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1-2 model, dimers, and clusters
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Abstract

A 1-2 model configuration is a subgraph of the hexagonal lattice, in which the edge-
degree of each vertex is either 1 or 2. We prove that for any translation invariant
Gibbs measure of the 1-2 model configurations on the whole-plane hexagonal lat-
tice, almost surely there are no infinite paths. Using a measure-preserving corre-
spondence between 1-2 model configurations on the hexagonal lattice and perfect
matchings on a decorated graph, we construct an explicit translation invariant Gibbs
measure for 1-2 model configurations on the bi-periodic hexagonal lattice. We prove
that the behaviors of infinite clusters are different for small and large local weights,
which shows the existence of a phase transition.
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Computer scientists M. Schwartz and J. Bruck ([18]) proposed the uniform 1-2 model
(not-all-equal-relation), as a graphical model whose partition function (total number of
configurations) can be computed by computing determinants via the holographic algo-
rithm ([19]). A general version of the 1-2 model was explored in [15], as an application
of a generalized holographic algorithm, and local statistics were computed. The idea of
the holographic algorithm is to relate general vertex configurations to perfect match-
ings through a base change, hence it significantly enlarges the class of exactly solvable
vertex models. The holographic algorithm, although very general and beautiful, turns
out not to be an efficient method to solve the 1-2 model.

In this paper, we introduce a new approach to solve the 1-2 model exactly, by con-
structing a measure-preserving correspondence between 1-2 model configurations on
the hexagonal lattice and perfect matchings on a decorated graph. With the help of
such a measure-preserving correspondence, we compare the behaviors of infinite ho-
mogeneous clusters for small and large local weights by analyzing the underlying per-
fect matchings, and prove the existence of a phase transition (Sect. 5). It is unknown
whether the phase-transition result can be proved using the more complicated holo-
graphic algorithm.

We start with the basic properties of the underlying hexagonal lattice on which the
1-2 model is defined. LetH = (V,E) be a hexagonal lattice. It is a bipartite graph, in the
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1-2 model, dimers, , and clusters

sense that all the vertices of H can be colored black and white so that black vertices are
incident only to white vertices and vice versa. Let Γ be a subgroup of the automorphism
group of H, acting on H by translations. Note that Γ is isomorphic to Z2. In particular,
each γ ∈ Γ is a color-preserving automorphism of H, i.e., it maps each white (resp.
black) vertex to another white (resp. black) vertex.

A 1-2 model configuration ω = (Vω, Eω) of H is a subgraph of H, satisfying

1. Vω = V ,

2. the degree (number of incident edges) for each vertex of Vω in ω is either 1 or 2.

An example of a 1-2 model configuration on a finite graph is illustrated in Figure 1.
In particular, in Figure 1, the graph is drawn in a large rhombus region. We identify
the northwestern (resp. northeastern) boundary of the rhombus with the southeastern
(resp. southwestern) boundary, and get a graph embedded in a torus (toroidal graph),
in which each face is a hexagon. The edges of each hexagon are either blank (non-
present) or black (present). The subgraph consisting of black edges in Figure 1, is a 1-2
model configuration, in the sense that the degree of each vertex on the torus is either 1
or 2. We can also consider it as a 1-2 model configuration on a large rhombus region of
H with the periodic boundary condition (see Page 4).

A self-avoiding path is a sequence v0e1v1 · ... · vk−1ekvk, so that the endpoints of ei
is vi−1 and vi, and vi 6= vj for any i 6= j. A loop is a sequence v0e1v1 · ... · vk−1ekv0, so
that the endpoints of ei is vi−1 and vi, and vi 6= vj for any i 6= j. We can see from Figure
1 that for any 1-2 model configuration ω, the only possible connected components are
either self-avoiding paths or loops. The 1-2 model is a probability measure defined on
a sample space consisting of all 1-2 model configurations. The probability measure of
the 1-2 model on a finite graph, is a Boltzmann measure, i.e., the measure is defined
in such a way that the probability of each configuration is proportional to the product
of configuration weights at all vertices, which we will explain below.
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Figure 1: 1-2 model configuration

We look at a configuration ω locally at a vertex v ∈ V , and use ω|v to denote the local
configuration of ω at the vertex v, i.e, the intersection of Eω with the set of incident
edges of v. Each one of the 3 incident edges e1, e2, e3 of v is either present in ω or
not; therefore each local configuration at v can be labeled by a 3-digit binary number.
Namely, each edge corresponds to a digit, a present edge corresponds to the number
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“1” on the digit; while an edge corresponds to “0” if it is not present in a 1-2 model
configuration. Such correspondences are illustrated in Figure 2 and Figure 3, where
the thick edges are present edges, and thin edges are not present. More precisely, the
correspondence between digits of a length-3 binary number and incident edges of a
vertex can be described as follows: the right digit corresponds to the horizontal edge;
the middle digit corresponds to the northwestern-southeastern edge; and the left digit
corresponds to the northeastern-southwestern edge.

{000}, 0 {001}, a {010}, b {011}, c

{100}, c {101}, b {110}, a {111}, 0

Figure 2: local configurations, binary numbers and weights at a black vertex

{000}, 0 {001}, a {010}, b {011}, c

{100}, c {101}, b {110}, a {111}, 0

Figure 3: local configurations, binary numbers and weights at a white vertex

A non-negative number (weight) is associated to each local configuration at a vertex,
i.e, a choice of subsets of incident edges of v, or a specific 3-digit binary number. This
way we can write a dimension-8 vector indexed by the 8 different local configurations,
so that the entry at a configuration, or a specific 3-digit binary number, is the weight of
the configuration. For a 1-2 model, the local configuration {000} (no incident edges are
included) or {111} (all incident edges are included) are not allowed, and we give them a
weight 0. Such a vector is called the signature at a vertex v. The 1-2 model considered
in this paper has the property that each local configuration and its complement have
the same weight. Namely, the signature rv at a vertex v has the following form

000 001 010 011 100 101 110 111

0 a b c c b a 0
, (0.1)

where a, b, c are positive numbers independent of v. The 1-2 model is called uniform if
a = b = c.

LetHn = (Vn, En) be a hexagonal lattice embedded into a n×n torus (toroidal graph).
The toroidal graph Hn is a quotient graph of H, with a translation group Γn ' Zn ×Zn,
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and it is also bipartite. The total number of white vertices in Hn is n2, as well as the
total number of black vertices, and every vertex is a translation of any other vertex of
the same color.

Note that the torus T2 has a nontrivial homology group H1(T2) ' Z2. Let γx, γy be
two homology generators of H1(T2). In other words, γx and γy are two simple, essential
(non-contractible), and essentially distinct (one cannot be obtained from the other by
moving on the surface T2) cycles winding around the torus. Let Ex (resp. Ey) be all the
edges of Hn crossed by γx (resp. γy).

Define a partial-graph GP = (VGP
, EGP

, HEGP
), where VGP

is the set of vertices,
EGP

is the set of edges, so that each edge connects a pair of vertices, and HEGP
is

the set of half-edges, and each half-edge has exactly one vertex as its endpoint. We
cut the torus along γx and γy, and obtain a planar partial-graph H′n. H′n is almost
the same as Hn except that for each edge in Ex ∪ Ey of Hn, it corresponds to two
half edges in H′n. We use the term partial-graph for H′n, because strictly speaking,
H′n is not a graph since each half-edge has only one endpoint. In other words H′n =

(Vn, En \ {Ex ∪ Ey}, E1
x ∪ E1

y ∪ E2
x ∪ E2

y), where Vn is the vertex set, En \ {Ex ∪ Ey} is
the set of edges, E1

x ∪ E1
y ∪ E2

x ∪ E2
y is the set of half-edges, and half-edges in E1

x ∪ E1
y

(resp. E2
x ∪E2

y) are in 1-to-1 correspondence with edges in Ex ∪Ey. More precisely, for
e = (u, v) ∈ Ex ∪ Ey, we have exactly two half-edges e1 and e2 corresponding to e, so
that e1 ∼ u, e1 ∈ E1

x ∪E1
y , and e2 ∼ v, e2 ∈ E2

x ∪E2
y , where u and v are a pair of incident

vertices. As n → ∞, H′n exhausts H. We can also see that H′n approximates H in the
Benjamini-Schramm sense ([2]). Namely, we fix a vertex v in H, and a vertex v′n in H′n,
as root vertices of H and H′n, respectively. For r = 1, 2, ..., let BH(v, r) be the closed
ball of radius r to v in H, and similarly for H′n and v′n. Let k be the supreme of all r, so
that there is an isomorphism from BH(v, r) onto BH′

n
(v′n, r) which takes v to v′n. We set

d[(H, v), (H′n, v
′
n)] = 2−k, then limn→∞ d(H′n,H) = 0.

