1−n2

ma1(dz)

)
, (3.5)

where the z-contour is the unit circle and the v-contour is a circle centered at the origin
with radius bigger than 1.

Theorem 3.1. The determinantal point process is normal. The Green’s function is
given by

G(z, w) =
1

2π
log

(
z + z−1 − w̄ − w̄−1

z + z−1 − w − w−1

)
.

Once we prove the point process is normal, the expression for the Green’s function
follows from Theorem 2.3 with

G(ν, η, τ ;u) = τ
u+ u−1

2
+ η log

(
u+ u−1

2
− 1

)
− ν log u,

f(u, v) =
1

v

1− u−2

v + v−1 − u− u−1
.

In section 3.2, we show that the third condition in Definition 2.1 is satisfied. In section
3.3, we show that the fourth and second conditions are satisfied. Since these are condi-
tions are the hardest to prove, we will focus mainly on their proofs. The fifth conditions
follows from the substitution uj = zj + z−1

j and (5) of Remark 2.2.

3.2 Algebraic steps in proof of theorem 3.1

Proposition 3.2. Let C0(n, a, s) equal

C0(n, a, s) =

{
(−1)s(−2)n−1, a = −1/2

(−1)s(−2)n, a = 1/2

and c0(n1, a1, s1, n2, a2, s2) = C0(n1, a1, s1)/C0(n2, a2, s2). Then K̃ = c0K satisfies (2.3)–
(2.8) for L = 1.

Proof. Using (3.1)–(3.2) and the orthogonality relation (3.3), it is straightforward to
check that (2.3) and (2.4) hold. What happens is that in the left hand side of (2.3) or
(2.4), one obtains six terms, three of which come from (3.4) and three of which come
from (3.5). The three terms from (3.4) always sum to 0, while the three terms from (3.5)
sum to 0 or 1.

Now we will prove (2.7)-(2.8) when a1 = −1/2. The term (3.5) equals zero, so we
only need to look at (3.4). Explicitly, the expression is

K(n,−1/2, s, n, 1/2, s′, t) =
2

2π2i

∮ ∮
|z|=1

et(
z+z−1

2 )

et(
v+v−1

2 )

(
zs + z−s

2

)
×

(
vs
′+1/2 − v−s′−1/2

v1/2 − v−1/2

)
( z+z

−1

2 − 1)n

(v+v−1

2 − 1)n
1− v−2

z + z−1 − v − v−1

dzdv

2iz
,

and we want the asymptotic result when s, s′ → ∞ in such a way that s − s′ is 0 or 1.
Expand the paranthetical expression vs

′+1/2 − v−s′−1/2 to get two terms, each of which
is a double integral. Since 1 = |z| < |v|, the term with v−s

′−1/2 goes to zero. For the
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remaining term, expand zs + z−s to get two terms. For the term with zs, make the
substitution z 7→ z−1. What remains is

2

2π2i

∮ ∮
|z|=1

et(
z+z−1

2 )

et(
v+v−1

2 )

vs
′

zs
v

v − 1

( z+z
−1

2 − 1)n

( v+v−1

2 − 1)n
1− v−2

z + z−1 − v − v−1

dzdv

2iz
.

Now deform the z-contour to the circle |z| = 1 + 2ε and the v-contour to the circle
|v| = 1 + ε, where ε > 0. With these deformations, |v| < |z|, so the double integral goes
to zero. However, residues are picked up when the contours pass through each other.
These residues equal

− 2

π

∮
|z|=1+2ε

zs
′−s z

z − 1

dz

2iz
.

There is a residue at z = 1 which equals −2, and a residue at z = 0 which equals 0 for
s′ ≥ s and 2 for s > s′. Since c0(n,−1/2, s, n, 1/2, s) = −1/2, this proves (2.7) and (2.8)
when a1 = −1/2. The case when a1 = 1/2 is similar.

It remains to show (2.5) and (2.6). When considering the product of two kernels, we
obtain a quadruple integral. After the substitutions z1 7→ z−1

1 and v2 7→ v−1
2 , the part of

the integrand that depends on s is just (z1/v2)s. Therefore, deforming contours so that
|v2| > |z1| gives (2.5) and (2.6).

3.3 Analysis steps in proof of theorem 3.1

For this section, we need a slightly different expression for the kernel. By (40)–(42)
of [3], the kernel equals

K(n1, a1, s1;n2, a2, s2, t)

=
W (a1,−1/2)(s1)

2π2i

∫ eiθ

e−iθ

∮
|z|=1

et(
z+z−1

2 )

et(
v+v−1

2 )
J(a1,−1/2)
s1

(
z + z−1

2

)
J(a2,−1/2)
s2

(
v + v−1

2

)
×

( z+z
−1

2 − 1)n1

(v+v−1

2 − 1)n2

1− v−2

z + z−1 − v − v−1
ma1(dz)dv

(3.6)

+ 1(n1,a1)D(n2,a2)

(
W (a1,−1/2)(s1)

π

∮
|z|=1

J(a1,−1/2)
s1

(
z + z−1

2

)
J(a2,−1/2)
s2

(
z + z−1

2

)

