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on half planar triangulations
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Abstract

We analyze the geometry of domain Markov half planar triangulations. In [5] it is
shown that there exists a one-parameter family of measures supported on half pla-
nar triangulations satisfying translation invariance and domain Markov property. We
study the geometry of these maps and show that they exhibit a sharp phase-transition
in view of their geometry at α = 2/3. For α < 2/3, the maps form a tree-like stricture
with infinitely many small cut-sets. For α > 2/3, we obtain maps of hyperbolic nature
with exponential volume growth and anchored expansion. Some results about the
geometry of percolation clusters on such maps and random walk on them are also
obtained.
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1 Introduction

Studying the geometry of random maps has been an area of major interest in the
recent years (see [11, 2, 6]). In [5], a classification Theorem for domain Markov half
planar maps was proved and a phase-transition was observed in view of their geometry
(details to follow). In this paper, we focus on the subcritical and supercritical phases
of domain Markov half planar triangulations, and analyze this phase-transition in more
detail. In particular, we obtain results for volume growth, isoperimetry and geometry of
percolation clusters in the supercritical and subcritical phases of these maps. Finally,
we extract some information about the behaviour of random walk on these maps from
these geometrical informations. So this work can be viewed as a sequel to [5].

Recall that a planar map is a proper embedding of a connected (multi) graph on
the sphere which is viewed up to orientation preserving homeomorphisms from the
sphere to itself. For embeddings of infinite graphs, we assume that the graphs are
locally finite (that is every vertex has finite degree) and the embedding is one-ended
(the complement of any finite subset of the map has precisely one infinite connected
component). By abuse of terminology, we shall identify the map with its (equivalence
class of) embedding. Connected components of the complement of the embedding are
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Geometry and percolation on half planar triangulations

Figure 1: An illustration (artistic) of the geometry of a subcritical half planar triangula-
tion to the left and that of supercritical to the right. The blue edges in the subcritical
map is the boundary of the map.

called faces. The degree of a face is the number of edges incident to it. We focus on
maps with a boundary, that is one face is marked as the external face and the edges
and vertices incident to it form the boundary of the map. In this paper, the boundary will
always be simple, that is, the boundary edges and vertices will form a simple cycle or an
infinite simple path. In this paper, we focus on half planar maps, that is maps which
are locally finite, one-ended and have an infinite simple boundary. In other words, these
maps can be embedded in R×R+ with no accumulation points such that the boundary
is R × {0}. More specifically, we focus on half planar triangulations, that is half
planar maps where all the faces except the external face are triangles. All our maps
are rooted, that is an oriented edge is specified as the root and in this paper the root
is always on the boundary and is oriented in a way such that the external face is to the
right of the root.

2 Main results

In [5], measures on half planar maps were considered which satisfy two natural
properties: translation invariance and domain Markov property. Informally, we
say a half planar random map is translation invariant if the law of the map is invariant
with respect to translation of the root along the boundary. A sub-map of a half planar
map is said to be simply connected if its union with the boundary is a simply connected
subset of the plane. Roughly speaking, if we condition on a random half planar map M
to contain some simply connected subset with a simple boundary containing the root
edge and remove it, and if the conditional distribution of the remaining map is the same
as that of M , then we say that the law of M satisfies the domain Markov property (see
Figure 2). We refer the reader to [5] for a more precise treatment.

Vertices not on the boundary of a half planar map are called internal vertices. We
quote below a special case of the main result of [5].

Theorem 2.1 ([5]). All translation invariant and domain Markov measures supported
on half planar triangulations without self-loops form a one parameter family Hα where
the parameter α ∈ [0, 1). Furthermore α denotes the probability of the event that the
triangle adjacent to the root edge is incident to an internal vertex.
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Q M M̃

Figure 2: An illustration of domain Markov Property. Left: A finite simply connected
map Q. Centre: A part of M containing Q with 2 edges along the boundary. Right: The
resulting map M̃ after removal of Q. Domain Markov property states that the law of M̃
is the same as that of M .

We remark here that the restriction to triangulations without self-loops is necessary
to obtain a one-parameter family (see [5], Section 3.4 for more on this.)