A 1-2 model configuration ω = (Vω, Eω, HEω) on the partial-graphH′n is a sub-partial-
graph, satisfying Vω = Vn, and for each vertex v, the sum of numbers of incident edges
and incident half-edges in ω is 1 or 2. We will define a mixed periodic/antiperiodic
boundary condition on 1-2 model configurations of H′n. Namely, we consider 1-2 model
configurations on H′n satisfying one of the boundary conditions:

1. for any e ∈ Ex ∪ Ey, the two corresponding half-edges e1 ∈ E1
x ∪ E1

y , e2 ∈ E2
x ∪ E2

y

of e in H′n have the same configuration (either both are present or neither are
present), and let Ωn,1 be the set of all such 1-2 model configurations;

2. for any ex ∈ Ex, the two corresponding half-edges e1
x ∈ E1

x, e2
x ∈ E2

x of ex in
H′n have the opposite configuration (exactly one of them are present); for any
ey ∈ Ey, the two corresponding half-edges e1

y ∈ E1
y , e2

y ∈ E2
y of ey in H′n have the

same configuration, and let Ωn,2 be the set of all such 1-2 model configurations;

3. for any ex ∈ Ex, the two corresponding half-edges e1
x ∈ E1

x, e2
x ∈ E2

x of ex in H′n
have the same configuration; for any ey ∈ Ey, the two corresponding half-edges
e1
y ∈ E1

y , e2
y ∈ E2

y of ey in H′n have the opposite configuration, and let Ωn,3 be the
set of all such 1-2 model configurations;

4. for any e ∈ Ex ∪ Ey, the two corresponding half-edges e1 ∈ E1
x ∪ E1

y , e2 ∈ E2
x ∪ E2

y

of e in H′n have the opposite configuration, and let Ωn,4 be the set of all such 1-2
model configurations.

Case 1 (resp. 4) is also called the periodic (resp. antiperiodic) boundary condition.
Consider the state space Ωn = ∪4

i=1Ωn,i. We will construct a probability measure on
the sample space Ωn as follows. The probability of configuration ω ∈ Ωn, is defined to
be proportional to the product of weights of its local configurations at all the vertices,
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namely,

Pn(ω) =

∏
v∈Vn

w(ω|v)
Zn

, if ω ∈ Ωn, (0.2)

where w(ω|v) is the weight of the local configuration ω|v, and Zn is a normalizing con-
stant called the partition function defined by

Zn :=
∑
ω∈Ωn

∏
v∈Vn

w(ω|v).

In fact, (0.2) defines a Boltzmann measure for 1-2 model configurations on the finite
partial-graph H′n. The mixed periodic/antiperiodic boundary condition is important be-
cause it corresponds to the periodic boundary condition of perfect matchings on a torus,
which we will explain in Sect. 3. In particular, for the uniform 1-2 model with a = b = c,
the corresponding probability measure defined above is the uniform measure on the
sample space Ωn.

The definition of Gibbs measure of the 1-2 model is based upon the well-known
Dobrushin-Lanford-Ruelle (DLR) definition of a Gibbs state. A Gibbs measure µ for
1-2 model configurations on the hexagonal lattice H is a probability measure on the
sample space of all possible 1-2 model configurations (denote the sample space by Ω),
so that for any finite set of vertices Λ ⊂ V , and µ almost every configuration sΛc on the
complement vertex set Λc = V \ Λ, the (conditional) measure on Λ of a configuration
ω, is proportional to the product of configuration weights at all the vertices of Λ, if
ω is compatible with sΛc , i.e., the configuration ω, restricted on Λc (denoted by ω|Λc),
agrees with sΛc . If ω is not compatible with sΛc , the (conditional) measure on Λ of ω is
0. Namely, let TΛ be the σ-field generated by the 1-2 model configurations on Λc, for µ
almost every sΛc

µ(ω|Λ; TΛ)(sΛc) =

{
1

ZsΛc

∏
v∈Λ w(ω|v) if ω|Λc = sΛc ;

0 otherwise,

where ω|v is the configuration of ω restricted at the vertex v, i.e. ω|v is one of the six
possible 1-2 model configurations {001}, {010}, {011}, {100}, {101}, {110}, and w(·) is the
weight function at a vertex. Moreover,

ZsΛc
=

∑
{ω:ω|Λc=sΛc}

∏
v∈Λ

w(ω|v).

Equivalently, a probability measure µ for 1-2 model configurations in Ω is a Gibbs
measure if it satisfies the DLR equation: for each A ⊆ Ω, Λ ⊆ V , |Λ| <∞,

µ(A) =

∫
{sΛc :∃ξ∈A,ξ|Λc=sΛc}

µ(dsΛc
)

1

ZsΛc

∫
{ω∈A:ω|Λc=sΛc}

∏
v∈Λ

w(ω|v).

Note that if the weak limit of Boltzmann measures on {H′n}∞n=1 exists, as n→∞, the
limit measure will be a Gibbs measure for 1-2 model configurations on H.

Let µ be a probability measure on Ω, we say µ is translation invariant, if for any
two events E1, E2 ∈ Ω, so that there exists γ ∈ Γ, satisfying E2 = γE1, we have µ(E2) =

µ(E1). We say µ is ergodic, if for any translation invariant event E (E = γE, for all
γ ∈ Γ), either µ(E) = 0 or µ(E) = 1.

A connected set of vertices W is a subset of V , so that for any w1, w2 ∈ W , there
exists a path

u1(= w1), u1, u2, ..., un(= w2),
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satisfying ui ∈W , for 0 ≤ i ≤ n, and ui and ui−1 are incident vertices ofH, for 1 ≤ i ≤ n.
Let us call a connected set of vertices, each of which has a configuration with weight

a, an a-cluster. We will construct a measure-preserving correspondence between the 1-
2 model configurations on H = (V,E) and the perfect matchings (dimer configurations)
on a decorated graph H∆ = (V∆, E∆), so that for each vertex v ∈ V , the bisectors of the
three angles of H at v are edges in E∆, see Sect. 3 for details. The main results of this
paper can be summarized as follows:

Theorem 0.1. Consider the 1-2 model on the hexagonal lattice H with signature given
by (0.1). Let Pn be the Boltzmann measure on 1-2 model configurations of H′n with
mixed boundary conditions, defined in (0.2). The sequence of measures {Pn}∞n=1 con-
verges weakly to a translation invariant Gibbs measure P on 1-2 model configurations
of H. For the limit measure P ,

1. Let L be a path of length ` + 1. Assume EL = {u1v1, · · · , u`v`} is the set of all the
bisector edges of angles with two sides in L, then

P (Path L appears in a 1− 2 model configuration) =
1

2

∏̀
k=1

wukvk

∣∣PfK−1
EL

∣∣
where wukvk is the weight of the edge ukvk in H∆, and K−1

EL
is the submatrix the

inverse of the weighted adjacency matrix ofH∆ with rows and columns indexed by
u1, v1, · · · , u`, v`. The probability that the path L appears in a 1-2 model configu-
ration is the probability that L is contained in a path in a 1-2 model configuration;
in other words, all edges in L are present in a 1-2 model configuration.

2. Almost surely there are no infinite paths consisting of present edges of a 1-2 model
configuration.

3. Fixing b, c > 0, when a is sufficiently small, almost surely there are no infinite
a-clusters. When a is sufficiently large, almost surely there exists a unique infinite
a-cluster.

Here is the outline of the paper. In Sect. 2, we prove results on the expected
number of self-avoiding paths of the 1-2 model, as well as the monotonicity of the ex-
pected number of specific local configurations with respect to local weights, following
directly from the definition of the measure. In Sect. 3, we prove the almost-sure non-
existence of infinite paths for any translation invariant Gibbs measure, with the help
of the mass-transport principle introduced in [1]. In Sect. 4, we introduce a measure-
preserving correspondence between 1-2 model configurations on the hexagonal lattice
H and dimer configurations on a decorated latticeH∆, and prove the weak convergence
of the Boltzmann measures using larger and larger tori to approximate the infinite pe-
riodic planar graph. Then we prove a closed form of the probability that a self-avoiding
path appears in a 1-2 model configuration under the limit measure. In Sect. 5, we prove
Part 3 of Theorem 1. The different behaviors of infinite clusters imply the existence of
a phase transition.

1 Self-avoiding path and monotonicity

In this section, we prove two propositions resulting from the definition of the mea-
sure of the 1-2 model. First of all, we notice that in each 1-2 model configuration,
there are two kinds of connected components: either self-avoiding paths or loops, see
Figure 1. Proposition 1.1 shows how to compute the expected number of self-avoiding
paths explicitly, and Proposition 1.2 shows the monotonicity of the expected number of
a specific local configuration with respect to local weights.
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Note that the propositions of this section are related to 1-2 model configurations on
the toroidal graph Hn, which are equivalent to 1-2 model configurations on the partial
graph H′n with periodic boundary conditions, i.e., configurations in Ωn,1 described as in
Case 1.

Proposition 1.1. Consider the 1-2 model defined onHn, the honeycomb lattice embed-
ded into an n × n torus. Let σn denote the number of self-avoiding paths in a random
1-2 model configuration in Hn, then

Eσn =
1

2
n2,

where the expectation is taken with respect to the Boltzmann measure of 1-2 model con-
figurations on Hn, or equivalently, conditional Boltzmann measure Pn(·|bp) of 1-2 model
configurations on H′n defined in (0.2), conditional on the periodic boundary condition
given by Case 1 of the mixed periodic/antiperiodic boundary condition.

