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Abstract

Stochastic models for chemical reaction networks have become very popular in re-
cent years. For such models, the estimation of parameter sensitivities is an impor-
tant and challenging problem. Sensitivity values help in analyzing the network, un-
derstanding its robustness properties and also in identifying the key reactions for a
given outcome. Most of the methods that exist in the literature for the estimation of
parameter sensitivities, rely on Monte Carlo simulations using Gillespie’s stochastic
simulation algorithm or its variants. It is well-known that such simulation methods
can be prohibitively expensive when the network contains reactions firing at differ-
ent time-scales, which is a feature of many important biochemical networks. For such
networks, it is often possible to exploit the time-scale separation and approximately
capture the original dynamics by simulating a “reduced" model, which is obtained by
eliminating the fast reactions in a certain way. The aim of this paper is to tie these
model reduction techniques with sensitivity analysis. We prove that under some con-
ditions, the sensitivity values for the reduced model can be used to approximately re-
cover the sensitivity values for the original model. Through an example we illustrate
how our result can help in sharply reducing the computational costs for the estima-
tion of parameter sensitivities for reaction networks with multiple time-scales. To
prove our result, we use coupling arguments based on the random time change rep-
resentation of Kurtz. We also exploit certain connections between the distributions
of the occupation times of Markov chains and multi-dimensional wave equations.
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1 Introduction

Chemical reaction networks have traditionally been studied using deterministic mod-
els that express the dynamics as a set of ordinary differential equations. Such models
ignore the randomness in the dynamics which is caused by the discrete nature of molec-
ular interactions. It is now widely accepted that this randomness can have a significant
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Sensitivity analysis for multiscale stochastic reaction networks

impact on the macroscopic properties of the system [15, 26, 24], when the molecules
are present in low copy numbers. To account for this randomness and study its effects,
a stochastic formulation of the dynamics is necessary, and the most common choice is
to model the dynamics as a continuous time Markov process. Such stochastic models
have been extensively used in many recent articles [8, 3, 23, 25, 26, 19] to understand
the biological implications of random dynamics. For a detailed survey of Markov models
for chemical reaction networks we refer the readers to [2].

Typically, a chemical reaction network depends on various kinetic parameters whose
values are uncertain or suffer from measurement error. To determine the effects of
inaccuracies in the parameter values, one needs to estimate the sensitivities of a given
output with respect to the parameter values. If an output is highly sensitive to a specific
parameter value, then greater time and effort may be invested in determining that
parameter precisely. Such sensitivity values can also be useful in fine-tuning a certain
output (see [11]) and understanding the robustness properties of a system (see [34]).

Estimation of parameter sensitivities is fairly straightforward for deterministic mod-
els, but it poses a major challenge for stochastic models. Many methods have been pro-
posed in the literature for tackling this problem [16, 30, 33, 1, 17]. However all these
methods rely on extensive simulations of the stochastic model, which is usually car-
ried out using Gillespie’s Stochastic Simulation Algorithm [14] or its variants [12, 13].
These simulation methods account for each and every reaction event, which makes
them prohibitively expensive, when the network consists of reactions firing at different
time-scales. In such a scenario, the “fast" reactions take up most of the computational
time causing the simulation method to become very inefficient. Since time-scale separa-
tion is a feature of many important biochemical networks [28], a new class of methods
have been designed to exploit this feature and efficiently simulate the stochastic model
[5, 36, 6]. These methods simulate a “reduced" model which is obtained by eliminat-
ing the fast components of the dynamics through a quasi-steady state approximation
[18, 29]. Such reduced models capture the original dynamics in an approximate sense
and the error in approximation disappears as the time-scale separation gets larger and
larger. In [22], Kang and Kurtz develop a systematic theoretical framework for con-
structing these reduced models. As discussed in [5] and elsewhere, simulations of
reduced models are generally much faster than the original model. Since most sen-
sitivity estimation algorithms are simulation-based, it is of interest to determine if the
parameter sensitivities for the original model can be approximated by the parameter
sensitivities for the reduced model. Our aim in this paper is to present a theoretical re-
sult which shows that can indeed be done under certain conditions. Therefore one can
obtain enormous savings in the computational costs required for the estimation of pa-
rameter sensitivities for stochastic models of multiscale reaction networks. From now
on, the term “multiscale network" refers to a chemical reaction network which consist
of reactions firing at different time-scales.

It is observed in [22] that variations in the reaction time-scales could be both due
to variation in species numbers and due to variation in rate constants. However in this
paper we will only consider the latter source of variation. We now describe our stochas-
tic model of a multiscale chemical reaction network. Suppose we have a well-stirred
system consisting of d chemical species. Its state at any time can be described by a
vector in Nd0 whose i-th component is the non-negative integer corresponding to the
number of molecules of the i-th species. These chemical species interact through K

predefined reaction channels and every time the k-th reaction fires, the state of the sys-
tem is displaced by the d-dimensional stoichiometric vector ζk ∈ Zd. If the state of the
system is x, the rate at which the k-th reaction fires is given by Nβk

0 λk(x), where N0 is
assumed to be a “large" normalization parameter and λk : Nd0 → [0,∞) is the propensity
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function for the k-th reaction. The powers of N0 in front of the propensity functions,
determine the various time-scales at which different reactions act. In a stochastic set-
ting, such a chemical reaction network can be modeled as a continuous time Markov
process {XN0(t) : t ≥ 0} over Nd0. Given such a reaction network, we have the flexi-
bility of selecting our reference time-scale γ. This means that we observe the reaction
dynamics at times that are scaled by the factor Nγ

0 . In other words, we observe the
process {XN0

γ (t) : t ≥ 0} defined by

XN0
γ (t) = XN0(tNγ

0 ) for t ≥ 0.

Note that in the process XN0
γ , each reaction k fires at a rate of order Nβk+γ

0 . Hence
reactions can be termed as “fast", “slow" or “natural" according to whether βk + γ > 0,
βk + γ < 0 or βk + γ = 0 respectively. Note that as the value of N0 increases, the slow
reactions get slower and the fast reactions get faster. On the other hand, the natural
reactions remain unaffected by the increase in N0. If we simulate the process XN0

γ

using Gillespie’s Stochastic Simulation Algorithm, then the fast reactions take up most
of the computational time, making the simulation procedure extremely cumbersome.

Fortunately in certain situations, we can obtain a fairly good approximation of the
dynamics by simulating a reduced model which does not contain any fast reactions.
The state variables in this reduced model correspond to linear combinations of species
numbers that are unaffected by the fast reactions (see [5, 36]). As described in [22],
such model reductions can be derived by replacing N0 by N and showing that for a
certain projection map Π on Rd, the sequence of processes {ΠXN

γ : N ∈ N} has a well-

defined limit as N →∞. The limiting process X̂ corresponds to the stochastic model of
a reduced reaction network made up of only those reactions that are “natural" for the
reference time-scale γ, making its simulation far less computationally demanding than
the original model. In Section 2 we present these model reduction results in greater
detail. Now suppose that the output of interest is given by a real-valued function f

and we would like to estimate the expectation E
(
f(XN0

γ (t))
)

for some observation time
t ≥ 0. If f is invariant under the projection Π (that is, f(x) = f(Πx) for all x ∈ Nd0) then
we would expect that

lim
N→∞

E
(
f(XN

γ (t))
)

= lim
N→∞

E
(
f(ΠXN

γ (t))
)

= E
(
f(X̂(t))

)
. (1.1)

This limit implies that for large values of N0, the quantity E(f(XN0
γ (t))) is “close" to

E(f(X̂(t)). Hence instead of estimating the former quantity directly we can estimate
the latter quantity through simulations of the reduced model, and save a significant
amount of computational effort.

As stated before, our aim in this paper is to tie these model reduction results with
sensitivity analysis. Suppose that the propensity functions λ1, . . . , λK depend on a scalar
parameter θ. Now when the state is x, the k-th reaction fires at rate Nβk

0 λk(x, θ). With
these propensity functions, we can define the processes XN0

γ,θ and XN
γ,θ as before, where

the subscript θ is introduced to make the parameter dependence explicit. For an output
function f chosen as above, we would like to estimate the sensitivity of the expectation
E(f(XN0

γ (t))) with respect to θ. In other words, we are interested in estimating

SN0

γ,θ(f, t) =
∂

∂θ
E
(
f(XN0

γ,θ(t))
)
. (1.2)

We remarked before that most direct methods that estimate this quantity are simulation-
based. Since simulations of the process XN0

γ,θ are very expensive, it is worthwhile to
explore the possibility of using reduced models to obtain a close approximation for
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SN0

γ,θ(f, t). Suppose that for each θ we have a process X̂θ which corresponds to the re-

duced model. Moreover there exists a projection Π (independent of θ) such that ΠXN
γ,θ

converges in distribution to X̂θ as N →∞. Then similar to (1.1) we would get

lim
N→∞

E
(
f(XN

γ,θ(t))
)

= E
(
f(X̂θ(t))

)
.

However this relation does not ensure that

lim
N→∞

∂

∂θ
E
(
f(XN

γ,θ(t))
)

=
∂

∂θ

(
lim
N→∞

E
(
f(XN

γ,θ(t))
))

=
∂

∂θ
E
(
f(X̂θ(t))

)
, (1.3)

because in general, limits and derivatives do not commute. Note that if (1.3) holds then
for large values of N0, the quantity SN0

γ,θ(f, t) is close to the value

Ŝθ(f, t) =
∂

∂θ
E
(
f(X̂θ(t))

)
,

which can be easily estimated using any of the sensitivity estimation methods [16, 30,
33, 1, 17], since simulations of the reduced model is computationally much easier than
the original model. This motivates the main result of the paper which essentially shows
that (1.3) holds under certain conditions. In the above discussion we had assumed that
the output function f is invariant under the projection Π, which is a highly restrictive
assumption. Therefore we will prove a relation analogous to (1.3) for a general function
f .

Even though our result is easy to state, its proof is quite technical. The main compli-
cation comes from the fact that the dynamics at different time-scales, may interact with
each other in non-linear ways. Due to this problem, the proof of our main result involves
several steps which are loosely described below. We mentioned above that for a certain
projection Π, the process ΠXN

γ,θ may have a well-defined limit as N →∞. In such a situ-

ation, the left-over part of the process, (I−Π)XN
γ,θ

1, does not converge in the functional
sense but it converges in the sense of occupation measures (see [22] or Section 2). As
reported in [31], the distribution of occupation measures of Markov processes is related
to the evolution of a system of multi-dimensional wave equations. Using this relation
we construct another process WN

θ whose distribution has some regularity properties
with respect to θ. The process WN

θ captures the single-time distribution of the process
XN
γ,θ, which means that for any function f and time t, we can find a function g such that

E
(
f(XN

γ,θ(t))
)

= E
(
g(WN

θ (t))
)
.

Furthermore, the fast components of the dynamics are averaged out in the process
WN
θ , making it simpler to analyze than the original process XN

γ,θ. Next we couple the

processes WN
θ and WN

θ+h (for a small h) in such a way, that it allows us to take the limits
h→ 0 and N →∞ (in this order) of an appropriate quantity and prove our main result.
This coupling is constructed using the random time change representation of Kurtz (see
Chapter 7 in [9]).

As a corollary of our main result we obtain an important relationship which can be
useful in estimating steady-state parameter sensitivities. Let Xθ be a stochastic process
which models the dynamics of the reaction network described above, with βk = 0 for
each k and γ = 0. Assume that this process is ergodic with stationary distribution πθ
and this distribution is difficult to compute analytically. Ergodicity implies that for any
output function f we have

lim
t→∞

E (f(Xθ(t))) =

(∫
f(y)πθ(dy)

)
,

1Here I is the identity projection
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where the integral is taken over the state space of Xθ. Suppose we are interested in
computing the steady-state parameter sensitivity given by

d

dθ

(∫
f(y)πθ(dy)

)
.

Since πθ is unknown, this quantity cannot be computed directly and one has to esti-
mate it using simulations. This can be problematic because simulations can only be
performed until a finite time, and in general one is not sure if the sensitivity value esti-
mated at a finite (but large) time is close to the steady-state value. However using our
main result, we can conclude that under certain conditions we have

lim
t→∞

∂

∂θ
E (f(Xθ(t))) =

d

dθ

(∫
f(y)πθ(dy)

)
. (1.4)

The details are given in Section 3.1. Relation 1.4 proves that for a large (but finite) t,
the steady-state parameter sensitivity is well-approximated by

∂

∂θ
E (f(Xθ(t)))

which can be estimated using known simulation-based methods [16, 30, 33, 1, 17]. Note
that (1.4) is sometimes implicitly assumed (see [35] for example) without proof.

Our main result gives rise to an approximation relationship between the parame-
ter sensitivity value for the original model and the corresponding value for a reduced
model which is derived by a single model reduction step, exploiting a single time-scale
separation. It is natural to ask if such an approximation relationship is preserved with
reduced models that are obtained using multiple model reduction steps. We argue that
this is indeed the case in Section 3.2. Hence for a given multiscale network, we may
perform many steps of model reduction until we obtain a reduced model which is simple
enough to allow for extensive simulations, that are required for sensitivity estimation.
Then we can estimate the parameter sensitivity value for this highly reduced model, and
our result guarantees that the estimated value will be close to the original parameter
sensitivity value.

Our main result proves a relation like (1.3) in the situation where the output function
f only depends on the state value at a single time point t. However using the underlying
Markov property it is possible to extend this result to cover situations where the output
function f depends on the state values at several time points t1, . . . , tm. We discuss this
issue in Section 3.3.

All the results in the paper are stated for a scalar parameter θ, but the extension
of these results for vector-valued parameters is relatively straightforward. Finally we
would like to mention that even though our paper is written in the context of chemi-
cal reaction networks, our main result can be applied to any continuous time Markov
process over a discrete lattice with time-scale separation in the transition rates. Other
than reaction networks, such processes arise naturally in queuing theory and popula-
tion modeling.

This paper is organized as follows. In Section 2 we discuss the model reduction
results for multiscale networks. The results stated there are simple adaptations of the
results in [22]. Our main result is presented in Section 3 and its proof is given in Section
4. In Section 5 we provide an illustrative example to show how our result can be useful.

Notation

We now introduce some notation that we will use throughout this paper. Let R, R+,
Z, N and N0 denote the sets of all reals, nonnegative reals, integers, positive integers
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and nonnegative integers respectively. For any a, b ∈ R, their minimum is given by
a ∧ b. The positive and negative parts of a are indicated by a+ and a− respectively. The
number of elements in any finite set E is denoted by |E|. By Unif(0, 1) we refer to the
uniform distribution on (0, 1). If Π is a projection map on Rn then we write Πx instead
of Π(x) for any x ∈ Rn and for any S ⊂ Rn, the set ΠS is given by

ΠS = {Πx : x ∈ S}.

For any n ∈ N, 〈·, ·〉 is the standard inner product in Rn. Moreover for any v =

(v1, . . . , vn) ∈ Rn, ‖v‖ is the 1-norm defined by ‖v‖ =
∑n
i=1 |vi|. The vectors of all zeros

and all ones in Rn are denoted by 0̄n and 1̄n respectively. Let M(n, n) be the space of
all n× n matrices with real entries. For any M ∈M(n, n), the entry at the i-th row and
the j-th column is indicated by Mij . The transpose and inverse of M are indicated by
MT and M−1 respectively. The symbol In refers to the identity matrix in M(n, n). For
any v = (v1, . . . , vn) ∈ Rn, Diag(v) refers to the matrix in M(n, n) whose non-diagonal
entries are all 0 and whose diagonal entries are v1, . . . , vn. A matrix in M(n, n) is called
stable if all its eigenvalues have strictly negative real parts. While multiplying a matrix
with a vector we always regard the vector as a column vector.

Let (S, d) be a metric space. Then by B(S) we refer to the set of all bounded real-
valued Borel measurable functions on S and by Bc(S) we refer to the set of all those
functions in B(S) that are supported on a compact subset of S. By P(S) we denote the
space of all Borel probability measures on S. This space is equipped with the weak
topology. The space of cadlag functions (that is, right continuous functions with left
limits) from [0,∞) to S is denoted by DS [0,∞) and it is endowed with the Skorohod
topology (for details see Chapter 3, Ethier and Kurtz [9]). For any f ∈ DS [0,∞) and
t > 0, f(t−) refers to the left-limit lims→t− f(s).

An operator A on B(S) is a linear mapping that maps any function in its domain
D(A) ⊂ B(S) to a function in B(S). The notion of the martingale problem associated to
an operator A is introduced and developed in Chapter 4, Ethier and Kurtz [9]. In this
paper, by a solution of the martingale problem for A we mean a measurable stochastic
process X with paths in DS [0,∞) such that for any f ∈ D(A),

f(X(t))−
∫ t

0

Af(X(s))ds

is a martingale with respect to the filtration generated by X. For a given initial dis-
tribution π ∈ P(S), a solution X of the martingale problem for A is a solution of the
martingale problem for (A, π) if π = PX(0)−1. If such a solution X exists uniquely for
all π ∈ P(S), then we say that the martingale problem for A is well-posed. Additionally,
we say that A is the generator of the process X.

Throughout the paper⇒ denotes convergence in distribution.

2 Model Reduction results for multiscale networks

In this section we present the model reduction results for multiscale networks. Re-
call the definition of the process XN

γ from Section 1. We shall soon see that this process
is well-defined under some assumptions on the propensity functions. Our primary goal
in this section, is to find the values of the reference time-scale γ such that the process
XN
γ has a well-behaved limit as N → ∞. This limit may not exist for the whole process

but only for a suitable projection of the process. When the limit exists, the limiting pro-
cess can be viewed as the stochastic model of a reduced reaction network, which only
has reactions firing at a single time-scale. The results mentioned in this section are
derived from the more general results in [22]. Before we proceed we define a property
of real-valued functions.
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Definition 2.1. Let U be a subset of Rm, f be a real-valued function on U and Π be a
projection map on Rm. We say that the function f is polynomially growing with respect
to projection Π if there exist constants C, r > 0 such that

|f(x)| ≤ C(1 + ‖Πx‖r) for all x ∈ U. (2.1)

We say that a function f in linearly growing with respect to projection Π if (2.1) is
satisfied for r = 1. A sequence of real-valued functions {fN : N ∈ N} on U is said to be
polynomially (linearly) growing with respect to projection Π if for some C > 0 and r > 0

(r = 1), the relation (2.1) holds for each fN . A function (or a sequence of functions)
is called polynomially (linearly) growing if it is polynomially (linearly) growing with
respect to the identity projection I.

Our first task is to ensure that there is a well-defined process which describes the
stochastic dynamics of our multiscale reaction network. For this purpose we make
certain assumptions.

Assumption 2.2. The propensity functions λ1, . . . , λK satisfy the following conditions.

(A) For any k and x ∈ Nd0, if λk(x) > 0 then (x+ ζk) has all non-negative components.
(B) Let P be the set of those reactions which have a net positive affect on the total

population, that is,

P = {k = 1, . . . ,K : 〈1̄d, ζk〉 > 0}. (2.2)

Then the function λP : Nd0 → R+ defined by λP (x) =
∑
k∈P λk(x) is linearly grow-

ing.

Part (A) of this assumption prevents the reaction dynamics from leaving the state
space Nd0. The significance of part (B) will become clear in the next paragraph. Infor-
mally, part (B) says that all the reactions that add molecules into the system have orders
0 or 1. If there is a compact set S such that for each k, λk(x) = 0 for all x /∈ S, then part
(B) is trivially satisfied.

Let x0 be a vector in Nd0. Throughout the paper, the initial state of the reaction
dynamics is fixed to be x0 ∈ Nd0 and the corresponding stoichiometric compatibility
class is given by

S =

{
x0 +

K∑
k=1

ηkζk ∈ Nd0 : η1, . . . , ηK ∈ N0

}
.