The measure corresponding to α = 2/3 is the well-known uniform infinite half
planar triangulation (UIHPT) (see [2, 4]). It is illustrated in [5] that the measures Hα
must exhibit a phase-transition in view of their geometry at α = 2/3. The goal of this
paper is to study the maps in the subcritical (α ∈ [0, 2/3)) and supercritical (α ∈ (2/3, 1))
regime of this one-parameter family.

2.1 Geometry

We present below the results obtained in this paper first for supercritical and then
for subcritical maps. Roughly, the behaviour of supercritical maps are hyperbolic:
they have exponential volume growth and anchored expansion. Anchored expansion
is enough to guarantee that the simple random walk is transient. The subcritical maps
behave, in view of their geometry, roughly like a critical Galton-Watson tree conditioned
to survive (see [16]). They have quadratic volume growth and infinitely many cut-sets
of finite size (see Figure 1). All the terms stated in this paragraph will be defined rigor-
ously below.

We remark here that the geometric properties are certainly very different from the
critical uniform infinite half planar triangulation (UIHPT). For results of similar nature
regarding the UIHPT, see [2, 3, 4].

2.1.1 Supercritical

Roughly, the geometry of maps in the supercritical regime can be viewed as a collection
of supercritical trees one attached to each vertex of an infinite simple path (see Fig-
ure 3). Hence, we can expect exponential volume growth, large cut-sets and positive
speed of random walk on these maps. The results which follow confirm some of these
heuristics.

Throughout this subsection, we assume α ∈ (2/3, 1). For a set X, we write |X| to
denote its cardinality. By an abuse of notation, for any finite graph or map G, let |G|
denote its number of vertices. The ball of radius r in a map denotes the submap formed
by all the faces which have at least one vertex incident to it which is at a distance strictly
less than r from the root vertex along with all the edges and vertices incident to them.
The hull of radius r is the ball of radius r along with all the finite components of its
complement. Note that since the half planar maps are one-ended, there will be exactly
one infinite component in the complement of the ball and the hull is always a simply
connected sub-map. The internal boundary of a simply connected sub-map is the set
of vertices and edges in the sub-map which is incident to at least one finite degree face
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Figure 3: An very rough intuition of the geometry of supercritical maps.

which is not in the sub-map. Clearly, the internal boundary of a hull is a connected
simple path in the map. We denote the hull of radius r around the root of a rooted map
M by Br(M) and the internal boundary of Br(M) by ∂Br(M). We sometimes will drop
the M and just write Br for the hull when the map in question is obvious.

We first show exponential volume growth of the hull and the boundary of the hull.

Theorem 2.2. Suppose T is a map with law Hα where α ∈ (2/3, 1). There exists some
constants C > c > 1 such that almost surely,

lim sup
|∂Br(T )|

Cr
= 0 and lim inf

|∂Br(T )|
cr

=∞ (2.1)

and also,

lim sup
|Br(T )|
Cr

= 0 and lim inf
|Br(T )|
cr

=∞ (2.2)

Having established the exponential volume growth, we ask if there are small cut-sets
in the map. The usual parameter to look for in this situation is the Cheeger constant
but since our maps are random and any finite configuration does occur almost surely
somewhere in the map, the correct parameter to consider is the anchored expansion
constant (see [20] Chapter 6).

For a graph G, let V (G) denote its set of vertices. For any graph G, and a subset of
vertices S ⊂ V (G), let |∂ES| denote the number of edges in G with one vertex in S and
another in V (G) \ S. Also let |S|E denote the sum of the degrees of the vertices in S.
The anchored expansion constant i∗E(G) of a graph G is defined as

i∗E(G) = lim inf
n→∞

{ |∂ES|
|S|E

;S ⊂ V (G) is connected, v ∈ S, |S|E ≥ n
}

We say the graph G has anchored expansion if i∗E(G) > 0. Although we specify a
vertex v in the above definition, the definition is independent of the choice of v.

Theorem 2.3. A half planar triangulation with law Hα for α ∈ (2/3, 1) has anchored
expansion almost surely.