×
(
z + z−1

2
− 1

)n1−n2

ma1(dz)

)
(3.7)

+

(
W (a1,−1/2)(s1)

π

∫ eiθ

e−iθ
J(a1,−1/2)
s1

(
z + z−1

2

)
J(a2,−1/2)
s2

(
z + z−1

2

)

×
(
z + z−1

2
− 1

)n1−n2

ma1(dz)

)
, (3.8)

where θ is any real number, and the arc from e−iθ to eiθ is outside the unit circle and
does not cross (−∞, 0].
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Set

G(ν, η, τ, z) = τ
z + z−1

2
+ η log

(
z + z−1

2
− 1

)
− ν log z

By Proposition 5.1.1 of [3], we can take D to be

D = {(ν, η, τ) : η, τ > 0, q1(η, τ) < ν < q2(η, τ)},

for some explicit algebraic functions q1 and q2.

Lemma 3.3. Let Ω± denote Ω(±ν, η, τ). Then Ω̄+Ω− ≡ 1.

Proof. In general,

G′(z) =
p(z)

r(z)
,

where p and r are

p(z) = τ + (2η + 2ν − τ)z + (2η − 2ν − τ)z2 + τz3,

r(z) = 2z2(z − 1).

Let p±(z) denote the polynomial p(z) corresponding to (±ν, η, τ). Note that z3p+(z−1) =

p−(z). By definition, Ω± is the zero of p± that is in the upper half-plane. Therefore,
Ω−1
− = Ω̄+.

Now let us return to the proof of the fourth condition in Definition 2.1. Start by
examining (3.6). Expanding the parantheses, we obtain four terms corresponding to
zs1vs2 , zs1v−s2 , z−s1v−s2 , and z−s1vs2 . For the two terms with zs1 , make the substitu-
tion z → z−1. What remains are two terms, corresponding to z−s1vs2 and z−s1v−s2 .
Therefore, (3.6) equals

W (−1/2,−1/2)(s1)

4π2i

∫ eiθ

e−iθ

∮
et(

z+z−1

2 )

et(
v+v−1

2 )
z−s1(vs2 + v−s2)

×
( z+z

−1

2 − 1)n1

( v+v−1

2 − 1)n2

1− v−2

z + z−1 − v − v−1

dzdv

2iz
, (3.9)

We now need to deform the contours in (3.9) to steepest descent paths. In other
words, we need

<(G(ν1, η1, τ, z)) < <(G(ν1, η1, τ,Ω(ν1, η1, τ))) (3.10)

for all z on the z-contour and

<(G(ν2, η2, τ, v)) > <(G(ν2, η2, τ,Ω(ν2, η2, τ))), (3.11)

<(G(−ν2, η2, τ, v)) > <(G(−ν2, η2, τ,Ω(−ν2, η2, τ))) (3.12)

for all v on the v-contour. By Lemma 3.3 and the definition ofG, we see that <(G(ν2, η2, τ,Ω(ν2, η2, τ))) =

<(G(−ν2, η2, τ,Ω(−ν2, η2, τ))). If |v| ≥ 1, then <(G(−ν2, η2, τ, v)) ≥ <(G(ν2, η2, τ, v)).
Since the steepest descent paths can go completely outside the unit circle (see Propo-
sition 5.1.2 of [3]), (3.12) follows from (3.11).

If we deform the contours to the steepest descent paths Γ1 and Γ2 in Figure 5, we
get that (3.6) asymptotically becomes(

1

2πi

)2 ∫
Γ1

∫
Γ2

exp(NG(ν1, η1, τ, z))

exp(NG(ν2, η2, τ, v))

1− v−2

z + z−1 − v − v−1

dvdz

z
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Figure 5: On the left is <(G(ν1, η1, τ, z) − G(ν1, η1, τ,Ω(ν1, η1, τ))), and on the right is
<(G(ν2, η2, τ, v) − G(ν2, η2, τ,Ω(ν2, η2, τ))). White regions indicate < < 0 and shaded
regions indicate < > 0. The double zero occurs at Ω(νj , ηj , τ). The arc v goes from e−iθ

to eiθ. The unit circle has been drawn on the right.

+

(
1

2πi

)2 ∫
Γ1

∫
Γ2

exp(NG(ν1, η1, τ, z))

exp(NG(−ν2, η2, τ, v))

1− v−2

z + z−1 − v − v−1

dvdz

z
,

plus possibly the residues at z = v. Since Γ2 goes outside the unit circle and the
critical point of G(−ν2, η2, τ, v) lies inside the unit circle, the second double integral is
negligible.