Part (A) of Assumption 2.2 ensures that the reaction dynamics is always inside S. From
the description of the multiscale network with reference time-scale γ (see Section 1),
it is clear that the generator of the reaction dynamics should be given by the operator
ANγ whose domain is D(ANγ ) = Bc(S) and its action on any f ∈ Bc(S) is given by

ANγ f(x) =

K∑
k=1

Nβk+γλk(x)(f(x+ ζk)− f(x)). (2.3)

From Lemma A.1 we can argue that under Assumption 2.2, the martingale problem for
ANγ is well-posed. Hence we can define XN

γ as the Markov process with generator ANγ
and initial state x0. The random time change representation (see Chapter 7 in [9]) of
this process is given by

XN
γ (t) = x0 +

K∑
k=1

Yk

(
Nβk+γ

∫ t

0

λk(XN
γ (s))ds

)
ζk, (2.4)

where {Yk : k = 1, . . . ,K} is a family of independent unit rate Poisson processes.
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2.1 Convergence at the first time-scale

From (2.4), it is immediate that if the reference time-scale γ is such that βk+γ ≤ 0 for
each k, then all the reactions are either “slow" or “natural" at this time-scale2. There-
fore we would expect the dynamics to converge as N → ∞ and the limiting dynamics
will only consist of the natural reactions.

To make this precise, define

γ1 = −max{βk : k = 1, . . . ,K} and Γ1 = {k = 1, . . . .K : βk = −γ1}. (2.5)

Then γ1 is the first time-scale for which the process XN
γ1 has a non-trivial limit as N →∞

and Γ1 is the set of natural reactions for this time-scale. Note that

βk + γ1

{
= 0 if k ∈ Γ1

< 0 if k /∈ Γ1,

and hence using (2.4) we can show that XN
γ1 ⇒ X̂ as N → ∞, where the process X̂

satisfies

X̂(t) = x0 +
∑
k∈Γ1

Yk

(∫ t

0

λk(X̂(s))ds

)
ζk. (2.6)

In other words, X̂ is the process with initial state x0 and generator C0 given by

C0f(x) =
∑
k∈Γ1

λk(x) (f(x+ ζk)− f(x)) for f ∈ D(C0) = Bc(S). (2.7)

The well-posedness of the martingale problem for C0 can be verified from Lemma A.1
and therefore the process X̂ is well-defined. The precise statement of this convergence
result is given below.

Proposition 2.3. Suppose that the propensity functions λ1, . . . , λK satisfy Assumption
2.2. Then we have XN

γ1 ⇒ X̂ as N →∞ where the limiting process X̂ satisfies (2.6).

Proof. The proof follows easily from Theorem 4.1 in [22].

Observe that this proposition can be viewed as a model reduction result, which says
that at the time-scale γ1, the dynamics of the original model (given by XN0

γ1 ) is well-

approximated by the dynamics of a reduced model (given by X̂) for large values of
N0. This reduced model is obtained by simply dropping the “slow" reactions from the
network. Such a model reduction result is trivial because one can easily see from the
reaction time-scales that the slow reactions will not participate in the limiting dynamics.
In the next section we describe a non-trivial model reduction result which is more useful
from the point of view of applications.

2.2 Convergence at the second time-scale

As discussed in several recent papers [4, 22], there may be a second time-scale γ2 (>
γ1) such that a certain projection Π2 of the process XN

γ2 has a well-behaved limit as N →
∞. At this second time-scale, the network has “fast" reactions in addition to the “slow"
and “natural" reactions. The projection Π2 is such, that the fast reactions do not affect
the projected process Π2X

N
γ2 . Assuming quasi-stationarity for the fast sub-network [18,

29] we can have a well-defined limit X̂ for the process Π2X
N
γ2 . Moreover the limiting

process X̂ corresponds to the stochastic model of a reduced reaction network which
only contains those reactions that are natural for the time-scale γ2.

2 The jargon of “slow" , “fast" and “natural" reactions was introduced in Section 1
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We now describe this convergence result formally. Suppose that the set

S2 = {v ∈ Rd+ : 〈v, ζk〉 = 0 for all k ∈ Γ1}

is non-empty. Then for any v ∈ S2, the process {〈v,XN
γ2(t)〉 : t ≥ 0} is unaffected by the

reactions in Γ1. Let γv = −max{βk : k = 1, . . . ,K and 〈v, ζk〉 6= 0} and define

γ2 = inf{γv : v ∈ S2} and Γ2 = {k = 1, . . . .K : βk = −γ2}. (2.8)

Then γ2 > γ1 by definition and note that the reactions in Γ1 are fast at the time-scale γ2.
Let L2 be the subspace spanned by the vectors in S2 and let Π2 be the projection map
from Rd to L2. The definition of L2 implies that

Π2ζk = 0̄d for all k ∈ Γ1, (2.9)

which means that the fast reactions would leave the process Π2X
N
γ2 unchanged. Let L1

be the space spanned by the vectors in (I − Π2)S = {(I − Π2)x : x ∈ S}, where I is the
identity map. For any v ∈ Π2S let

Hv = {y ∈ L1 : y = (I −Π2)x, Π2x = v and x ∈ S} (2.10)

and define the operator Cv by

Cvf(z) =
∑
k∈Γ1

λk(v + z) (f(z + ζk)− f(z)) for f ∈ D(Cv) = Bc(Hv). (2.11)

The operator Cv can be seen as the generator of a Markov process with state space Hv.
We now define the occupation measure of the process (I −Π2)XN

γ2 . This is a random
measure on L1 × [0,∞) given by

V Nγ2 (C × [0, t]) =

∫ t

0

1C
(
(I −Π2)XN

γ2(s)
)
ds,

where C is any Borel measurable subset of L1 and 1C is its indicator function. Note
that for any k ∫ t

0

λk(XN
γ2(s))ds =

∫ t

0

∫
L1

λk(Π2X
N
γ2(s) + y)V Nγ2 (dy × ds).

Therefore using (2.4) and (2.9), we can write the random time change representation
for the process Π2X

N
γ2 as

Π2X
N
γ2(t) = Π2x0 +

∑
k∈Γ1

Yk

(
Nβk+γ

∫ t

0

λk(XN
γ2(s))ds

)
Π2ζk

+
∑
k∈Γ2

Yk

(
Nβk+γ

∫ t

0

λk(XN
γ2(s))ds

)
Π2ζk

+
∑

k/∈Γ1∪Γ2

Yk

(
Nβk+γ

∫ t

0

λk(XN
γ2(s))ds

)
Π2ζk

= Π2x0 +
∑
k∈Γ2

Yk

(
Nβk+γ

∫ t

0

∫
L1

λk(Π2X
N
γ2(s) + y)V Nγ2 (dy × ds)

)
Π2ζk (2.12)

+
∑

k/∈Γ1∪Γ2

Yk

(
Nβk+γ

∫ t

0

∫
L1

λk(Π2X
N
γ2(s) + y)V Nγ2 (dy × ds)

)
Π2ζk.
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Suppose that V Nγ2 ⇒ V as N →∞. In other words, for any f ∈ B(S) and t > 0∫ t

0

∫
L1

f(x)V Nγ2 (dx× ds)⇒
∫ t

0

∫
L1

f(x)V (dx× ds) as N →∞.

Since

βk + γ2

{
= 0 if k ∈ Γ2

< 0 if k /∈ Γ1 ∪ Γ2,

we can expect from (2.12) that Π2X
N
γ2 ⇒ X̂ as N →∞ where the process X̂ satisfies

X̂(t) = Π2x0 +
∑
k∈Γ2

Yk

(∫ t

0

∫
L1

λk(X̂(s) + y)V (dy × ds)
)

Π2ζk.

It can be seen that between consecutive jump times of the process Π2X
N
γ2 , if the state

of the process Π2X
N
γ2 is v, then the process (I − Π2)XN

γ2 evolves like a Markov process
with generator Cv. If the generator Cv corresponds to an ergodic Markov process with
the unique stationary distribution as πv ∈ P(Hv), then the limiting measure V has the
form

V (dy × ds) = πX̂(s)(dy)ds. (2.13)

Therefore the random time change representation of the process X̂ becomes

X̂(t) = Π2x0 +
∑
k∈Γ2

Yk

(∫ t

0

λ̂k(X̂(s))ds

)
Π2ζk, (2.14)

where λ̂k(v) =
∫
Hv
λk(v + z)πv(dz). Before we state the convergence result, we need to

make some assumptions.

Assumption 2.4. (A) For any v = Π2S, the space Hv (given by (2.10)) is finite.

(B) The Markov process with generator Cv is ergodic and its unique stationary distri-
bution is πv ∈ P(Hv).

(C) Let P be the set of reactions given by

P = {k = 1, . . . ,K : 〈1̄d,Π2ζk〉 > 0}. (2.15)

Then the function λP : Nd0 → R+ defined by λP (x) =
∑
k∈P λk(x) is linearly grow-

ing with respect to projection Π2 (see Definition 2.1).

Observe that part (C) implies that the functions {λ̂k : k ∈ Γ2} satisfy part (B) of
Assumption 2.2. Therefore the process X̂ satisfying (2.14) is well-defined due to Lemma
A.1. Note that the set Hv can either be finite or countably infinite. Our main result
(Theorem 3.2) should hold in both the cases, but to simplify the proof we assume that
Hv is finite (part (A) of Assumption 2.4). We later indicate how the proof changes
when this is not the case (see Remark 4.19). In many important biochemical multiscale
networks, the fast reactions conserve some quantity that only depends on the natural
dynamics (see [5, 36, 28]). In such a scenario, the set Hv will be finite. We now state
the convergence result at the second time-scale.

Proposition 2.5. Suppose that Assumption 2.2 and 2.4 hold. Then (Π2X
N
γ2 , V

N
γ2 ) ⇒

(X̂, V ) as N →∞, where the process X̂ satisfies (2.14) and V satisfies (2.13).

Proof. The proof follows from Theorem 5.1 in [22].
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2.3 Convergence at higher time-scales

In Section 2.2 we outlined a systematic procedure to obtain a single-step model re-
duction for a multiscale reaction network. The main idea was to assume ergodicity for
the “fast" sub-network and incorporate its steady-state information in the propensities
of the “natural" reactions. Moreover the “slow" reactions can be ignored completely.
This single-step reduction process can be carried over multiple steps to construct a
hierarchy of reduced models. This is useful because many biochemical networks have
reactions spanning several time-scales (see [21], for example). Hence for a given ref-
erence time-scale, many steps of model reduction may be required to a obtain a model
which is simple enough, to be amenable for extensive simulations that are required for
sensitivity estimation.

For our main result, we will assume that we are in the situation of Proposition 2.5,
which describes a single-step model reduction. In Section 3.2, we shall discuss how
our result can be used to estimate parameter sensitivity using reduced models that are
obtained after many steps of model reduction.

3 The Main Result

In this section we present our main result on sensitivity analysis of multiscale net-
works. Suppose that the propensity functions λ1, . . . , λK depend on a real-valued param-
eter θ and Assumption 2.2 is satisfied for each value of θ. If the reference time-scale is
γ, then the reaction dynamics will be captured by the generator

ANγ,θf(x) =

K∑
k=1

Nβk+γλk(x, θ)(f(x+ ζk)− f(x)) for any f ∈ D(ANγ,θ) = Bc(S). (3.1)

Using Lemma A.1 we can argue that the martingale problem corresponding to ANγ,θ is

well-posed. Let XN
γ,θ be the process with generator ANγ,θ and initial state x0.

We use the same notation as in Section 2.2. Note that the definitions of γi,Γi,Si and
Li, for i = 1 and 2, only depend on the stoichiometry of the reaction network and are
hence independent of θ. Similarly the projection map Π2 and the space Hv (see (2.10))
do not depend on θ. The definition of the operator Cv (see (2.11)) changes to

Cvθf(z) =
∑
k∈Γ1

λk(v + z, θ) (f(z + ζk)− f(z)) for f ∈ D(Cvθ) = Bc(Hv). (3.2)

For our main result we require the following assumptions.

Assumption 3.1. (A) Parts (A) and (C) of Assumption 2.4 are satisfied. In addition,
the mapping v 7→ |Hv| is polynomially growing (see Definition 2.1).

(B) A Markov process with generator Cvθ is ergodic and its unique stationary distribu-
tion is πvθ ∈ P(Hv).

(C) Let x ∈ S be fixed. Then for any k = 1, . . . ,K, the function λk(x, ·) is twice-
continuously differentiable in a neighbourhood of θ.

(D) For each k ∈ Γ2, the functions λk(·, θ) and ∂λk(·, θ)/∂θ are polynomially growing
with respect to projection Π2. Moreover there exists an ε > 0 such that the func-
tion

sup
ξ∈(θ−ε,θ+ε)

∣∣∣∣∂2λk(·, ξ)
∂θ2

∣∣∣∣
is also polynomially growing with respect to projection Π2.

(E) The functions {λk(·, θ) : k ∈ Γ2} satisfy part (B) of Assumption 2.2.
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Note that if Assumption 3.1 holds then Assumption 2.4 will also hold. Hence Propo-
sition 2.5 ensures that Π2X

N
γ2,θ
⇒ X̂θ as N → ∞. The process X̂θ has initial state Π2x0

and generator Âθ given by

Âθf(x) =
∑
k∈Γ2

λ̂k(x, θ)(f(x+ Π2ζk)− f(x)) for any f ∈ D(Âθ) = Bc(Π2S), (3.3)

where the function λ̂k(·, θ) : Π2S → R+ is defined by

λ̂k(x, θ) =

∫
Hx

λk(x+ y, θ)πxθ (dy). (3.4)

We now state our main result whose proof is given in Section 4.3.

Theorem 3.2. Suppose that Assumption 3.1 holds and the function f : S → R is poly-
nomially growing with respect to projection Π2. Then for any t > 0 we have

lim
N→∞

∂

∂θ
E
(
f(XN

γ2,θ(t))
)

=
∂

∂θ
E
(
fθ(X̂θ(t))

)
, (3.5)

where fθ : Π2S → R is given by

fθ(x) =

∫
Hx

f(x+ y)πxθ (dy). (3.6)

Remark 3.3. This theorem will also hold if the function f depends on the parameter θ,
as long as the dependence is continuously differentiable. Moreover we can even replace
f by fN in relation (3.5), where the sequence of functions {fN : N ∈ N} is polynomially
growing with respect to projection Π2, and satisfies

lim
N→∞

fN (x) = f(x)

for each x ∈ S. These conclusions will be evident from the proof of the theorem.

Recall that the reaction dynamics for the original model in the reference time-scale
γ2 is given by XN0

γ2,θ
. If the output of interest is captured by function f , then we are in-

terested in estimating the parameter sensitivity SN0
γ2,t(f, t) defined by (1.2). As explained

in Section 1, direct estimation of SN0
γ2,t(f, t) is often infeasible because simulations of the

process XN0

γ2,θ
are prohibitively expensive. However simulations of the reduced model

dynamics X̂θ is much cheaper, allowing us to easily estimate the right side of (3.5), us-
ing known methods [16, 30, 33, 1, 17]. The main message of Theorem 3.2 is that for
large values of N0

SN0
γ2,t(f, t) ≈ Ŝθ(fθ, t) :=

∂

∂θ
E
(
fθ(X̂θ(t))

)
, (3.7)

which allows us to approximately estimate SN0
γ2,t(f, t), in a computationally efficient way.

Observe that in (3.5), the function fθ may depend on θ even if the function f does
not. If the stationary distribution πxθ is known for each x ∈ Π2S, then the function fθ
and the propensities λ̂k can be computed analytically. In this case, the simulations of
the process X̂θ that are needed for estimating Ŝθ(fθ, t), can be carried out using the
slow-scale Stochastic Simulation Algorithm [5]. If πxθ is unknown, then one can use
nested schemes [36, 6] to estimate fθ and λ̂k during the simulation runs. In many
applications, the “fast" reactions are uninteresting [28, 29, 18] and they do not alter
the output function f . In such a scenario we can expect f to be invariant under the
projection Π2 (that is, f(x) = f(Π2x) for all x ∈ S) which would imply that the functions
fθ and f are the same on the space Π2S. Hence we recover (1.3) from Theorem 3.2.
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3.1 Estimation of steady-state parameter sensitivities

We now discuss how relation (1.4) can be derived using our main result. In Section
1 we mentioned the importance of this relation in the context of estimating steady-state
parameter sensitivities. Let {Xθ(t) : t ≥ 0} be an ergodic S-valued Markov process with
generator

Cθf(x) =

K∑
k=1

λk(x, θ)(f(x+ ζk)− f(x)) for any f ∈ D(Cθ) = Bc(S),

and stationary distribution πθ. If we define another process XN
θ by

XN
θ (t) = Xθ(Nt) for t ≥ 0, (3.8)

then XN
θ represents the dynamics of a multiscale network with βk = 1 for each k =

1, . . . ,K. For this network, clearly γ2 = 0,Γ2 = ∅ and Π2S = {0}. From Theorem 3.2 we
obtain

lim
N→∞

∂

∂θ
E
(
f(XN

θ (t))
)

=
d

dθ

(∫
S
f(x)πθ(dx)

)
,

for any t > 0. Hence (1.4) immediately follows from (3.8).

3.2 Sensitivity estimation with multiple reduction steps

We have presented Theorem 3.2 in the setting of Section 2.2, where a single-step
reduction procedure was described to obtain a “reduced" model ( with dynamics X̂θ)
from the original model (with dynamics XN0

γ,θ), in the reference time-scale γ = γ2. As
mentioned in Section 2.3, there are examples of multiscale networks where many steps
of model reduction may be required to arrive at a sufficiently simple model. It is inter-
esting to know that even in such cases, the main approximation relationship (3.7) that
falls out of Theorem 3.2, will continue to hold. To illustrate this point, we now consider
an example where two-steps of model reduction are needed for sensitivity estimation.

Recall the description of a multiscale network from Section 1. Let γ1, γ2 and γ3 be
real numbers such that γ3 > γ2 > γ1. Suppose that the sets Γ1,Γ2 and Γ3 form a partition
of the reaction set {1, . . . ,K}, and for each k ∈ Γi, we have βk = −γi for i = 1, 2, 3. The
dynamics of the model in the reference time-scale γ is given by the process XN0

γ,θ whose
random time change representation is

XN0

γ,θ(t) =
∑
k∈Γ1

Yk

(
Nγ−γ1

0

∫ t

0

λk

(
XN0

γ,θ(s), θ
)
ds

)
ζk (3.9)

+
∑
k∈Γ2

Yk

(
Nγ−γ2

0

∫ t

0

λk

(
XN0

γ,θ(s), θ
)
ds

)
ζk

+
∑
k∈Γ3

Yk

(
Nγ−γ3

0

∫ t

0

λk

(
XN0

γ,θ(s), θ
)
ds

)
ζk,

where {Yk : k = 1, . . . ,K} is a family of independent unit rate Poisson processes. Clearly
this multiscale network has three time-scales γ1, γ2 and γ3. Suppose we want to esti-
mate the sensitivity value SN0

γ,t (f, t) (given by (1.2)) at the reference time-scale γ = γ3.
Observe that for this time-scale, the reactions in both the sets Γ1 and Γ2 are “fast",
but the reactions in Γ1 are “faster" than those in Γ2. Ideally we would like to esti-
mate SN0

γ3,t(f, t) using a reduced model which only involves reactions in Γ3. It is possible
to obtain such a reduced model by applying the reduction procedure twice. We now

EJP 19 (2014), paper 59.
Page 13/53

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-3246
http://ejp.ejpecp.org/


Sensitivity analysis for multiscale stochastic reaction networks

demonstrate that even with this second-order reduced model, the main approximation
relationship (3.7) will still hold.

Replacing Nγ−γ1
0 by Nγ−γ2

0 Nγ2−γ1 in (3.9), we get another process XN0,N
γ,θ defined by

XN0,N
γ,θ (t) =

∑
k∈Γ1

Yk

(
Nγ2−γ1Nγ−γ2

0

∫ t

0

λk

(
XN0,N
γ,θ (s), θ

)
ds

)
ζk (3.10)

+
∑
k∈Γ2

Yk

(
Nγ−γ2

0

∫ t

0

λk

(
XN0,N
γ,θ (s), θ

)
ds

)
ζk

+
∑
k∈Γ3

Yk

(
Nγ−γ3

0

∫ t

0

λk

(
XN0,N
γ,θ (s), θ

)
ds

)
ζk.

