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Abstract

We propose a constructive proof for the sharp rate of optimal quadratic functional
quantization and we tackle the asymptotics of the critical dimension for quadratic
functional quantization of Gaussian stochastic processes as the quantization level
goes to infinity, i.e. the smallest dimensional truncation of an optimal quantization
of the process which is “fully" quantized. We first establish a lower bound for this
critical dimension based on the regular variation index of the eigenvalues of the
Karhunen-Loève expansion of the process. This lower bound is consistent with the
commonly shared sharp rate conjecture (and supported by extensive numerical ex-
periments). Moreover, we show that, conversely, optimized quadratic functional
quantizations based on this critical dimension rate are always asymptotically opti-
mal (strong admissibility result).
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1 Introduction

The aim of this paper is two-fold: first we aim at providing a constructive proof of
the sharp rate of optimal functional quantization in the quadratic case for (a wide class
of) Gaussian processes or more generally of Gaussian random vectors X taking values
in a separable Hilbert space

(
H, (.|.)H

)
. Secondly, we provide several results about the

critical quantization dimension in this framework, especially a “sharp" asymptotic lower
bound for the genuine critical dimension (sharp with respect to a conjecture supported
by extensive numerical experiments carried out in [14] with the Brownian motion and
the Brownian bridge) and the sharp asymptotics of the asymptotic critical dimension.

Before defining precisely what we mean by “constructive" and what the above two
notions of critical dimension represent in an optimal functional quantization problem,
let us briefly recall few basic facts on this theory. First, the Lr-mean quantization
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Constructive quadratic functional quantization and critical dimension

error of a random variable X defined on a probability space (Ω,A,P) having a finite rth

moment and taking values in a separable Hilbert space H is defined by

en,r(X) = inf

{∥∥min
a∈α
|X − a|H

∥∥
r
, α ⊂ H, |α| ≤ n

}
(1.1)

where |α| denotes the cardinality of the set α, r ∈ (0,∞) and ‖ . ‖r denotes the Lr(P)-
(quasi-)norm. It can also be characterized as

en,r(X) = min {‖ |X − Y |
H
‖r, Y : (Ω,A,P)→ H, |Y (Ω)| ≤ n}

where | . |
H

denotes the norm on the Hilbert spaceH. Any random vector which achieves
the above minimum (there is always at least one) is called an (Lr-)optimal n-quantization.
One can show that such an optimal quantization is always of the form Y ∗ = πα∗(X)

where π is a Borel projection on α∗,n = Y ∗(Ω) following the nearest neighbour rule.
The subset α∗,n is called an optimal Voronoi n-quantizer (or optimal Voronoi quantizer
at level n). By extension any random vector of the form πα(X) is called a Voronoi quan-
tization whereas α is often called an n-quantizer (if |α| = n). The term Voronoi refers to
the nearest neighbour projection. A sequence (αn)n≥1 of n-quantizers is called asymp-
totically optimal if

lim
n

‖mina∈αn |X − a|H‖r
en,r(X)

= 1.

In the quadratic framework (r = 2), we will drop the subscript r for simplicity.

When H is an infinite dimensional separable Hilbert space (typically H is function
space like L2([0, T ], dt)), one often speaks of functional quantization.

The first problem of interest (beyond the existence of optimal n-quantizers for every
n∈ N) is the rate of decay of the mean (quadratic) quantization error. This sharp rate
problem in a Hilbert setting has been solved for a wide class of H-valued Gaussian
random vectors/processes X in [13] (see Theorem 2.2 below). To be precise, when the
nonzero eigenvalues (λXn )n≥1 of the Karhunen-Loève (K-L) eigensystem (λXn , e

X
n )n≥1 of

an H-valued random vector X ordered in a non-increasing order (each written as many
times as is its multiplicity) read λXn = ϕ(n) where ϕ is a non-increasing regularly varying
function with index −b, b ≥ 1. Thus, we know that if X is a standard Brownian motion
W on the interval [0, T ], then ϕ(n) = T 2

π2(n− 1
2 )

2 so that b = 2 which implies

lim
n

√
log n en(W ) =

√
π

2
T.

Note that the same sharp rate holds true for any Gaussian process whose parameter
b is equal to 2, like the Ornstein-Uhlenbeck process. For a more general statement
depending on the value of b ≥ −1, we refer to [13] where b is made explicit on many
examples (Theorem 2.2 in the next section yields the general asymptotic result with an
explicit limit, depending on b ≥ −1 and ϕ). This also applies to the fractional Brownian
motion WH with Hurst constant H ∈ (0, 1) for which b = 2H + 1 since λn ∼ κ

H
n−(1+2H)

where κ
H
∈ (0,+∞) is explicit, as established e.g. in [13]. The sharp rate for quadratic

functional quantization can be solved by this approach for other processes like the
fractional Ornstein-Uhlenbeck process, Gaussian sheets, etc.

Rather unexpectedly, the proof of this general theorem which was first stated in [13]
is not constructive in the sense that it never needs nor exhibits any sequence of (asymp-
totically) optimal grids.

The notion of critical dimension at level n, denoted dXn and referred to as genuine
critical dimension in what follows, can be introduced in an intuitive way as follows

dXn = min
{

dim(span(α∗,n)), α∗,n optimal n-quantizer
}
. (1.2)
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Constructive quadratic functional quantization and critical dimension

As established in [12], the optimal quantizers at level n live in finite dimensional
subspaces spanned by the (first components of the) Karhunen-Loève expansion of the
Gaussian process of interest. So, in our Gaussian framework, the genuine critical di-
mension at level n is defined equivalently as the lowest dimension of such a vector
subspace which contains an optimal n-quantizer, namely

dn=dXn =min
{
d∈ N∗ : ∃α∗,n optimal n-quantizer s.t. α∗,n⊂ span{eXk , 1≤k ≤d}

}
. (1.3)

The “asymptotic critical dimension" corresponds to asymptotically optimal n-quanti-
zers and will be precisely defined later on in Section 2. Like the mean quantization rate,
the asymptotics of these critical dimensions are ruled by the rate of decay of the K-L
eigenvalues. The genuine critical dimension can be considered, at level n, as the true
dimension of the above infinite dimensional optimal quantization problem (1.1) and its
specification as a kind of “dimension selection". As for the standard Brownian motion,
the conjecture on the genuine critical dimension dWn reads

lim
n

(log n)−1dWn = 1.

and, more generally,

lim
n

(log n)−1dXn =
2

b

if the eigenvalues of the covariance operator of X involved in its K-L regularly vary
with exponent −b.