Now we need to compute the possible residues at z = v. If the contours pass through
each other, then the residues at z = v equal

W (−1/2,−1/2)(s1)

4πi

∫ ζ

eiθ
zs2−s1

(
z + z−1

2
− 1

)n1−n2 dz

z

+
W (−1/2,−1/2)(s1)

4πi

∫ e−iθ

ζ̄

zs2−s1
(
z + z−1

2
− 1

)n1−n2 dz

z
(3.13)

+
W (−1/2,−1/2)(s1)

4πi

∫ ζ

eiθ
z−s2−s1

(
z + z−1

2
− 1

)n1−n2 dz

z

+
W (−1/2,−1/2)(s1)

4πi

∫ e−iθ

ζ̄

z−s2−s1
(
z + z−1

2
− 1

)n1−n2 dz

z
, (3.14)

where ζ is any complex number satisfying (3.10) and (3.11). See Figure 6. If the con-
tours do not pass through each other, then there is no contribution from the residues.
For notational convenience, set

ξ =

{
ζ, if ζ exists,

eiθ, otherwise.

It is important to note that ξ is arbitrarily selected. The only requirement on ζ is
that it satisfies the inequalities (3.10) and (3.11), and the only requirement on eiθ is
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Figure 6: The z and v contours from Figure 5. They intersect at ζ.

that <(G2(eiθ)) > <(G2(Ω2)). So there exists ε > 0 such that if |ξ1 − ξ| < ε, then ξ1 also
satisfies those inequalities.

Now we need to compute (3.7) and (3.8). Expanding the parantheses, we get four
terms corresponding to zs1+s2 , zs1−s2 , zs2−s1 , z−s1−s2 . For the terms corresponding z−s2−s1

and zs1−s2 , make the substitution z → z−1. Therefore, the sum of (3.7),(3.8),(3.13),(3.14)
equals

1

4πi

∫ ξ

ξ̄

zs2−s1
(
z + z−1

2
− 1

)n1−n2 dz

z

+
1

4πi

∫ ξ

ξ̄

z−s2−s1
(
z + z−1

2
− 1

)n1−n2 dz

z
, (3.15)

where the contour crosses (0,∞) if n1 ≥ n2, and it crosses (−∞, 0) if n1 < n2. For each
integral, deform the contour to a circular arc of constant radius. It is not a difficult
calculus exercise to show that the absolute value of the integrand is maximized at the
endpoints.

Using a standard asymptotic analysis (see e.g. chapter 3 of [11]), we get that the
asymptotic expansion of (3.15) is

c1
N
ξN(ν2−ν1)

(
ξ + ξ−1

2
− 1

)N(η1−η2)

+
c1
N
ξ̄N(ν2−ν1)

(
ξ̄ + ξ̄−1

2
− 1

)N(η1−η2)

+
c2
N
ξN(−ν2−ν1)

(
ξ + ξ−1

2
− 1

)N(η1−η2)

+
c2
N
ξ̄N(−ν2−ν1)

(
ξ̄ + ξ̄−1

2
− 1

)N(η1−η2)

for some constants c1, c2. To complete the proof, notice that if∣∣∣∣∣ξ±ν2−ν1
(
ξ + ξ−1

2
− 1

)η1−η2 ∣∣∣∣∣ > e<(G1(Ω1)−G2(Ω2))

for some selection of ±, then the asymptotic expansion of the kernel would depend on
ξ. But ξ was arbitrarily selected, so this is impossible.

Now that the fourth condition has been proved, it remains to show that the second
condition in Definition 2.1 holds. Recall that Ω(ν, η, τ) is the root of p(ν, η, τ, z) that lies
in the upper half-plane, where p is the polynomial from Lemma 3.3. We thus need to
solve

p(q2(η, τ)− ε1, η, τ,Ω(q2(η, τ), η, τ) + ε2) = 0.
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Since Ω(q2(η, τ), η, τ) is a double zero of p(q2(η, τ), η, τ, z), we thus have to solve

1

2
ε22p
′′(Ω)− 2ε1(Ω + ε2 − ε22 − 2ε2Ω− Ω2) +O(ε32) = 0,

which implies that ε2 = O(ε
1/2
1 ). In other words, as ν approahces q2(η, τ), Ω(ν, η, τ) −

Ω(q2(η, τ), η, τ) = O((q2(η, τ)− ν)1/2). Plugging this into the expression for G′′ gives the
result.

4 Asymptotic Lemmas

4.1 Riemannian Approximations

Lemma 4.1. Suppose that g ∈ C1[a, b] and I ∈ C2[a, b]. Suppose that as δ → 0, the
Lesbesgue measure of the set {x ∈ [a, b] : I ′(x) ∈ 2πZ + [−δ, δ]} is O(δa) for some
positive a. Let εN ∈ [−1, 1] depend on N . Then

lim
N→∞

b(b−a)Nc∑
k=1

eiNI(a+(k+εN )/N)g

(
a+

k + εN
N

)
1

N
= o(1).

Proof. Let tk denote a+ (k+ εN )/N . Note that |tk− ts| = |k− s|/N . Fix some 1 +N1/3 ≤
s ≤ b(b− a)Nc −N1/3 and consider

s+N1/3∑
k=s−N1/3

eiNI(tk)g (tk)
1

N
.