Proof. Since each self-avoiding path has two degree-1 vertices as endpoints, and all the
other vertices are of degree 2, the number of non-loop connected components is one
half of the number of degree-1 vertices (N1). By symmetry, each configuration and its
complement have the same probability, therefore

N1 =law 2n2 −N1.

Hence we have

EN1 = n2.

As a result,

Eσn =
1

2
EN1 =

1

2
n2.

LetNa be the number of vertices which have a configuration of weight a (a-configuration).
In other words, Na is the number of vertices which have configurations 001 or 110. We
call all such vertices a-vertices. Whether or not a vertex is an a-vertex depends on the
specific configuration taken.

Proposition 1.2. Fixing the size n of the torus, Na2 stochastically dominates Na1 with
respect to the conditional measure Pn(·|bp), if a2 > a1.

Proof. It suffices to prove that for any positive integer k, Pn(Na ≥ k|bp) is increasing
with respect to a.

Let 1Na≥k be the indicator of the event that Na ≥ k. Obviously for any k, k′ ≥ 0,
1Na≥k and 1Na≥k′ have positive correlation, i.e.,

E1Na≥k · 1Na≥k′ ≥ E1Na≥k · E1Na≥k′ ,

where the expectation is taken with respect to the probability measure of 1-2 model
configurations on the torus Hn given periodic boundary conditions.
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We claim that 1Na1≥k and
(
a2

a1

)Na1

also have positive correlation. Note that

(
a2

a1

)Na1

= exp

[
Na1 log

(
a2

a1

)]

=

∞∑
t=0

N t
a1

[
log
(
a2

a1

)]t
t!

=

∞∑
t=0

[
log
(
a2

a1

)]t
t!

∑
1≤k′≤2n2

[(k′)t − (k′ − 1)t]1Na1
≥k′ .

Therefore, since 1Na≥k and 1Na≥k′ have positive correlation, 1Na1
≥k and

(
a2

a1

)Na1

have

positive correlation as well. Hence Pn(Na ≥ k|bp) is increasing with respect to a.
In particular, the lemma implies that for any γ > 0, EN γ

a is increasing with respect
to a, since

EN γ
a =

∑
1≤k≤2n2

kγPn(Na = k|bp) =
∑

1≤k≤2n2

(kγ − (k − 1)γ)Pn(Na ≥ k|bp).

2 Nonexistence of infinite paths

In this section, we will apply the mass-transport principle ([1]) to prove the almost-
sure nonexistence of infinite paths in 1-2 model configurations for any translation invari-
ant Gibbs measure with respect to positive parameters a, b, c. Define a semi-infinite
path to be an infinite self-avoiding path consisting of edges ofH, which has a finite end-
point and is infinite in just one direction. In other words, this infinite path has a single
vertex of degree 1, while all the other (infinitely many) vertices on the path have degree
2. Next we introduce the definition of unimodularity. Before defining unimodularity, we
review the definition of a quasi-transitive graph.

Let G = (V (G), E(G)) be a graph. Let Γ be a subgroup of the automorphism group
of G. Γ is said to act quasi-transitively on G if there exists a finite subset W ⊆ V (G)

so that, for v ∈ V (G) there exists α ∈ Γ satisfying αv ∈ W . We call W a fundamental
domain, and shall normally (but not invariably) takeW to be minimal with this property.
G is called a quasi-transitive graph if there exists a subgroup of the automorphism
group of G acting quasi-transitively on G.

Definition 2.1. Let Γ be a subgroup of the automorphism group of G acting quasi-
transitively on G. The graph G is said to be unimodular with respect to Γ, if for all
u, v ∈ V in the same orbit of Γ, we have the symmetry

|Stab(u)v| = |Stab(v)u|,

where Stab(u) is the stabilizer of the vertex u in Γ.

In our case, Γ ' Z2 is the subgroup of the automorphism group of H (H = (V,E))

consisting of all translations of H. Each element in Γ corresponds to a color-preserving
isomorphism of H. That is, it maps each black vertex to another black vertex, and each
white vertex to another white vertex. The orbit of each black (resp. white) vertex is the
set of all black (resp. white) vertices. Moreover, since the 1-2 model we considered in
this paper has the same signature at all vertices, each element in Γ is also a weight-
preserving transformation, i.e., it maps each local configuration at one vertex to a local
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configuration at another vertex with the same weight. We can see that Γ acts quasi-
transitively on H with a fundamental domain W consisting of one black vertex and
one white vertex. Obviously H is unimodular since |Stab(u)v| = |Stab(v)u| = 1, for all
u, v ∈ V .

Let m(u, v, ω) be a non-negative function of three variables: two vertices u, v ∈ V ,
and the 1-2 model configuration ω. We assume m(u, v, ω) = 0 unless u and v have the
same color. More precisely, m(u, v, ω) is defined as follows. Each vertex u sitting in a
semi-infinite path sends unit mass to the unique endpoint of this path, if the endpoint
has the same color as u. Vertices not sitting in a semi-infinite path, or having a different
color with the endpoint, send no mass at all. In other words, m(u, v, ω) = 1 if and only if
in the configuration ω there is a semi-infinite path starting at v, passing u and both u and
v are black, or both u and v are white. Otherwise m(u, v, ω) = 0. Obviously, m(u, v, ω)

is invariant under the diagonal action of Γ, meaning that m(u, v, ω) = m(γu, γv, γω), for
all u, v, ω, and γ ∈ Γ. In particular, for each fixed pair of vertices (u, v), m(u, v, ·) is a
random variable.

Lemma 2.2. Assume µ is a probability measure invariant under action of Γ. Given
m(·, ·, ·) as above, let

M(u, v) =

∫
Ω

m(u, v, ω)dµ(ω) = Em(u, v, ω),

for any u, v ∈ V . The expected total mass transported out of any vertex v equals the
expected total mass transported into v, that is∑

u∈V
M(v, u) =

∑
u∈V

M(u, v) (2.1)

Proof. This is a special case of the general mass transport principle as in Sect. 3 of [1].
Without loss of generality, assume v is black. The terms contributing to the sum are
M(u, v)’s for which u is also black. For any u, v ∈ V , both u and v are black, there is a
unique h ∈ Γ ' Z2, satisfying u = hv. In other words, h is a translation mapping u to v.
This gives ∑

u black

M(v, u) =
∑
h∈Γ

M(v, hv) =
∑
h∈Γ

M(h−1v, v) =
∑

u black

M(u, v),

where the second equality follows from the facts thatm(·, ·, ·) is invariant under diagonal
actions of Γ, and µ is a translation invariant measure.

Lemma 2.3. Let µ be a translation invariant measure. Then µ-a.s. there are no semi-
infinite paths in 1-2 model configurations.

Proof. Since µ is a translation invariant probability measure, Lemma 2.2 holds. The
expected mass sent from a vertex is at most 1, while if semi-infinite paths exist with
positive probability, then some vertex will receive infinite mass with positive probability,
so that the expected mass received is infinite, contradicting (2.1).

Theorem 2.4. For any translation invariant Gibbs measure of 1-2 model configurations
with respect to positive parameters a, b, c, a.s. there are no infinite paths.

Proof. First of all, we claim that if µ is a Gibbs measure with strictly positive parameters
a, b, c, s.t. µ(there is an infinite path) > 0, then µ(there is a semi− infinite path) > 0.

To see that, let Ω1 be the set of configurations with an infinite path going through the
edge [0, 1], so that neither 0 nor 1 is an endpoint of the infinite path. Let Ω2 be the set of
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configurations obtained from Ω1 by deleting the edge [0, 1]. Then up to translation and
rotation we may assume µ(Ω1) > 0. From the Gibbs property we have the finite energy
estimate

µ(Ω2) ≥
[

min(a, b, c)

max(a, b, c)

]2

µ(Ω1) > 0

Combining Lemma 2.3 with the claim gives: any translation invariant Gibbs measure
with positive parameter a, b, c has a.s. no infinite paths.

Lemma 2.3 and Theorem 2.4 hold for any translation invariant Gibbs measure of the
1-2 model configurations with positive parameters a, b, c. Since the measure we will
construct is the weak limit of translation invariant Boltzmann measures on finite tori,
by letting the tori become larger and larger to approximate the infinite periodic planar
graph, (see Sect. 4), Lemma 2.3 and Theorem 2.4 apply also to the specific measure we
will construct.