Certainly for large values of N0 we have

SN0
γ3,t(f, t) ≈ lim

N→∞

∂

∂θ
E
(
f
(
XN0,N
γ3,θ

(t)
))

. (3.11)

Observe that the process XN0,N
γ3,θ

can be treated in the same way as the process XN
γ2,θ

in Theorem 3.2. Suppose that the conditions of this theorem are satisfied. We can
construct a projection Π2 satisfying (2.9) such that the process Π2X

N0,N
γ3,θ

has a well-
behaved limit as N → ∞. For any v ∈ Π2S let πvθ be the stationary distribution for the
Markov process with generator Cvθ (see (3.2)). Define f̄θ by (3.6) and for each k ∈ Γ2∪Γ3

let λ̄k be given by (3.4). Using Theorem 3.2 we can conclude that

lim
N→∞

∂

∂θ
E
(
f
(
XN0,N
γ3,θ

(t)
))

=
∂

∂θ
E
(
f̄θ

(
X̄N0

γ3,θ
(t)
))

, (3.12)

where X̄N0

γ3,θ
is the Π2S-valued process given by

X̄N0

γ3,θ
(t) =

∑
k∈Γ2

Yk

(
Nγ3−γ2

0

∫ t

0

λ̄k

(
X̄N0

γ3,θ
(s), θ

)
ds

)
Π2ζk

+
∑
k∈Γ3

Yk

(∫ t

0

λ̄k

(
X̄N0

γ3,θ
(s), θ

)
ds

)
Π2ζk.

Substituting N0 by N we get another process X̄N
γ3,θ

which can again be dealt in the same

way as the process XN
γ2,θ

in Theorem 3.2. Moreover for large values of N0,

∂

∂θ
E
(
f̄θ

(
X̄N0

γ3,θ
(t)
))
≈ lim
N→∞

∂

∂θ
E
(
f̄θ
(
X̄N
γ3,θ(t)

))
. (3.13)

Assuming that the conditions of Theorem 3.2 hold, we can construct a projection Π3,
such that Π3Π2ζk = 0̄d for all k ∈ Γ2, and the process Π3X̄

N
γ3,θ

has a well-behaved limit
as N → ∞. For any w ∈ Π3Π2S, let µwθ be the stationary distribution for the Markov
process with generator

Cwθ g(z) =
∑
k∈Γ2

λ̄k(w + z, θ) (g(w + Π2ζk)− g(z)) for g ∈ D(Cwθ ) = Bc(Hw),

where the definition of Hw is similar to (2.10). Define

f̂θ(w) =

∫
Hw

f̄θ(w + y)µwθ (dy) and λ̂k(w, θ) =

∫
Hw

λ̄k(w + y, θ)µwθ (dy),

for each k ∈ Γ3. From Theorem 3.2 we get

lim
N→∞

∂

∂θ
E
(
f̄θ
(
X̄N
γ3,θ(t)

))
=

∂

∂θ
E
(
f̂θ

(
X̂θ(t)

))
, (3.14)
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where X̂θ is the process given by

X̂θ(t) =
∑
k∈Γ3

Yk

(∫ t

0

λ̂k

(
X̂θ(s), θ

)
ds

)
Π3Π2ζk.

Combining (3.11), (3.12), (3.13) and (3.14), we get that for large values of N0

SN0
γ3,t(f, t) ≈

∂

∂θ
E
(
f̂θ

(
X̂θ(t)

))
. (3.15)

This shows that the main approximation relationship (3.7) that arises from Theorem
3.2 will hold even with a reduced model obtained after two steps of model reduction.
Observe that the reactions in Γ3 are “natural" for the time-scale γ3, and the reduced
model corresponding to X̂θ only consists of these reactions. Hence the process X̂θ is
easy to simulate and SN0

γ3,t(f, t) can be easily estimated using (3.15).

3.3 Sensitivity estimation for outputs at multiple time points

In Theorem 3.2 we only consider the situation where the sensitivity is computed for
an output at a single time point t. However using the Markov property it is possible to
extend this result to encompass situations where the output is a function of the state
values at multiple time points t1, . . . , tm (with 0 < t1 < t2 < · · · < tm). To be more
precise, let Sm = S×· · ·×S be the product-space formed by m copies of the state space
S and let f : Sm → R be a function which is polynomially growing with respect to Π2 in
each coordinate. Then we claim that

lim
N→∞

∂

∂θ
E
(
f
(
XN
γ2,θ(t1), . . . , XN

γ2,θ(tm)
))

=
∂

∂θ
E
(
fθ

(
X̂θ(t1), . . . , X̂θ(tm)

))
, (3.16)

where the processes XN
γ2,θ

and X̂θ are as in Theorem 3.2 and the function fθ : (Π2S)m →
R is given by

fθ(x1, . . . , xm) =

∫
Hx1

. . .

∫
Hxm

f(x1 + y1, . . . , xm + ym)πx1

θ (dy1) . . . πxmθ (dym). (3.17)

We shall prove this claim in the case m = 2. The proof for a general m simply follows
by extending the arguments made in this case.

Pick two time points t1, t2 (with 0 < t1 < t2) and a function f : S × S → R which
is polynomially growing with respect to Π2 in each coordinate. Let ḡθ be a real-valued
function on S ×Π2S given by

ḡθ(x1, x2) =

∫
Hx2

f(x1, x2 + y)πx2

θ (dy).

For any x ∈ S define

gNθ (x) = E
(
f(x, X̄N

γ2,θ(t2 − t1))
)

and gθ(x) = E
(
ḡθ(x, X̄θ(t2 − t1))

)
,

where {X̄N
γ2,θ

(t) : t ≥ 0} and {X̄θ(t) : t ≥ 0} are processes with initial states X̄N
γ2,θ

(0) = x

and X̄θ(0) = Π2x, and generators ANγ2,θ (see (3.1)) and Âθ (see (3.3)) respectively. Due
to Proposition 2.5 and Theorem 3.2 we have

lim
N→∞

gNθ (x) = gθ(x) and lim
N→∞

∂gNθ (x)

∂θ
=
∂gθ(x)

∂θ
, (3.18)
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for each x ∈ S. The Markov property implies that the conditional distribution of
XN
γ2,θ

(t2) (X̂θ(t2)) given XN
γ2,θ

(t1) = x (X̂θ(t1) = Π2x), is same as the distribution of

X̄N
γ2,θ

(t2 − t1) (X̄θ(t2 − t1)). This shows that

E
(
f
(
XN
γ2,θ(t1), XN

γ2,θ(t2)
))

= E
(
E
(
f
(
XN
γ2,θ(t1), XN

γ2,θ(t2)
)∣∣XN

γ2,θ(t1)
))

= E
(
gNθ (XN

γ2,θ(t1))
)
, (3.19)

and for any y1 ∈ HX̂θ(t1)

gθ(X̂θ(t1) + y1) = E
(
ḡθ(X̂θ(t1) + y1, X̂θ(t2))

∣∣∣X̂θ(t1)
)

= E

(∫
HX̂θ(t2)

f(X̂θ(t1) + y1, X̂θ(t2) + y2)π
X̂θ(t2)
θ (dy2)

∣∣∣∣∣X̂θ(t1)

)
. (3.20)

Theorem 3.2, Remark 3.3 and (3.18) imply that

lim
N→∞

∂

∂θ
E
(
gNθ (XN

γ2,θ(t1))
)

= E

(∫
HX̂θ(t1)

gθ(X̂θ(t1)) + y1)π
X̂θ(t1)
θ (dy1)

)
. (3.21)

However using (3.20) we obtain

E

(∫
HX̂θ(t1))

gθ(X̂θ(t1)) + y1)π
X̂θ(t1)
θ (dy1)

)

= E

(∫
HX̂θ(t1))

E

(∫
HX̂θ(t2)

f(X̂θ(t1) + y1, X̂θ(t2) + y2)π
X̂θ(t2)
θ (dy2)

∣∣∣∣∣X̂θ(t1)

)
π
X̂θ(t1)
θ (dy1)

)

= E

(∫
HX̂θ(t1))

∫
HX̂θ(t2)

f(X̂θ(t1) + y1, X̂θ(t2) + y2)π
X̂θ(t2)
θ (dy2)π

X̂θ(t1)
θ (dy1)

)
= E

(
fθ(X̂θ(t1), X̂θ(t2))

)
,

where the function fθ is defined by (3.17) for m = 2. This relation along with (3.19) and
(3.21) gives us

lim
N→∞

∂

∂θ
E
(
f
(
XN
γ2,θ(t1), XN

γ2,θ(t2)
))

=
∂

∂θ
E
(
fθ(X̂θ(t1), X̂θ(t2))

)
,

which proves (3.16) for m = 2.

4 Proofs

We mentioned in Section 1 that the proof of our main result, Theorem 3.2, will re-
quire many steps. We now describe these steps in detail. In Section 4.1 we show
some regularity properties of the distributions of weighted occupation times for finite
Markov chains with fast parameter-dependent rates. For this, we exploit certain con-
nections between the distribution of weighted occupation times and multi-dimensional
wave equations (see [31]). These regularity properties allow us to later argue that the
distribution of the weighted occupation times for the “fast" sub-network of our mul-
tiscale network, is differentiable with respect to θ, and the derivative operation com-
mutes with the limit N → ∞. In Section 4.2, we construct a “new" process WN

θ , which
captures the single-time distribution of the process XN

γ2,θ
, in the sense described in Sec-

tion 1. The main difference between XN
γ2,θ

and WN
θ , is that the dynamics of the fast

sub-network is averaged out in the process WN
θ , making it easier to work with. In
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particular the process WN
θ is well-behaved in the limit N → ∞ (see Proposition 4.16),

unlike the process XN
γ2,θ

. The proof of Theorem 3.2 is given in Section 4.3. The main

idea of the proof is to couple the processes WN
θ and WN

θ+h, in such a way, that it allows
us to compute a double-limit of the form

lim
N→∞

lim
h→0

E
(
fNθ+h(WN

θ+h(t))
)
− E

(
fNθ (WN

θ (t))
)

h
,

for some functions fNθ and fNθ+h that depend on our output function f . The results
from Section 4.2 will imply that this quantity is equal to the left-hand side of (3.5). On
the other hand, using Dynkin’s formula (see Lemma 19.21 in [20]) and some coupling
arguments, we will show that this quantity is also equal to the right-side of (3.5), thereby
proving Theorem 3.2.

4.1 Weighted occupation times of finite Markov chains

Let {Z(t) : t ≥ 0} be a continuous time Markov chain on a finite state space E =

{e1, . . . , em} and with generator

Af(z) =

K∑
k=1

λk(z) (f(z + ζk)− f(z)) for all f ∈ D(A) = B(E).

Here λ1, . . . , λK are positive functions on E . For this Markov chain the Q-matrix (matrix
of transition rates) is given by

Qij =


λk(ei) if i 6= j and ej = ei + ζk

−
∑K
k=1 λk(ei) if i = j

0 otherwise.

For a function Λ : E → [0,∞) define

V (t) =

∫ t

0

Λ(Z(s))ds. (4.1)

Then V (t) is essentially the weighted occupation time of the process Z, where the
weight is given by the function Λ. For each i = 1, . . . ,m define pi, βi : R+ → [0, 1]

by

βi(t) = E
(
1{Z(t)=ei} exp(−V (t))

)
and pi(t) = P(Z(t) = ei).

Note that βi(t) can be seen as the Laplace Transform of the distribution of V (t) on the
event Z(t) = ei. Let p(t) and β(t) denote the vectors

p(t) = (p1(t), . . . , pm(t)) and β(t) = (β1(t), . . . , βm(t)).

The definition of matrix Q implies that

dp(t)

dt
= QT p(t). (4.2)

The next proposition describes the dynamics of β.

Proposition 4.1. The function β satisfies the following ordinary differential equation

dβ(t)

dt
=
(
QT −D

)
β(t),

where D is the m×m diagonal matrix with entries Λ(e1), . . . ,Λ(em).
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Proof. Let r1, . . . , rl be l distinct values in the set {Λ(e1), . . . ,Λ(em)}, arranged in as-
cending order. For each i = 1, . . . , (l − 1) let Bi = {e ∈ E : Λ(e) = ri}, and for each
i = 1, . . . ,m define Fi : R+ ×R→ [0, 1] by

Fi(t, x) = P (Z(t) = ei, V (t) > x) .

The random variable V (t) (given by (4.1)) can only take values between r1t and rlt.
Hence

Fi(t, rlt) = 0 and Fi(t, r1t−) = lim
h→0−

Fi(t, r1t+ h) = P(Z(t) = ei). (4.3)

It has been shown in [31] that the distribution of the real-valued random variable V (t)

is continuous in the interval [r1t, rlt], except at points r1t, . . . , rlt. Whenever x = rjt for
some j = 1, . . . , l, the function Fi has a discontinuity of size

Fi(x, rjt)− Fi(x, rjt−) = −P (Z(t) = ei, V (t) = rjt) .

Moreover, the event {V (t) = rjt} can only happen if Z(s) ∈ Bj for all s ∈ [0, t]. Therefore
P (Z(t) = ei, V (t) = rjt) is non-zero only if ei ∈ Bj and hence

l∑
j=1

g(rj)(Fi(t, rjt−)− Fi(t, rjt)) =

l∑
j=1

g(rj)P (Z(t) = ei, V (t) = rjt)

= g(Λ(ei))P (Z(t) = ei, V (t) = Λ(ei)t) , (4.4)

for any g : R+ → R+. It is shown in [31] that on the set R = {(t, x) : t > 0 and x ∈
(rj−1t, rjt), j = 2, . . . , l}, each Fi is continuously differentiable and the family of func-
tions {Fi : i = 1, . . . ,m} satisfies the following system of multi-dimensional wave equa-
tions

∂Fi(t, x)

∂t
= −Λ(ei)

∂Fi(t, x)

∂x
+

m∑
k=1

Fk(t, x)Qki, for i = 1, . . . ,m. (4.5)

For each i = 1, . . . ,m we can write βi(t) as

βi(t) = E
(
1{Z(t)=ei}e

−V (t)
)

= e−Λ(ei)tP (Z(t) = ei, V (t) = Λ(ei)t) (4.6)

−
l∑

j=2

∫ rjt

rj−1t

e−x
(
∂Fi(t, x)

∂x

)
dx.
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Using integration by parts, (4.3) and (4.4) we get

l∑
j=2

∫ rjt

rj−1t

e−x
(
∂Fi(t, x)

∂x

)
dx

=

l∑
j=2

(
e−rjtFi(t, rjt−)− e−rj−1tFi(t, rj−1t)

)
+

l∑
j=2

∫ rjt

rj−1t

e−xFi(t, x)dx

=

l∑
j=2

(
e−rjtFi(t, rjt)− e−rj−1tFi(t, rj−1t)

)
+

l∑
j=2

∫ rjt

rj−1t

e−xFi(t, x)dx

+

l∑
j=2

e−rjt(Fi(t, rjt−)− Fi(t, rjt))

= −e−r1tFi(t, r1t) +

l∑
j=2

∫ rjt

rj−1t

e−xFi(t, x)dx+

l∑
j=2

e−rjt(Fi(t, rjt−)− Fi(t, rjt))

= e−r1t (Fi(t, r1t−)− Fi(t, r1t))− e−r1tFi(t, r1t−)

+

m∑
j=2

∫ rjt

rj−1t

e−xFi(t, x)dx+

l∑
j=2

e−rjt(Fi(t, rjt−)− Fi(t, rjt))

= −e−r1tP(Z(t) = ei) +

l∑
j=2

∫ rjt

rj−1t

e−xFi(t, x)dx

+ e−Λ(ei)tP (Z(t) = ei, V (t) = Λ(si)t) .

Substituting the above expression in (4.6) we obtain

βi(t) = e−r1tpi(t)−
l∑

j=2

∫ rjt

rj−1t

e−xFi(t, x)dx, (4.7)

where pi(t) = P(Z(t) = ei).

For i = 1, . . . ,m, the functions pi and Fi(·, x) are differentiable (see (4.2) and (4.5)).
Hence the function βi is also differentiable. Taking derivative with respect to t in (4.7)
yields

dβi(t)

dt
= −

l∑
j=2

∫ rjt

rj−1t

e−x
∂Fi(t, x)

∂t
dx−

l∑
j=2

(
rje
−rjtFi(t, rjt−)− rj−1e

−rj−1tFi(t, rj−1t)
)

− r1e
−r1tpi(t) + e−r1t

dpi(t)

dt
.
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From (4.3) and (4.4) it follows that

l∑
j=2

(
rje
−rjtFi(t, rjt−)− rj−1e

−rj−1tFi(t, rj−1t)
)

=

l∑
j=2

(
rje
−rjtFi(t, rjt)− rj−1e

−rj−1tFi(t, rj−1t)
)

+

l∑
j=2

rje
−rjt (Fi(t, rjt−)− Fi(t, rjt))

= −r1e
−r1tFi(t, r1t) +

l∑
j=2

rje
−rjtP (Z(t) = ei, V (t) = rjt)

= −r1e
−r1tpi(t) +

l∑
j=1

rje
−rjtP (Z(t) = ei, V (t) = rjt)

= −r1e
−r1tpi(t) + Λ(ei)e

−Λ(ei)tP (Z(t) = ei, V (t) = Λ(ei)t) . (4.8)

Therefore

dβi(t)

dt
= −

l∑
j=2

∫ rjt

rj−1t

e−x
∂Fi(t, x)

∂t
dx− Λ(ei)e

−Λ(ei)tP (Z(t) = ei, V (t) = Λ(ei)t)

+ e−r1t
dpi(t)

dt
.

From (4.5) we get

dβi(t)

dt
= Λ(ei)

l∑
j=2

∫ rjt

rj−1t

e−x
∂Fi(t, x)

∂x
dx−

m∑
k=1

 l∑
j=2

∫ rjt

rj−1t

e−xFk(t, x)dx

Qki

− Λ(ei)e
−Λ(ei)tP (Z(t) = ei, V (t) = Λ(ei)t) + e−r1t

dpi(t)

dt

= Λ(ei)

l∑
j=2

∫ rjt

rj−1t

e−x
∂Fi(t, x)

∂x
dx+

m∑
k=1

(
βk(t)− e−r1tpk(t)

)
Qki

− Λ(ei)e
−Λ(ei)tP (Z(t) = ei, V (t) = rit) + e−r1t

dpi(t)

dt

= Λ(ei)

l∑
j=2

∫ rjt

rj−1t

e−x
∂Fi(t, x)

∂x
dx+

m∑
k=1

βk(t)Qki

− Λ(ei)e
−Λ(ei)tP (Z(t) = ei, V (t) = rit) + e−r1t

(
dpi(t)

dt
−

m∑
k=1

pk(t)Qki

)
.

Due to (4.2), the last term is 0 and hence

dβi(t)

dt
= Λ(ei)

l∑
j=2

∫ rjt

rj−1t

e−x
∂Fi(t, x)

∂x
dx+

m∑
k=1

βk(t)Qki (4.9)

− Λ(ei)e
−Λ(ei)tP (Z(t) = ei, V (t) = Λ(ei)t) .
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Using integration by parts, (4.8) and (4.7) we obtain

l∑
j=2

∫ rjt

rj−1t

e−x
∂Fi(t, x)

∂x
dx =

l∑
j=2

(
e−rjtFi(t, rjt−)− e−rj−1tFi(t, rj−1t)

)
+

l∑
j=2

∫ rjt

rj−1t

e−xFi(t, x)dx

= e−Λ(ei)tP (Z(t) = ei, V (t) = Λ(ei)t)− βi(t).

Substituting this expression in (4.9) yields

dβi(t)

dt
= −Λ(ei)βi(t) +

m∑
k=1

βk(t)Qki.

This completes the proof of the proposition.

Using the above proposition, we now establish some regularity properties of the
distributions of weighted occupation times for finite Markov chains with fast parameter-
dependent rates. Let {ZNθ (t) : t ≥ 0} be a continuous time Markov chain on E =

{e1, . . . , em} with generator given by

CNθ f(z) = N

K∑
k=1

λk(z, θ) (f(z + ζk)− f(z)) for all f ∈ D(CNθ ) = B(E),

where the function θ 7→ λk(z, θ) is continuously differentiable for each k and z ∈ E . For
this Markov chain, the matrix of transition rates is given by NQθ where

Qθ,ij =


λk(ei, θ) if i 6= j and ej = ei + ζk

−
∑K
k=1 λk(ei, θ) if i = j

0 otherwise.