We remark here that the exponential lower bound for the volume growth can be
concluded from anchored expansion, but we prove it using a different procedure in-
volving an exploration process because we use the same exploration process to study
the subcritical maps and also we get an upper bound on the volume growth using this
method.

A simple random walk on a random map is defined as follows: we fix a sample of
the map and define a sequence X0, X1, . . . such that X0 is the root vertex and after
obtaining Xi, we choose uniformly one of the neighbouring edges of Xi and define Xi+1

to be the vertex other than Xi incident to that edge. It is shown in [24] that simple
random walk on bounded degree graphs having anchored expansion has positive liminf
speed. Unfortunately our maps are not bounded degree maps, so we cannot directly
apply the result. However we can conclude using Theorem 3.5 of [22] and Theorem 2.3
that
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Corollary 2.4. Simple random walk on a map with law Hα is transient almost surely if
α ∈ (2/3, 1).

We believe that the random walk do have positive speed almost surely for supercrit-
ical maps. In fact we also believe that the distance of Xn from the boundary of the map
also grows linearly. We plan to take this up in a future paper.

2.1.2 Subcritical

Throughout this subsection, α ∈ [0, 2/3). The journey of understanding subcritical tri-
angulations begins with a result about their cut-sets. A cut-set of an infinite rooted
graph G is a connected subgraph of G which when removed breaks up G into two or
more connected components, the root being in the finite component. We shall see later
(Proposition 4.11) that in the subcritical regime there exists infinitely many cutsets each
of which consists of a single edge almost surely.

Union of two graphs is the graph induced by the union of their vertices. Presence
of infinitely many cutsets consisting of a single edge (Proposition 4.11) and domain
Markov property entails that a triangulation T distributed as a subcritical Hα can be
decomposed as

T = ∪∞i=1Ti (2.3)

where Ti’s are i.i.d. triangulations which are almost surely finite. Furthermore the
decomposition is such that Ti, Tj share a single edge if and only if |i− j| = 1 (see Figure
1). This can be for example proved using the peeling procedure described in Section
3.1. Such a decomposition also ensures that the subcritical triangulations are recurrent
almost surely (Proposition 4.12). We believe that the spectral dimension of a subcritical
map is almost surely 4/3 because the subcritical maps fall in the family of strongly
recurrent graphs as per [17]. See discussion in Section 6.

We can also consider the dual maps of these maps which consist of a vertex in each
face and two vertices are joined together if their corresponding faces share an edge. As
described in [5], we make such a dual map locally finite by breaking the infinite degree
vertex corresponding to the infinite face into infinitely many leaves. The decomposition
(2.3) entails that the dual of a subcritical triangulation almost surely consists of an i.i.d.
sequence of finite graphs each of which contains vertices of degree either 3 or 1 and are
connected to each other by a single edge. For α = 0, it can actually be seen that the dual
is a critical Galton-Watson tree conditioned to survive where the offspring distribution
of the Galton-Watson tree is as follows: it produces two offsprings with probability 1/2

and no offspring with probability 1/2 (see [5]). Hence the maps for different values
of α can be seen as an “interpolation” between the UIHPT and critical trees. In fact,
we believe that the scaling limit of such maps in the sense of local Gromov-Hausdorff
topology exists and is the infinite non-compact CRT (which can be viewed as the tangent
cone at the root of the compact Aldous CRT, (see [10])).

The discussion above allows one to expect that the length of the boundary of the hull
of radius r is a tight sequence. We prove a stronger result: the boundary sizes of the
hull has exponential tail.

Theorem 2.5. Let α ∈ [0, 2/3) and let T be a map with law Hα. Then there exists some
positive constant c > 0 (depending only on α) such that

Hα(|∂Br(T )|) > n) < e−cn

for all n ≥ 1.

The following central limit theorem shows that the volume growth is quadratic. This
reconfirms the tree-like behaviour.
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Theorem 2.6. Let T is a map with law Hα where α ∈ [0, 2/3). Then

|Br(T )|
r2

→ S1/2(α)

in distribution where S1/2(α) is a stable random variable with parameter 1/2 where the
other parameters of S1/2(α) depends only upon α.