3 Correspondence with dimers

A dimer configuration, or a perfect matching, of a graph is a collection of edges
with the property that each vertex is incident to exactly one of these edges. Each edge
e is associated with a positive weight we. The partition function of dimer configurations
on a finite graph is given by

ZM :=
∑
D

∏
e∈D

we, (3.1)

where the sum is over all dimer configurations of the finite graph.
The probability of a dimer configuration on a finite graph is defined to be propor-

tional to the product of weights of included edges. Namely, let D be a dimer configura-
tion, then

PM (D) =
1

ZM

∏
e∈D

we. (3.2)

We will construct a measure-preserving correspondence between 1-2 model configu-
rations on a honeycomb lattice H = (V,E), and the dimer configurations on a decorated
graphH∆ = (V∆, E∆), as illustrated in Figure 8, where the left graph shows a 1-2 model
configuration on the hexagonal lattice H, and the right graph shows the corresponding
dimer configuration on the decorated graph H∆. The correspondence between dimer
configurations and 1-2 model configurations is partially inspired by the Fisher corre-
spondence for the Ising model and the dimer model, see [6].

We construct the graph H∆ by giving the vertex set V∆ and edge set E∆. First of
all, V ⊂ V∆. Namely, each vertex of the hexagonal lattice H is also a vertex of H∆. For
each v ∈ V , the three incident edges of v in H form three angles α1,v, α2,v, α3,v. (Note
that αi,v = 2π

3 , for 1 ≤ i ≤ 3). Let e∆
i,v be the bisector of αi,v. In the graph H∆, let

e∆
i,v (1 ≤ i ≤ 3) be the three incident edges of v, i.e., e∆

i,v ∈ E∆, for v ∈ V and 1 ≤ i ≤ 3,
see Figure 4 and Figure 5.

On each face of H, we construct a gadget for H∆, which is a modified hexagon, with
the topmost edge removed, and the other four vertices except the top two replaced by
a triangle, see Figure 6, or see Figure 8 for a larger picture.

Note that from H to H∆, each face is replaced by a 14-vertex gadget. This 14-vertex
gadget can be further simplified into a 12-vertex gadget. Namely, we can remove the top
two vertices, and merge the two incident edges of each one of them into a single edge.
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{011}, c local dimer configuration for{011}

Figure 4: local structure of a black vertex in H and H∆

{001}, a local dimer configuration for{001}

Figure 5: local structure of a white vertex in H and H∆

Or we may construct a 12-vertex gadget with 6 outer vertices and 6 inner vertices, so
that each outer vertex is incident to a vertex of H and 2 inner vertices, and each inner
vertex is incident to 2 outer vertices and 2 inner vertices. See Figure 7 for possible
choices of 12-vertex gadgets.

−1

−1

−1 1

−1

1

Figure 6: local structure of a face in H, in H∆ and medial graph

We claim that there is a 2-to-1 correspondence between 1-2 model configurations
on H and dimer configurations on H∆. Namely, at each angle of H, if both sides of the
angle have the same configuration, that is, either both of them are present, or neither
of them are present, then the bisector edge is present in the dimer configuration of H∆.
Otherwise the bisector is not present. Examples of this local correspondence are show
in Figure 4 and Figure 5. Obviously, under the assumption that each vertex v ∈ V has
one or two incident present edges in H, each corresponding local configuration on H∆

satisfies the condition that v has exactly one present incident edge. See Figure 4 and
Figure 5.

Moreover, such a configuration on incident edges of vertices in V (bisector edges)
always has a unique extension to a dimer configuration (each vertex in V∆ has exactly
one present incident edge) of H∆, because around each face of H, there are always an
even number of bisector edges of H∆ present in the configuration. See Figure 6, or see
Figure 8 for a larger picture.

Note that for such a construction, two 1-2 model configurations, the union of which
is the graph H, correspond to the same dimer configuration of H∆. This is the reason
why the correspondence is actually 2-to-1.

Assigning edge weights for H∆ appropriately will ensure the correspondence to be
measure-preserving. For example, if ξv is a degree-1 local configuration at v (one inci-
dent edge of v is present) of H, and ξv has weight a, we assign the same weight a to the
bisector edge in E∆ parallel to the present edge in ξv of E and incident to v in H∆. This
way, we can assign a weight to every edge in E∆ incident to a vertex v ∈ V . See the
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Figure 7: 12-vertex Gadgets

Figure 8: 1-2 model configuration and corresponding dimer configuration

right graph of Figure 10. For all the other edges in E∆, we assign weight 1.
We can also construct a toroidal graph H∆,n for Hn in the same way. However,

when constructing the correspondence between dimer configurations on H∆,n and 1-2
model configurations on Hn, complications might happen due to the fact that the torus
has non-trivial homology group H1. We consider an essential cycle (non-contractible)
winding around the n × n torus, consisting of edges of Hn. A necessary and sufficient
condition for a dimer configuration on H∆,n to correspond to a 1-2 model configuration
on Hn can be described as follows.

Condition 3.1. Around any essential cycle, there are an even number of bisector edges
not present in the perfect matching.

It is not hard to see that once Condition 3.1 is satisfied, before and after winding
around an essential cycle, each edge has the same configuration.

We claim that checking Condition 3.1 is equivalent to checking that an even number
of bisector edges are not present in a perfect matching around two homology genera-
tors. In other words, for each fixed dimer configuration on H∆,n, the parity of the num-
ber of non-present bisector edges around an essential cycle depends only on the homol-
ogy class of the cycle. To see that, we introduce the medial graph DHn = (VD,n, ED,n)

of Hn = (Vn, En). Each vertex of DHn is the midpoint of an edge of Hn, i.e., there is
a 1-to-1 correspondence between VD,n and En. Two vertices in VD,n are connected by
an edge in DHn if and only if the corresponding edges in Hn share an edge. In other
words, there is a 1-to-1 correspondence between ED,n and bisector edges in E∆,n. The
medial graph of the hexagonal lattice is the Kagome lattice, see Figure 9.

Given a dimer configuration on H∆,n, one associates a sign ±1 to each edge of DHn
(1 if the bisector edge is present, −1 otherwise). Then the product of signs along each
non-essential cycle of DHn is 1. Hence the product of signs is a homology invariant, so
is the number of non-present bisector edges along a cycle, see Figure 6.

However, Condition 3.1 cannot always be satisfied since it is always possible that
winding around an essential cycle, an odd number of bisector edges are not present
in a perfect matching. But if we consider the mixed periodic/antiperiodic boundary

EJP 19 (2014), paper 48.
Page 12/28

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-2563
http://ejp.ejpecp.org/


1-2 model, dimers, , and clusters

γx

γy

J1
J2

J3

fig63.63

Figure 9: Kagome lattice and honeycomb lattice

condition for 1-2 model configurations on H′n, the constraints above can be removed.
In other words, if Zn is the partition function for 1-2 model configurations on H′n with
mixed periodic/antiperiodic boundary condition, and ZM,n is the partition function for
dimer configurations on H∆,n, then

ZM,n = Z00
M,n + Z01

M,n + Z10
M,n + Z11

M,n,

where Z00
M,n (resp. Z11

M,n) is the partition function of dimer configurations so that wind-
ing around two nonparallel essential cycles, both of them have an even (resp. odd)
number of bisector edges that are not present; Z01

M,n is the partition function of dimer
configurations so that winding around two nonparallel essential cycles, one of them has
an even number of bisector edges that are not present, and the other has an odd num-
ber of bisector edges that are not present, and similarly for Z10

M,n. Using the criteria
described above to assign edge weights for dimers on Hn,∆ (which inherit edge weights
from H∆), we have

Zn = 2ZM,n,

where the coefficient 2 comes from the fact that the correspondence from 1-2 model
configurations to perfect matchings is 2-to-1. Moreover, if ξ, ξ̄ are two 1-2 model con-
figurations of Hn complement to each other, and D is the corresponding dimer configu-
ration on H∆,n, by definition of the measures of the 1-2 model and the dimer model, we
have

Pn(ξ) = Pn(ξ̄) =
1

2
PM,n(D)

where PM,n is the measure for perfect matchings on the toroidal graph H∆,n, defined
as in (3.2).

Therefore, we can investigate the measure of the 1-2 model by investigating the mea-
sure of the dimer model. An important object in understanding the infinite volume limit
of the periodic dimer model is the characteristic polynomial (see the next paragraph
for a definition). To introduce the notation, first of all, we giveH∆ a clockwise-odd ori-
entation, so that traversing each face of H∆ clockwise gives an odd number of edges
with the same orientation with the clockwise orientation. See Figure 10.