We assume that this Markov chain is ergodic. Then its unique stationary distribution πθ
is a left eigenvector for Qθ corresponding to the eigenvalue 0. Hence

πθQθ = 0̄m and 〈1̄m, πθ〉 = 1̄Tmπθ = 1. (4.10)

Remark 4.2. Due to the ergodicity assumption, the matrix Qθ has 0 as a simple eigen-
value and all its other eigenvalues have strictly negative real parts.

For a function Λ : E ×R→ [0,∞) define

V Nθ (t) =

∫ t

0

Λ(ZNθ (s), θ)ds (4.11)

and let

βNθ,i(t) = E
(
1{ZNθ (t)=ei} exp(−V Nθ (t))

)
,

for each i = 1, . . . ,m. From Proposition 4.1 it follows that the function
βNθ (t) = (βNθ,1(t), . . . , βNθ,m(t)) satisfies

dβNθ (t)

dt
=
(
NQTθ −Dθ

)
βNθ (t), (4.12)

where Dθ is the m×m diagonal matrix with entries Λ(e1, θ), . . . ,Λ(em, θ). We now define
a condition on sequences of functions on R+.
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Condition 4.3. For each N ∈ N, let fN be a function from R+ to Rm and let εN =

1/
√
N . Then the sequence of functions {fN : N ∈ N} satisfies this condition if for any

T > 0

lim
N→∞

sup
t∈[εN ,T ]

‖fN (t)‖ = 0 and lim
N→∞

∫ T

0

‖fN (t)‖dt = 0.

The main result of this section is given as the next proposition.

Proposition 4.4. Define β̂Nθ : [0,∞)→ Rm by

β̂Nθ (t) = βNθ (t)− e−λθtπθ,

where

λθ = 1̄TmDθπθ. (4.13)

Then the functions β̂Nθ and ∂β̂Nθ /∂θ satisfy Condition 4.3.

Remark 4.5. Here ∂βNθ /∂θ should be interpreted as the map t 7→ ∂βNθ (t)/∂θ. Of course
this proposition can only be true if ∂βNθ (t)/∂θ and ∂πθ/∂θ exist. Note that entries of
the matrices Qθ and Dθ are differentiable with respect to θ. Hence (4.12) implies the
existence of ∂βNθ (t)/∂θ. Moreover due to the implicit mapping theorem and the relation
πθQθ = 0̄d (see (4.10)) one can also conclude that ∂πθ/∂θ exists.

Proof. We start by defining some notation that will be useful in the proof. We say that
a Rm-valued sequence {aN : N ∈ N} belongs to class O(N−m) for some m ∈ N0, if and
only if

sup
N∈N

Nm‖aN‖ <∞.

For two such sequences {aN : N ∈ N} and {bN : N ∈ N}, we will say that aN =

bN +O(N−m) when the sequence {(aN − bN ) : N ∈ N} belongs to class O(N−m).
For the proof, we can assume without loss of generality, that for each N , ZNθ (0) = ei0

for some i0 = 1, . . . ,m. This implies that βNθ (0) = (0, . . . , 0, 1, 0, . . . , 0), where the 1 is in
place i0. Hence

〈1̄m, βNθ (0)− πθ〉 = 〈1̄m, βNθ (0)〉 − 〈1̄m, πθ〉 = 0. (4.14)

Define a function hNθ : R+ → Rm by

hNθ (t) = eλθtβNθ (t)− πθ. (4.15)

To prove the proposition it is sufficient to show that both hNθ and ∂hNθ /∂θ satisfy Condi-
tion 4.3.

From (4.12) we obtain

dhNθ (t)

dt
=
(
NQTθ −Dθ + λθIm

)
hNθ (t)−Dθπθ + λθπθ, (4.16)

where Im is the m×m identity matrix. Consider the matrix BNθ = QTθ −N−1Dθ, which
can be seen as a small perturbation of QTθ for large values of N . The eigenvalues of
BNθ is slightly perturbed with respect to the eigenvalues of QTθ (see [32]). We know
that matrix QTθ has 0 as a simple eigenvalue (see Remark 4.2) and the corresponding
left eigenvector is 1̄m. From Theorem 2.7 in [32], we can conclude that BNθ has an
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eigenvalue λNθ with the corresponding left eigenvector as vNθ , where λNθ and vNθ have
the form

λNθ = −λθ
N

+O(N−2) and vNθ = 1̄m +O(N−1). (4.17)

Therefore

(vNθ )T
(
NQTθ −Dθ + λθIm

)
= N(vNθ )TBNθ + λθ(v

N
θ )T

= NλNθ (vNθ )T + λθ(v
N
θ )T

=
(
NλNθ + λθ

)
(vNθ )T .

Let SNθ = 〈vNθ , hNθ (t)〉. Taking inner product with vNθ in (4.16) we get

dSNθ (t)

dt
=
(
NλNθ + λθ

)
SNθ (t) + (vNθ )T (−Dθπθ + λθπθ) .

Note that aNθ := NλNθ + λθ = O(N−1) due to (4.17). From (4.13) and (4.10) we can see
that bNθ := (vNθ )T (−Dθπθ + λθπθ) = 1̄Tm (−Dθπθ + λθπθ) + O(N−1) = O(N−1). Therefore
we can write

dSNθ (t)

dt
= aNθ S

N
θ (t) + bNθ , (4.18)

where {aNθ }, {bNθ } are sequences in O(N−1). Using (4.14) we obtain

SNθ (0) = 〈vNθ , hNθ (0)〉 = 〈1̄m, hNθ (0)〉+O(N−1) = 〈1̄m, βNθ (0)〉 − 〈1̄m, πθ〉+O(N−1)

= O(N−1). (4.19)

Pick any T > 0. From (4.18), (4.19) and Gronwall’s inequality it follows that

sup
t∈[0,T ]

|SNθ (t)| = sup
t∈[0,T ]

|〈vNθ (t), hNθ (t)〉| = O(N−1),

which also implies that

sup
t∈[0,T ]

|〈1̄m, hNθ (t)〉| = O(N−1). (4.20)

This allows us to write

hNθ,m(t) = −
m−1∑
i=1

hNθ,i(t) +O(N−1).

Let Cθ be the (m− 1)× (m− 1) matrix whose ij-th entry is given by

Cθ,ij = Qθ,ji −Qθ,mi.

If we define

P =

[
Im−1 1̄m−1

0̄Tm−1 1

]
and P−1 =

[
Im−1 −1̄m−1

0̄Tm−1 1

]
then using 1̄TmQ

T
θ = 0̄Tm we can write

PTQTθ (PT )−1 =

[
Cθ v

0̄Tm−1 0

]
, (4.21)
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where v is some vector in Rm−1. The matrix Qθ has a simple eigenvalue at 0 and all its
other eigenvalues have strictly negative real parts (see Remark 4.2). This shows that
matrix Cθ is stable.

Let h̄Nθ (t) and π̄θ be vectors containing the first (m− 1) components of hN (t) and πθ.
Also let D̄θ be the (m − 1) × (m − 1) diagonal matrix with entries λ(e2, θ), . . . , λ(em, θ).
From (4.16) we get

dh̄Nθ (t)

dt
=
(
NCθ − D̄θ + λθIm−1

)
h̄Nθ (t)− D̄θπ̄θ + λθπ̄θ. (4.22)

Let CNθ be the matrix given by

CNθ = Cθ −
1

N

(
D̄θ − λθIm−1

)
. (4.23)

The stability of matrix Cθ implies that there exists a α > 0 such that for any t ≥ 0 and N

‖ exp(NCNθ t)‖ ≤ exp(−Nαt). (4.24)

The exact solution of (4.22) is

h̄Nθ (t) = exp(NCNθ t)h̄
N
θ (0)−

∫ t

0

exp(NCNθ (t− s))
(
D̄θπ̄θ − λθπ̄θ

)
ds,

which implies that

‖h̄Nθ (t)‖ ≤ e−Nαt‖h̄Nθ (0)‖+

∫ t

0

e−Nα(t−s)‖D̄θπ̄θ − λθπ̄θ‖ds

≤ e−Nαt‖h̄Nθ (0)‖+
‖D̄θπ̄θ − λθπ̄θ‖

Nα
.

This along with (4.20) shows that the function hNθ satisfies Condition 4.3. In fact for any
T > 0

sup
t∈[εN ,T ]

‖hNθ (t)‖ = O(N−1) and

∫ T

0

‖hNθ (t)‖dt = O(N−1), (4.25)

where εN = 1/
√
N .

Let HN
θ : R+ → Rm be defined by

HN
θ (t) =

∂hNθ (t)

∂θ
.

Differentiating (4.16) with respect to θ we get

dHN
θ (t)

dt
=
(
NQTθ −Dθ + λθIm

)
HN
θ (t) +

(
N
∂QTθ
∂θ
− ∂Dθ

∂θ
+
∂λθ
∂θ

Im

)
hNθ (t)

− ∂(Dθπθ)

∂θ
+
∂(λθπθ)

∂θ
.

Note that〈
vNθ , N

∂QTθ
∂θ

〉
= N

〈
vNθ ,

∂QTθ
∂θ

〉
= N

〈
1̄m,

∂QTθ
∂θ

〉
+O(1) = N

∂(1̄mQ
T
θ )

∂θ
+O(1) = O(1),

where the last equality is true because Qθ1̄m = 0̄d. Let GNθ (t) = 〈vNθ , HN
θ (t)〉. Then GNθ

satisfies an ordinary differential equation of the form

dGNθ (t)

dt
= eNθ G

N
θ (t) + fNθ h

N
θ (t) + gNθ ,
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where the sequences {eNθ }, {gNθ } are in O(N−1) and the sequence fNθ is in O(1). Gron-
wall’s inequality along with (4.25) and (4.17) imply that

sup
t∈[0,T ]

|GNθ (t)| = O(N−1) and sup
t∈[0,T ]

|〈1̄m, HN
θ (t)〉| = O(N−1). (4.26)

Let H̄N
θ (t) be the first (m − 1) components of HN

θ (t). Differentiating (4.22) with
respect to θ, we see that H̄N

θ satisfies an equation of the form

dH̄N
θ (t)

dt
=
(
NCθ − D̄θ + λθIm−1

)
H̄N
θ (t) +

(
N
∂Cθ
∂θ
− ∂D̄θ

∂θ
+
∂λθ
∂θ

Im−1

)
hNθ (t)

− ∂(D̄θπ̄θ)

∂θ
+
∂(λθπ̄θ)

∂θ
.

If CNθ is the matrix given by (4.23), then we can solve for H̄N
θ as

H̄N
θ (t) = exp(NCNθ t)H̄

N
θ (0)−

∫ t

0

exp(NCNθ (t− s))
(
∂(D̄θπ̄θ)

∂θ
− ∂(λθπ̄θ)

∂θ

)
ds

+

∫ t

0

exp(NCNθ (t− s))
(
N
∂Cθ
∂θ
− ∂D̄θ

∂θ
+
∂λθ
∂θ

Im−1

)
hNθ (s)ds.

From (4.24) and (4.25) we can deduce that H̄N
θ satisfies Condition 4.3. Using (4.26)

it can be seen that HN
θ also satisfies Condition 4.3. This completes the proof of the

proposition.

Corollary 4.6. Let β̂Nθ be the function defined in Proposition 4.4. Then for any T > 0

lim
N→∞

sup
t∈[0,T ]

∣∣∣〈1̄m, β̂
N
θ (t)

〉∣∣∣ = 0 and lim
N→∞

sup
t∈[0,T ]

∣∣∣∣∣
〈

1̄m,
∂β̂Nθ (t)

∂θ

〉∣∣∣∣∣ = 0

Proof. The proof is immediate from (4.20) and (4.26).

We end this section with an important observation.

Remark 4.7. To prove Proposition 4.4 we used results from the theory of perturbation
of finite matrices. Consider the situation where the state space E of the Markov chain
is countably infinite. Now the matrix of transition rates Qθ is infinite and it can be seen
as a linear operator on E . Proposition 4.1 will still hold in this case and assuming the
existence of a suitable Lyapunov function (see [27]) for the Markov chain, one can use
results from the perturbation theory of linear operators (see [10]) to prove Proposition
4.4 in a similar way.

4.2 Construction of a new process

In this section we construct a new process WN
θ and study some of its properties.

As mentioned before, this process captures the single-time distribution of XN
γ2,θ

(see
Section 1) and its dynamics does not involve any “fast" transitions. We begin by making
a remark which will simplify the proof of Theorem 3.2.

Remark 4.8. From now on we will assume that γ2 = γ1 + 1, which can be ensured by
redefining N , if necessary. Recall the description of the limiting process X̂θ in Theorem
3.2. Note that this process corresponds to a reduced model which does not contain any
reactions in the set (Γ1 ∪Γ2)c = {k = 1, . . . ,K : k /∈ Γ1 ∪Γ2}. We will prove Theorem 3.2
under the assumption that (Γ1 ∪ Γ2)c is empty. We later explain how the proof changes
when this is not the case (see Remark 4.18).

EJP 19 (2014), paper 59.
Page 25/53

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-3246
http://ejp.ejpecp.org/


Sensitivity analysis for multiscale stochastic reaction networks

Since γ2 = γ1 + 1 and (Γ1 ∪ Γ2)c = ∅, the random time change representation of
{XN

γ2,θ
(t) : t ≥ 0} is given by

XN
γ2,θ(t) = x0 +

∑
k∈Γ1

Yk

(
N

∫ t

0

λk
(
XN
γ2,θ(s), θ

)
ds

)
ζk +

∑
k∈Γ2

Yk

(∫ t

0

λk
(
XN
γ2,θ(s), θ

)
ds

)
ζk.

For each k ∈ Γ1 ∪ Γ2 we let ζsk = Π2ζk and ζfk = (I − Π2)ζk. From (2.9) we know that
ζsk = 0̄d for each k ∈ Γ1. If we define two processes XN

S,θ and XN
F,θ by

XN
S,θ(t) = Π2X

N
γ2,θ(t) and XN

F,θ(t) = (I −Π2)XN
γ2,θ(t), (4.27)

then their random time change representations are given by

XN
S,θ(t) = Π2x0 +

∑
k∈Γ2

Yk

(∫ t

0

λk
(
XN
S,θ(s) +XN

F,θ(s), θ
)
ds

)
ζsk (4.28)

XN
F,θ(t) = (I −Π2)x0 +

∑
k∈Γ2

Yk

(∫ t

0

λk
(
XN
S,θ(s) +XN

F,θ(s), θ
)
ds

)
ζfk

+
∑
k∈Γ1

Yk

(
N

∫ t

0

λk
(
XN
S,θ(s) +XN

F,θ(s), θ
)
ds

)
ζfk . (4.29)

Remark 4.9. These representations show that between the successive jump times of
XN
S,θ, if the state of this process is v, then the processXN

F,θ evolves like a Markov process
with state space Hv and generator NCvθ , where Cvθ is given by (3.2).

The above remark motivates the construction of the process WN
θ . Before we de-

scribe this construction we need to define certain quantities. Let λ0(x, θ) =
∑
k∈Γ2

λk(x, θ)

and for any k ∈ Γ2, v ∈ Π2S, z ∈ Hv and t ≥ 0 define

ρNk,θ(t, v, z) =
E
(
λk(v + ZNθ (t), θ) exp

(
−
∫ t

0
λ0(v + ZNθ (s), θ)ds

))
E
(

exp
(
−
∫ t

0
λ0(v + ZNθ (s), θ)ds

)) , (4.30)

where {ZNθ (t) : t ≥ 0} is an independent Markov process with initial state z and gener-
ator NCvθ . For any e ∈ Hv define

βNθ (t, v, z, e) = E

(
1{ZNθ (t)=e} exp

(
−
∫ t

0

λ0(v + ZNθ (s), θ)ds

))
(4.31)

and ΘN
k,θ(t, v, z, e) =

λk(v + e, θ)βNθ (t, v, z, e)

ρNk,θ(t, v, z) exp
(
−
∫ t

0
ρN0,θ(t, v, z)ds

) , (4.32)

where

ρN0,θ(t, v, z) =
∑
k∈Γ2

ρNk,θ(t, v, z). (4.33)

If ρNk,θ(t, v, z) = 0 then instead of defining ΘN
k,θ(t, v, z, e) by (4.32) we do the following.

We set ΘN
k,θ(t, v, z, z) = 1 and set ΘN

k,θ(t, v, z, e) = 0 for all e ∈ Hv − {z}.
Recall that the set Hv is finite due to part (A) of Assumption 3.1. Proposition 4.1

shows that the mapping t 7→ βNθ (t, v, z, e) is continuously differentiable, and hence the
mappings t 7→ ρNk,θ(t, v, z) and t 7→ ΘN

k,θ(t, v, z, e) are also continuously differentiable.

Lemma 4.10. Fix a v ∈ Π2S, z ∈ Hv and t ≥ 0.
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(A) Let {ZNθ (t) : t ≥ 0} be an independent Markov process with initial state z and
generator NCvθ . Then

exp

(
−
∫ t

0

ρN0,θ(s, v, z)ds

)
= E

(
exp

(
−
∫ t

0

λ0(v + ZNθ (s), θ)ds

))
.

(B) For any k ∈ Γ2 ∑
e∈Hv

ΘN
k,θ(t, v, z, e) = 1.

Proof. Observe that

ρN0,θ(s, v, z) =
∑
k∈Γ2

ρNk,θ(s, v, z) =
E
(
λ0(v + ZNθ (s), θ) exp

(
−
∫ t

0
λ0(v + ZNθ (s), θ)ds

))
E
(

exp
(
−
∫ t

0
λ0(v + ZNθ (s), θ)ds

))
= − d

dt
log

(
E

(
exp

(
−
∫ t

0

λ0(x+ ZNθ (s), θ)ds

)))
.

Integrating both sides with respect to t and then exponentiating proves part (A). From
(4.30) we get

ρNk,θ(s, v, z) exp

(
−
∫ t

0

ρN0,θ(s, v, z)ds

)
= E

(
λk(v + ZNθ (t), θ) exp

(
−
∫ t

0

λ0(v + ZNθ (s), θ)ds

))
=
∑
e∈Hv

λk(v + e, θ)E

(
1{ZNθ (t)=e} exp

(
−
∫ t

0

λ0(v + ZNθ (s), θ)ds

))
=
∑
e∈Hv

λk(v + e, θ)βNθ (t, v, z, e). (4.34)

Hence ∑
e∈Hv

ΘN
k,θ(t, v, z, e) =

∑
e∈Hv

λk(v + e, θ)βNθ (t, v, z, e)

ρNk,θ(s, v, z) exp
(
−
∫ t

0
ρN0,θ(s, v, z)ds

) = 1,

and this proves part (B).

Part (B) of Lemma 4.10 shows that for any k ∈ Γ2, v ∈ Π2S, z ∈ Hv and t ≥ 0, we can
regard ΘN

k,θ(t, v, z, ·) as a probability measure on Hv. We know that Hv is a finite set.
From now on, whenever we write Hv = {e1, . . . , em}, we will assume that the elements
are arranged in the lexicographical order on Rd. For any u ∈ (0, 1) define

zNk,θ(t, v, z, u) = ei where i = min

{
l = 1, . . . ,m : u ≤

l∑
n=1

ΘN
k,θ(t, v, z, en)

}
. (4.35)

Then a Hv-valued random variable with distribution ΘN
k,θ(t, v, z, ·) can be generated by

transforming a Unif(0, 1) random variable u with the function zNk,θ(t, v, z, ·). The next
lemma will be useful in proving the main result.

Lemma 4.11. Fix a v ∈ Π2S, z ∈ Hv and t > 0. Let Hv = {e1, . . . , em} and u be a
Unif(0, 1) random variable. Pick i, j ∈ {1, . . . ,m} such that i 6= j. Then

lim
h→0

P
(
zNk,θ(t, v, z, u) = ei and zNk,θ+h(t, v, z, u) = ej

)
h

≤
∑
e∈Hv

∣∣∣∣∣∂ΘN
k,θ(t, v, z, e)

∂θ

∣∣∣∣∣
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Proof. For proving this lemma we can assume that ΘN
k,θ(t, v, z, e) > 0 for each e ∈ Hv.