There is a connection between the (quadratic) mean quantization error en(X) and
the critical dimension, still through the eigenvalues of the K-L expansion of X. Let
(λXn , e

X
n )n≥1 be the K-L eigensystem of X, where the eigenvalues λn are ordered in a

non-increasing order. Then dXn is the lowest dimension satisfying

e2n(X) = e2n

( dXn∑
k=1

λke
X
k

)
+

∑
k≥dXn +1

λk

= e2n

( dXn⊗
k=1

N
(
0, λXk

))
+

∑
k≥dXn +1

λk.

This connection, originally established in [12], is briefly recalled in Section 2.3 as
a starting point of our approach. Rather unexpectedly, the proof of the sharp rate for
en(X) in [13] does not provide asymptotic information on the critical dimension as n
grows, at least in a straightforward way. In this paper, we fill these two gaps for this
class of Gaussian processes: first, we propose a constructive proof of the sharp rate
theorem for quantization error exhibiting asymptotically optimal grids and, secondly,
we provide the first rigorous, though partial, results on the asymptotics of the critical
dimension to our knowledge.

In particular we provide a first theoretical justification of the use of optimal quan-

tizers at level n of the distribution

b 2b lognc⊗
k=1

N
(
0, λXk

)
to functionally quantize a Gaussian

process X (provided its K-L system is explicit, in particular the eigenvectors). Such re-
sults are used to produce quadrature formulas to compute expectations of Lipschitz con-
tinuous or twice | . |L2

T
-differentiable functionals of Gaussian processes like the standard

or the fractional Brownian motion, the Ornstein-Uhlenbeck process, etc, see e.g. [15].
It also has been used when X is diffusion solution to SDEs in the Stratonovich sense,
see [15, 16, 4]: X is quantized by solutions of ODEs mimicking the SDE in which
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the Brownian W motion is replaced by its functional quantization. Several applications
to the pricing of exotic path-dependent options based on this functional discretization
method have been implemented. Functional quantization also has been used to as a
stratification procedure for Monte Carlo simulation (see [11, 3]).

The paper is organized as follows: in Section 2 we provide some more rigorous
background on K-L expansions of Gaussian random vectors and functional quantiza-
tion. Then, we state our main results by exhibiting a sequence of asymptotically opti-
mal quantization grids and provide an asymptotic lower bound for the genuine critical
dimension. In Section 3 and 4 we establish some upper and lower bounds respectively
for the mean quantization error. Section 5 is devoted to the proofs and constructive
aspects. We conclude by few numerical illustrations which support the conjecture.

Our main tools, beyond discrete optimization techniques used for the upper bounds,
are Shannon’s source coding Theorem and the connection between mean quantization
error and Shannon ε-entropy (or rate-distortion function, see [5]).

Notations. • | . | denotes the canonical Euclidean norm on Rd.
• N∗ = {1, 2, 3, . . .} denotes the set of positive integers.

• L2
T

= L2([0, T ], dt) is equipped with its Hilbert norm |f |L2
T

=
( ∫ T

0
f2(t)dt

) 1
2

.

• Let (an) and (bn) be two sequences of real numbers. an ∼ bn if there exists a sequence
(un) such that an = unbn and limn un = 1.
• o(1) denotes a sequence indexed by n ∈ N∗ going to 0 as n → +∞ (which may vary
from line to line).

2 Background on optimal functional quantization and main re-
sult

2.1 Karhunen-Loève expansion and main running assumption

Let X : (Ω,A,P) → H be a centered Gaussian random vector taking values in a
separable Hilbert space (H, | . |

H
) satisfying

dimKX = +∞ where KX is the reproducing kernel Hilbert space of X.

A typical example is the case of a Gaussian stochastic process X = (Xt)t∈[0,T ] with
continuous paths. Clearly, for such a process a.s. t 7→ Xt(ω) lies in L2

T
so that X can be

see as a random vector taking values in
(
L2
T
, |.|L2

T

)
.

Let (λXk , e
X
k )k≥1 be the orthonormal eigensystem of the (positive trace) covariance

operator of X, also known as the Karhunen-Loève (K-L) orthonormal system of X.
Since the sequence (λXn )n≥1 has only one limiting value, 0, one may assume without
loss of generality that the K-L eigensystem is indexed so that the sequence of (nonzero)
eigenvalues is non-increasing. To alleviate notations we will drop the dependency of the
eigenvalues in X by simply noting λn instead of λXn .

Throughout the paper, the main results are obtained under the following assumption
about the K-L eigenvalues:

(R) ≡


There exists b∈ [1,+∞) and a non-increasing function ϕ : (0,+∞)→ (0,+∞)

with regular variations at infinity of index −b (hence going to 0 at infinity)
such that λk = ϕ(k), k ≥ 1.

Then, the Karhunen-Loève decomposition of X reads

X =
∑
k≥1

√
λkξke

X
k
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where ξk =
(X, eXk )

H√
λk

, k ≥ 1, defines an i.i.d. sequence of N (0; 1)-distributed random

variables defined on (Ω,A,P). ((., .)
K

denotes the inner product in H.) The convergence
holds a.s. in H.

Moreover, note that the function ϕ satisfies
∫ +∞
A

ϕ(y)dy < +∞ for large enough
A > 0 since

∑
k λk < +∞).