We bound this sum in two cases.
Case 1. Assume I ′(ts) /∈ 2πZ+ [−δ, δ]. For s−N1/3 ≤ k ≤ s+N1/3, Taylor’s theorem

says that

I(tk) = [I(ts) + I ′(ts)(tk − ts)] + [
1

2
I ′′(ck)(tk − ts)2] =: [I1(tk)] + [I2(tk)]

for some ck between ts and tk. We will prove that

s+N1/3∑
k=s−N1/3

eiNI(tk)g (tk)
1

N
≤ 99δ−1‖g‖∞

N
+

18‖g‖∞‖I ′′‖∞
N

+
3‖g′‖∞
N4/3

Using the inequality

|g(tk)− g(ts)| ≤ ‖g′‖∞ · |tk − ts| = ‖g′‖∞
|k − s|
N

,

we have that∣∣∣∣∣∣
s+N1/3∑

k=s−N1/3

eiNI(tk)(g (tk)− g(ts))
1

N

∣∣∣∣∣∣ ≤
s+N1/3∑

k=s−N1/3

‖g′‖∞
|k − s|
N2

= 2‖g′‖∞
N1/3(N1/3 + 1)

N2
. (4.1)

Furthermore, for |k − s| ≤ N1/3,

|1− eiNI2(tk)| = |1− eiI
′′(ck)(k−s)2/(2N)| ≤ |1− ei‖I

′′‖∞N−1/3

| ≤ 9‖I ′′‖∞N−1/3. (4.2)
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Also,∣∣∣∣∣∣
s+N1/3∑

k=s−N1/3

eiNI1(tk)

∣∣∣∣∣∣ =

∣∣∣∣∣∣eiNI(ts)
s+N1/3∑

k=s−N1/3

eiI
′(ts)(k−s)

∣∣∣∣∣∣
≤
∣∣∣∣ 4

eiI′(ts) − 1

∣∣∣∣ ≤ 99δ−1 (4.3)

Using (4.1), the definition of I1 and I2, (4.2) and (4.3) respectively,∣∣∣∣∣∣
s+N1/3∑

k=s−N1/3

eiNI(tk)g (tk)
1

N

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣g (ts)

s+N1/3∑
k=s−N1/3

eiNI(tk) 1

N

∣∣∣∣∣∣+ 3‖g′‖∞N−4/3

≤ ‖g‖∞

∣∣∣∣∣∣
s+N1/3∑

k=s−N1/3

eiNI1(tk) + eiNI1(tk)(eiNI2(tk) − 1)

N

∣∣∣∣∣∣+
3‖g′‖∞
N4/3

≤ ‖g‖∞

∣∣∣∣∣∣
s+N1/3∑

k=s−N1/3

eiNI1(tk)

N

∣∣∣∣∣∣+
18‖g‖∞‖I ′′‖∞

N
+

3‖g′‖∞
N4/3

≤ 99δ−1‖g‖∞
N

+
18‖g‖∞‖I ′′‖∞

N
+

3‖g′‖∞
N4/3

Case 2. Assume that I ′(ts) ∈ 2πZ + (−δ, δ). In this case, only a simple estimate is
needed: ∣∣∣∣∣∣

s+N1/3∑
k=s−N1/3

eiNI(tk)g(tk)
1

N

∣∣∣∣∣∣ ≤ 2‖g‖∞
N2/3

.

Since the estimate in case 1 is much better than the estimate in case 2, we need an
upper bound on how frequently case 2 can occur. In other words, we need an upper
bound on the measure of the set {x ∈ [a, b] : I ′(x) ∈ 2πZ+ (δ, δ)}. We assumed that

|{x ∈ [a, b] : I ′(x) ∈ 2πZ+ [δ, δ]}| = O(δa).

Now we need to sum over all s in the set {N1/3 +1, 3N1/3 +1, 5N1/3 +1 . . . , (b−a)N−
N1/3}. There are O(δaN2/3) terms for which case 2 applies. Therefore,

b(b−a)Nc∑
k=1

eiNI(a+(k+εN )/N)g

(
a+

k + εN
N

)
1

N
= O

(
δ−1N−1/3

)
+O(δa),

and setting δ = N−1/6 yields the result.

Proposition 4.2. Suppose f : Z≥0 → C is a function such that for each t > 0,

f(btNc) = eiNI(t)g(t)Nd + o(Nd) as N →∞,

where g and I satisfy the same assumptions as in Lemma 4.1. Further suppose that the
error term o(Nd) is uniform, i.e.

f(btNc)− eiNI(t)g(t)Nd

Nd
→ 0 uniformly on [a, b].
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Then as N →∞,
bbNc∑

x=baNc+1

f(x) = o(Nd+1).

Proof. This follows quickly from Lemma 4.1.

Proposition 4.3. Suppose f : Z≥0 → R is a function such that for each t > 0,

f(btNc) = g(t)Nd + o(Nd) as N →∞,

where g is a function on [a, b] of bounded variation. Further suppose that the error term
o(Nd) is uniform, i.e.

f(btNc)− g(t)Nd

Nd
→ 0 uniformly on [a, b].

Then
bbNc∑

x=baNc+1

f(x) = Nd+1

∫ b

a

g(t)dt+ o(Nd+1).

Proof. This is an elementary, albeit somewhat tedious, exercise in approximating inte-
grals with Riemann sums.