2.2 Percolation

The interest in studying percolation on random maps stems from the need to un-
derstand the connection between statistical physics models on random surfaces and
the Euclidean plane. Bernoulli percolation is the simplest of such models. We are
mainly interested in quenched statements about Bernoulli site percolation on random
triangulations: take a half planar triangulation T with law Hα and color each vertex
independently black with probability p or white with probability 1 − p. A black (resp.
white) cluster is a connected component induced by the black (resp. white) vertices on
the map. Given a half planar map, denote the percolation measure on it by Pp and the
expectation by Ep. Let Pp denote the overall measure of percolation configuration on
a random map with law Hα and let Ep denote the expectation with respect to the mea-
sure Pp. It is understood that in these notations there is a hidden parameter α which
we shall drop to lighten notation. As usual, define pc to be the infimum over p such that
there exists an infinite black cluster Pp-almost surely. Further, we are also interested in

pu = inf{p ∈ (0, 1] : there exists a unique infinite cluster Pp-almost surely}

Percolation on random maps has been an object of interest for some time [2, 3, 4].
For example, it is shown (see [3]) that pc = pu = 1/2 almost surely for site percolation
on the uniform infinite half planar triangulation and almost surely clusters are finite at
criticality. Geometry of the critical cluster in the UIPT is studied in [9]. We want to
understand how the behaviour of percolation clusters change if we step away from the
critical regime. However it is immediate to see via Proposition 4.11 that percolation
is uninteresting in the subcritical maps (in this case pc = 1 almost surely.) It was
conjectured (see [7]) by Benjamini and Schramm that on non-amenable quasitransitive
graphs, pc < pu. For supercritical maps, because of anchored expansion as depicted by
Theorem 2.3, we would expect a similar behaviour.

Theorem 2.7. Fix α ∈ (2/3, 1). Then Hα-almost surely,

(i) pc = 1
2

(
1−

√
3− 2

α

)
(ii) pu = 1

2

(
1 +

√
3− 2

α

)
.

Also Hα-almost surely, there is no infinite black cluster Ppc -almost surely and there is
an unique infinite black cluster Ppu -almost surely.

Note that pc < pu almost surely in the regime α ∈ (2/3, 1). It is interesting to note
that as α → 2/3, both pc → 1/2 and pu → 1/2. But in the regime (pc, pu) we have
more than one infinite cluster. One can easily conclude via ergodicity of these maps
with respect to translation of the root along the boundary (see [5], Proposition 1.3) that
the number of infinite black or white clusters is actually infinite almost surely. The next
Theorem shows that the number of black or white infinite cluster touching the boundary
has positive density along the boundary.

Distance between two boundary vertices along the boundary is the number of
edges on the boundary between them. Let W∞k , B∞k be the number of infinite white and
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α-step i vertices i vertices.

Figure 4: Left: An α-step. Centre: A step of the form (R, i). Right: A step of the form
(L, i). The gray area denotes some unspecified triangulation.

black clusters respectively which share at least a vertex which is within distance k from
the root along the boundary.

Theorem 2.8. Fix α ∈ (2/3, 1) and suppose p ∈ (pc, pu) where pc,pu are as in Theorem
2.7. There exists a positive constant ρ > 0 such that almost surely,

W∞k
k
→ ρ,

B∞k
k
→ ρ (2.4)

The constant ρ is in fact half of the probability of the event of having an infinite
interface starting from a boundary edge (see Section 2.2 for more details.)

A ray in an infinite percolation cluster is a semi-infinite simple path in the cluster
starting from a vertex closest to the root (with ties broken arbitrarily). Two rays r1 and
r2 are equivalent if there is another ray r3 which intersect both r1 and r2 infinitely many
times. An end of a cluster is an equivalence class of rays. Let END(C) denote the space
of ends of a percolation cluster C. We shall define a metric on END(C) as follows: for
any two rays ξ and η on C, define the distance between them as

d(ξ, η) = inf{1/n, n = 1 or ∀X ∈ ξ,∀Z ∈ η,∃ a component K of

C \Bn, |X \K|+ |Z \K| <∞}

It is easy to deduce that END(C) does not depend on the choice of the vertex around
which we consider the graph-distance balls and that END(C) equipped with this metric
is compact.