2.2 Optimal quadratic functional quantization

Let L2
H(P) =

{
Y : (Ω,A,P) → H, Borel measurable, E|Y |2

H
< +∞

}
. The optimal

quantization problem for X∈ L2
H(P) reads

en(X) = inf
{∥∥min

a∈α
|X − a|H

∥∥
2
, α ⊂ H, |α| ≤ n

}
. (2.1)

Let us introduce few additional notations. For every integer d ≥ 1, we denote by
X(d) the H-orthogonal projection of X on the vector space span{eX1 , . . . , eXd }, namely

X(d) =

d∑
k=1

√
λk ξk e

X
k

and
en(X(d)) = inf

{∥∥min
a∈α
|X(d) − a|H

∥∥
2
, α ⊂ ⊕1≤k≤dRe

X
k , |α| ≤ n

}
. (2.2)

Note that one also has

en(X(d)) = inf
{∥∥min

a∈α
|
(√

λkZk)1≤k≤d − a|
∥∥
2
, α ⊂ Rd, |α| ≤ n

}
where Z = (Z1, . . . , Zd)

d
= N (0; Id).

Finally we set,
e2n(X, d) = e2n(X(d)) +

∑
k≥d+1

λk (2.3)

and
C(d) = sup

k≥1
k2e2k

(
N
(
0; Id

))
.

We know from [12] (see Proposition 2.1) that, for every n∈ N∗, the infimum in (2.1)
holds as a minimum: there exists at least one optimal quantizer α∗,n which turns out to
have full size n. Furthermore α∗,n lies in a finite dimensional space spanned by finitely
many elements of the K-L basis.

Now we are in position to come back to the genuine critical dimension dn = dXn de-
fined by (1.2) and characterized in (1.3) as the smallest dimension of a vector subspace
of span{eXn , n ≥ 1} in which an optimal n-quantizer lies. The sequence (dn)n≥1 makes
up a sequence satisfying

e2n(X) = e2n(X, dn).

It is clear that dn goes to infinity, otherwise one could extract a subsequence dn′ such
that dn′ ≤ d̃ < +∞. If so, we would have

e2n(X) ≥
∑
k≥d̃+1

λk

which contradicts the obvious fact that e2n(X) goes to zero as n goes to infinity (see
e.g. [12]). This last claim is a consequence of the fact that, if (zn)n≥1 is everywhere
dense in H, then

e2n(X) ≤ E
(

min
1≤i≤n

|X − zi|2H
)
→ 0 as n→ +∞.
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Otherwise very little is known on the sequence (dn)n≥1, in particular we do not know
whether this sequence is monotone.

We will use the following easy lemma

Lemma 2.1. Let n ≥ 1 be an integer. The sequence d 7→ e2n(X, d) is non-increasing (and
hence is constant for d ≥ dn).

Proof. Let d ≤ d′. Let α∗,n(d) be an optimal quadratic quantizer for X(d) of size (at
most) n. It is clear that for every a∈ α∗,n(d),

|X(d′) − a|2H = |X(d) − a|2H +

d′∑
k=d+1

λk

since α∗,n(d) ⊂ span{eX1 , . . . , eXd }. As a consequence e2n(X(d′)) ≤ e2n(X(d)) +
∑d′

k=d+1 λk
and one concludes by adding the tail

∑
k≥d′+1 λk.

It still holds as a conjecture that, under Assumption (R),

lim
n

dn
log n

=
2

b
(2.4)

whereas the sharp rate of optimal quadratic quantization has been elucidated for long
in [13] (with several extension to more general Banach settings obtained ever since e.g.
for Lp([0, T ], dt)-norms, 1 ≤ p ≤ +∞ and in an Lr(P)-sense, see [6], etc).

Extensive computations carried out in [14] provide strong evidence that in fact, as
concerns the standard Brownian motion and the Brownian bridge (which corresponds
to b = 2), we even have that

dn∈
{
blog nc, dlog ne

}
.

These conjectures are also supported by results obtained for optimal “block quanti-
zation" with blocks of either constant or varying dimensions (see [13, 14]).

The aims of this paper can now be summed up as follows : firstly to provide a construc-
tive proof of the sharp rate theorem 2.2 recalled below (with, as a result, the exhibition
of natural sequences of asymptotic quantizers), secondly to provide a partial answer
to the above conjecture and finally to provide a complete answer to the “asymptotic"
dimension problem.

For the self-completeness of the paper we briefly recall the definitions of regularly
and slowly varying functions at +∞ (see [2]). A Borel function f : [A,+∞) → R is
regularly varying with index a∈ R \ {0} if

∀ t > 0, lim
x→+∞

f(tx)

f(x)
= ta

and is slowly varying if

∀ t > 0, lim
x→+∞

f(tx)

f(x)
= 1.

Theorem 2.2. (see [12]) Assume (R). Let ψ : (0,+∞)→ (0,+∞) be defined by

ψ(x) =


1

xϕ(x)
if b > 1 so that ψ is a regularly varying function with index b− 1,

1∫∞
x
ϕ(y)dy

if b = 1 so that ψ is a slowly varying function.

(2.5)

Then lim
n
ψ(log n)e2n(X) =


(
b

2

)b−1
b

b− 1
if b > 1,

1 if b = 1.
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2.3 Main result: constructive rates and critical dimension

Now we state our two mains results on the “constructive rates" and the critical
dimension. While the genuine critical dimension dn is mostly of theoretical interest, for
numerical purpose the “asymptotic critical dimension, precisely defined below, is more
interesting. It corresponds to the lowest sequence of dimensions (δn)n≥1 which produce
asymptotically optimal n-quantizers.

Theorem 2.3 (Constructive proof of the sharp rate). Assume (R). Let (δn)n≥1 be a
sequence of positive integers.

(a) If lim inf
n

δn
log n

≥ 2

b
, then

lim
n
ψ(log n)e2n(X) = lim

n
ψ(log n)e2n(X, δn) =


(
b

2

)b−1
b

b− 1
if b > 1

1 if b = 1.