4.2 Asymptotics

Proposition 4.4. For j = 1, 2, let (νj , ηj , τ) ∈ D, Ωj denote Ω(νj , ηj , τ), Gj(z) denote
G(νj , ηj , τ, z), and θj denote θ(νj , ηj , τ). With the assumptions from section 2.1,

(
1

2πi

)2 ∫
Γ1

∫
Γ2

exp(NG(η1, ν1, τ, u))

exp(NG(η2, ν2, τ, w))
f(u,w)dwdu

= O
(
G′′1(Ω1)−3 +G′′2(Ω2)−3

G′′1(Ω1)1/2G′′2(Ω2)1/2
N−2

)
+O(G′′1(Ω1)−7/2G′′2(Ω2)−7/2N−3)

+
eN<((G1(Ω1)−G2(Ω2)))

2πN
√
|G′′1(Ω1)|

√
|G′′2(Ω2)|

×
[
f(Ω1,Ω2)

eiN=(G1(Ω1))−iθ1

eiN=(G2(Ω2))+iθ2
+ f(Ω1, Ω̄2)

eiN=(G1(Ω1))−iθ1

e−iN=(G2(Ω2))−iθ2

+ f(Ω̄1,Ω2)
e−iN=(G1(Ω1))+iθ1

eiN=(G2(Ω2))+iθ2
+ f(Ω̄1, Ω̄2)

e−iN=(G1(Ω1))+iθ1

e−iN=(G2(Ω2)−iθ2)

]
.

Proof. First, we show that the main term is correct.

By assumption, we can deform Γ1 and Γ2 so that Γj passes through Ωj , Ω̄j for j = 1, 2.
The contributions to the integral away from Ωj , Ω̄j are exponentially small, so we can
replace Γj with γj ∪ γ̄j , where γj and γ̄j are steepest descent paths near Ωj and Ω̄j ,
respectively. The integration over u ∈ γ1 ∪ γ̄1, w ∈ γ2 ∪ γ̄2 expands into four integrations
corresponding to (u,w) ∈ γ1×γ2, γ̄1×γ2, γ1× γ̄2, γ̄1× γ̄2. We explicitly do the calculation
for γ1 × γ2. The other three calculations are essentially identical.

Make the substitutions s = G1(Ω1)−G1(u) and t = G2(Ω2)−G2(w). In the neighbor-
hood of u = Ω1 and w = Ω2, we have

f(u,w) ≈ f(Ω1,Ω2), s = − (u− Ω1)2

2
G′′1(Ω1), t = − (w − Ω2)2

2
G′′2(Ω2),
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which imply

G′1(u) = − ds
du

= (u− Ω1)G′′1(Ω1) =
√
−2sG′′1(Ω1),

G′2(w) = − dt

dw
= (w − Ω2)G′′2(Ω2) =

√
−2tG′′2(Ω2).

Then we get(
1

2πi

)2

eN(G1(Ω1)−G2(Ω2))

∫ ∞
0

∫ ∞
0

e−N(s+t) f(u,w)

G′1(u)G′2(w)
dtds

= 4 · eN(G1(Ω1)−G2(Ω2))

8π2
√
G′′1(Ω1)

√
G′′2(Ω2)

f(Ω1,Ω2)
(∫ ∞

0

s−1/2e−Nsds
)(∫ ∞

0

t−1/2e−Ntdt
)

=
eN(G1(Ω1)−G2(Ω2))

2πN
√
G′′1(Ω1)

√
G′′2(Ω2)

f(Ω1,Ω2)

=
eN<((G1(Ω1)−G2(Ω2)))

2πN
√
|G′′1(Ω1)|

√
|G′′2(Ω2)|

[
f(Ω1,Ω2)

eiN=(G1(Ω1))−iθ1

eiN=(G2(Ω2))+iθ2

]
,

where the last equality follows from G(z̄) = G(z). The 4 appears because the maps
u 7→ s and w 7→ t are both two-to-one.

It still remains to show that the error term is correct. The remainder of this section
is devoted to proving this. The idea is to reduce the double integral to progressively
simpler forms. First, by a reparametrization, the integral over two arcs in C can be
written as a integral in R2. Second, by using a Taylor approximation, the integral in
R2 can be written as a product of two integrals in R, each of which is of the form∫
e−NR(t)φ(t)dt, where R(t) has a maximum tmax in the interval of integration. Third,

by using the implicit function theorem, this integral reduces to the form
∫
e−Nt

2

g(t),
where the interval of integration is a small neighbourhood tmax. Fourth, this last in-
tegral is a slight generalization of

∫
e−Ntg(t)dt, which is dealt with by the well-known

Watson’s lemma (Lemma 4.5 below). Since the first two steps have been done before
(see Chapters 3 and 4 of [11]), we will focus mostly on the third and fourth steps.