Theorem 2.9. Fix α ∈ (2/3, 1). Assume pc, pu are as in Theorem 2.7 and fix p ∈ (pc, pu).
ThenHα-almost surely, the subgraph formed by each infinite cluster has no isolated end
and has continuum many ends Pp-almost surely.

Also for two sequences {an} and {bn}, an ∼ bn means that an/bn converges to 1 as
n→∞. Also an = O(bn) means that there exists a contant M > 0 independent of n such
that |an| < M |bn|. For any sequence {an}n≥1, ∆an := an+1 − an. Further, the positive
constant c might change from one line to the next, but we still denote them by c for
simplicity.

Acknowledgement: The author is grateful to Omer Angel for several illuminating dis-
cussions throughout the course of the research. The author is also indebted to Nicolas
Curien for several insightful conversations during the authors visit to Saint-Flour sum-
mer school in 2011. The author also thanks the anonymous referee for a careful reading
of the manuscript.

3 Background

The goal of this section is to review in more detail the phase transition observed
in [5] and describe the process of peeling in Section 3.1 which will play a central role
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throughout this paper. Also, we collect some preliminary results which we shall need
later.

We first define certain events which will be used repeatedly in what follows. Follow-
ing the notation of [5], an α-step is the event in which the third vertex of the triangle
incident to the root edge is an internal vertex. A step of the form (L, i) (resp. (R, i))
is the event that the triangle incident to the root edge is attached to a vertex on the
boundary which is at a distance i to the left (resp. right) of the root edge along the
boundary (see Figure 4). We shall also talk about such events with the root edge re-
placed any fixed edge on the boundary of the map. Because of translation invariance,
the measures of such events do not depend on the edge we want to consider and it was
also shown in [5] that for any fixed i ≥ 1, the measures of (L, i) and (R, i) are the same.
Let pi,k denote the measure of the event that a step of the form (L, i) or (R, i) occurs
and the triangle incident to the root edge separates k internal vertices of the map from
infinity. Let pi =

∑
k pi,k. We record here some computations done in [5]. Following the

notation of [5], we denote by β the probability of the event of the form (R, 1) with no
internal vertex in the 2-gon enclosed by the triangle incident to the root edge.

Subcritical α < 2/3:

β =
(2− α)2

16
(3.1)

pi,k =
2

4i
φk,i+1

(
1− α

2

)2i
(
α

4

(
1− α

2

)2
)k

(3.2)

pi =
2

4i
(2i− 2)!

(i− 1)!(i+ 1)!
((1− 3α/2)i+ 1) (3.3)

Supercritical α > 2/3:

β =
α(1− α)

2
(3.4)

pi,k = 2φk,i+1α
i+2k

(
1− α

2

)i+k
(3.5)

pi =
2

4i
(2i− 2)!

(i− 1)!(i+ 1)!

(
2

α
− 2

)i
((3α− 2)i+ 1) (3.6)

One can verify using Stirling’s formula, that the asymptotics of pi are as follows:

• One can easily compute using Stirling’s formula that

pi ∼
1− 3α/2

2
√
π

i−3/2 (3.7)

So the tail of pi is heavy with infinite expectation.

• pi ∼ c
(

2
α − 2

)i
i−3/2 for supercritical Hα for some constant c > 0. So pi has expo-

nential tail.

3.1 Peeling

In this section we shall describe the concept of peeling which is the central tool used
in this paper. Peeling has its roots in the physics literature [25, 1], and was used in the
present form in [2]. It is useful for analyzing many aspects of planar maps which include
percolation, random walks, volume growth and conformal properties (see [2, 4, 8, 21]).
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Pn

Tn

Pn

Free triangulation of
a 3-gon

Tn

Pn

Free triangulation of a 5-
gon

Figure 5: An illustration of possible peeling steps after n steps of peeling have been
completed. The gray area denote the peeled part Pn. The red vertices and edges denote
the internal boundary of Pn. In the middle (resp. right), the blue regions correspond to
a triangulation distributed as a free triangulation of a triangle (resp. pentagon).