(2.6)

If b > 1, the converse is true and, furthermore, lim inf
n

ψ(δn)e2n(X(δn)) ≥ 1.

(b) Assume b > 1. If the sequence of integers (δn)n≥1 goes to infinity and produces

asymptotically optimal quantizers i.e. lim
n

e2n(X, δn)

e2n(X)
= 1, then

lim
n

δn
log n

=
2

b
⇐⇒ lim

n
ψ(log n)e2n(X(δn)) =

(
b

2

)b−1
⇐⇒ lim

n
ψ(δn)e2n(X(δn)) = 1.

In fact this theorem can be reformulated equivalently in terms of critical dimension,
at least when b > 1. To this end we introduce the following definitions.

Definition 2.4. Assume (R). Let ψ be defined as in Theorem 2.2. Let (δn)n≥1 be a
sequence of positive integers going to infinity.

(a) A sequence (δn)n≥1 is an admissible sequence of dimensions for X if

lim
n

e2n(X, δn)

e2n(X)
= 1.

(b) If b > 1, an admissible sequence (δn)n≥1 is an asymptotic critical dimension se-
quence or strongly admissible for X if

lim
n
ψ(δn)e2n(X(δn)) = 1.

Admissibility simply means that such a sequence produces asymptotic optimal quan-
tizers in practice. For computational purpose, it is clear that the “lowest" choice
δn = b 2b log nc seems the more appropriate. This is made more precise by the second
definition in (b), even if it looks less intuitive.

As concerns asymptotic critical dimension (strong admissibility), we know from (2.3)
that for every fixed dimension d∈ N∗, there is a balance in e2n(X, d) between the a pri-
ori quantized part e2n(X(d)) and the tail of the series

∑
k≥d+1 λk) which represents the

variance of the non-quantized part (or, equivalently, trivially quantized by 0). But for a
fixed d this does not prejudge of what really occurs. However, an admissible sequence
(δn)n≥1 being given, the smaller e2n(X(δn)) is, the more quantized X(δn) is in practice.
As illustrated by Theorem 2.3, the definition of asymptotic critical dimension (strong
admissibility) suggests that in that case X(δn) is “fully" quantized, at least asymptoti-
cally. This is confirmed by numerical computations (see [14] and [15] fro more insight
on these numerical aspects).
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The theorem below and the corollary that follows reformulate the above results in
term of critical dimensions problem, at least for b > 1.

Theorem 2.5. Assume (R). Let ψ be defined as in Theorem 2.2.

(a) If b > 1,

(δn)n≥1 is admissible ⇐⇒ lim inf
n

δn
log n

≥ 2

b

and

(δn)n≥1 is strongly admissible ⇐⇒ lim
n

δn
log n

=
2

b
.

(b) If b = 1,

(δn)n≥1 is admissible =⇒ lim inf
n

ψ(δn)

ψ(log n)
≥ 1

and

lim inf
n

δn
log n

> 0 =⇒ (δn)n≥1 is admissible.

As for the genuine critical dimension, we thus obtain the following lower bounds.

Corollary 2.6. Assume (R). (a) If b > 1,

lim inf
n

dn
log n

≥ 2

b
.

(b) If b = 1,

lim inf
n

ψ(dn)

ψ(log n)
≥ 1.

Following the definition of asymptotic critical dimension, it seems intuitive to guess
that the sequence (dn)n≥1 of genuine critical dimension is an asymptotic critical dimen-
sion sequence. In fact such a claim is just a reformulation of the conjecture (2.4). In
more mathematical terms, it means that the conjecture is true if and only if

lim
n→+∞

ψ(dn)e2n(X(dn)) = 1.

3 Upper bound (proofs)

Since we are trying to provide fairly a new constructive proof of Theorem 2.2 i.e.

the sharp rate for quadratic functional quantization, we emphasize that we will not
use any of its claims. In particular, we are not in position at this stage to claim that
limn ψ(log n)e2n(X) does exist. This is the reason why the claims in the proposition
below involve lim supn ψ(log n)e2n(X) which always exists (the same will be true with
Proposition 4.3 in the next section).

Proposition 3.1. Assume (R). Let (δn)n≥1 be a sequence of integers going to infinity.

(a) If b > 1 and lim inf
n

δn
log n

≥ 2

b
, then

lim sup
n

ψ(log n) e2n(X) ≤ lim sup
n

ψ(log n) e2n(X, δn) ≤
(
b

2

)b−1
b

b− 1
. (3.1)

Furthermore, if lim
n

δn
log n

=
2

b
, then

lim sup
n

ψ(log n) e2n(X(δn)) ≤
(
b

2

)b−1
.
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(b) If b = 1 and lim inf
n

δn
log n

= κ∈ (0,+∞), then

lim sup
n

ψ(log n)e2n(X) ≤ lim sup
n

ψ(log n) e2n(X, δn) ≤ 1. (3.2)

First we need two lemmas devoted two block quantization and their critical di-
mension which are the key of the proof. For every integer d ≥ 1, we define set
λ
(d)
k = λ(k−1)d+1.

Lemma 3.2 (Block quantization). Let d, d0∈ N∗, d > d0. Then, for every k∈ N∗, k ≤ d
d0

,
we have

e2n(X(d)) ≤ C(d0) min

{
k∑
`=1

λ
(d0)
` n

− 2
d0

` , n1, . . . , nk∈ N∗,
k∏
`=1

n` ≤ n

}
+

d∑
i=kd0+1

λi

Proof. We introduce the (sub-optimal) d0-block product quantizer defined as follows

X̃(d,d0,k) =

k∑
`=1

d0∑
i=1

√
λ(`−1)d0+i

(
Projα(`)

(
(ξj)(`−1)d0+1≤j≤`d0

))
i
eX(`−1)d0+i

where α(`) ⊂ Rd0 is an optimal quadratic quantizer of size (or at level) n` of N
(
0; Id0

)
and Projα(`) : Rd0 → α(`) is a Borel nearest neighbour projection on α(`).