Lemma 4.5. Suppose that R and φ are infinitely continuously differentiable in some
neighbourhood of tmax. Also suppose that tmax is a local maximum of R and R′′(tmax) < 0.
Then for any N > 1 and s ∈ [0,m2],

∣∣∣∣∣
∫ tmax+δ2

tmax−δ1
eNR(t)φ(t)dt− φ(tmax)eNR(tmax)

√
−2π

NR′′(tmax)

∣∣∣∣∣ ≤
√
π

2

sup
0≤τ≤s

|g′(τ)|

N3/2

+ e−Ns
∫ m2

s

|h(t)|dt+ e−Nm
2

∫ max(α,β)

m

|h(t)|dt+ h(0)

∫ ∞
s

e−Ntt−1/2dt

+ e−Ns/2 sup
0≤τ≤s

|g′(τ)|,

where
α =

√
−R(tmax − δ1), β =

√
−R(tmax + δ2), m = min(α, β),

h(s) = φ(tmax + sv(s))(sv′(s) + v(s)), g(s) =
1

2
(h(s1/2) + h(−s1/2)),

where v(s) is an infinitely differentiable function solving

−R(tmax) +R(tmax + sv(s)) = −s2. (4.4)
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Proof. This is a slight generalization of Watson’s lemma (e.g. Proposition 2.1 of [11]),
which deals with asymptotics of integrals of the form

∫ T
0
e−Ntφ(t)dt. By following pages

pages 58–60 of [11], one generalizes to integrals of the form
∫ β
−α e

−Nt2φ(t)dt, and then it
is not hard to generalize to functions R(t) which behave like −t2 near its maximum.

Before continuing, a few estimates on v(s) are needed.

Lemma 4.6. Let v(s) be as in (4.4).

(a)
R′′(tmax) = −2v(0)−2. (4.5)

v′(0) =
R′′′(tmax)

12
v(0)4 (4.6)

(b) Set B = sup |R(4)/24|. Then

|v(s)− v(0)− v′(0)s| <
(

5

144
R′′′(tmax)2v(0)7 +Bv(0)5

)
s2.

for
s < min(|53R′′′(tmax)|/(625Bv(0)), (|R′′′(tmax)|v(0)3)−1, (50

√
Bv(0)2)−1).

In particular, |v(s)− v(0)| < |R′′′(tmax)|v(0)4|s|/4 and |v(s)− v(0)| < v(0)/4.

(c) Let

a3 :=

(
157

16
Bv(0)3 +

101

288
R′′′(tmax)2v(0)5

)
.

Then

|v(s) + sv′(s)− v(0)− 2v′(0)s| <
(

39

32
R′′′(tmax)2v(0)7 +

471

16
Bv(0)5

)
s2

for |s| < min

 |53R′′′(tmax)|
625Bv(0)

,
1

50
√
Bv(0)2

,
1

6R′′′(tmax)v(0)3
,

∣∣∣∣∣∣
√

2v(0)−1

3a3

∣∣∣∣∣∣
 . (4.7)

(d) With the same bounds on |s|,

|2v′(s) + sv′′(s)− 2v′(0)| < 450000(R′′′(tmax)2v(0)7 +Bv(0)5)s

Proof. (a) The proof comes from page 69 of [11]. It follows immediately from using
implicit differentiation of (4.4) and setting s = 0.

(b) First notice that if R−(t) ≤ R(t) ≤ R+(t) with R−(tmax) = R(tmax) = R+(tmax) and
v± are the solutions to −R(tmax) + R(tmax ± sv±(s)) = −s2, then v− ≤ v ≤ v+. We will
use

R±(t) = R(tmax) +
1

2
R′′(tmax)(t− tmax)2 +

1

6
R′′′(tmax)(t− tmax)3 ±B(t− tmax)4

Therefore, we obtain bounds on v(s) by solving −R(tmax)+R(tmax±sv±(s)) = −s2, which
is equivalent to solving

Q±,s(y) := 1− y−2
0 y2 +Asy3 ±Bs2y4 = 0, A = R′′′(tmax)/6, y0 = v(0).

In other words Q±,s(v(s)) = 0. Taking the derivative of Q±,s(v(s)) = 0 with respect to
s and setting s = 0, observe that v′(0) = Ay4

0s/2. We will use the intermediate value
theorem to estimate roots of Q±,s.

For ε = Ay4
0s/2 + (5A2y7

0/4 +By5
0)s2 and |s| = (HAy3

0)−1 where H is any real number,
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we have

Q+,s(y0 + ε) ≤ 1

256A10H10y10
0

(256B5 + 256A2B4p2(H)y2
0 + 32A4B3p4(H)y4

0

+ 16A6B2p6(H)y6
0 +A8Bp8(H)y8

0 + 4A10H3p5(H)y10
0 )

where the pi are polynomials which satisfy the following inequalities when |H| > 6 :

p2(H) < 11H2, p4(H) < 371H4, p6(H) < 1447H6, p8(H) < −10H8, p5(H) < 0.

Now setting H := hy−1
0 A−1

√
B where h > 50,

Q+,s(y0 + ε) <
128 + 1408h2 + 5936h4 + 11576h6 − 5h8

128h10
< 0.

Since

Q+,s(y0 +Ay4
0s/2) >

1

16
s2y4

0(B(2 +Asy3
0)4 + 2A2y2

0(10 + 6Asy3
0 +A2s2y6

0)) > 0,

this implies that v+(s) < y0 + ε = v(0) + v′(0)s + (5A2v(0)7/4 + Bv(0)5)s2 for |s| <
min((6|A|v(0)3)−1, (50

√
Bv(0)2)−1).