In this paper we will use this procedure to analyze the geometry of domain Markov half
planar triangulations. Let us remark here that this procedure can be used to analyze
not only triangulations, but also other classes of random maps (see [5, 4, 6]).

Suppose we have a sample T from Hα for some α ∈ (0, 1]. We will construct a grow-
ing sequence of simply connected sub-maps Pn with a simple boundary and containing
the root. We define Tn to be the set of finite degree faces in T not in Pn along with
the edges and vertices incident to them (note that Tn is also a half planar triangulation
because Pn is simply connected with a simple boundary.) We will sometimes refer to
Tn as the complement of Pn. Start with P0 to be empty and T0 = T . At the nth peeling
step, we pick an edge en on the boundary of Tn and add the triangle in Tn incident to en
along with the finite component of the complement, if there is any (note that there can
be at most one such component), to Pn+1. Define Tn+1 to be the complement of Pn+1.
The root of Pn is the root of T and the root of Tn+1 is defined as the leftmost edge in
the boundary of Pn which is incident to at least one face of Tn and is oriented from left
to right. Note that at every step, the choice of en does not depend on Pn and for any
such choice, Tn is independent of Pn and is distributed as Hα via the domain Markov
property. By abuse of notation, sometimes we shall re-root Tn on some other edge on
the boundary of Tn and the distribution of Tn does not change by translation invariance.

Notice that in any step of peeling on an edge e, there are essentially three possible
choices for the peeling steps. Either it is an α-step where the third vertex of the triangle
incident to e is an internal vertex of the unexplored part. Such a step has probability α.
Otherwise, it is of the form (L, i) or (R, i) (see Figure 4) for some i ≥ 1 and such an event
occurs with probability pi. Notice that when an event of the form (L, i) or (R, i) occurs
we divide the whole triangulation into a finite and an infinite component. Conditioned
on the triangulation in the finite component as well as all the triangulation revealed so
far, the infinite component is again distributed as Hα by the domain Markov property.
The distribution of the triangulation of the finite component can be easily computed
using 3.5 and 3.2. On the event (R, i) ( or (L, i)), the distribution of the triangulation in
the finite component is called free triangulation of the (i + 1)-gon with parameter αβ.
Details about free triangulations along with computations of some estimates on them is
done in Section 3.3.

Intuitively, since pi has a heavy tail (pi ∼ i−3/2) in the subcritical regime, steps of
the form (R, i) or (L, i) occurs for large i more frequently in the subcritical regime
when performing the peeling process. This eats up the boundary a lot more resulting
in the tightness of the peeling boundary of Pn. In contrast, the supercritical regime has
exponential tail for pi (pi ∼ exp(−ci), c > 0) which results in an exponentially growing
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boundary.

3.2 Enumeration of planar maps

A triangulation of an m-gon is a finite map in which all faces are triangles except
an external face of degree m. The boundary of the map must form a simple loop of
m edges. The root is on the boundary oriented such that the external face is to its
right. The following combinatorial result may be found in [15]. It is derived using the
techniques introduced by Tutte [23].

Proposition 3.1. For n,m ≥ 0, not both 0, the number of rooted triangulations of a
disc with m+ 2 boundary vertices and n internal vertices without self loops is

φn,m+2 =
2n+1(2m+ 1)!(2m+ 3n)!

m!2n!(2m+ 2n+ 2)!
.

We will assume φ0,2 = 1 (see discussion in [5]). The following asymptotics of φn,m
may be found in the proof of Lemma 4.1 in [5]. As {m,n} → {∞,∞},

φn,m ∼ c
(

27

2

)n
9mn−5/2

√
m

(
1 +

2m

3n

)2m+3n (
1 +

m

n

)−2m−2n

(3.8)

for some constant c > 0.