Elementary computations based on the Pythagoras theorem (see Lemma 4.2 in [13])
show that

∥∥∥X − X̃(d,d0,k)
∥∥∥
2

=

k∑
`=1

d0∑
i=1

λ(`−1)d0+iE
∣∣∣(Projα(`)

(
(ξj)(`−1)d0+1≤j≤`d0

))
i
− ξ(`−1)d0+i

∣∣∣2
+

d∑
i=kd0+1

λi,

≤
k∑
`=1

λ(`−1)d0+1E

∣∣∣(Projα(`)

(
(ξj)(`−1)d0+1≤j≤`d0

))
i
− ξ(`−1)d0+i

∣∣∣2
+

d∑
i=kd0+1

λi,

≤
k∑
`=1

λ(`−1)d0+1e
2
n`

(
N
(
0; Id0

))
+

d∑
i=kd0+1

λi.

The definition of C(d0) completes the proof.

This optimal integer bit allocation has a formal almost optimal solution given by

n` = bx`c with x` =
(
λ
(d0)
`

) d0
2

 k∏
j=1

λ
(d0)
j

−
d0
2k

n
1
k , ` = 1, . . . , k,

as suggested by considering the problem on (R+)k instead of (N∗)k. This solution is ad-
missible as soon as all the n`s are nonzero or equivalently since they are non-increasing
in ` as soon as nk ≥ 1.
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Lemma 3.3 (Critical dimension for block quantization). Let d, d0 and k be like in
Lemma 3.2.

A(n, d0) =

k ≥ 1 :
(
λ
(d0)
k

) d0
2

 k∏
j=1

λ
(d0)
j

−
d0
2k

n
1
k ≥ 1

 .

(a) A(n, d0) = {1, . . . , kn(d0)}.

(b) Assume (R). Then kn(d0) ∼ 2
bd0

log n as n→ +∞.

(c) For every integer k≤ min
(
kn(d0), dd0

)
,

e2n(X(d)) ≤ 4
1
d0 C(d0)kλ

(d0)
k +

d∑
i=kd0+1

λi.

Proof. (a) This follows from the fact that the sequence

ak = a
(d0)
k :=

d0
2

(
k∑
`=1

log λ
(d0)
` − k log λ

(d0)
k

)
(3.3)

is non-decreasing since A(n, d0) = {k : ak ≤ log n}.

(b) First note that λ(d0)j = ϕ((j − 1)d0 + 1) and that ϕ((. − 1)d0 + 1) is regularly varying
still with index b if ϕ is. As a consequence standard arguments on regularly varying
functions show that

2ak
d0
∼ bk or equivalently ak ∼

bd0k

2
as k → +∞

which in turn implies that kn(d0) ∼ 2
bd0

log n as n→ +∞.

(c) It is straightforward that

k∑
`=1

λ(d0)n
− 2
d0

` ≤ 2
2
d0

k∑
`=1

λ
(d0)
` (n` + 1)−

2
d0

≤ 4
1
d0

k∑
`=1

λ
(d0)
` x

− 2
d0

`

≤ 4
1
d0 kλ

(d0)
k x

− 2
d0

k

≤ 4
1
d0 kλ

(d0)
k

since λ(d0)` x
− 2
d0

` =

 k∏
j=1

λ
(d0)
j

−
d0
2k

n
1
k does not depend on ` and xk ≥ 1.

Here we come to the proof of Proposition 3.1.

Proof. (a) First assume that lim
n

δn
log n

=
2

b
. Let d0∈ N∗ be a (temporarily) fixed integer.

Set kn = kn(d0)∧
⌊
δn
d0

⌋
for n large enough to have δn ≥ d0. It follows from Lemma 3.3(b)
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that kn ∼
2

b

log n

d0
and kn ≤ kn(d0) and kn ≤ δn

d0
so that by Lemma 3.3(c) we get as soon

as n ≥ nd0 ,

e2n(X(δn)) ≤ 4
1
d0 C(d0)knλ

(d0)
kn

+

δn∑
i=knd0+1

λi

≤ 4
1
d0 C(d0)knλ

(d0)
kn

+ (δn − d0kn)λ
(d0)
kn+1. (3.4)

Now, mimicking arguments in [13] involving regularly varying functions, namely ϕ, we
get

d0knλ
(d0)
kn

= d0knϕ(knd0 + 1) ∼ 2

b
log n

(
2

b

)−b
ϕ(log n) =

(
2

b

)1−b
1

ψ(log n)
as n→ +∞.

Moreover

(δn − d0kn)λ
(d0)
kn+1 =

( δn
knd0

− 1
)
knd0λ

(d0)
kn+1 = o

( 1

ψ(log n)

)
since δn ∼ knd0 ∼ 2

b log n.
Consequently, by letting d0 go to +∞, we get

lim sup
n

ψ(log n)e2n(X(δn)) ≤
(

2

b

)1−b

lim sup
d0

C(d0)

d0
.

One concludes by using (see [13]) that, owing to the converse of Shannon’s source
coding theorem,

lim
d→+∞

C(d)

d
= 1.

On the other hand∑
i≥knd0+1

λ
(d0)
i ∼ knd0ϕ(knd0)

b− 1
∼ 1

(b− 1)ψ
(
2
b log n

) ∼ (2

b

)1−b
1

(b− 1)ψ
(

log n
)

which yields the announced result by sub-additivity of lim supn.

If lim inf
n

δn
log n

≥ 2

b
, then set δ′n = δn ∧

⌊
2 logn
b

⌋
, n ≥ 1. Then lim

n

δ′n
log n

=
2

b
whereas by

Lemma 3.2 e2n(X, δn) ≤ e2n(X, δ′n) which implies

lim sup
n

ψ(log n)e2n(X, δn) ≤ lim sup
n

ψ(log n)e2n(X, δ′n) ≤
(

2

b

)1−b
b

b− 1
.