Recall that H∆,n = (V∆,n, E∆,n) is the quotient graph of H∆ under the translation of
nZ× nZ. H∆,n is a finite graph which can be embedded into an n× n torus. Obviously
H∆,n inherited a clockwise odd orientation from H∆. Let γx, γy be two homology gener-
ators of the torus. Multiply the weights of the edges crossed by γx by z (or 1

z ), according
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Figure 10: one fundamental domain

to its orientation, and similarly, multiply the weights of edges crossed by γy by w (or 1
w )

according to its orientation. This way we get a modified weighted adjacency matrix
Kn(z, w). More precisely, Kn(z, w) is a |V∆,n| × |V∆,n| matrix with rows and columns
indexed by all the vertices of H∆,n. Let u, v ∈ V∆,n. The entry of Kn(z, w) at the row
corresponding to u and the column corresponding to v is 0, if u and v are not adjacent
in H∆,n; the entry is (−1)σ(u,v)wu,v, if u and v are adjacent, where wu,v is the modified
edge weight corresponding to the edge uv (namely, if the edge uv is crossed by γx or
γy, the modified weight is obtained from the original weight by multiplying a factor of
z, or w, or 1

z , or 1
w , depending on the orientation); σ(u, v) = 0, if the orientation is from

u to v, and σ(u, v) = 1, if the orientation is from v to u. In particular, if |z| = 1 and
|w| = 1, Kn(z, w) is an anti-Hermitian matrix, in the sense that Kuv

n (z, w) = −Kvu
n (z, w),

where Kuv
n (z, w) is the entry of Kn(z, w) at the row corresponding to u, and the column

corresponding to v. Moreover, if z = ±1 and w = ±1, Kn(z, w) is an anti-symmetric
matrix, since all the entries are real. In this case, its determinant is the perfect square
of its Pfaffian; hence its determinant is nonnegative. The characteristic polynomial
P (z, w) is defined to be the detK1(z, w), and the spectral curve is defined to be the
zero locus P (z, w) = 0.

The characteristic polynomial, spectral curve can be defined for a bipartite graph in
a simpler way, see [13].

Lemma 3.2. If a, b, c > 0, either the spectral curve of the dimer model does not inter-
sect the unit torus T2 := {(z, w) ∈ C2 : |z| = 1, |w| = 1}, or the intersection is a single
real point (1,1), and the intersection is of multiplicity 2. Moreover, the spectral curve
intersects T2 at (1, 1) if and only if a2 + b2 + c2 = 2(ab+ bc+ ca).

Proof. Recall that K1(z, w) is the Kasteleyn matrix for the graph embedded on the 1× 1

torus, as illustrated in the right graph of Figure 10. It is a 16 × 16 matrix with rows
and columns indexed by vertices of the graph, whose determinant can be computed
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explicitly. In fact, K1(z, w) has the following form:

K1(z, w) =

0 −1 1 −a 0 0 0 0 0 0 0 0 0 0 0 0

1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 − 1
z

−1 1 0 0 0 0 0 0 0 0 0 0 0 − 1
w 0 0

a 0 0 0 0 0 0 0 0 0 c 0 0 0 b 0

0 0 0 0 0 −1 1 a 0 0 0 0 0 0 0 0

0 0 0 0 1 0 −1 0 0 z 0 0 0 0 0 0

0 0 0 0 −1 1 0 0 0 0 0 0 0 0 w 0

0 0 0 0 −a 0 0 0 0 0 0 0 −b 0 0 −c
0 0 0 0 0 0 0 0 0 −1 1 −1 0 0 0 0

0 0 0 0 0 − 1
z 0 0 1 0 −1 0 0 0 0 0

0 0 0 −c 0 0 0 0 −1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 −1 1 0 0

0 0 0 0 0 0 0 b 0 0 0 1 0 −1 0 0

0 0 w 0 0 0 0 0 0 0 0 −1 1 0 0 0

0 0 0 −b 0 0 − 1
w 0 0 0 0 0 0 0 0 0

0 z 0 0 0 0 0 c 0 0 0 0 0 0 0 0



,

where the rows and columns of K1(z, w) are indexed by vertices from 1 to 16, as illus-
trated in the right graph of Figure 10. By definition, the characteristic polynomial

P (z, w) = detK1(z, w) = a4 + b4 + c4 + 6a2b2 + 6a2c2 + 6b2c2 + 4ab(c2 − a2 − b2) cos θ(3.3)

+4ac(b2 − a2 − c2) cosφ+ 4bc(a2 − b2 − c2) cos(θ − φ) (3.4)

where z = eiθ, w = eiφ. First of all, note that if a2 + b2 > c2, a2 + c2 > b2 and b2 + c2 > a2,
we have for any (z, w) ∈ T2 \ {(1, 1)},

P (z, w) > P (1, 1) ≥ 0,

Since P (1, 1) is the determinant of an anti-symmetric matrix, which is the perfect square
of a real number.

If a2, b2, c2 cannot be side lengths of a triangle, we consider the minimal value of
the characteristic polynomial in T2. Without loss of generality, assume b2 ≥ a2 + c2. It
suffices to consider the minimal value of R(eiθ, eiφ) for (θ, φ) ∈ [0, 2π]2, where

R(eiθ, eiφ) = A+B cos θ + C sin θ

where

A = 4ac(b2 − a2 − c2) cosφ

B = 4ab(c2 − a2 − b2) + 4bc(a2 − b2 − c2) cosφ

C = 4bc(a2 − b2 − c2) sinφ.

Define

x = 4ac(b2 − a2 − c2);

y = 4ab(c2 − a2 − b2);

t = 4bc(a2 − b2 − c2);

then

R(eiθ, eiφ) = x cosφ+ (y + t cosφ) cos θ + t sinφ sin θ.
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Given φ, the minimal value of R(eiθ, eiφ) with respect to θ ∈ [0, 2π] is

f(u) = A−
√
B2 + C2 = xu−

√
y2 + t2 + 2ytu;

where u = cosφ. Moreover,

∂f(u)

∂u
= x− yt√

y2 + t2 + 2ytu
.

The minimal value of f(u) with respect to u is achieved at the point satisfying ∂f(u)
∂u = 0,

where

u =
yt

2x2
− y2 + t2

2yt
. (3.5)

We claim that (3.5) ≥ 1, when b2 ≥ a2 + c2. In fact

yt

2x2
− y2 + t2

2yt
− 1 =

yt

2x2
− (y + t)2

2yt
.

It suffices to prove that |yt| ≥ |x(y + t)|, i.e.

b(a2 + b2 − c2)(b2 + c2 − a2) ≥ (b2 − a2 − c2)[a(a2 + b2 − c2) + c(b2 + c2 − a2)], (3.6)

when b2 ≥ a2 + c2. Without loss of generality, assume c ≥ a.
First of all, if b ≥ a+ c, we have

a2 + b2 − c2 ≥ b2 − a2 − c2 ≥ 0

b(b2 + c2 − a2) ≥ (a+ c)(b2 + c2 − a2) ≥ a(a2 + b2 − c2) + c(b2 + c2 − a2) ≥ 0.

Hence if b ≥ a+ c, (3.6) is true.
Now consider the case when b < a + c, but b2 ≥ a2 + c2. Let p = a

b , and q = c
b , then

p+ q > 1, and p2 + q2 ≤ 1. Plugging p and q in (3.6), and expanding it if necessary, (3.6)
is equivalent to

1 + p5 + q5 − (p2 − q2)2 − p(1− q2)2 − q(1− p2)2 ≥ 0. (3.7)

Elementary algebraic transformation of left side of (3.7) gives

[(p+ q)2 − 1]2 + (p2 + q2 − 1)2

+(1− p2 − q2)(p+ q − 1)[2(p+ q) + 1− (p2 + q2)] + 2pq(p+ q)(1− p2 − q2),

which is nonnegative when p+ q > 1 and p2 + q2 ≤ 1.
Hence when u = cosφ ∈ [−1, 1], the minimal value of A −

√
B2 + C2 can only be

achieved at cosφ = 1. Therefore the P (z, w) can only be achieved at z = w = 1, but
P (1, 1) ≥ 0. It is elementary to check that if P (1, 1) = 0, then the zero is of multiplicity
2 by taking derivatives; and P (1, 1) = 0 if and only if a2 + b2 + c2 = 2(ab+ bc+ ca).

Proposition 3.3. Let PM,n denote the Boltzmann measure of the dimer configurations
onH∆,n. As n→∞, the sequence {PM,n}∞n=1 converges weakly to an ergodic translation
invariant Gibbs measure PM of dimer configurations on H∆ .

Proof. The proof of convergence is exactly the same as Lemma 4.8 in [16]. The transla-
tion invariance of the measure PM is obvious. PM is an ergodic dimer measure because
it is translation invariant and mixing. The mixing of PM follows from the fact that the
intersection of the spectral curve with T2 is either empty or a single real point of multi-
plicity 2, hence the covariance of any two event, measurable with respect to two finite
set of vertices far away from each other, decays to zero either exponentially fast or poly-
nomially fast. Moreover, PM is a Gibbs measure since PM,n’s are Boltzmann measures,
i.e., the probability of a configuration is proportional to product of local weights.
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Let P be the measure for 1-2 model configurations on H satisfying

P (E) = P (E∗) =
1

2
PM (ED), if E ∩ E∗ = ∅.

where E ⊆ Ω is an event of 1-2 model configurations, E∗ consists of all the 1-2 model
configurations whose present edges are complement to the present edges of a configu-
ration in E, and ED is the corresponding event on dimers. Note that although PM is an
ergodic measure on dimer configurations of H∆, P might not be ergodic as a measure
for 1-2 model configurations on H. That is because the correspondence between 1-2
model configurations on H and dimer configurations on H∆ is 2-to-1. Although every
translation invariant event of dimers on H∆ has probability 0 or 1, this may not be true
for translation invariant events of the 1-2 model on H.

The following theorem is a rephrasing of Part 1 of Theorem 0.1.