By applying a similar argument toQ−,s, one can show that v(0)+v′(0)s−(5A2v(0)7/4+

Bv(0)5)s2 < v−(s) < y0. Thus the lower bound holds in both cases.

The last statement follows because

|v(s)− v(0)| < |v′(0)| · |s|+
(

5

144
R′′′(tmax)2v(0)7 +Bv(0)5

)
s2

<
|R′′′(tmax)|

12
v(0)4|s|+ 5

144

R′′′(tmax)2v(0)7

|R′′′(tmax)|v(0)3
|s|+Bv(0)5 53|R′′′(tmax)|

625Bv(0)
|s|

<
|R′′′(tmax)|v(0)4

4
|s| < v(0)

4
.

(c) Differentiating (4.4) yields

(v(s) + sv′(s)) =
−2s

R′(tmax + sv(s))
.

To estimate this, let us first estimate R′.

By a Taylor expansion,

|R′(tmax + sv(s))−R′′(tmax)sv(s)− 1

2
R′′′(tmax)s2v(s)2| ≤ 4Bs3v(s)3. (4.8)

By the triangle inequality and part (b),∣∣∣∣R′(tmax + sv(s))−R′′(tmax)s(v(0) + sv′(0))− 1

2
R′′′(tmax)s2v(0)2

∣∣∣∣
≤ 4Bv(s)3s3 −R′′(tmax)((v(s)− v(0)− v′(0)s)s+

1

2
(v(s)− v(0))(v(s) + v(0))s2

≤ 125

16
Bv(0)3s3 −R′′(tmax)

(
5

144
R′′′(tmax)2v(0)7 +Bv(0)5

)
s3

+
1

2
· 1

4
R′′′(tmax)2v(0)4 · 9

4
v(0)s3,
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which, by (4.5) and (4.6), implies∣∣R′(tmax + sv(s)) + 2v(0)−1s− 4v(0)−2v′(0)s2
∣∣

≤
(

157

16
Bv(0)3 +

101

288
R′′′(tmax)2v(0)5

)
s3 =: a3s

3. (4.9)

To estimate the inverse of R′, use∣∣∣∣ 1

a1s+ a2s2 + a3s3
− 1

a1s
+
a2

a2
1

∣∣∣∣ =

∣∣∣∣ (a2
2 − a1a3)s2 + a2a3s

3

a2
1(a1s+ a2s2 + a3s3)

∣∣∣∣ ≤ ∣∣∣∣6(a2
2 + |a1a3|)
a3

1

s

∣∣∣∣
for |s| < min(

∣∣∣∣ a1

3a2

∣∣∣∣ , ∣∣∣∣√ a1

3a3

∣∣∣∣),
which, by setting a1 = 2v(0)−1 and a2 = 4v(0)−2v′(0), implies that∣∣∣∣ 1

R′(tmax + sv(s))
+
v(0)

2s
+ v′(0)

∣∣∣∣ ≤ R′′′(tmax)2v(0)7 + 18v(0)2|a3|
12

|s|. (4.10)

Multiplying by 2|s| finishes the proof of (c).

(d) Differentiating (4.4) twice yields

2v′(s) + sv′′(s) =
−2−R′′(tmax + sv(s))(v(s) + sv′(s))2

R′(tmax + sv(s))
. (4.11)

From part (c) and a Taylor approximation for R′′,∣∣−2−R′′(tmax + sv(s))(v(s) + sv′(s))2
∣∣ < 999((R′′′(tmax)2v(0)6 +Bv(0)4)s2

+ (R′′′(tmax)3v(0)9 +R′′′(tmax)Bv(0)7)s3

+ (R′′′(tmax)4v(0)12 +R′′′(tmax)2Bv(0)10 + 10B2v(0)8)s4

+ (R′′′(tmax)5v(0)15 +R′′′(tmax)3Bv(0)13 + 10R′′′(tmax)B2v(0)11)s5

+ (R′′′(tmax)6v(0)18 +R′′′(tmax)4Bv(0)16 + 10R′′′(tmax)2B2v(0)14 + 10B3v(0)12)s6).

Since |s| < (R′′′(tmax)v(0)3)−1, R′′′(tmax)(Bv(0))−1,∣∣−2−R′′(tmax + sv(s))(v(s) + sv′(s))2
∣∣ < 99999(R′′′(tmax)2v(0)6 +Bv(0)4)s2. (4.12)

By (4.10) and the estimates on |s|,∣∣∣∣ 1

R′(tmax + sv(s))
+
v(0)

2s
+ v′(0)

∣∣∣∣ ≤ 30R′′′(tmax)v(0)4. (4.13)

Combining (4.11),(4.12) and (4.13),

|2v′(s) + sv′′(s)− 2v′(0)| < 50000(R′′′(tmax)2v(0)7 +Bv(0)5)s

+ 400000(R′′′(tmax)3v(0)10 +R′′′(tmax)Bv(0)8)s2,

and using |s| < (R′′′(tmax)v(0)3)−1 on the second term gives the result.