(b) Assume first that limn
δn

logn = κ∈ (0,+∞). Owing to Lemma 3.2, we may assume as

above that kn defined like in (a) satisfies kn ∼ κ′ log n where κ′ = κ ∧
(

2
d0

)
. As b = 1,

ψ(x) =
1∫ +∞

x
ϕ(y)dy

. It follows from Proposition 1.5.9b in [2] (applied with `(y) = yϕ(y))

that ψ is a slowly varying function satisfying xϕ(x) = o(1/ψ(x)). Hence, we derive that∑
i≥δn+1

λ
(d0)
i ∼ 1

ψ(δn)
∼ 1

ψ(κ log n)
∼ 1

ψ(log n)
.

On the other hand,

d0knλ
(d0)
kn

= d0knϕ(d0kn + 1) = o
( 1

ψ(d0kn + 1)

)
= o
( 1

ψ(log n)

)
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since ψ is slowly varying, and

δn∑
i=d0kn+1

λi ≤
( δn
d0kn

− 1
)
d0knλ

(d0)
kn

= o
( 1

ψ(log n)

)

since
δn
d0kn

− 1 has a finite limit
κ

d0κ′
− 1. As a consequence

lim sup
n

ψ(log n)e2n(X, δn) ≤ 1.

The extension to the general case lim infn
δn

logn = κ∈ (0,+∞) is straightforward up
to the extraction of a subsequence.

Remark. Note that when b = 1, we do not need to let d0 go to infinity. Since this
rate is optimal (in view of Theorem 2.2), this means in particular that scalar product
quantization (i.e. block quantization with blocks of size d0 = 1) is asymptotically optimal.

4 Lower bound

We will rely on the famous notion in Information Theory, the Shannon ε-entropy (or
rate-distortion function) of P (see [17]). Let P be a probability measure on H. For ε > 0,
it is defined by

R(ε) = RP (ε) = inf
{
H(Q|P ⊗Q2) : Q probability measure on H ×H

with first marginal Q1 = P and

∫
H×H

‖x− y‖2dQ(x, y) ≤ ε2
}

where H(Q|P ⊗Q2) classically denotes the relative entropy (mutual information)

H(Q|P⊗Q2)=


∫
H

log
( dQ

dP ⊗Q2

)
dQ if Q is absolutely continuous with respect to P⊗Q2,

+∞ otherwise.

The simple converse part of Shannon’s source coding theorem (see [1] Theorem 3.2.2,
[7], p.163) says that the minimal number N(ε) of codewords needed in a codebook α

such that Emina∈α ‖X − a‖2 ≤ ε2 satisfies logN(ε) ≥ R(ε) so that, in particular

R(en(X)) ≤ log n.

We rely here on the closed form for Shannon’s entropy of Gaussian vectors known as
Kolmogorov-Ihara’s formula (see [10, 8]) that we will apply to the probability measure

P = L(X(d)) and the space H =

d⊕
k=1

ReXk (or equivalently to the d-dimensional normal

distribution P = N
(

0; Diag(λ1, . . . , λd)
)

on the canonical space H = Rd). Of course, the

eigenvalues are still supposed to be ordered in a non-increasing way.

Theorem 4.1 (Kolmogorov-Ihara, see [10, 8]). Let d≥1 and let P =N
(
0; Diag(λ1, . . . , λd)

)
where λ1 ≥ · · · ≥ λd > 0. For every ε > 0 such that ε2∈ (0, λ1 + · · ·+ λd),

R(ε) =
1

2

r(ε)∑
k=1

log
( λk
θ(ε)

)
= log

r(ε)∏
k=1

λk
θ(ε)

 1
2
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where r(ε) = max{k ∈ {1, . . . , d} : λ̄dk > ε2}, with λ̄dk = kλk + λk+1 + · · ·+ λd, k = 1, . . . , d

and λ̄dk = 0, k ≥ d+ 1, and θ(ε) is the unique solution to the equation

ε2 = r(ε)θ(ε) +

d∑
k=r(ε)+1

λk.

Note that the definition of r(ε) is consistent since (λ̄dk)1≤k≤d is non-increasing; fur-
thermore by construction θ(ε)∈ [λr(ε)+1, λr(ε)).

By the definition of optimal quantization at level n, we have, as recalled above (see
also [13]),

∀n ≥ 1, R
(
en(X(d))

)
≤ log n.

Lemma 4.2. Let d, n∈ N∗. Then e2n(X(d)) ≥ min

n− 2
d d

(
d∏
k=1

λk

) 1
d

, dλd

.

Proof. If e2n(X(d)) =: ε2 < λ̄dd, then r(ε) = d and θ(ε) = ε2

d so that

R(ε) = log

(
d∏
k=1

λk

) 1
2

− d

2
log
(ε2
d

)
≤ log n

if and only if

e2n(X(d)) = ε2 ≥ n− 2
d d

(
d∏
k=1

λk

) 1
d

.

Proposition 4.3 (Lower bound). Assume (R). Let δn be a sequence of dimensions going
to infinity.

(a) If b > 1 and κ = lim sup
n

δn
log n

∈ [0,+∞] then, with standard conventions,

lim inf
n

ψ(log n)e2n(X, δn) ≥ κ1−b
(

1

b− 1
+ e−2(

1
κ−

b
2 )+

)
.

Furthermore, if lim sup
n

ψ(log n)e2n(X, δn) = lim sup
n

ψ(log n)e2n(X), then

lim inf
n

δn
log n

≥ 2

b
.

(b) If b = 1, then

lim inf
n

ψ(log n)e2n(X) ≥ lim inf
n

ψ(log n)

ψ(δn)
.

Furthermore, if if lim sup
n

ψ(log n)e2n(X, δn) = lim sup
n

ψ(log n)e2n(X), then

lim inf
n

ψ(δn)

ψ(log n)
≥ 1.