Theorem 3.4. Using a large torus to approximate the infinite hexagonal lattice, the
probability that a path L occurs in 1-2 model configurations is equal to the Pfaffian of
an anti-symmetric matrix, namely, K−1

EL
, the submatrix of the infinite inverse Kasteleyn

matrix with rows and columns indexed by endpoints of bisector edges in H∆ between
each adjacent pair of edges along the path L, multiplied by one half of the product of
the configuration weights.

Proof. Consider an arbitrary self-avoiding path, consisting of edges of the hexagonal
lattice H. The event that the path occurs in a 1-2 model configuration, i.e., all the edges
along the path are present in the 1-2 model configuration, corresponds to the event
that all the bisector edges along the path are present in the dimer configuration of the
decorated graph H∆.

Given an arbitrary 1-2 model configuration C in the sample space Ωn of H′n, the con-
figuration C∗, which occupies all the unoccupied edges and half-edges of C and leaves
all the occupied edges and half-edges of C unoccupied, has exactly the same probability
as the configuration C, and corresponds to the same dimer configuration of H∆,n. Let L
be a path consisting of edges of H′n. We have

Pn(path L appears in 1− 2 model configurations of H′n)

=
1

2
PM,n(all the bisector edges along L are present in the dimer configurations of H∆,n).

Using a large torus to approximate the infinite graph, we can actually compute the
probability on the right explicitly. First we consider a finite n × n torus, where n is
even. Let Kn(z, w) be the corresponding modified weighted adjacency matrix, then the
partition function ZM,n is given by

4ZM,n = | − PfKn(1, 1) + PfKn(1,−1) + PfKn(−1, 1) + PfKn(−1,−1)| := 4Ẑn,

since

PfKn(1, 1) = Z00
M,n − Z01

M,n − Z10
M,n − Z11

M,n (3.8)

PfKn(1,−1) = Z00
M,n + Z01

M,n − Z10
M,n + Z11

M,n (3.9)

PfKn(−1, 1) = Z00
M,n − Z01

M,n + Z10
M,n + Z11

M,n (3.10)

PfKn(−1,−1) = Z00
M,n + Z01

M,n + Z10
M,n − Z11

M,n, (3.11)

when the vertices are ordered in Kn in an appropriate way. See [10, 11] for the proof
of the formulas (3.8)-(3.11). In fact, if we change the order of vertices in Kn, the signs
in (3.8)-(3.11) will change simultaneously, and the sign does not matter if we take the
absolute value.
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Let K̃n(z, w) be the modified weighted adjacency matrix of a graph obtained from
H∆,n by removing all the bisector edges along the path as well as their ending vertices.
Let EL be the set of all bisector edges along the path. Namely,

EL = {u1v1, u2v2, · · · , ukvk}

Let |ui| be the index of the column, corresponding to the vertex ui, in the weighted
adjacency matrix. Then

PM,n(all the edges in EL are present)

=

∏
1≤i≤k wuiv1

∣∣∣−PfK̃n(1, 1) + PfK̃n(1,−1) + PfK̃n(−1, 1) + PfK̃n(−1,−1)
∣∣∣

4Ẑn

where wuivi is the dimer edge weight for uivi, assigned to be consistent with the corre-
sponding weight of local 1-2 model configuration, see Figure 10. It is obvious that the
numerator in the above equation consists of exactly those terms in 2Ẑn with all edge
weights of EL appearing. Moreover,

PfK̃n((−1)θ, (−1)τ ) = (−1)
∑

i |ui|+|vi|PfK−1
EL,n

((−1)θ, (−1)τ )PfKn((−1)θ, (−1)τ )

θ, τ ∈ {0, 1}, where K−1
EL,n

((−1)θ, (−1)τ ), if exists, is the submatrix of K−1
n ((−1)θ, (−1)τ )

with rows and columns indexed by vertices in EL.
Since the planar graphs H and H∆ are bi-periodic, i.e., translation invariant along

two nonparallel directions, we can divide them into fundamental domains, and a single
fundamental domain is illustrated as in Figure 10. Since the group of translations of H
and H∆ is isomorphic to Z2, we can label all the fundamental domains of by (p, q) ∈ Z2.
Let (p1, q1, u) and (p2, q2, v) be two vertices, where (p1, q1) and (p2, q2) are indices of the
fundamental domains, and u, v are indices of vertices in the fundamental domain (0, 0).
In other words, if we translate the vertex (p1, q1, u) (resp. (p2, q2, v)) by (−p1,−q1) (resp.
(−p2,−q2)), we get exactly the vertex u (resp. v) in the fundamental domain (0, 0). Then
we have

K−1
(p1,q1,u),(p2,q2,v) = lim

n→∞
K−1
n,(p1,q1,u),(p2,q2,v)((−1)θ, (−1)τ )

=
1

2π

∫∫
T2

zp1−q1wp2−q2 CofactorK1(z, w)u,v
detK1(z, w)

dz

iz

dw

iw

for any θ, τ in {0, 1}. The convergence follows from the fact that the intersection of
detK1(z, w) and T2 is either empty or a single real point of multiplicity 2, and the
machinery described in [3, 16]. Hence, as the size of the torus goes to infinity, we have

P (Path L appears in 1− 2 model configurations) =
1

2

∏
1≤i≤k

wuivi

∣∣PfK−1
EL

∣∣
where the entries of K−1 are described as above.

4 Infinite clusters

In this section, we present a proof for the existence of a phase transition by explor-
ing the behavior of infinite clusters. At each vertex, a 1-2 model configuration has 3
possible weights, a, b or c. Let us classify all local configurations at one vertex accord-
ing to their weights, into 3 categories: a-type, b-type and c-type. Note that each type of
configurations actually include 2 different configurations, namely, they are complement
to each other and the occupying degree of the vertex is either 1 or 2. An a-cluster (resp.
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b-cluster or c-cluster) is a connected set of vertices such that each vertex in it has an
a-type (resp. b-type or c-type) configuration. Note that by “connected set of vertices”
here, we mean that the set of vertices are connected by edges of the hexagonal lattice
H, instead of saying that they are connected by present edges in a specific 1-2 model
configuration ω. See Figure 11 for an example of an a-cluster on the toroidal graph Hn.
In Figure 11, the vertices v1, v2, v3, v4 form an a-cluster. Note that although an a-type
configuration can be one of 2 different configurations, each a-cluster can have only one
configuration for all the vertices, similarly for b-clusters and c-clusters. We fix the value
of b and c, and are interested in the behavior of a-clusters as we vary the value of a. We
will always use P to denote the measure obtained by torus approximation.

4.1 Exponential decay of large cluster probabilities

In this subsection, we prove the exponential decay of large cluster probabilities
under the probability measure we constructed above. The idea is to prove that the
probability of a single edge being present in a dimer configuration goes to zero when
the corresponding parameter goes to zero, and the exponential decay of large cluster
probabilities follows from the estimate of the explicit Pfaffian formula for the large
cluster probability.

Lemma 4.1. P{001}&{110}, the probability that an a-configuration appears at a vertex
for the measure P , is continuous in a, for any a > 0. Moreover,

lim
a→∞

P{001}&{110} = 1 for any fixed b, c > 0; (4.1)

lim
a→0

P{001}&{110} = 0 for any fixed b, c > 0. (4.2)

Proof. By construction

P{001}&{110} =
a

4π2

∫
|w|=1

∫
|z|=1

Q(z, w)

P (z, w)

dz

iz

dw

iw

where P (z, w) is the characteristic polynomial as in (3.4), and Q(z, w) is the cofactor
of K(z, w) by removing rows and columns corresponding to endpoints of the edge e.
Namely,

Q(z, w) = 3ab2+3ac2−c3w−b3z+a3−a
2c

w
−2a2cw+b2cw−2a2bz+bc2z−ab(a− cw)

z
+
abcz

w

The continuity of P{001}&{110} with respect to a follows from the fact that the inter-
section of P (z, w) = 0 with T2 can either be empty or a single real point, and the inter-
section is of multiplicity 2. To see how it works, let a0 > 0, and {an}∞n=1 be a sequence
of positive numbers satisfying limn→∞ an = a0. Since we are considering the behavior
of the polynomial P (z, w) with a changing coefficient a, we introduce a third variable
a, and write P (z, w, a) by taking a into account. Similarly, we write P{001}&{110}(a) for
the probability that an a-configuration appears at a vertex, which changes with the
coefficient a.