Let Hv = {e1, . . . , em} and for any l = 1, . . . ,m define

Al(θ) =

l∑
n=1

ΘN
k,θ(t, v, z, en).

Note that Am(θ) = 1 for any θ due to part(B) of Lemma 4.10. For convenience let
A0(θ) = 0 for any θ. For small values of h we can write

P
(
zNk,θ(t, v, z, u) = ei and zNk,θ+h(t, v, z, u) = ej

)
= P (u ∈ (Ai−1(θ), Ai(θ)) and u ∈ (Aj−1(θ + h), Aj(θ + h))) .

Since ΘN
k,θ(t, v, z, el) > 0 for each l = 1, . . . ,m, this probability is 0 if j > i+1 or j < i−1.

Assume that j = i+ 1 for i < m. Then for small values of h we can write

P
(
zNk,θ(t, v, z, u) = ei and zNk,θ+h(t, v, z, u) = ej

)
= P (u ∈ (Ai(θ + h), Ai(θ)))

=

[
∂Ai(θ)

∂θ

]−
h+ o(h).

Therefore

lim
h→0

P
(
zNk,θ(t, v, z, u) = ei and zNk,θ+h(t, v, z, u) = ej

)
h

=

[
∂Ai(θ)

∂θ

]−
.

Similarly for j = i− 1 and i > 1 we can show that

lim
h→0

P
(
zNk,θ(t, v, z, u) = ei and zNk,θ+h(t, v, z, u) = ej

)
h

=

[
∂Ai−1(θ)

∂θ

]+

.

Combining the last two relations proves the lemma.

The new process WN
θ will be a Markov process on state space Ŝ given by

Ŝ = {(t, v, z) ∈ R+ ×Rd ×Rd : v ∈ Π2S and z ∈ Hv}. (4.36)

Let ΠŜ be the projection map from Ŝ to Π2S defined by

ΠŜ(t, v, z) = v. (4.37)

We say that a function f : Ŝ → R is compactly supported with respect to projection ΠŜ
if there exists a compact set K ⊂ Π2S such that f(x) = 0 for any x ∈ Ŝ with ΠŜ(x) /∈ K.

We now define a class of bounded real-valued functions over Ŝ by

C =
{
f ∈ B(Ŝ) : f is compactly supported with respect to projection ΠŜ and the mapping

t 7→ f(t, v, z) is continuously differentiable for each v ∈ Π2S and z ∈ Hv} . (4.38)

Let {WN
θ (t) : t ≥ 0} be the Ŝ-valued Markov process with initial state (0, v0, z0) =

(0,Π2x0, (I −Π2)x0) and generator given by

BNθ f(t, v, z) =
∂f(t, v, z)

∂t
(4.39)

+
∑
k∈Γ2

ρNk,θ(t, v, z)
∑
e∈Hv

(
f(0, v + ζsk, e+ ζfk )− f(t, v, z)

)
ΘN
k,θ(t, v, z, e),
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for all f ∈ D(BNθ ) = C. The existence and uniqueness of the process WN
θ is a direct

consequence of the well-posedness of the martingale problem for BNθ , which is verified
in Lemma A.2.

In the rest of this section we study some properties of the process WN
θ . Observe

that the definition of Ŝ (see (4.36)) allows us to write

WN
θ (t) =

(
τNθ (t), V Nθ (t), ZNθ (t)

)
for all t ≥ 0, (4.40)

where τNθ , V Nθ and ZNθ are processes with state spaces R+,Π2S and ∪v∈Π2SHv respec-
tively. Let σNi denote the i-th jump time of the process WN

θ for i = 1, . . . . We define
σN0 = 0 for convenience. From the form of the generator BNθ it is immediate that be-
tween the jump times, τNθ increases linearly at rate 1 while V Nθ and ZNθ remain constant.
Hence(
τNθ (t), V Nθ (t), ZNθ (t)

)
=
(
t− σNi−1, V

N
θ (σNi−1), ZNθ (σNi−1)

)
for any i ∈ N and t ∈ [σNi−1, σ

N
i ).

(4.41)

Let ηi be the Γ2-valued random variable that denotes the direction of the jump at time
σNi and let ξi be the random variable given by ZNθ (σNi −). The form of BNθ allows us to
compute the distributions of the random variables (σNi −σNi−1), ηi and ξi from the values
of V Nθ (σNi−1) and ZNθ (σNi−1). Let Ei(v, z) denote the event

Ei(v, z) = {V Nθ (σNi ) = v, ZNθ (σNi ) = z}.

Then given Ei−1(v, z), (σNi − σNi−1) is a R+-valued random variable with density

ρN0,θ(t, v, z) exp

(
−
∫ t

0

ρN0,θ(s, v, z)ds

)
dt. (4.42)

Given Ei−1(v, z) and (σNi −σNi−1) = t, ηi is a Γ2-valued random variable with distribution

P
(
ηi = k|Ei−1(v, z), (σNi − σNi−1) = t

)
=
ρNk,θ(t, v, z)

ρN0,θ(t, v, z)
. (4.43)

Moreover conditioned on Ei−1(v, z), (σNi − σNi−1) = t and ηi = k, the Hv-valued random
variable ξi has distribution ΘN

k,θ(t, v, z, ·). Using (4.42) and (4.43) we can deduce that

lim
h→0

P
(
σNi ∈ (σNi−1 + t, σNi−1 + t+ h), V Nθ (σNi ) = v + ζsk, Z

N
θ (σNi ) = e+ ζfk

∣∣∣Ei−1(v, z)
)

h
(4.44)

= ρNk,θ(t, v, z) exp

(
−
∫ t

0

ρN0,θ(u, v, z)du

)
ΘN
k,θ(t, v, z, e),

for any i = 1, 2, . . . .

Remark 4.12. The preceding discussion suggests a simple scheme to construct the
process {WN

θ (t) = (τNθ (t), V Nθ (t), ZNθ (t)) : t ≥ 0} with generator BNθ and initial state
(0, v0, z0). Consider the random time change representation

V Nθ (t) = v0 +
∑
k∈Γ2

Yk

(∫ t

0

ρNk,θ(τ
N
θ (s), V Nθ (s), ZNθ (s))ds

)
ζsk, (4.45)

where {Yk : k ∈ Γ2} is a family of independent unit rate Poisson processes. The pro-
cesses τNθ , V

N
θ and ZNθ can be constructed as follows. For each i ∈ N0 let σNi be the i-th
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jump time of process V Nθ , where σN0 = 0. Defining (τNθ (0), V Nθ (0), ZNθ (0)) = (0, v0, z0)

constructs the process WN
θ until time σN0 . Assume that this process is constructed until

time σNi−1 for some i = 1, 2, . . . . Then the next jump time σNi can be evaluated from
(4.45) and the process WN

θ can be defined in the time interval [σNi−1, σ
N
i ) using (4.41).

If V Nθ (σNi ) = v, ZNθ (σNi ) = z and σNi − σNi−1 = t then we choose random variables ηi and
ξi according to distributions (4.43) and ΘN

ηi,θ
(t, v, z, ·) respectively and define

(τNθ (σNi ), V Nθ (σNi ), ZNθ (σNi )) = (0, v + ζsηi , ξi + ζfηi).

This completes the construction of the process until the next jump time σNi . Proceeding
this way we can define WN

θ (t) = (τNθ (t), V Nθ (t), ZNθ (t)) for all t ≥ 0. The relation (4.44)
ensures that the process WN

θ has generator BNθ .

In the next proposition we show that the single-time distribution of the process XN
γ2,θ

can be captured with the process WN
θ .

Proposition 4.13. For i ∈ N, let δNi and σNi denote the i-th jump time of the processes
Π2X

N
γ2,θ

and WN
θ respectively. We define δN0 = σN0 = 0 for convenience. Then we have

the following.

(A) Let the processes V Nθ and ZNθ be related to the process WN
θ by (4.40). For each

i = 0, 1, 2, . . . ,(
δNi ,Π2X

N
γ2,θ(δ

N
i ), (I −Π2)XN

γ2,θ(δ
N
i )
) d

=
(
σNi , V

N
θ (σNi ), ZNθ (σNi )

)
, (4.46)

where
d
= denotes equality in distribution.

(B) Let f : S → R be a polynomially growing function with respect to projection Π2

(see Definition 2.1). Then for any t ≥ 0

E
(
f(XN

γ2,θ(t))
)

= E
(
fNθ (WN

θ (t))
)
,

where fθ : Ŝ → R is the function given by

fNθ (t, v, z) =

∑
e∈Hv f(v + e)βNθ (t, v, z, e)

exp
(
−
∫ t

0
ρN0,θ(s, v, z)ds

) . (4.47)

Remark 4.14. Note that for any v ∈ Π2S and z ∈ Hv, the mapping t 7→ fNθ (t, v, z)

is continuously differentiable with respect to t. Let ∂fNθ (t, v, z)/∂t denote the deriva-
tive of this map. Since f is polynomially growing with respect to projection Π2, the
sequences of functions {fNθ : N ∈ N}, {∂fNθ /∂t : N ∈ N} and {BNθ fNθ : N ∈ N} are also
polynomially growing with respect to projection ΠŜ .

Proof. We prove part (A) by induction in i. Relation (4.46) certainly holds for i = 0.
Suppose it holds for (i− 1) for some i ∈ N. Then(

δNi−1, X
N
S,θ(δ

N
i−1), XN

F,θ(δ
N
i−1)

) d
= WN

θ (σNi−1), (4.48)

where the processes XN
S,θ and XN

F,θ are given by (4.27).

For any v ∈ Π2S and z ∈ Hv let Ei−1(v, z) denote the event

Ei−1(v, z) = {XN
S,θ(δ

N
i−1) = v,XN

F,θ(δ
N
i−1) = z}. (4.49)
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Let ηi be the Γ2-valued random variable that gives the jump direction of the process
XN
S,θ at time δNi . For any t > 0, k ∈ Γ2 and e ∈ Hv we can write

lim
h→0

P
(
δNi ∈ (δNi−1 + t, δNi−1 + t+ h), XN

S,θ(δ
N
i ) = v + ζsk, X

N
F,θ(δ

N
i ) = e+ ζfk

∣∣∣Ei−1(v, z)
)

h

= lim
h→0

P
(
δNi − δNi−1 ∈ (t, t+ h), ηi = k,XN

F,θ(δ
N
i −) = e

∣∣∣Ei−1(v, z)
)

h
. (4.50)

Let {Z̄Nθ (t) : t ≥ 0} be an independent Markov process with initial state z and generator
NCvθ . For each k ∈ Γ2 let uk be an independent Unif(0, 1) random variable. Using the
observation made in Remark (4.9), and the random time change representation (4.28)
we can write

P
(
δNi − δNi−1 ∈ (t, t+ h), ηi = k,XN

F,θ(δ
N
i −) = e

∣∣Ei−1(v, z)
)

= P

(∫ t+h

0

λk(v + Z̄Nθ (u), θ)du ≥ − log uk ≥
∫ t

0

λk(v + Z̄Nθ (u), θ)du,∫ t

0

λj(v + Z̄Nθ (u), θ)du < − log uj for all j ∈ Γ2 − {k} and Z̄Nθ (t) = e

)
+ o(h)

= λk(v + e, θ)E

(
1{Z̄Nθ (t)=e} exp

(
−
∫ t

0

λ0(v + Z̄Nθ (u), θ)du

))
h+ o(h), (4.51)

where o(h) denotes any quantity which upon division by h, goes to 0 as h→ 0. To obtain
(4.51) we integrated with respect to the joint density of {uk : k ∈ Γ2}. Note that due to
(4.31) and (4.32) we get

λk(v + e, θ)E

(
1{Z̄Nθ (t)=e} exp

(
−
∫ t

0

λ0(v + Z̄Nθ (u), θ)du

))
= λk(v + e, θ)βNθ (t, v, z, e)

= ρNk,θ(t, v, z) exp

(
−
∫ t

0

ρN0,θ(s, v, z)ds

)
ΘN
k,θ(t, v, z, e).

Hence relations (4.50) and (4.51) yield

lim
h→0

P
(
δNi ∈ (δNi−1 + t, δNi−1 + t+ h), XN

S,θ(δ
N
i ) = v + ζsk, X

N
F,θ(δ

N
i ) = e+ ζfk

∣∣∣Ei−1(v, z)
)

h

= ρNk,θ(t, v, z) exp

(
−
∫ t

0

ρN0,θ(s, v, z)ds

)
ΘN
k,θ(t, v, z, e).

From (4.44) it follows that for all v ∈ Π2S and z ∈ Hv

lim
h→0

P
(
σNi ∈ (σNi−1 + t, σNi−1t+ h), V Nθ (σNi ) = v + ζsk, Z

N
θ (σNi ) = e+ ζfk

∣∣∣Ei−1(v, z)
)

h

= lim
h→0

P
(
δNi ∈ (δNi−1 + t, δNi−1 + t+ h), XN

S,θ(δ
N
i ) = v + ζsk, X

N
F,θ(δ

N
i ) = e+ ζfk

∣∣∣Ei−1(v, z)
)

h
.

This relation and (4.48) imply that(
δNi , X

N
S,θ(δ

N
i ), XN

F,θ(δ
N
i )
) d

=
(
σNi , V

N
θ (σNi ), ZNθ (σNi )

)
,

which completes the proof of part (A).
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We now prove part (B). From Remark 4.14 and Lemma A.2 we can conclude that for
any t ≥ 0

sup
N∈N

E
(
fNθ (WN

θ (t))
)
<∞.

Moreover, one can rework the proof of part (C) of Lemma A.1 to show that

sup
N∈N

E
(
f(XN

γ2,θ(t))
)
<∞ for any t ≥ 0.

Let {Ft} be the filtration generated by the process {XN
γ2,θ

(t) : t ≥ 0}. Then we can write

E
(
f(XN

γ2,θ(t))
)

=

∞∑
i=1

E
(
1{δNi−1≤t<δNi }f(XN

γ2,θ(t))
)

=

∞∑
i=1

E
(
1{δNi−1≤t<δNi }f(XN

S,θ(t) +XN
F,θ(t))

)
=

∞∑
i=1

E
(
1{δNi−1≤t}E

(
1{δNi −δNi−1>t−δNi−1}f(XN

S,θ(δ
N
i−1) +XN

F,θ(t))|FδNi−1

))
.

(4.52)

For any v ∈ Π2S and z ∈ Hv, let Ei−1(v, z) be the event given by (4.49). Suppose
Hv = {e1, . . . , em} and {Z̄Nθ (t) : t ≥ 0} is an independent Markov process with initial
state z and generator NCvθ . For each k ∈ Γ2 let uk be an independent Unif(0, 1) random
variable. Using the observation made in Remark (4.9), and the random time change
representation (4.28), for any s < t we can write

E
(
1{δNi −δNi−1>t−δNi−1}f(XN

S,θ(δ
N
i−1) +XN

F,θ(t))|Ei−1(v, z), δNi−1 = s
)

= E
(
1{δNi −δNi−1>t−s}f(v + Z̄Nθ (t− s))

)
=
∑
e∈Hv

P

(∫ t−s

0

λk(v + Z̄Nθ (u), θ)du < − log uk for all k ∈ Γ2, Z̄
N
θ (t− s) = e

)
f(v + e)

=
∑
e∈Hv

E

(
1{Z̄Nθ (t−s)=e} exp

(
−
∫ t−s

0

λ0(v + Z̄Nθ (u), θ)du

))
f(v + e).

The last inequality is obtained by integrating with respect to the joint density of {uk :

k ∈ Γ2}. Due to (4.31) and (4.47) we obtain

E
(
1{δNi −δNi−1>t−δNi−1}f(XN

S,θ(δ
N
i−1) +XN

F,θ(t))|Ei−1(v, z), δNi−1 = s
)

=
∑
e∈Hv

f(v + e)βNθ (t− s, v, z, e)

= exp

(
−
∫ t−s

0

ρN0,θ(u, v, z)du

)
fNθ (t− s, v, z),

which shows that

E
(
1{δNi −δNi−1>t−δNi−1}f(XN

S,θ(δ
N
i−1) +XN

F,θ(t))|FδNi−1

)
= exp

(
−
∫ t−δNi−1

0

ρN0,θ(u,X
N
S,θ(δ

N
i−1), XN

F,θ(δ
N
i−1))du

)
fNθ (t− δNi−1, X

N
S,θ(δ

N
i−1), XN

F,θ(δ
N
i−1)).
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Substituting this relation in (4.52) and using part (A) gives us

E
(
f(XN

γ2,θ(t))
)

=

∞∑
i=1

E

(
1{δNi−1≤t} exp

(
−
∫ t−δNi−1

0

ρN0,θ(u,X
N
S,θ(δ

N
i−1), XN

F,θ(δ
N
i−1))du

)
×fNθ (t− δNi−1, X

N
S,θ(δ

N
i−1), XN

F,θ(δ
N
i−1))

)
=

∞∑
i=1

E

(
1{σNi−1≤t} exp

(
−
∫ t−σNi−1

0

ρN0,θ(u, V
N
θ (σNi−1), ZNθ (σNi−1))du

)
×fNθ (t− σNi−1, V

N
θ (σNi−1), ZNθ (σNi−1))

)
.

However from (4.41) and (4.42) we can conclude that

∞∑
i=1

E

(
1{σNi−1≤t} exp

(
−
∫ t−σNi−1

0

ρN0,θ(u, V
N
θ (σNi−1), ZNθ (σNi−1))du

)
×fNθ (t− σNi−1, V

N
θ (σNi−1), ZNθ (σNi−1))

)
=

∞∑
i=1

E
(
1{σNi−1≤t<σNi }f

N
θ (t− σNi−1, V

N
θ (σNi−1), ZNθ (σNi−1))

)
=

∞∑
i=1

E
(
1{σNi−1≤t<σNi }f

N
θ (τNθ (t), V Nθ (t), ZNθ (t))

)
= E

(
fNθ (τNθ (t), V Nθ (t), ZNθ (t))

)
= E

(
fNθ (WN

θ (t)
)
.

This proves part (B) of the proposition.

Part (B) of Assumption 3.1 says that a Markov process with generator Cvθ is ergodic
and its unique stationary distribution is πvθ ∈ P(Hv). Since Hv is finite, we can view πvθ
as a vector in Rn where n = |Hv|. The differentiability of πzθ with respect to θ follows
from arguments given in Section 4.1. Let {fN : N ∈ N} be a sequence of real valued
functions on R+ and let c be a constant. In the next lemma we will use the notation
fN → c to denote that the sequence of functions {(fN − c) : N ∈ N} satisfies Condition
4.3.

Lemma 4.15. Fix a v ∈ Π2S and a z ∈ Hv. Then we have the following.

(A) For any k ∈ Γ2

ρNk,θ(·, v, z)→ λ̂k(v, θ) and
∂ρNk,θ(·, v, z)

∂θ
→ ∂λ̂k(v, θ)

∂θ
,

where λ̂k is defined by (3.4).

(B) For any k ∈ Γ2 and e ∈ Hv

ΘN
k,θ(·, v, z, e)→

λk(v + e, θ)πvθ (e)

λ̂k(v, θ)
and

∂ΘN
k,θ(·, v, z, e)
∂θ

→ ∂

∂θ

(
λk(v + e, θ)πvθ (e)

λ̂k(v, θ)

)
.

(C) Fix a function f : S → R. Let fNθ and fθ be given by (4.47) and (3.6) respectively.
Then

fNθ (·, v, z)→ fθ(v) and
∂fNθ (·, v, z)

∂θ
→ ∂fθ(v)

∂θ
.
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Proof. Assume that Hv = {e1, . . . , em}. For each l = 1, . . . ,m, let β̂Nθ,l : R+ → R be given
by

β̂Nθ,l(t) = βNθ (t, v, z, el)− exp(−dθ(v)t)πvθ (el),

where dθ(v) =
∑
e∈Hv λ0(v + e, θ)πvθ (e). Observe that

exp

(
−
∫ t

0

ρN0,θ(s, v, z)ds

)
=
∑
e∈Hv

βNθ (t, v, z, e) =

m∑
l=1

β̂Nθ,l(t) + exp(−dθ(v)t).