3.3 Free triangulations

The following measure is of particular interest:

Definition 3.2. The Boltzmann or free distribution on rooted triangulations of an m-
gon with parameter q ≤ 2

27 is the probability measure that assigns weight qn/Zm(q) to
each rooted triangulation of the m-gon having n internal vertices, where

Zm(q) =
∑
n

φn,mq
n.

A freely distributed triangulation with parameter q of an m-gon will be referred to
as a free triangulation with parameter q of an m-gon. Note that by the asymptotics
of φ as n → ∞ we see that the sum defining Zm(q) converges for any q ≤ 2

27 and for
no larger q. The precise value of the partition function will be useful, and we record it
here:

Proposition 3.3. If q = θ(1− 2θ)2 with θ ∈ [0, 1/6], then

Zm+2(q) = ((1− 6θ)m+ 2− 6θ)
(2m)!

m!(m+ 2)!
(1− 2θ)−(2m+2).

The proof can be found as intermediate steps in the derivation of φn,m in [15]. The
above form may be deduced after a suitable reparametrization of the form given there.
Let Im(q) denote the number of internal vertices of a freely distributed triangulation of
an m-gon with parameter q.

Proposition 3.4. Fix θ ∈ [0, 1/6) and let q = θ(1− 2θ)2. Fix an integer m ≥ 2.

(i) E(Im(q)) = (m−1)(2m−3)2θ
(1−6θ)m+6θ = 4θ

(1−6θ)m+O(1)

(ii) V ar(Im(q)) = (m−1)(2m−3)m(1−2θ)
((1−6θ)m+6θ)2(1−6θ) = 2(1−2θ)

(1−6θ)3m+O(1)
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Proof. Note the following identity

E(Im(q)) =
q(Z ′m(q))

Zm(q)
= q(logZm)′(q)

Putting q = θ(1− 2θ)2 and using Proposition 3.3, we obtain after an easy computation

E(Im(q)) =
(m− 1)(2m− 3)2θ

(1− 6θ)m+ 6θ

The proof of (ii) is a similar computation and is left to the reader to verify.

We will need the following estimates whose proof is postponed to Section A.

Lemma 3.5. Suppose αβ = θ(1 − 2θ)2 where α ∈ [0, 2/3) and β is given by (3.1).
Suppose Y is a variable supported on N∪{0} such that P(Y = i) = pi and P(Y = 0) = α

where pi are given by (3.3). Then

(i) P(Y + IY+1 > x) ∼ cα√
x

(ii) E(Y + IY+1)1{Y+IY+1<x} ∼ cα
√
x

as x→∞ where

cα =
(1− 3α/2)

√
1− 2θ√

π(1− 6θ)
(3.9)

3.4 Stable Random Variables

The theory of stable random variables plays a vital role in our subsequent analysis.
Fix α ∈ (0, 2]. An independent sequence X1, X2, . . . is said to follow a stable distribution
of type α if Sn = X1 + . . .+Xn satisfies

Sn
(d)
= n1/αXn + γn

for some sequence γn and the distribution of X1 is not concentrated around 0. See for
example [13] Chapter VI or [12] for more details.

We shall be needing the following classical result. This can be found in [12].

Theorem 3.6. Suppose X1, X2, . . . are i.i.d. with a distribution that satisfies

1. limx→∞P(X1 > x)/P(|X1| > x) = θ ∈ [0, 1]

2. P(|X1| > x) = x−αL(x)

where α < 2 and L is slowly varying. Let Sn = X1 + . . . Xn. an = inf{x : P(|X1| > x) ≤
n−1} and bn = nE(X11|X1|≤an). As n → ∞ (Sn − bn)/an → Y in distribution where Y is
a stable random variable of type α.

We are specially interested in the case α = 1/2. It turns out that we can add a
constant to a variable following a stable distribution of type α where α 6= 1 such that
γn = 0 for all n in its definition (see [13]). After such a centering, its density can be
explicitly written as

(2πx3)−1/2 exp(−1/2x)1{x>0}

This is known as the Lévy distribution.
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4 Geometry

4.1 Peeling algorithm

Recall from the discussion in Section 3.1 that we are free to choose the edge en on
which we apply the nth peeling step. We now describe an algorithmic procedure to
choose the edges in such a way that at a certain (random) step we reveal the hull of the
ball of radius r around the root vertex. The algorithm follows the idea developed in [2]
for analyzing the volume growth of the full plane UIPT, but we modify it appropriately
for the half plane versions. We take up the notations of Section 3.1. Further recall that
the hull of the ball of radius r of a map M around the root is denoted by Br(M).