If P (z, w, a0) = 0 does not intersect T2. In this case, Q(z,w,an)
P (z,w,an) is uniformly bounded

for (z, w) ∈ T2, and n ∈ N. According to the dominated convergence theorem,

lim
n→∞

P{001}&{110}(an) = P{001}&{110}(a0). (4.3)

If P (z, w, a0) = 0 has a unique zero (1, 1) on T2, and the zero is of multiplicity 2,
explicit computation shows that

P (1, 1, a) = (a2 + b2 + c2 − 2ab− 2ac− 2bc)2

Q(1, 1, a) = (a− b− c)(a2 + b2 + c2 − 2ab− 2ac− 2bc)
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Therefore, if P (z, w, a0) has a zero of multiplicity 2 at (1, 1), then Q(z, w, a0) has a
zero of multiplicity at least 1 at (1, 1). Hence Q(z,w,a0)

P (z,w,a0) is integrable on (z, w) ∈ T2. Let

{an}∞n=1 be a sequence satisfying limn→∞ an = a0, and an > 0. The identity (4.3) follows
from the fact that Q(z,w,an)

P (z,w,an) converges to Q(z,w,a0)
P (z,w,a0) almost everywhere on T2 as n goes to

infinity, and that the sequence
{
Q(z,w,a0)
P (z,w,a0)

}∞
n=1

is uniformly integrable.

For any (z, w) ∈ T2, and fixed b,c,

lim
a→∞

aQ(z, w, a)

P (z, w, a)
= 1, (4.4)

and the convergence of the left side of (4.4) is uniform for (z, w) ∈ T2, which gives (4.1).
When b 6= c,

lim
a→0

Q(z, w, a)

P (z, w, a)
=

−zb3 + wb2c+ zbc2 − wc3
((wb2 − 2zbc+ wc2)(zb2 − 2wbc+ zc2))/(wz)

(4.5)

If b 6= c, the denominator of (4.5) has no zeros on T2. Again the order of the integral
and the limit can be changed according to the dominated convergence theorem. As a
result, when b 6= c, lima→0 P{001}&{110}(a) = 0.

When b = c, note that the P (z, w, 0) has a zero of multiplicity 2 at (1, 1), and Q(z, w, 0)

has a zero of multiplicity at least 1 at (1, 1). Similar arguments show the convergence
to 0 of the probability P{001}&{110}(a) as a tends to 0.

Lemma 4.2. Let S be a set of N vertices of H, where N is a large integer. Then

1. fixing b, c, when a is sufficiently large, there exists η > 0, so that

P (no vertices in S have a−configurations) ≤ e−ηN ,

moreover, η →∞, as b, c→ 0;

2. fixing b, c, when a is sufficiently small, there exists β > 0, so that

P (all vertices in S have a−configurations) ≤ e−βN ,

moreover, β →∞, as a→ 0.

Proof. We prove Part 1 here; Part 2 is very similar. Recall that P depends on a : b : c. If
we fix b, c, and let a be sufficiently large, this is the same as when we fix a and b

c , and let
b, c be sufficiently small. We will prove Part 1 of the lemma under the latter equivalent
assumption.

If no vertices in S have a-configurations, each vertex in S can have either a b-
configuration or a c-configuration. Let ∆N be the set of all such configurations on
S, then |∆N | ≤ 4N , moreover,

P (no vertices in S have a− configurations) =
∑
C∈∆N

P (C).

Let C be an arbitrary fixed configuration in ∆N . Without loss of generality, assume S
contains at least N2 black vertices. We can label all the black vertices in S by vk, where k

is an integer satisfying 1 ≤ k ≤
[
N
2

]
. Let u(1)

k , u(2)
k be the endpoints of the corresponding

edge of H∆ at vk. Namely, if vk has a b-configuration (resp. c-configuration) in C, then
u

(1)
k u

(2)
k is a b-edge (resp. c-edge), i.e., a bisector edge in H∆ whose presence in dimer

configurations corresponds to a b-configuration (resp. c-configuration) in H∆. Then the
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configuration C occurs in 1-2 model configurations ofH only if all the edges ek = u
(1)
k u

(2)
k

are present in the dimer configuration of H. Define D to be a square matrix with rows
and columns labeled by all the u(1)

k , u
(2)
k ’s as follows

D(u
(p)
k , u

(q)
l ) =


bK−1(u

(p)
k , u

(q)
l ) If both ek and el are b−edges√

bcK−1(u
(p)
k , u

(q)
l ) If exactly one of ek and el is a b−edge

cK−1(u
(p)
k , u

(q)
l ) If both ek and el are c−edges

Then according to the results in Sect. 3,

P (C) ≤ |PfD|

Note that |D(u
(1)
k , u

(2)
k )| = Pb, or Pc, depending on whether the edge ek is a b-edge or

a c-edge. Pb (Pc) is the probability that a b-configuration (c-configuration) appears at a
vertex. Since Pa + Pb + Pc = 1, by Lemma 4.1, we have

lim
b,c→0

Pb + Pc = 0.

Moreover, since when we fix γ, a, γ 6= 1 and b, c are sufficiently small, the spectral curve
has no zeros on T2, the entries D(u, v) decay exponentially to 0 when |u − v| → ∞.
Namely,

|D(u, v)| ≤ e−β|u−v|,where β > 0, and |u− v| is large. (4.6)

Moreover, the exponential decay rate β can be chosen as a uniform constant as the
parameters a, b, c are away from the spectral curve. Now let us consider

PfD =
∑

σ ∈ SN
σ(1) < σ(3) < · · · < σ(N − 1)

σ(2i− 1) < σ(2i)

sgn(σ)

N
2∏
i=1

D(wσ(2i−1), wσ(2i)),

where SN is the symmetric group, and sgn(σ) is the sign of the permutation σ, and

w2i−1 = u
(1)
i , w2i = u

(2)
i . Let V0 denote the set of vertices in {u(1)

k , u
(2)
k }k, we have

∑
σ ∈ SN

σ(1) < σ(3) < · · · < σ(N − 1)

σ(2i− 1) < σ(2i)

∣∣∣∣∣∣
N
2∏
i=1

D(wσ(2i−1), wσ(2i))

∣∣∣∣∣∣

≤

 ∑
w∈V0,w 6=w1

|D(w1, w)|

N
2

Note that if w is a neighboring vertex of w1, then |D(w,w1)| is the probability that the
edge ww1 appears in the dimer configuration of H∆; when b and c are sufficiently small,
this probability is small, and approaches 0 as b, c→ 0. When we consider the event that
all the vertices in S has b-configuration or c-configuration, the probability of the event
is bounded above by the probability of the event that all the vertices in S ′ ⊆ S have
b-configuration or c-configuration.
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For any C1 > 0, there is c0 > 0, so that for any S, there is S ′ ⊆ S with |S ′| ≥ c0|S|,
and the points in S are at pairwise distance at least C1. In S ′, there are O(k2) points
within distance kC1 of any given point, it follows that

∑
w∈V0(S′),w 6=w1

|D(w1, w)| ≤ max{Pb, Pc}+O

∑
k≥1

ke−βkC1

 , (4.7)

and the righthand side of (4.7) can be made smaller than 1 by taking b, c small enough
and C1 large enough. Then the lemma follows.

4.2 Percolation

In this subsection, we explore the consequences of the exponential decay of large
cluster probabilities. One consequence is the existence of a phase transition: i.e., fixing
b, c, when a is sufficiently small, almost surely there are no infinite a-clusters, and when
a is large, almost surely there is a unique infinite a-cluster. Another consequence is the
continuity of the mean cluster size with respect to a when a is small.

Let tn denote the number of animals (connected sets of vertices) including the origin
with cardinality (total number of vertices) n. The following lemma says that tn grows at
most exponentially in n. The proof follows from a standard argument of Kesten (Lemma
5.1 of [7]).

Lemma 4.3. tn ≤ 10n, for all n.

Proof. We consider independent site percolation on the hexagonal lattice H and let µ
be the corresponding product measure. We have

P (the open cluster at the origin has size n) =
∑
b

tn,bp
n(1− p)b

where b is the number of boundary vertices, and tn,b is the number of animals including
the origin with n vertices and b boundary vertices. Here by boundary vertices of a
vertex set we mean vertices not in the set themselves but incident to vertices in the set.
Note that tn,b = 0 unless 1 ≤ b ≤ 3n. We have

1 ≥
∑
b

tn,bp
n(1− p)b ≥

∑
b

tn,bp
n(1− p)3n

Hence ∑
b

tn,b ≤ [p(1− p)3]−n

for all p. We choose p to maximize p(1− p)3, and obtain

tn =
∑
b

tn,b ≤
(

256

27

)n
and the lemma follows.

Let Ca,v0
denote the a-cluster passing a fixed vertex v0, and |Ca,v0

| denote the cardi-
nality of Ca,v0

. Then we have the following theorem:

Theorem 4.4. Fixing b, c, when a is sufficiently small, almost surely there are no infinite
a-clusters.
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Proof. First we claim that

P (|Ca,v0
| ≥ n) ≤ e−nρ,

when a is sufficiently small and b 6= c. Here ρ is a positive constant independent of n. In
fact,

P (|Ca,v0 | ≥ n) =

∞∑
k=n

P (|Ca,v0 | = k) =

∞∑
k=n

∑
Ak

P (Ca,v0 = Ak),

where Ak is an animal including v0, with cardinality k, and the inner sum is over all the
animals of cardinality k including v0. By Lemma 4.2, we have

P (Ca,v0
= Ak) ≤ e−βk,

when a is sufficiently small and b 6= c. Moreover, β → ∞, as a → 0. Hence we can
choose a to be sufficiently small so that e−β < 1

20 . By Lemma 4.3, we have

P (|Ca,v0 | ≥ n) ≤
∞∑
k=n

(
1

2

)k
→ 0, as n→∞,

and the theorem follows.