From Corollary 4.6 we get that for any T > 0

lim
N→∞

sup
t∈[0,T ]

∣∣∣∣exp

(
−
∫ t

0

ρN0,θ(s, v, z)ds

)
− exp(−dθ(v)t)

∣∣∣∣ = 0 (4.53)

and lim
N→∞

sup
t∈[0,T ]

∣∣∣∣ ∂∂θ exp

(
−
∫ t

0

ρN0,θ(s, v, z)ds

)
− ∂

∂θ
exp(−dθ(v)t)

∣∣∣∣ = 0 (4.54)

Using part (A) of Lemma 4.10 we can write

ρNk,θ(t, v, z) =

∑m
l=1 λk(v + el, θ)β̂

N
θ,l(t)∑m

l=1 β̂
N
θ,l(t)

.

From Proposition 4.4 we can see that each β̂Nθ,l satisfies Condition 4.3. This fact along
with (4.53) and (4.54) proves part (A).

The proof of part (B) is immediate from the definition of ΘN
k,θ (see (4.32)), part (A),

(4.53) and (4.54). Note that fNθ can be written as

fNθ (t, v, z) =

∑m
l=1 f(v + el)β̂

N
θ,l(t)∑m

l=1 β̂
N
θ,l(t)

,

which enables us to prove part (C) in the same way as part (A).

For the next proposition, recall the definition of the projection map ΠŜ from (4.37)

and the definition of Âθ from (3.3).

Proposition 4.16. Fix (t0, v0, z0) ∈ Ŝ and let WN
θ be the Markov process with generator

BNθ and initial state (t0, v0, z0). Then the sequence of processes {WN
θ : N ∈ N} is tight

in the space DŜ [0,∞). Let Wθ be a limit point of this sequence and let X̂θ be the process

with generator Âθ and initial state v0. Then the process ΠŜWθ has the same distribution

as the process X̂θ.

Remark 4.17. Note that this proposition proves that ΠŜW
N
θ ⇒ X̂θ as N →∞.

Proof. The tightness of the sequence of processes {WN
θ : N ∈ N} is argued in Lemma

A.2. Let the process Wθ be a limit point of this sequence. For any function g ∈ Bc(Π2S),
define another function f : Ŝ → R by

f(t, v, z) = g(v).

Then the function f is in the class C (see (4.38)) and the action of BNθ (see (4.39)) on f
is given by

BNθ f(t, v, z) =
∑
k∈Γ2

ρNk,θ(t, v, z) (g(v + ζsk)− g(v)) .
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This shows that the following is a martingale

mN
g (t) = f(WN

θ (t))−
∑
k∈Γ2

∫ t

0

ρNk,θ(W
N
θ (s))

(
g(V Nθ (s) + ζsk)− g(V Nθ (s))

)
ds

= g
(
ΠŜW

N
θ (t)

)
−
∑
k∈Γ2

∫ t

0

ρNk,θ(W
N
θ (s))

(
g
(
ΠŜW

N
θ (s) + ζsk

)
− g

(
ΠŜW

N
θ (s)

))
ds.

Since g is bounded, Lemma 4.15, the continuous mapping theorem and Lemma A.2
imply that as N →∞, we have mN

g ⇒ mg where

mg(t) = g
(
ΠŜWθ(t)

)
−
∑
k∈Γ2

∫ t

0

λ̂k(ΠŜWθ(s), θ)
(
g
(
ΠŜWθ(s) + ζsk

)
− g

(
ΠŜWθ(s)

))
ds,

is also a martingale. This shows that {ΠŜWθ(t) : t ≥ 0} satisfies the martingale problem

for operator Âθ (given by (3.3)). Moreover ΠŜWθ(0) = X̂θ(0) = v0. Since the martingale

problem for Âθ is well-posed, the process ΠŜWθ has the same distribution as the process

X̂θ and this proves the proposition.

4.3 Proof of Theorem 3.2

We now have all the tools to prove our main result. But first we need to define
some quantities and provide some preliminary results. For any function f : Ŝ → R,
(t0, v0, z0) ∈ Ŝ and t ≥ 0 define

ΨN
f,θ(t, t0, v0, z0) = E

(
f(WN

θ (t))
)
, (4.55)

where {WN
θ (t) : t ≥ 0} is the process with generator BNθ (see (4.39)) and initial state

(t0, v0, z0). Similarly for any function g : Π2S → R define

Ψg,θ(t, v0) = E
(
g(X̂θ(t))

)
, (4.56)

where {X̂θ(t) : t ≥ 0} is the process with generator Âθ (see (3.3)) and initial state
v0. Now consider a function f : S → R which is polynomially growing with respect
to projection Π2. Corresponding to this function define fNθ : Ŝ → R by (4.47) and
fθ : Π2S → R by (3.6). Remark 4.14 and Lemma A.2 imply that for any T > 0

sup
N∈N

sup
t∈[0,T ]

E
(
|fNθ (WN

θ (t))|
)
<∞ and E

(∫ T

0

|BNθ fNθ (WN
θ (t))|dt

)
<∞. (4.57)

If σ is a stopping time with respect to the filtration generated by WN
θ , then due to part

(E) of Lemma A.2 we have

E

(∫ σ∧t

0

BNθ f(WN
θ (s))ds

)
= E

(
ΨN
f,θ(σ ∧ t, t0, v0, z0)

)
− f(t0, v0, z0). (4.58)

Proposition 4.16 shows that the sequence of processes {WN
θ : N ∈ N} is tight and

ΠŜW
N
θ ⇒ X̂θ as N → ∞ (see Remark 4.17). This fact along with part (C) of Lemma

4.15 proves that for any T > 0

lim
N→∞

sup
t∈[εN ,T ]

∣∣∣ΨN
fNθ ,θ

(t, t0, v0, z0)−Ψfθ,θ(t, v0)
∣∣∣ = 0

and lim
N→∞

∫ T

0

∣∣∣ΨN
fNθ ,θ

(t, t0, v0, z0)−Ψfθ,θ(t, v0)
∣∣∣ dt = 0, (4.59)
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where εN = 1/
√
N .

Observe that the right side of (3.5) can be written as

Ŝθ(fθ, t) =
∂

∂θ
E
(
fθ(X̂θ(t))

)
= lim
h→0

E
(
fθ+h(X̂θ+h(t))

)
− E

(
fθ(X̂θ(t))

)
h

,

where X̂θ and X̂θ+h are processes with initial state v0 = Π2x0 and generators Âθ and
Âθ+h respectively. This shows that we can write Ŝθ(fθ, t) as

Ŝθ(fθ, t) = lim
h→0

E
(
fθ+h(X̂θ+h(t))

)
− E

(
fθ(X̂θ+h(t))

)
h

+ lim
h→0

E
(
fθ(X̂θ+h(t))

)
− E

(
fθ(X̂θ(t))

)
h

, (4.60)

provided that the two limits exist. If ∂fθ/∂θ is the partial derivative of fθ with respect
to θ, then for any v ∈ Π2S

fθ+h(v) = fθ(v) + h
∂fθ
∂θ

(v) + o(h).

This shows that the first limit in (4.60) is just

lim
h→0

E
(
fθ+h(X̂θ+h(t))

)
− E

(
fθ(X̂θ+h(t))

)
h

= E

(
∂fθ
∂θ

(X̂θ(t))

)
. (4.61)

Using coupling arguments, we proved in [17] that the second limit in (4.60) is given by

lim
h→0

E
(
fθ(X̂θ+h(t))

)
− E

(
fθ(X̂θ(t))

)
h

=
∑
k∈Γ2

E

[∫ t

0

∂λ̂k(X̂θ(s), θ)

∂θ

(
fθ(X̂θ(s) + ζsk)− fθ(X̂θ(s))

)
ds

]

+
∑
k∈Γ2

E

 ∞∑
i=0,σi<t

∂λ̂k(X̂θ(σi), θ)

∂θ
Rk,θ(X̂θ(σi), fθ, t− σi ∧ t, k)

 . (4.62)

where ζsk = Π2ζk, σi is the i-th jump time3 of the process X̂θ and

Rk,θ(x, f, t, k) (4.63)

=

∫ t

0

(Ψf,θ(s, x+ ζsk)−Ψf,θ(s, x)− f(x+ ζsk) + f(x)) exp
(
−λ̂0(x, θ)(t− s)

)
ds.

From (4.61), (4.62), (4.60) and (3.5) we see that to prove Theorem 3.2 is suffices to
show that

lim
N→∞

∂

∂θ
E
(
f(XN

γ2,θ(t))
)

= E

(
∂fθ
∂θ

(X̂θ(t))

)
(4.64)

+
∑
k∈Γ2

E

[∫ t

0

∂λ̂k(X̂θ(s), θ)

∂θ

(
fθ(X̂θ(s) + ζsk)− fθ(X̂θ(s))

)
ds

]

+
∑
k∈Γ2

E

 ∞∑
i=0,σi<t

∂λ̂k(X̂θ(σi), θ)

∂θ
Rk,θ(X̂θ(σi), fθ, t− σi ∧ t, k)

 .
We now come to the proof of our main result, where we establish (4.64). The arguments
used in the proof are motivated by the analysis in [17].

3We define σ0 = 0 for convenience
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Proof of Theorem 3.2. For the initial state x0 let v0 = Π2x0 and z0 = (I −Π2)x0. Let XN
θ

and XN
θ+h be Markov processes with initial state x0 and generators ANγ2,θ and ANγ2,θ+h

respectively. Similarly letWN
θ andWN

θ+h be Markov processes with initial state (0, v0, z0)

and generators BNθ and BNθ+h respectively. From part (B) of Proposition 4.13 we know
that

E
(
f(XN

θ (t))
)

= E
(
fNθ (WN

θ (t))
)

and E
(
f(XN

θ+h(t))
)

= E
(
fNθ+h(WN

θ+h(t))
)
. (4.65)

For any (t, v, z) ∈ Ŝ, fNθ (t, v, z) is a continuously differentiable function of θ. Hence we
can write

fNθ+h(t, v, z) = fNθ (t, v, z) + h
∂fNθ
∂θ

(t, v, z) + o(h).

This expansion along with (4.65) gives us

SNθ (f, t) =
∂

∂θ
E
(
f(XN

γ2,θ(t))
)

= lim
h→0

E
(
f(XN

θ+h(t))
)
− E

(
f(XN

θ (t))
)

h

= lim
h→0

E
(
fNθ+h(WN

θ+h(t))
)
− E

(
fNθ (WN

θ (t))
)

h

= lim
h→0

E
(
fNθ+h(WN

θ+h(t))
)
− E

(
fNθ (WN

θ+h(t))
)

h

+ lim
h→0

E
(
fNθ (WN

θ+h(t))
)
− E

(
fNθ (WN

θ (t))
)

h

= SN,1θ (f, t) + SN,2θ (f, t), (4.66)

where

SN,1θ (f, t) = E

(
∂fNθ
∂θ

(WN
θ (t))

)
(4.67)

and SN,2θ (f, t) = lim
h→0

E
(
fNθ (WN

θ+h(t))
)
− E

(
fNθ (WN

θ (t))
)

h
. (4.68)

Proposition 4.16 shows that the sequence of processes {WN
θ : N ∈ N} is tight and if

Wθ is a limit point then the process ΠŜWθ has the same distribution as the process X̂θ.
This fact along with part (C) of Lemma 4.15 shows that for any t > 0

lim
N→∞

SN,1θ (f, t) = E

(
∂fθ
∂θ

(X̂θ(t))

)
. (4.69)

In order to compute the limit of SN,2θ (f, t) as N → ∞, we will couple the processes
WN
θ and WN

θ+h in a special way. We need to define certain quantities to describe the

coupling. For any (t1, v1, z1), (t2, v2, z2) ∈ Ŝ let

ρNk,θ,min(t1, v1, z1, t2, v2, z2, h) = ρNk,θ(t1, v1, z1) ∧ ρNk,θ+h(t2, v2, z2),

rN,1k,θ (t1, v1, z1, t2, v2, z2, h) = ρNk,θ(t1, v1, z1)− ρNk,θ,min(t1, v1, z1, t2, v2, z2, h)

and rN,2k,θ (t1, v1, z1, t2, v2, z2, h) = ρNk,θ+h(t2, v2, z2)− ρNk,θ,min(t1, v1, z1, t2, v2, z2, h).

We define the processes V Nθ and V Nθ+h by the following random time change represen-
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tations

V Nθ (t) = v0 (4.70)

+
∑
k∈Γ2

Yk

(∫ t

0

ρNk,θ,min

(
τNθ (s), V Nθ (s), ZNθ (s), τNθ+h(s), V Nθ+h(s), ZNθ+h(s), h

)
ds

)
ζsk

+
∑
k∈Γ2

Y
(1)
k

(∫ t

0

rN,1k,θ

(
τNθ (s), V Nθ (s), ZNθ (s), τNθ+h(s), V Nθ+h(s), ZNθ+h(s), h

)
ds

)
ζsk

V Nθ+h(t) = v0 (4.71)

+
∑
k∈Γ2

Yk

(∫ t

0

ρNk,θ,min

(
τNθ (s), V Nθ (s), ZNθ (s), τNθ+h(s), V Nθ+h(s), ZNθ+h(s), h

)
ds

)
ζsk

+
∑
k∈Γ2

Y
(2)
k

(∫ t

0

rN,2k,θ

(
τNθ (s), V Nθ (s), ZNθ (s), τNθ+h(s), V Nθ+h(s), ZNθ+h(s), h

)
ds

)
ζsk,

where {Yk, Y (1)
k , Y

(2)
k : k ∈ Γ2} is a family of independent unit rate Poisson processes.

To V Nθ (V Nθ+h) we associate processes τNθ (τNθ+h) and ZNθ (ZNθ+h) as in Remark 4.12. The
above representations couple the processes V Nθ and V Nθ+h. For each i ∈ N, let σ1

i (σ2
i )

be the i-th jump time of the process V Nθ (V Nθ+h ) and let η1
i (η2

i ) be the jump direction of
the process V Nθ (V Nθ+h) at time σ1

i (σ2
i ). Define σ1

0 = σ2
0 = 0. Fix a sequence {ui : i ∈ N}

of independent Unif(0, 1) random numbers. We couple the processes ZNθ and ZNθ+h, by
letting ZNθ (σ1

i ) = zN
η1i ,θ

(σ1
i − σ1

i−1, V
N
θ (σ1

i−1), ZNθ (σ1
i−1), ui) and ZNθ+h(σ2

i ) = zN
η2i ,θ+h

(σ2
i −

σ2
i−1, V

N
θ+h(σ2

i−1), ZNθ+h(σ2
i−1), ui) for each i, where the function zN is defined by (4.35).

Note that we are using the same ui in the definition of ZNθ (σ1
i ) and ZNθ+h(σ2

i ). Define
WN
θ and WN

θ+h by

WN
θ (t) =

(
τNθ (t), V Nθ (t), ZNθ (t)

)
and WN

θ+h(t) =
(
τNθ+h(t), V Nθ+h(t), ZNθ+h(t)

)
for all t ≥ 0.

One can verify that the processes WN
θ and WN

θ+h have initial state (0, v0, z0) and gener-
ators BNθ and BNθ+h respectively.

Let γNh be the stopping time given by

γNh = inf{t ≥ 0 : WN
θ (t) 6= WN

θ+h(t)}. (4.72)

Then the coupling of processes WN
θ and WN

θ+h ensures that γNh → ∞ a.s. as h → 0.
Define

ANθ = lim
h→0

1

h
E

[∫ t∧γNh

0

(
BNθ+hf

N
θ (WN

θ+h(s))−BNθ fNθ (WN
θ (s))

)
ds

]
(4.73)

and BNθ = lim
h→0

1

h
E

[∫ t

t∧γNh

(
BNθ+hf

N
θ (WN

θ+h(s))−BNθ fNθ (WN
θ (s))

)
ds

]
. (4.74)

Note that fNθ (0, v0, z0) = f(x0). Using (4.58) we can write

E
(
fNθ (WN

θ (t))
)

= f(x0) + E

(∫ t

0

BNθ f
N
θ (WN

θ (s))ds

)
and E

(
fNθ (WN

θ+h(t))
)

= f(x0) + E

(∫ t

0

BNθ+hf
N
θ (WN

θ+h(s))ds

)
.
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Therefore

SN,2θ (f, t) = lim
h→0

E
(
fNθ (WN

θ+h(t))
)
− E

(
fNθ (WN

θ (t))
)

h

= lim
h→0

1

h

[
E

(∫ t

0

(
BNθ+hf

N
θ (WN

θ+h(s))−BNθ fNθ (WN
θ (s))

)
ds

)]
= ANθ +BNθ . (4.75)

Using Taylor’s expansion, for any f ∈ C and (t, v, z) ∈ Ŝ we get

BNθ+hf(t, v, z)−BNθ f(t, v, z)

=
∑
k∈Γ2

ρNk,θ+h(t, v, z)
∑
e∈Hv

(
f(0, v + ζsk, e+ ζfk )− f(t, v, z)

)
ΘN
k,θ+h(t, v, z, e)

−
∑
k∈Γ2

ρNk,θ(t, v, z)
∑
e∈Hv

(
f(0, v + ζsk, e+ ζfk )− f(t, v, z)

)
ΘN
k,θ(t, v, z, e)

=
∑
k∈Γ2

∑
e∈Hv

f(0, v + ζsk, e+ ζfk )
(
ρNk,θ+h(t, v, z)ΘN

k,θ+h(t, v, z, e)− ρNk,θ(t, v, z)ΘN
k,θ(t, v, z, e)

)
−
∑
k∈Γ2

f(t, v, z)
(
ρNk,θ+h(t, v, z)− ρNk,θ(t, v, z)

)
=
∑
k∈Γ2

∑
e∈Hv

f(0, v + ζsk, e+ ζfk )

(
∂ρNk,θ(t, v, z)

∂θ
ΘN
k,θ(t, v, z, e) + ρNk,θ(t, v, z)

∂ΘN
k,θ(t, v, z, e)

∂θ

)
h

−
∑
k∈Γ2

f(t, v, z)
∂ρNk,θ(t, v, z)

∂θ
h+ o(h)

=
∑
k∈Γ2

∂ρNk,θ(t, v, z)

∂θ

(∑
e∈Hv

f(0, v + ζsk, e+ ζfk )ΘN
k,θ(t, v, z, e)− f(t, v, z)

)
h

+
∑
k∈Γ2

ρNk,θ(t, v, z)
∑
e∈Hv

f(0, v + ζsk, e+ ζfk )
∂ΘN

k,θ(t, v, z, e)

∂θ
h+ o(h). (4.76)

Note that for any t ∈ [0, γNh ) we have WN
θ+h(t) = WN

θ (t). Relation (4.76) implies that

lim
N→∞

ANθ

= lim
N→∞

lim
h→0

1

h
E

[∫ t∧γNh

0

(
BNθ+hf

N
θ (WN

θ+h(s))−BNθ fNθ (WN
θ (s))

)
ds

]

= lim
N→∞

∑
k∈Γ2

E

[∫ t

0

∂ρNk,θ(W
N
θ (s))

∂θ

(∑
e∈Hv

fNθ (0,ΠŜW
N
θ (s) + ζsk, e+ ζfk )ΘN

k,θ(W
N
θ (s), e)

−fNθ (WN
θ (s))

)
ds
]

+ lim
N→∞

∑
k∈Γ2

E

[∫ t

0

ρNk,θ(W
N
θ (s))

∑
e∈Hv

fNθ (0,ΠŜW
N
θ (s) + ζsk, e+ ζfk )

∂ΘN
k,θ(W

N
θ (s), e)

∂θ
ds

]
.