Proof. (a) Having in mind that ψ(x) = 1/(xϕ(x)), it follows from Lemma 4.2 that

ψ(log n)e2n(X(δn)) ≥ ψ(log n) min

n− 2
δn δn

(
δn∏
k=1

λk

) 1
δn

,
1

ψ(δn)


=

ψ(log n)

ψ(δn)
min

(
e−2

logn
δn

1

ϕ(δn)
e

1
δn

∑
1≤k≤δn logϕ(k), 1

)
.
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The function ϕ being regularly varying with index −b, b > 1, one checks (see [2])

1

m

m∑
k=1

logϕ(k) = b+ logϕ(m) + o(1) as m→ +∞

so that,

ψ(log n)e2n(X(δn)) ≥ ψ(log n)

ψ(δn)
min

(
e−2

logn
δn

+b+o(1), 1
)

which in turn implies that

ψ(log n)e2n(X, δn) ≥ ψ(log n)

ψ(δn)

(
min

(
e−2

logn
δn

+b+o(1), 1
)

+
1 + o(1)

b− 1

)
.

At this stage we introduce the function gb defined on [0,+∞] (with the usual conven-
tions) by

gb(u) :=

(
min

(
e−2(

1
u−

b
2 ), 1

)
+

1

b− 1

)
u1−b = u1−b

(
1

b− 1
+ e−2(

1
u−

b
2 )+

)
.

The function gb is decreasing on [0,+∞] with

gb

(2

b

)
=
( b

2

)b−1 b

b− 1
.

Let (n′) be a subsequence such that
δn′

log n′
→ u ∈ [0,+∞]. Using that ψ is regularly

varying with index b− 1 we derive that

lim inf
n

ψ(log n′)e2n(X, δn′) ≥ gb(u)

so that finally

lim inf
n

ψ(log n)e2n(X, δn) ≥ sup
u≤κ

gb(u) = gb(κ) where κ = lim sup
n

δn
log n

.

Assume now that lim sup
n

ψ(log n)e2n(X, δn) = lim sup
n

ψ(log n)e2n(X). Let

c := lim inf
n

δn
log n

∈ [0,+∞]

and let (δn′)n≥1 be a subsequence such that δn′
logn′ → c. Let (δ̃n)n≥1 be a sequence going

to infinity and satisfying δ̃n′ = δn′ and lim sup
n

δ̃n
log n

= c. Then one gets

lim sup
n

ψ(log n)e2n(X, δn) ≥ lim inf
n

ψ(log n′)e2n′(X, δn′) ≥ lim inf
n

ψ(log n)e2n(X, δ̃n) ≥ gb(c).

If c = 0, gb(0) = +∞ and we would have that ψ(log n)e2n(X, δn) → +∞ which is in
contradiction with claim (a) in Proposition 3.1.

If c∈ (0,+∞], the upper bound obtained in Proposition 3.1 implies gb(c) ≤ gb

(
2
b

)
which

in turn implies c ≥ 2
b .

(b) Using again standard results from [2] about regularly varying functions with index
−1, we get ∑

i≥δn+1

λi ∼
1

ψ(δn)
still with ψ(x) =

1∫ +∞
x

ϕ(y)dy
.
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Hence

ψ(log n)e2n(X, δn) ≥ ψ(log n)
∑

i=δn+1

λi ∼
ψ(log n)

ψ(δn)
.

Using the same trick (based on the sequence (δ̃n)n≥1) as in the former case), we
derive similarly that, if lim sup

n
ψ(log n)e2n(X, δn) = lim sup

n
ψ(log n)e2n(X), then

lim sup
n

ψ(log n)

ψ(δn)
≤ 1

which is the announced result.

5 Synthesis

5.1 Proof of Theorem 2.3 (sharp rate and constructive aspects)

First we provide a proof of Theorem 2.2 based on the upper and lower bounds
established in former sections and the following lemma (already established in [13]
but reproduced here for the reader’s convenience). Furthermore, it has to be noticed
that it provides an easily tractable (and asymptotically optimal) lower bound for the
quadratic quantization error, keeping in mind that the sequence (kn(1))n≥1 is defined
in Lemma 3.3.

Lemma 5.1. For every n∈ N∗,

e2n(X) ≥ kn(1)λkn(1)+1 +
∑

k≥kn(1)+1

λk.

Proof. It follows from Kolmogorov-Ihara’s formula that for every ε2∈ (0, λ1 + · · ·+ λd),

R(ε) > a
(1)
r(ε) since θ(ε) < λr(ε) (see Equation (3.3) for a definition of a(1)k ). As a conse-

quence, a(1)
r(en(X(d)))

≤ log n. Consequently, it follows from Lemma 3.3(a) that

r(en(X(d))) ≤ kn(1) which in turn implies that, for every d ∈ N∗, λ̄dkn(1)+1 ≤ e2n(X(d)).

Noting that e2n(X) ≥ e2n(X(d)) and letting d go to infinity, we get, for every n∈ N∗,

e2n(X) ≥ (kn(1) + 1)λkn(1)+1 +
∑

k≥kn(1)+2

λk.

Now, we come to the proof of Theorem 2.3.

Proof. Step 1 (Sharp rate): Case b > 1. We know from Proposition 3.1 that

lim sup
n

ψ(log n)e2n(X) ≤ lim sup
n

ψ(log n)e2n(X, δn)) ≤
( b

2

)b−1 b

b− 1
.

On the other hand, combining the fact that kn(1) ∼ 2
b log n and arguments based on

regularly varying functions already used in Proposition 3.1 yield that

kn(1)λkn(1)+1 ∼
1

ψ(kn(1))
∼
( b

2

)b−1 1

ψ(log n)

and ∑
k≥kn(1)+1

λk ∼
1

(b− 1)ψ(kn(1))
∼
( b

2

)b−1 1

(b− 1)ψ(log n)
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so that lim inf
n

ψ(log n)e2n(X) ≥
( b

2

)b−1 b

b− 1
which which gives the sharp rate of en(X).