Define the mean size of the cluster at v0 as follows

χ =

∞∑
n=1

nP (|Ca,v0 | = n).

We have the following proposition

Proposition 4.5. Fixing b, c, the mean size χ of the a-cluster at the origin is a continu-
ous function of a, when a is sufficiently small.

Proof.
P (|Ca,v0 | = n) =

∑
An

P (Ca,v0 = An),

where the sum is over all the choices of size-n animals including v0, P (Ca,v0
= An) is

the probability of the event that all vertices in An have a-configurations, while all the
vertices on the boundary of An do not have a-configurations. Hence

P (|Ca,v0
| = n) =

∑
An

∑
b

P (Ca,v0
= An, C∂An

= b) (4.8)

where b is any possible configuration (either a b-configuration or a c-configuration at
each vertex) on ∂An, the boundary vertices of An. By Lemma 4.3, for each fixed n,
(4.8) is a finite sum. According to the dimer representation of the 1-2 model, P (Ca,v0

=

An, C∂An
= b) is the same as the probability that an a-bisector edge is present in the

perfect matching at all the vertices of An, while a b-bisector edge, or a c-bisector edge
is present in the perfect matching at each vertex of ∂An. This is the product of edge
weights, multiplied by the Pfaffian of a submatrix K−1

An∪∂An
of the inverse Kasteleyn

matrix, and K−1
An∪∂An

is indexed by the endpoints of the specified a, b, c edges in the
dimer graph. When the spectral curve does not intersect the unit torus T2, each entry
of the inverse matrix is a continuous function in a. For fixed n, K−1

An∪∂An
is a matrix

of finite order, hence PfK−1
An∪∂An

is continuous in a, so is P (|Ca,v0 | = n), since there
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are only finitely many configurations for each fixed n, according to Lemma 4.3. By
definition,

χ =

∞∑
n=1

nP (|Ca,v0 | = n),

which is the limit of a sequence of continuous functions. When a is sufficiently small,
there exists a positive number α, such that

nP (|Ca,v0
| = n) ≤ nP (|Ca,v0

| ≥ n) ≤ e−αn,

by Theorem 12. Hence the sequence of continuous functions converges uniformly in
any closed interval, as a result, χ is continuous in a if a is sufficiently small so that the
spectral curve does not intersect T2 and that the probability of a size-n a-cluster decays
exponentially at the origin, as n→∞.

Define an a-cluster to be a connected set of vertices, none of which have a-configu-
rations. We have the following proposition regarding the behavior of the a-cluster at
the origin.

Proposition 4.6. Fixing b, c, when a is small, the probability that an infinite ā-cluster
appears at the origin is strictly positive.

Proof. Let Ca(ω) be the largest a-cluster including the origin in the configuration ω. Let
Λk be the k× k box of H centered at the edge connecting (0, 0) and (0, 1). Let Uk be the
event that no vertices in Λk have a-configurations. Namely,

Uk = {ω ∈ Ω : Λk ⊆ Ca(ω)}.

For any fixed integer k, P (Uk) > 0.

For any simply connected vertex set D ⊆ V , let ∂D ⊆ E, consisting of all the edges
connecting a vertex in D and a vertex outside D. Let D̂ ⊆ V \ D, consisting of all the
vertices in V \D incident to an edge in ∂D. If D is a finite set, we have

|D̂| ≤ |∂D| ≤ 3|D̂|,

here | · | is the cardinality of a set.

Let T be the dual triangular lattice of H. Let (∂D)∗ be the set of edges of T consist-
ing of all the dual edges of edges in ∂D. Obviously |∂D| = |(∂D)∗|.

We consider the conditional probability P (|Ca(ω)| <∞|Uk). It is not hard to see that
conditional on Uk, Ca(ω) is finite if the following event FS occurs: there exists a simply
connected set S satisfying

1. Λk ⊆ S, |S| <∞;

2. All the vertices in Ŝ have a-configurations.

Note that (∂S)∗ is a connected set of edges of T , surrounding the origin. Using a
similar argument as in Lemma 4.3, it is easy to see that the total number of connected
edge sets of T surrounding the origin with cardinality h, is bounded above by θh, when
h ≥ H0. Here H0 and θ are positive constants.
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Therefore, we have

P (|Ca(ω)| =∞) ≥ P (|Ca(ω)| =∞|Uk)P (Uk)

= [1− P (|Ca(ω)| <∞|Uk)]P (Uk)

≥ [1−
∑
h≥2k

∑
{Ŝ:|∂S|=h}

P (all vertices in Ŝ have a− config.|Uk)]P (Uk)

≥ P (Uk)−
∑
h≥2k

∑
{Ŝ:|∂S|=h}

P (all vertices in Ŝ have a− config.)

≥ P (Uk)−
∑

{h:h≥2k}

θhe−βh

where the last inequality follows from Lemma 4.2. For fixed k, when a is small, P (Uk)

is continuous in a, and is 1 if a = 0. Hence we can choose a sufficiently small such that,
P (Uk) > 3

4 , and e−βθ < 1
2 , then

P (|Ca(ω)| =∞) ≥ 3

4
−
(

1

2

)2k−1

> 0,

and the proposition follows.

Proposition 4.7. When a is sufficiently large, the probability that an infinite a-cluster
appears at the origin is strictly positive.

Proof. First of all, let Λ be a fixed finite set of vertices, and consider the probability
that no vertices in Λ have a-configurations. Since each vertex of Λ may take either
a b-configuration or a c-configuration, there are 2|Λ| possible (dimer) configurations at
most. For each configuration ξΛ, according to Lemma 4.2, we have

P (ξΛ) ≤ e−η|Λ|,

when a is sufficiently large. Then using similar techniques as in Proposition 4.6, Propo-
sition 4.7 can be proved.

Recall that T is the dual triangular lattice of the hexagonal latticeH. An a-interface
is a connected set of edges of T , in which every edge separates a pair of vertices in H;
one has an a-configuration and the other does not have an a-configuration. The union of
all a-interfaces on the plane (or on the torus) for each random 1-2 model configuration
forms a closed polygon configuration for the triangular lattice T , i.e., at each vertex
there are an even number of incident present edges, see Figure 11 - an illustration of
a-interfaces for a 1-2 model configuration on a 3× 3 torus.

Lemma 4.8. When a is sufficiently large, almost surely there are no infinite a-interfaces.

Proof. By definition, associated to a large a-interface is a large set of vertices, none of
which have a-configurations. When a is sufficiently large, for any fixed large set, the
probability that no vertices in the set have a-configurations decays exponentially with
respect the the size of the set (Lemma 4.2). Then using similar argument as in Theorem
4.4 gives the result.

Recall that an a-cluster is a connected set of vertices in which every vertex has an
a-configuration. However, since there are two different a-configurations, either {100}
or {011}, obviously there are two types of a-clusters: either a {100}-cluster, a connected
set of vertices where all the vertices have {100} configurations or {011}-cluster, a con-
nected set of vertices where all the vertices have {011} configurations. Note that in one
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v1

v2 v3

v4

Figure 11: Interface

connected set of vertices where all the vertices have a-configurations, it is not possible
to have both {100} configurations and {011} configurations, since this way there will be
a vertex with three incident edges present in the configuration, which is a contradiction
to the law that each vertex can only have one or two incident edges. Therefore, every
a-cluster is either a {100}-cluster or a {011}-cluster.

Theorem 4.9. When a is sufficiently large, almost surely there exists exactly one infi-
nite a-cluster; in particular, the two types of infinite a-clusters, {100} and {011} cannot
coexist.

Proof. First of all, we prove that conditional on the existence of infinite a-clusters, it
is almost surely the case that the number of infinite a-clusters is exactly 1. Let S be
an maximal infinite a-cluster, i.e., none of the vertices in V \ S adjacent to a vertex in
S have a-configurations. Recall that V is the vertex set of the whole plane hexagonal
lattice H. Define TS be a set of edges of T , each of which is the dual edge of an edge of
H connecting a vertex in S and a vertex not in S. Then the connected components of TS
are a-interfaces by definition. By Lemma 15, TS has no infinite connected components,
hence V \S is a union of disconnected finite sets. Hence if infinite a-clusters exist, there
is exactly one infinite a-cluster almost surely.

Secondly, since the measure PM is ergodic, and the event that there exists an infinite
a-cluster is translation-invariant, either almost surely there exists an infinite a-cluster
or almost surely there are no infinite a-clusters. By Proposition 4.7 and the discussion
above, we conclude that almost surely there exists a unique infinite a-cluster, when a is
sufficiently large.

Remark. Corollary 4.4 and Theorem 4.9 imply that the system undergoes a phase
transition. Figure 12 is a picture for 1-2 model configurations with large a. It is obtained
using the Markov chain Monte Carlo simulation with parameter a = 5, b = c = 1.
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