Corollary 4.7. Suppose that R and φ are infinitely continuously differentiable in some
neighbourhood of tmax. Also suppose that tmax is a local maximum of R and R′′(tmax) < 0.

EJP 19 (2014), paper 72.
Page 28/31

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-3732
http://ejp.ejpecp.org/


GFF in interlacing particles

Let δ1 and δ2 be positive numbers such that

m2 := −R(tmax − δ1) = −R(tmax + δ2),

and assume m2 equals the right-hand side of (4.7). Let

s̃ = min

(
R′′′(tmax)

50Bv(0)
,

1

50R′′′(tmax)v(0)3

)
,

Λ := 500R′′′(tmax)‖φ′‖∞v(0)5 + 450000‖φ‖∞(R′′′(tmax)2v(0)7 +Bv(0)5).

Then for any N > 1,∣∣∣∣∣
∫ tmax+δ2

tmax−δ1
eNR(t)φ(t)dt− φ(tmax)

√
−2π

NR′′(tmax)

∣∣∣∣∣ ≤
√
π

2

Λ

N3/2
+ φ(tmax)

√
−2

R′′(tmax)

e−Ns̃√
s̃N

+ e−Ns̃
2/2Λ.

Proof. Use Lemma 4.5. By part (a) of Lemma 4.6,

h(0) = φ(tmax)

√
−2

R′′(tmax)
.

By parts (c) and (d) of Lemma 4.6,

sup
0≤τ≤m2

|g′(τ)| ≤ Λ.

When v(0) >
√
B/R′′′(tmax),

53

625

R′′′(tmax)

Bv(0)
>

53

625R′′′(tmax)v(0)3

1

50
√
Bv(0)2

>
1

50R′′′(tmax)v(0)3

a3 < 16R′′′(tmax)2v(0)5√
2v(0)−1

3a3
>

1

5R′′′(tmax)v(0)3
,

implying m2 > (50R′′′(tmax)v(0)3)−1 ≥ s̃. Similarly, when v(0) <
√
B/R′′′(tmax), then

m2 > R′′′(tmax))/(50Bv(0)) ≥ s̃. Thus m2 > s̃, and∫ ∞
m2

e−Ntt−1/2dt ≤ e−Nm
2

mN
≤ e−Ns̃√

s̃N
.

We can finally wrap up the proof of Proposition 4.4. Since s is not too small (poly-
nomial in v(0)−1), the exponential terms are small enough to be ignored. Therefore the
error term is Λ1 = O(v(0)7N−3/2) = O(R′′1 (tmax)−7/2N−3/2). The main term is of order
N−1/2R′′1 (tmax)−1/2. Thus, when multiplying two integrals of the form in Corollary 4.7,
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we get

O
(
R′′1 (tmax1)−3 +R′′2 (tmax2)−3

R′′1 (tmax1)1/2R′′2 (tmax2)1/2
N−2

)
+O(R′′1 (tmax1)−7/2R′′2 (tmax2)−7/2N−3),

as needed.

In Proposition 4.4, the error term blows up at the edge. Therefore a better bound is
needed. To get this bound, we simply use the first term in Watson’s lemma, as opposed
to using two terms. Since the method of the proof is identical as before and the details
are simpler, the proof will be omitted. The exact statement is the following.

Proposition 4.8. For j = 1, 2, let (νj , ηj , τ) ∈ D, Ωj denote Ω(νj , ηj , τ), Gj(z) denote
G(νj , ηj , τ, z), and θj denote θ(νj , ηj , τ). With the assumptions in section 2.1,

(
1

2πi

)2 ∫
Γ1

∫
Γ2

exp(NG(η1, ν1, τ, u))

exp(NG(η2, ν2, τ, w))
f(u,w)dwdu

≤ 1000

N
√
|G′′1(Ω1)|

√
|G′′2(Ω2)|

×
[
|f(Ω1,Ω2)|+

∣∣f(Ω1, Ω̄2)
∣∣+
∣∣f(Ω̄1,Ω2)

∣∣+
∣∣f(Ω̄1, Ω̄2)

∣∣ ]
References

[1] A.L. Barabási and H.E. Stanley, Fractal concepts in surface growth, Cambridge University
Press, Cambridge, 1995. MR-1600794

[2] A. Borodin and P. Ferrari, Anisotropic growth of random surfaces in 2+1 dimensions (2008),
arXiv:0804.3035v1

[3] A. Borodin and J. Kuan, Random surface growth with a wall and Plancherel measures
for O(∞), Comm. Pure. Appl. Math, Volume 63, Issue 7, pages 831-894, July 2010.
arXiv:0904.2607 MR-2662425

[4] A. Borodin and J. Kuan, Asymptotics of Plancherel measures for the infinite-dimensional
unitary group, Adv. in Math, 219 (2008), 894–931. arXiv:0712.1848v1 MR-2442056

[5] C. Boutillier, Modèles de dimères: comportements limites, Ph.D. thesis, Universit ÌĄe de
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