Case b = 1. One concludes likewise since kn(1)λkn(1)+1 ∼ 1
ψ(logn) and

∑
k≥kn(1)+1 λk =

o(1/ψ(log n)).

Step 2 (Constructive aspects): When b > 1, Claim (2.3) in (a) follows from (3.1) com-
bined with the above sharp rate for en(X). The converse claim follows from the second
claim in Proposition 4.3(a). The last claim is as follows. First note that

ψ(δn)e2n(X(δn)) =
ψ(δn)

ψ(log n)
ψ(log n)e2n(X)− ψ(δn)

∑
k≥δn+1

ϕ(k). (5.1)

Then, ϕ and ψ being regularly varying with index b and b− 1 respectively, we derive by
standard arguments on regularly varying functions that ψ(δn)

∑
k≥δn+1 ϕ(k) ∼ 1

b−1 and

lim infn
ψ(δn)
ψ(logn) ≥

(
2
b

)b−1
. Combining this with the sharp rate for ψ(log n)en(X) yields

lim inf
n

ψ(δn)e2n(X(δn)) ≥
(

2

b

)b−1(
b

2

)b−1
b

b− 1
− 1

b− 1
= 1.

When b = 1, Claim (2.3) in (a) follows from (3.1) combined with the above sharp
rate for en(X). By Proposition 3.1(b), lim supn ψ(log n)e2n(X) ≤ ψ(log n)e2n(X, δn) ≤ 1.
Combining these two inequalities yields the announced result.

(b) Assume b > 1. If en(X, δn) ∼ en(X), then (a) implies

lim inf
n

δn
log n

≥ 2

n
and lim inf

n
ψ(δn)e2n(X(δn)) ≥ 1.

Then the three equivalences follow from (5.1), once noted again that

ψ(δn)
∑

k≥δn+1

ϕ(k) ∼ 1

b− 1

since δn → +∞.

5.2 Proof of Theorem 2.5

Proof. (a) When b > 1, the direct claim on admissibility is a consequence of Proposi-
tion 4.3. The converse claim follows from Proposition 3.1(a) and Theorem 2.3.

As for strong admissibility, the direct claim is as follows: from the definition of strong
admissibility, we get en(X, δn)2 ∼ en(X)2 (by admissibility) and

en(X, δn)2 ∼ 1

ψ(δn)
+

1

b− 1

1

ψ(δn)
=

b

b− 1

1

ψ(δn)

so that
b

b− 1

1

ψ(δn)
∼ en(X)2. Then comparing with the sharp rate from Theorem 2.3,

we get

1

ψ(δn)
∼
(
b

2

)b−1
1

ψ(log n)

which finally implies, having in mind that ψ is regularly varying with index b− 1, that

δn ∼
b

2
log n.

The converse claim is a consequence of Proposition 3.1(a) and Theorem 2.3. Claim (b)

follows the same lines and details are left to the reader.
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5.3 Back to the conjecture(s) (b > 1)

As concerns the conjecture lim
n

dn
log n

=
2

b
on the sharp asymptotics of the critical

dimension dn, strictly speaking, we only went half way by proving that

lim inf
n

dn
log n

≥ 2

b
.

The reverse inequality seems out of reach with the existing technology developed so far
for functional quantization. However the strong admissibility result in Theorem 2.5(a)

can be seen as an answer in the asymptotic sense since it shows that if lim
n

δn
log n

=
2

b
,

then the resulting quadratic quantization error is asymptotically optimal and (asymp-
totically almost) all dimensions are used (strong admissibility).

This result is helpful from a numerical point of view since it shows that for the
Brownian motion, the Brownian bridge or the Ornstein-Uhlenbeck process (and any
Gaussian process for which b = 2, see below), considering a truncation at δn = blog nc
or δn = dlog ne is (at least) asymptotically optimal whatever the future of the sharper
conjecture

dn∈ {blog nc, dlog ne}

could be.
For various other examples of families of processes satisfying Assumptions (R) (in-

cluding multi-parameters processes like the Brownian sheet, we refer to [13]).

� Numerical experiments on the Brownian motion. We know that the K-L eigensystem
of the standard Brownian motion W = (Wt)t∈[0,T ] over [0, T ] is given by

λWk =
( T

π(k − 1
2 )

)2
, eWn (t) :=

√
2

T
sin
( t√

λk

)
, k ≥ 1,

so that b = 2. Then, Theorem 2.2 yields

lim
n

log(n)e2n(W ) =
2T 2

π2
≈ 0.2026× T 2.

Figure 1 depicts the graph of the n 7→ log(n)e2n(W ) (with T = 1) . One can see that it
looks as a piecewise affine function with breaks in the slope. Note that the exponential
function ex satisfies

e3 ≈ 20.09 ≈ 20 e4 ≈ 54.59 ≈ 55 e5 ≈ 148.41 ≈ 148.

These values graphically fit with the monotony slope breaks.
The graph in Figure 1 suggests, at this (low) range of the computation, that the

limiting value for n 7→ log(n)e2n(W ) is higher (≈ 0.22) than the theoretical one (≈ 0.2026).
This impression is misleading since further computations not reproduced here show
that the sequence n 7→ log(n)e2n(W ) starts to be slowly decreasing beyond n ≥ 1000.
The value 0.22 seems to be a local maximum. For further details on these (highly time
consuming) computations we refer to [14].

The quantization grids, computed during these numerical experiments by stochas-
tic optimization methods (randomized Lloyd’s procedure, Competitive Learning Vector
Quantization algorithm) for n = 1 up to 104 for the standard Brownian motion (when
T = 1), can be downloaded from the website

www.quantize.maths-fi.com
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Figure 1: n 7→ log(n)e2n(W ) and (conjectured) theoretical areas for dWn = d(n) = blog nc.
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