Proposition 4.16 shows that the sequence of processes {WN
θ : N ∈ N} is tight and if

Wθ is a limit point then the process ΠŜWθ has the same distribution as the process X̂θ.
This fact along with Lemma 4.15 implies that

lim
N→∞

ANθ =
∑
k∈Γ2

E

[∫ t

0

∂λ̂k(X̂θ(s), θ)

∂θ

(
fθ(X̂θ(s) + ζsk)− fθ(X̂θ(s))

)
ds

]
. (4.77)
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Our next goal is to compute limN→∞BNθ . Recall the definitions of ΨN
f,θ and Ψf,θ from

(4.55) and (4.56) respectively. For i = 1, 2, let (ti, vi, zi) ∈ Ŝ. Define an event

EN (t1, v1, z1, t2, v2, z2, s) (4.78)

= {WN
θ (γNh ) = (t1, v1, z1),WN

θ+h(γNh ) = (t2, v2, z2) and γNh = s}

and let

RNθ,h(t1, v1, z1, t2, v2, z2, s, t) (4.79)

= E

[∫ t

t∧γNh

(
BNθ+hf

N
θ (WN

θ+h(u))−BNθ fNθ (WN
θ (u))

)
du

∣∣∣∣∣EN (t1, v1, z1, t2, v2, z2, s)

]
.

Let εN = 1/
√
N . From (4.58) and the strong Markov property, we can deduce that for

any 0 < s < t

lim
N→∞

lim
h→0

RNθ,h(t1, v1, z1, t2, v2, z2, s, t)

= lim
N→∞

lim
h→0

E

[∫ t

t∧γNh

(
BNθ+hf

N
θ (WN

θ+h(u))−BNθ fNθ (WN
θ (u))

)
du

∣∣∣∣∣EN (t1, v1, z1, t2, v2, z2, s)

]

= lim
N→∞

lim
h→0

E

[∫ t

s+εN

(
BNθ+hf

N
θ (WN

θ+h(u))−BNθ fNθ (WN
θ (u))

)
du

∣∣∣∣EN (t1, v1, z1, t2, v2, z2, s)

]
= lim
N→∞

lim
h→0

[
ΨN
fNθ ,θ+h

(t− s, t2, v2, z2)−ΨN
fNθ ,θ+h

(εN , t2, v2, z2)

−ΨN
fNθ ,θ

(t− s, t1, v1, z1) + ΨN
fNθ ,θ

(εN , t1, v1, z1)
]

= Ψfθ,θ(t− s, v2)−Ψfθ,θ(t− s, v1)− fθ(v2) + fθ(v1), (4.80)

where the last equality holds due to (4.59).
Recall the random time change representations (4.70) and (4.71). For each i ∈ N,

let σNi be the i-th jump time of the process CNθ defined by

CNθ (t) =
∑
k∈Γ2

Yk

(∫ t

0

ρNk,θ,min

(
τNθ (s), V Nθ (s), ZNθ (s), τNθ+h(s), V Nθ+h(s), ZNθ+h(s), h

)
ds

)
ζsk.

Set σN0 = 0 and note that γNh > σN0 . For each i ∈ N define

BN,1θ,i = lim
h→0

1

h
E

[
1{σNi =γNh }

∫ t

t∧γNh

(
BNθ+hf

N
θ (WN

θ+h(s))−BNθ fNθ (WN
θ (s))

)
ds

]

and BN,2θ,i = lim
h→0

1

h
E

[
1{σNi−1<γ

N
h <σ

N
i }

∫ t

t∧γNh

(
BNθ+hf

N
θ (WN

θ+h(s))−BNθ fNθ (WN
θ (s))

)
ds

]
.

Since 1{σNi−1≤γNh <σ
N
i } = 1{σNi−1=γNh }

+ 1{σNi−1<γ
N
h <σ

N
i } we can write

BNθ = lim
h→0

1

h
E

[∫ t

t∧γNh

(
BNθ+hf

N
θ (WN

θ+h(s))−BNθ fNθ (WN
θ (s))

)
ds

]

=

∞∑
i=1

lim
h→0

1

h
E

[
1{σNi−1≤γNh <σ

N
i }

∫ t

t∧γNh

(
BNθ+hf

N
θ (WN

θ+h(s))−BNθ fNθ (WN
θ (s))

)
ds

]

=

∞∑
i=1

(BN,1θ,i +BN,2θ,i ). (4.81)
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We now show that the term BN,1θ,i converges to 0 as N → ∞. Note that the event

{σNi = γNh } occurs if and only if the event {ZNθ (σNi −) 6= ZNθ+h(σNi −), V Nθ (σNi−1) =

V Nθ+h(σNi−1), ZNθ (σNi−1) = ZNθ+h(σNi−1)} occurs. Let ηNi be the Γ2-valued random variable
which gives the direction of the jump in CNθ at time σNi . Pick a δ ≥ 0, v ∈ Π2S, z ∈ Hv
and k ∈ Γ2. Define an event

Li(δ, v, z, k) =
{
γNh ≥ σNi , (σNi − σNi−1) = δ, ηNi = k, V Nθ (σNi−1) = V Nθ+h(σNi−1) = v,

ZNθ (σNi−1) = ZNθ+h(σNi−1) = z
}
.

Conditioned on this event, ZNθ (σNi −) = zNk,θ(t, v, z, ui) and ZNθ+h(σNi −) = zNk,θ+h(t, v, z, ui)

where the function zNk,θ is given by (4.35). For any distinct z1, z2 ∈ Hv define

GNθ (z1, z2, δ, v, z, k) = lim
h→0

P
(
σNi = γNh , Z

N
θ (σNi −) = z1 and ZNθ+h(σNi −) = z2|Li(δ, v, z, k)

)
h

.

Lemma 4.11 ensures that GNθ (z1, z2, δ, v, z, k) exists and

GNθ (z1, z2, δ, v, z, k) ≤
∑
e∈Hv

∣∣∣∣∣∂ΘN
k,θ(δ, v, z, e)

∂θ

∣∣∣∣∣ .
Assumptions 3.1 imply that the right hand side is a polynomially growing function
with respect to projection ΠŜ (see Definition 2.1). Given the events Li(δ, v, z, k) and
{ZNθ (σNi −) = z1, Z

N
θ+h(σNi −) = z2} we have(

τNθ (γNh ), V Nθ (γNh ), ZNθ (γNh ), τNθ+h(γNh ), V Nθ+h(γNh ), ZNθ+h(γNh )
)

= (0, v + ζsk, z1 + ζfk , 0, v + ζsk, z2 + ζfk ).

Recall the definition of RNθ,h from (4.79). For any δ < s < t we can write

lim
N→∞

lim
h→0

1

h
E

[
1{σNi =γNh }

∫ t

t∧γNh

(
BNθ+hf

N
θ (WN

θ+h(s))−BNθ fNθ (WN
θ (s))

)
ds

∣∣∣∣∣Li(δ, v, z, k), σNi−1 = s− δ

]
= lim
N→∞

lim
h→0

∑
z1 6=z2∈Hv

GNθ (z1, z2, δ, v, z, k)RNθ,h(0, v + ζsk, z1 + ζfk , 0, v + ζsk, z2 + ζfk , s, t).

(4.82)

Using (4.80) we see that

lim
N→∞

lim
h→0

RNθ,h(0, v + ζsk, z1 + ζfk , 0, v + ζsk, z2 + ζfk , s, t) = 0. (4.83)

This relation along with (4.82) implies that

lim
N→∞

BN,1θ,i = 0. (4.84)

Recall the random time change representations (4.70) and (4.71). On the event
{σNi−1 < γNh < σNi }, the process V Nθ (or V Nθ+h) jumps at time γNh due to a jump in the

Poisson process Y (1)
k (or Y (2)

k ) for some k ∈ Γ2. Let η be the Γ2-valued random variable
which gives the direction of the jump in V Nθ or V Nθ+h at time γNh . Define a random
variable

αNi = (σNi − σNi−1) ∧ (γNh − σNi−1)
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and an event

Hi(s, v, z) =
{
σNi−1 = s, V Nθ (σNi−1) = V Nθ+h(σNi−1) = v, ZNθ (σNi−1) = ZNθ+h(σNi−1) = z

}
,

for s ≥ 0, v ∈ Π2S and z ∈ Hv. The event {σNi−1 < γNh < σNi } is equivalent to the event
{γNh > σNi−1, α

N
i = (γNh − σNi−1)}. Given γNh > σNi−1 and Hi(s, v, z), the density of the

R+-valued random variable αNi on the event {η = k, αNi = (γNh − σNi−1)} is given by

lim
ε→0

P
(
αNi ∈ (t, t+ ε), η = k, αNi = (γNh − σNi−1)

∣∣Hi(s, v, z), γ
N
h > σNi−1

)
ε

=
(
ρNk,θ(t, v, z) + ρNk,θ+h(t, v, z)− 2ρNk,θ(t, v, z) ∧ ρNk,θ+h(t, v, z)

)
× exp

[
−
∫ t

0

(
ρN0,θ(u, v, z) + ρN0,θ+h(u, v, z)− 2ρN0,θ(u, v, z) ∧ ρN0,θ+h(u, v, z)

)
du

]
= h

∣∣∣∣∣∂ρNk,θ(t, v, z)∂θ

∣∣∣∣∣ exp

(
−
∫ t

0

ρN0,θ(u, v, z)du

)
+ o(h). (4.85)

On the event Hi(s, v, z) ∩ {γNh > σNi−1, η = k, αNi = (γNh − σNi−1) = δ} we have

(
WN
θ (γNh ),WN

θ+h(γNh )
)

=

{
(δ, v, z, 0, v + ζsk, ξ2 + ζfk ) ρNk,θ+h(δ, v, z) > ρNk,θ(δ, v, z)

(0, v + ζsk, ξ1 + ζfk , δ, v, z) ρNk,θ+h(δ, v, z) < ρNk,θ(δ, v, z),

where ξ1 = zNk,θ(δ, v, z, ui) and ξ2 = zNk,θ+h(δ, v, z, ui) are Hv-valued random variables

with distributions ΘN
k,θ(δ, v, z, ·) and ΘN

k,θ+h(δ, v, z, ·) respectively. For small values of h,

∂ρNk,θ(δ, v, z)/∂θ > 0 implies that ρNk,θ+h(δ, v, z) > ρNk,θ(δ, v, z) and similarly ∂ρNk,θ(δ, v, z)/∂θ <

0 implies that ρNk,θ+h(δ, v, z) < ρNk,θ(δ, v, z). Using the density of αNi on the event {η =

k, αNi = (γNh − σNi−1)} (see (4.85)) we obtain

lim
N→∞

lim
h→0

1

h
E

[
1{σNi−1<γ

N
h <σ

N
i }

∫ t

t∧γNh

(
BNθ+hf

N
θ (WN

θ+h(u))−BNθ fNθ (WN
θ (u))

)
du

∣∣∣∣∣Hi(s, v, z), γ
N
h > σNi−1

]

= lim
N→∞

lim
h→0

∑
z2∈Hv

∑
k∈Γ2

∫ t−s

0

[
∂ρNk,θ(δ, v, z)

∂θ

]+

exp

(
−
∫ δ

0

ρN0,θ(u, v, z)du

)
×RNθ,h(δ, v, z, 0, v + ζsk, z2 + ζfk , s+ δ, t)ΘN

k,θ+h(δ, v, z, z2)dδ

+ lim
N→∞

lim
h→0

∑
z1∈Hv

∑
k∈Γ2

∫ t−s

0

[
∂ρNk,θ(δ, v, z)

∂θ

]−
exp

(
−
∫ δ

0

ρN0,θ(u, v, z)du

)
×RNθ,h(0, v + ζsk, z1 + ζfk , δ, v, z, s+ δ, t)ΘN

k,θ+h(δ, v, z, z1)dδ.

(4.86)

From (4.80) one can verify that

lim
N→∞

lim
h→0

RNθ,h(δ, v, z, 0, v + ζsk, z2 + ζfk , s+ δ, t)

= − lim
N→∞

lim
h→0

RNθ,h(0, v + ζsk, z1 + ζfk , δ, v, z, s+ δ, t)

= Ψfθ,θ(t− s− δ, v + ζsk)−Ψfθ,θ(t− s− δ, v)− fθ(v + ζsk) + fθ(v). (4.87)
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Using part (A) of Lemma 4.15, (4.87) and (4.86) we can conclude that

lim
N→∞

lim
h→0

1

h

E

[
1{σNi−1<γ

N
h <σ

N
i }

∫ t

t∧γNh

(
BNθ+hf

N
θ (WN

θ+h(u))−BNθ fNθ (WN
θ (u))

)
du

∣∣∣∣∣Hi(s, v, z), γ
N
h > σNi−1

]

=
∑
k∈Γ2

∫ t−s

0

∂λ̂k(v, θ)

∂θ
exp

(
−λ̂0(v, θ)δ

)
(Ψfθ,θ(t− s− δ, v + ζsk)−Ψfθ,θ(t− s− δ, v)

−fθ(v + ζsk) + fθ(v)) dδ

=
∑
k∈Γ2

∫ t−s

0

∂λ̂k(v, θ)

∂θ
exp

(
−λ̂0(v, θ)(t− s− u)

)
(Ψfθ,θ(u, v + ζsk)−Ψfθ,θ(u, v)

−fθ(v + ζsk) + fθ(v)) du, (4.88)

where λ̂0(v, θ) =
∑
k∈Γ2

λ̂k(v, θ). Due to our coupling, as h → 0, the process WN
θ+h

converges a.s. to the process WN
θ and hence γNh →∞ a.s. Proposition 4.16 and Remark

4.17 show that as N → ∞ we have V Nθ ⇒ X̂θ, where X̂θ is the limiting process in
Theorem 3.2. This convergence and (4.88) yield the following

lim
N→∞

BN,2θ,i

= lim
N→∞

lim
h→0

1

h
E

[
1{σNi−1<γ

N
h <σ

N
i }

∫ t

t∧γNh

(
BNθ+hf

N
θ (WN

θ+h(s))−BNθ fNθ (WN
θ (s))

)
ds

]

=
∑
k∈Γ2

E

[
∂λ̂k(X̂θ(σi−1), θ)

∂θ
Rk,θ(X̂θ(σi−1), fθ, t− σi−1 ∧ t, k)

]
,

where σi is the i-th jump time of the process X̂θ (with σ0 = 0) and the function Rk,θ is
given by (4.63). Note that the quantity on the right hand side is 0 if σi−1 ≥ t. Using
(4.81) and (4.84) we get

lim
N→∞

BNθ =
∑
k∈Γ2

E

 ∞∑
i=0,σi<t

∂λ̂k(X̂θ(σi), θ)

∂θ
Rk,θ(X̂θ(σi), fθ, t− σi ∧ t, k)

 .
This relation along with (4.66), (4.69), (4.75) and (4.77) gives us

lim
N→∞

SNθ (f, t)

= E

(
∂fθ
∂θ

(X̂θ(t))

)
+
∑
k∈Γ2

E

[∫ t

0

∂λ̂k(X̂θ(s), θ)

∂θ

(
fθ(X̂θ(s) + ζsk)− fθ(X̂θ(s))

)
ds

]

+
∑
k∈Γ2

E

 ∞∑
i=0,σi<t

∂λ̂k(X̂θ(σi), θ)

∂θ
Rk,θ(X̂θ(σi), fθ, t− σi ∧ t, k)

 ,
which is same as (4.64) and this completes the proof of the theorem.

We end this section with a couple of important remarks regarding the proof of The-
orem 3.2.

Remark 4.18. In the proof of Theorem 3.2 we had assumed that the set (Γ1 ∪ Γ2)c is
empty (recall Remark 4.8). We now explain how the proof changes when this is not the
case. Note that if k is in the set (Γ1∪Γ2)c, then βk +γ2 < 0, which shows that reaction k
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is “slow" for the time-scale γ2. For any k ∈ (Γ1 ∪ Γ2)c, let λ̂k(·, θ) be identically 0 and let
ρNk,θ be defined by (4.30) with an additional multiplicative factor of Nβk+γ2 . By replacing
Γ2 with Γ′2 := Γ2 ∪ (Γ1 ∪ Γ2)c, Theorem 3.2 can be proved in the same way as above.

Remark 4.19. In proving Theorem 3.2, we assumed that the set Hv is finite for any
v ∈ Π2S (see part (A) of Assumption 2.4). This means that if the state of the “natural"
dynamics is v then the “fast" dynamics is constrained within a compact set Hv. This
assumption can be relaxed at the expense of making the proof more technical. The only
place where finiteness of Hv is crucial is in the proof of Proposition 4.4. As explained in
Remark 4.7, this proposition can be extended for Markov chains with countable state
spaces. Assuming the existence of a suitable Lyapunov function for the fast dynamics,
the proof of Theorem 3.2 goes through with minor modifications.

5 An Illustrative Example

In this section we present a simple example to illustrate how our main result, The-
orem 3.2, can be useful for the estimation of parameter sensitivity for multiscale net-
works. Consider a chemical reaction network with three species S1, S2 and S3, and
three reactions given by

S1
c1−→ S2, S2

c2−→ S1 and S2
c3−→ S3.

The rate constant of the i-th reaction is ci, for i = 1, 2, 3. Such a network is used to model
the cellular heat-shock response in [7], where S1, S2 and S3 correspond to the σ32−DnaK
complex, the σ32 heat shock regulator and the σ32-RNAP complex, respectively. In this
example, the first and second reactions are much faster than the third reaction. We
assume that the rate constants are given by

c1 = 1, c2 = 2 and c3 = 5× 10−4. (5.1)

We choose our sensitive parameter to be θ = c1 = 1 and the large normalization pa-
rameter to be N0 = 104. The three reactions along with their scaling factors (βk’s),
propensity functions (λk’s) and their stoichiometric vectors (ζk’s) are presented in Ta-
ble 1.

Table 1: Example of Heat Shock Response Model
No. Reaction Scaling Factor Propensity Function Stoichiometric Vector
1 S1 −→ S2 β1 = 0 λ1(x1, x2, x3) = θx1 ζ1 = (−1, 1, 0)

2 S2 −→ S1 β2 = 0 λ2(x1, x2, x3) = 2x2 ζ2 = (1,−1, 0)

3 S2 −→ S3 β3 = −1 λ3(x1, x2, x3) = 5x2 ζ3 = (0,−1, 1)

Let
{
XN0

θ (t) = (XN0

θ,1(t), XN0

θ,2(t), XN0

θ,3(t)) : t ≥ 0
}

be the stochastic process represent-

ing the dynamics of this multiscale reaction network. Hence for any time t ≥ 0 and
i = 1, 2, 3, XN0

θ,i (t) denotes the number of molecules of Si. Suppose that the initial state

of the system is XN0

θ (0) = (v0, 0, 0) for v0 = 20. Note that the sum of the three species
numbers is preserved by all the reactions. Hence the state space for the process XN0

θ

is

S =
{

(x1, x2, x3) ∈ Nd0 : x1 + x2 + x3 = v0

}
.

Clearly for this multiscale network, the first time-scale is γ1 = 0 (see Section 2.1) and
the corresponding set of “natural" reactions is Γ1 = {1, 2}. Similarly the second time-
scale is γ2 = 1 (see Section 2.2) and the corresponding set of “natural" reactions is
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Γ2 = {3}. If the time-scale of reference is γ2 then the dynamics is given by the Markov
process XN

γ2,θ
with generator ANγ2,θ (see (3.1)) with N = N0. As described in Section

2.2, under certain conditions we can construct a projection Π2 for which the process
Π2X

N
γ2,θ

has a well-behaved limit as N →∞. In this example, this projection is given by

Π2(x1, x2, x3) =

(
x1 + x2

2
,
x1 + x2

2
, x3

)
.

Note that Π2ζk = (0, 0, 0) for each k ∈ Γ1 and Π2ζ3 = (−1/2,−1/2, 1). For any v =

(v1, v1, v2) ∈ Π2S, define the space Hv (see (2.10)) by

Hv = {(x− v1, v1 − x, 0) : x = 0, 1, . . . , 2v1}

and let Cvθ be the generator given by (3.2). A Markov process with state space Hv and
generator Cvθ is ergodic. The unique stationary distribution has the form of a binomial
distribution

πθv(x, y) =
2v1!

(x+ v1)!(y + v1)!

(
θ

2 + θ

)y+v1 ( 2

2 + θ

)x+v1

for (x, y, 0) ∈ Hv.

Define λ̂3 : Π2S → R+ by

λ̂3(v1, v1, v2) =
∑

(x,y,0)∈Hv

5(y + v1)πθv(x, y) =

(
10v1θ

2 + θ

)
.

Let {X̂θ(t) = (X̂θ,1(t), X̂θ,2(t), X̂θ,3(t)) : t ≥ 0} be the Π2S-valued process with the fol-
lowing random time change representation

X̂θ(t) =

 v0/2

v0/2

0

+ Y

((
10θ

2 + θ

)∫ t

0

X̂θ,1(s)ds

) -1/2
-1/2

1

 ,
where Y is a unit rate Poisson process. The due to Proposition 2.5 we have Π2X

N
γ2,θ
⇒

X̂θ as N →∞.
Let f : R3 → R be the function given by

f(x1, x2, x3) = x3,

and suppose we want to estimate

SN0

γ2,θ
(f, t) =

∂

∂θ
E
(
f(XN0

γ2,θ
(t))
)

=
∂

∂θ
E
(
XN0

θ,3(t)
)
.

Note that f(x) = f(Π2x) for all x ∈ S, and hence the function fθ (given by (3.6)) coin-
cides with the function f on the set Π2S. Therefore from Theorem 3.2 we obtain

SN0

γ2,θ
(f, t) ≈ Ŝθ(f, t) :=

∂

∂θ
E
(
f(X̂θ(t))

)
=

∂

∂θ
E
(
X̂θ,3(t)

)
, (5.2)

for large values of N0. We now demonstrate the usefulness of (5.2) in estimating
SN0

γ2,θ
(f, t). We will numerically show that SN0

γ2,θ
(f, t) and Ŝθ(f, t) are “close" to each other

and the estimation of Ŝθ(f, t) is far less computationally demanding than the estimation
of SN0

γ2,θ
(f, t).

To estimate parameter sensitivities we will use the coupled finite difference (CFD)
scheme developed in [1]. In this method, the sensitivity value SN0

γ2,θ
(f, t) is estimated by

a finite-difference of the form

1

h
E
(
f
(
XN0

γ2,θ+h
(t)
)
− f

(
XN0

γ2,θ
(t)
))
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for a small h, and the processes XN0

γ2,θ+h
and XN0

γ2,θ
are coupled together in a special

way to reduce the variance of the associated estimator. Replacing derivative by a finite-
difference introduces a bias in the sensitivity estimate, but we will ignore this issue
here. Using CFD, we estimate SN0

γ2,θ
(f, t) and Ŝθ(f, t), with h = 0.01, t = 1, N0 = 104,

θ = 1 and v0 = 20. The results are reported in Table 2. The sensitivity values are written
in the form s± l, which means that the 95% confidence interval of the estimated value is
[s− l, s+ l]. For each estimation we use the minimum number of samples that is needed
to ensure that l ≤ 0.05|s|, where | · | is the absolute value function. In the table, we also
indicate the CPU time4 (in seconds) that was needed for the estimation. The CPU time
can be taken as a measure of the computational effort that was required to estimate the
sensitivity value. Note that Table 2 shows that relation (5.2) holds but the time needed

Table 2: Estimation of sensitivity value for f(x1, x2, x3) = x3

Sensitivity Value Number of Samples CPU time (s)

SN0

γ2,θ
(f, t) 4.2138± 0.2107 34932 1663.34

Ŝθ(f, t) 4.2017± 0.2100 35056 0.2333

to estimate Ŝθ(f, t) is approximately 7000 times less than the time needed to estimate
SN0

γ2,θ
(f, t). Note that the true sensitivity value in this case is 4.1982 (see Section B in the

Appendix).
Now suppose we want to estimate SN0

γ2,θ
(f, t) for f : R3 → R given by

f(x1, x2, x3) = x1.

In this case, fθ : Π2S → R can be computed as

fθ(v) =
∑

(x,y)∈Hv

(x+ v1)πθv(x, y) =

(
4v1

2 + θ

)
for any v = (v1, v1, v2) ∈ Π2S.

Hence Theorem 3.2 implies that

SN0

γ2,θ
(f, t) ≈ Ŝθ(fθ, t) =

∂

∂θ
E
(
fθ(X̂θ(t))

)
=

∂

∂θ

4E
(
X̂θ,1(t)

)
2 + θ


=

(
4

2 + θ

) ∂

∂θ
E
(
X̂θ,1(t)

)
−
E
(
X̂θ,1(t)

)
2 + θ

 .
As before we estimate SN0

γ2,θ
(f, t) and Ŝθ(fθ, t) using CFD, with h = 0.01, t = 1, N0 = 104,

θ = 1 and v0 = 20. The results are reported in Table 3. As before, Table 3 shows that

Table 3: Estimation of sensitivity value for f(x1, x2, x3) = x1

Sensitivity Value Number of Samples CPU time (s)

SN0

γ2,θ
(f, t) −3.3946± 0.1697 43745 2181.5

Ŝθ(fθ, t) −3.6369± 0.1818 20827 0.1396

SN0

γ2,θ
(f, t) ≈ Ŝθ(fθ, t) but the estimation of SN0

γ2,θ
(f, t) is around 15000 times slower than

4All the computations in this paper were performed using C++ programs on an Apple machine with a 2.2
GHz Intel i7 processor.
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the estimation of Ŝθ(fθ, t). In this case, the true sensitivity value is −3.6386 (see Section
B in the Appendix).

This example clearly illustrates that our main result, Theorem 3.2, can be used to
obtain enormous savings in the computational effort that is required for the estimation
of parameter sensitivities for multiscale networks.

A Appendix.

Let S1 and S2 be open subsets of Rn+ and Rm respectively. Let A ⊂ B(S1 × S2) ×
B(S1 × S2) be an operator whose domain D(A) includes all functions f : S1 × S2 → R of
the form

f(x, y) = g(x), (A.1)

where g is some function in Bc(S1). Let U ⊂ S1 × S2 be an open set and let X
be a stochastic process with initial distribution ν ∈ P(S1 × S2) and sample paths in
DS1×S2

[0,∞). Define a stopping time with respect to the filtration generated by the
process X as

τ = inf{t ≥ 0 : X(t) /∈ U or X(t−) /∈ U}. (A.2)

Then X is a solution of the stopped martingale problem (see Section 6, Chapter 4 in
[9]) for (A, ν, U) if X(·) = X(· ∧ τ) a.s. and

f(X(t))−
∫ t∧τ

0

Af(X(s))ds

is a martingale for each f ∈ D(A).
Let Π : S1 × S2 → S1 be the projection map defined by Π(x, y) = x. Suppose that for

any g ∈ Bc(S1) and f given by (A.1) we have

Af(x, y) =

K∑
k=1

λk(x, y) (g(x+ ζk)− g(x)) , (A.3)

where ζ1, . . . , ζK are certain vectors in Rn and λ1, . . . , λK are positive functions on S1 ×
S2 satisfying the following : if λk(x, y) > 0 for some (x, y) ∈ S1 × S2 then (x + ζk) ∈ S1.
Furthermore we assume that the function

K∑
k=1,〈1̄d,ζk〉>0

λk(x, y) (A.4)

is linearly growing with respect to projection Π (see Definition 2.1) .

Lemma A.1. Fix a w0 = (x0, y0) ∈ S1 × S2 and let δw0
∈ P(S1 × S2) be the distribution

that puts all the mass at w0. For any M ∈ N, let UM be the open set

UM = {(x, y) ∈ S1 × S2 : ‖x‖ < M}.

Assume that the stopped martingale problem for (A, δw0
, UM ) has a unique solution WM

for each M . Let τM be the stopping time defined by (A.2) with U replaced by UM and
the process X replaced by WM . Then we have the following.

(A) For any T > 0, limM→∞P(τM < T ) = 0.
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(B) There exists a unique solution W for the (unstopped) martingale problem for
(A, δw0

). Moreover for any positive integer p and T > 0 we have

sup
t∈[0,T ]

E(‖ΠW (t)‖p) <∞.

(C) If a function f : S1×S2 → R is polynomially growing with respect to projection Π,
then for any T ≥ 0

sup
t∈[0,T ]

E (|f(W (t))|) <∞.

(D) The martingale problem for A is well-posed.

Proof. Suppose that WM (t) = (XM (t), YM (t)) for any t ≥ 0, where XM and YM are
processes with state spaces S1 and S2 respectively. Let q = max{〈1̄d, ζk〉 : k = 1, . . . ,K}.
For a large M and a positive integer p, define g ∈ Bc(S1) by

g(x) = ‖x‖p1{‖x‖≤M+q}(x).

Assume that ‖x0‖p < M and note that the definition of g implies that for any t ≤ τM , we
have g(XM (t)) = ‖XM (t)‖p and g(XM (t) + ζk) = ‖XM (t) + ζk‖p for each k = 1, . . . ,K.
Let f : S1 × S2 → R be the function given by f(x, y) = g(x). Then f ∈ D(A) and using
(A.3) we obtain

f(WM (t ∧ τM ))−
∫ t∧τM

0

Af(WM (s))ds

= ‖XM (t ∧ τM ))‖p −
∫ t∧τM

0

K∑
k=1

λk(XM (s), YM (s)) (‖XM (s) + ζk‖p − ‖XM (s))‖p) ds

is a martingale starting at ‖x0‖p. Taking expectations we get

E (‖XM (t ∧ τM ))‖p)

= ‖x0‖p + E

(∫ t∧τM

0

K∑
k=1

λk(XM (s), YM (s)) (‖XM (s) + ζk‖p − ‖XM (s))‖p) ds

)
.

Our assumption on the functions λ1, . . . , λK implies that when λk(XM (s), YM (s)) > 0,
then (XM (s) + ζk) ∈ S1 ⊂ Rd+ and hence ‖XM (s) + ζk‖ = 〈1̄d, XM (s)〉 + 〈1̄d, ζk〉. This
gives us

E (‖XM (t ∧ τM ))‖p)

= ‖x0‖p + E

(∫ t∧τM

0

K∑
k=1

λk(XM (s), YM (s)) ((〈1̄d, XM (s)〉+ 〈1̄d, ζk〉)p − 〈1̄d, XM (s)〉p) ds

)

≤ ‖x0‖p + 2pqpE

(∫ t

0

∑
k∈P

λk(XM (s ∧ τM ), YM (s ∧ τM ))
(
‖XM (s ∧ τM )‖p−1 + 1

)
ds

)
,

where P = {k = 1, . . . ,K : 〈1̄d, ζk〉 > 0}. Since the function given by (A.4) is linearly
growing with respect to projection Π, we can find a positive constant C (independent of
M ) such that

E (‖XM (t ∧ τM )‖p)) ≤ ‖x0‖p + Ct+ C

∫ t

0

E (‖XM (s ∧ τM )‖p) ds.
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Gronwall’s inequality implies that

E (‖XM (t ∧ τM )‖p) ≤ (‖x0‖p + Ct) eCt. (A.5)

Using Markov’s inequality we obtain

lim
M→∞

P (τM < t) = lim
M→∞

P (‖XM (t ∧ τM )‖p ≥Mp) ≤ lim
M→∞

E (‖XM (t ∧ τM )‖p))
Mp

= 0.

The last limit is 0 due to (A.5). This proves part (A) of the lemma. From Theorem 6.3 in
Chapter 4 of [9] we can conclude that the martingale problem for (A, δw0

) has a unique
solution W . In fact for any M ∈ N, the process WM (· ∧ τM ) has the same distribution as
the process W (· ∧ τM ). Therefore using (A.5) we get

E (‖ΠW (t ∧ τM )‖p) = E (‖ΠWM (t ∧ τM )‖p) ≤ (‖x0‖p + Ct) eCt. (A.6)

Since τM is monotonically increasing with M , we must have that τM → ∞ a.s. as
M →∞. Letting M →∞ in (A.6) and using Fatou’s lemma we obtain

E (‖ΠW (t)‖p) ≤ lim
M→∞

E (‖ΠW (t ∧ τM )‖p) ≤ (‖x0‖p + Ct) eCt.

Taking supremum over t ∈ [0, T ] proves part (B) of the lemma. The proof of part (C) is
immediate from part (B). Since part (B) of this lemma holds for any w0, the martingale
problem for A is well-posed and this proves part (D).

Using the above lemma we now prove the main result of this section.

Lemma A.2. Recall the definition of operator BNθ from (4.39).

(A) The martingale corresponding to BNθ is well-posed.

(B) Let WN
θ be the Ŝ-valued Markov process with generator BNθ and initial state

(t0, v0, z0) ∈ Ŝ. For any M ∈ N, define a stopping time by

σNM = inf{t ≥ 0 : ‖ΠŜW
N
θ (t)‖ > M}. (A.7)

Then for any T > 0

lim
M→∞

sup
N∈N

P
(
σNM < T

)
= 0. (A.8)

(C) For any positive integer p and any T > 0

sup
t∈[0,T ]

sup
N∈N

E
(
‖ΠŜW

N
θ (t)‖p

)
<∞. (A.9)

(D) Let f : S → R be a function which is polynomially growing with respect to projec-
tion Π2, and define fNθ by (4.47). Then for any positive integer p and T > 0

sup
N∈N

sup
t∈[0,T ]

E
(∣∣fNθ (WN

θ (t))
∣∣p) <∞ and sup

N∈N
E

(∫ T

0

∣∣BNθ fNθ (WN
θ (t))

∣∣p dt) <∞.

(A.10)

(E) Let f and fNθ be as in part (D). For any T ≥ 0 and any stopping time σ we have

E
(
fNθ (WN

θ (T ∧ σ))
)

= fNθ (t0, v0, z0) + E

(∫ T∧σ

0

BNθ f
N
θ (WN

θ (t))dt

)
. (A.11)
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(F) The sequence of processes {WN
θ : N ∈ N} is tight in the space DŜ [0,∞).

Proof. Note that on the set

UM = {(t, v, z) ∈ Ŝ : ‖v‖ < M},

the functions {ρNk,θ : k ∈ Γ2} are bounded. If we define each ρNk,θ to be 0 outside the

set UM , then the resulting operator BNM,θ can be seen as a bounded perturbation of the
translation operator

Tf(t, v, z) =
∂f(t, v, z)

∂t
,

which certainly has a well-posed martingale problem. From Theorem 4.10.3 in [9] we
can conclude that the martingale problem for BNM,θ is well-posed. This implies that for

any initial state w0 ∈ Ŝ, the stopped martingale problem for (BNθ , δw0 , UM ) is well-posed.
Assumption 3.1 implies that the function∑

k∈Γ2,〈1̄d,ζsk〉>0

ρNk,θ(t, v, z) (A.12)

is linearly growing with respect to projection ΠŜ (given by (4.37)). Therefore part (B)
of Lemma A.1 shows that there is a unique solution for the martingale problem for
(BNθ , δw0

). Hence the martingale problem for BNθ is well-posed and this proves part (A).
Let WN

θ be the Ŝ-valued Markov process with generator BNθ and initial state (t0, v0, z0).
We can rework the proof of Lemma A.1 to prove parts (B) and (C).

Let f : S → R be a function which is polynomially growing with respect to projection
Π2 and define fNθ by (4.47). Remark 4.14 implies that the sequences of functions {fNθ :

N ∈ N} and {BNθ fNθ : N ∈ N} are polynomially growing with respect to projection ΠŜ .
Therefore part (D) is an easy consequence of part (C).

Corresponding to the function f define a function fM : S → R by

fM (x) = f(x)1{‖x‖≤M}(x).

Let fNM,θ be the function given by (4.47), with f replaced by fM . Since fM is in Bc(S),

the function fNM,θ is in class C (see (4.38)). Using Dynkin’s theorem (see Lemma 19.21
in [20]) we get

E
(
fNM,θ(W

N
θ (T ∧ σ))

)
= fNM,θ(t0, v0, z0) + E

(∫ T∧σ

0

BNθ f
N
M,θ(W

N
θ (t))dt

)
.

Taking the limit M → ∞, and using part (D) along with the dominated convergence
theorem proves part (E).

To show that the sequence {WN
θ : N ∈ N} is tight, we first have to prove the compact

containment criterion (see Chapter 3 in [9]). This means that for any T, ε > 0 we exhibit
a compact set Kε,T ⊂ Ŝ such that

inf
N∈N

P
(
WN
θ (t) ∈ Kε,T for all t ∈ [0, T ]

)
≥ 1− ε. (A.13)

Let σNM be the stopping time given by (A.7). For any t ≥ 0, we can write WN
θ (t) =

(τNθ (t), V Nθ (t), ZNθ (t)) (see (4.40)). Fix an ε > 0 and T > 0. Part (B) shows that we can
find a M > 0 large enough so that

sup
N∈N

P(σNM ≤ T ) < ε. (A.14)
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Note that for any t ≥ 0, if V Nθ (t) = v then τNθ (t) ∈ [0, t + t0] and ZNθ (t) ∈ Hv where Hv
is a finite set. This shows that for any t < σNM we have WN

θ (t) ∈ Kε,T where Kε,T is the
compact set given by

Kε,T =
{

(t, v, z) ∈ Ŝ : t ∈ [0, T + t0], ‖v‖ ≤M and z ∈ Hv
}
.

Hence

P
(
WN
θ (t) ∈ Kε,T for all t ∈ [0, T ]

)
≥ P(σNM > T ) = 1− P(σNM ≤ T ).

Taking supremum over N and using (A.14) proves (A.13).
Now that we have shown the compact containment condition, Theorem 3.9.1 in [9]

allows us to verify the tightness of {WN
θ : N ∈ N} by proving that for any f ∈ C, the

sequence of processes {f(WN
θ (·)) : N ∈ N} is tight in the space DR[0,∞). Note that

f(WN
θ (t))−

∫ t

0

BNθ f(WN
θ (s))ds

is a martingale and part (D) of the lemma shows that

E

(∫ t

0

∣∣BNθ fNθ (WN
θ (s))

∣∣2 ds) <∞

for any t ≥ 0. The tightness of the sequence {f(WN
θ (·)) : N ∈ N} is immediate from

Theorem 3.9.4 in [9]. This completes the proof of part (E) of the lemma.

B Appendix.

Recall the multiscale reaction network considered in Section 5. This network con-
sists of 3 species S1, S2 and S3, and the following three reactions

S1
c1−→ S2, S2

c2−→ S1 and S2
c3−→ S3.

The values of the rate constants c1, c2 and c3 are given in (5.1). For any time t ≥ 0

and i = 1, 2, 3, let XN0

θ,i (t) denote the number of molecules of Si, where N0 = 104 is the
normalization parameter and θ = c1 is the sensitive parameter. We assume that the
initial state of the system is (XN0

θ,1(t), XN0

θ,2(0), XN0

θ,3(0)) = (v0, 0, 0).
For each i = 1, 2, 3 and time t ≥ 0, define the first-moment of species i, and its

sensitivity with respect to θ as

mθ,i(t) = E
(
XN0

θ,i (t)
)

and Mθ,i(t) =
∂

∂θ
E
(
XN0

θ,i (t)
)
.

Let mθ(t) = (mθ,1(t),mθ,2(t),mθ,3(t)) be the vector of first-moments and let Mθ(t) =

(Mθ,1(t),Mθ,2(t),Mθ,3(t)) denote the vector of its θ-sensitivities. Since the network only
consists of unimolecular reactions, we can explicitly computemθ(t) andMθ(t) by solving
the following system of ordinary differential equations:

dmθ(t)

dt
= Aθmθ(t)

dMθ(t)

dt
= AθMθ(t) +Bθmθ(t),

with the initial conditions mθ(0) = (v0, 0, 0) and Mθ(0) = (0, 0, 0). Here Aθ and Bθ are
3× 3 matrices given by

Aθ =

 −θ c2 0

θ −(c2 + c3) 0

0 c3 0

 and Bθ =
∂Aθ
∂θ

=

 −1 0 0

1 0 0

0 0 0

 .
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On solving this system of equations until time t = N0 = 104 we get

Mθ,3(N0) =
∂

∂θ
E
(
XN0

θ,3(N0)
)

= 4.1982 and Mθ,1(N0) =
∂

∂θ
E
(
XN0

θ,1(N0)
)

= −3.6386,

which shows the correctness of the sensitivity values given in Tables 2 and 3 respec-
tively.
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