Suppose we perform the peeling procedure on a half planar triangulation T . Let
τ0 = 0 and let P0 be the root vertex. Suppose we have defined a (random) time τr so
that Pτr = Br(T ) for some r ≥ 1. In particular, the internal boundary of Pτr is ∂Br(T ).
The idea is to iteratively peel the edges in ∂Br(T ) till none of the vertices in ∂Br(T )

remain in the boundary of Tn.

Algorithm: Suppose we have described the process up to step n such that τr ≤ n <

τr+1. Now look for the left most vertex v of ∂Br(T ) which remains in the internal
boundary of Pn at step n and perform a peeling step on the edge to the right of
v in the boundary of Tn. If there is no vertex v of ∂Br(T ) left in the boundary of
Tn+1, define n+ 1 = τr+1 and Pτr+1

= Br+1.

The algorithm proceeds in such a way that for every vertex of ∂Br(T ), we keep on
peeling at an edge incident to that vertex until it goes inside the revealed map. Hence
at step τr, we reveal nothing but the hull of the ball of radius r for every r ≥ 1. Recall
that the internal boundary of Pn is the set of edges and vertices which are incident
to at least one finite degree face not in Pn. Let Xn denote the number of vertices in
the internal boundary of Pn at the nth step. It is easy to see that Xn itself is not a
Markov chain because the transition probabilities very much depend on the position
of the edge on which we are peeling. However, a bit of thought reveals that Xτr is in
fact an irreducible aperiodic Markov chain. We record the above observations in the
following Proposition.

Proposition 4.1. For r ≥ 1, Pτr described in the algorithm above is the same as Br(T )

and Xτr = |∂Br(T )|. Also, the sequence {Xτr}r≥1 is an irreducible aperiodic Markov
chain.

Following the idea of [2], we estimate the size of the boundary by analyzing Xn

separately for α in subcritical and supercritical regimes. Observe that ∆Xn = Xn+1 −
Xn ≤ 1 for any n. Note also that the tails of ∆Xn have different behaviour in the
subcritical and supercritical regimes:

Hα(∆Xn < −i) ≈
{
i−1/2 α < 2/3

exp(−ci) α > 2/3
(4.1)

for some constant c > 0 and a large non negative integer i < Xn. Thus, ∆Xn conditioned
on Xn has negative expectation if Xn is not too small in the subcritical regime. This tells
us that Xn has a drift towards 0 as soon as it gets large which implies it should be a tight
sequence. On the other hand, it will follow from the computation below (Lemma 4.2)
that in the supercritical regime, ∆Xn conditioned on Xn has positive expectation. This
will imply that Xn grows linearly. This constitutes the key point of difference between
the two regimes which is made rigorous in the following Section 4.2 and Section 4.3.
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4.2 Supercritical

In this subsection, we prove Theorem 2.2 and hence we assume α > 2/3 throughout
this subsection. Recall that we denote by Br the hull of the ball of radius r of a map T

with law Hα. Further, we shall also borrow the notations from Section 3.1 and Section
4.1.

As mentioned before, we will perform the peeling algorithm described in Section 4.1
and analyze the quantity ∆Xn. To that end, we shall approximate ∆Xn by a sequence
of auxilary variables X̃n such that the variables ∆X̃n = ˜Xn+1 − X̃n for n ≥ 1 form an
i.i.d. sequence with ∆X̃n = −i if a step of the form (L, i) or (R, i) occurs in the (n+ 1)th
peeling step and ∆X̃n = 1 if an α step occurs in the (n+ 1)th peeling step. Clearly, from
definition, Xn > X̃n since if in a peeling step the triangle revealed has the third vertex
not on the internal boundary of Pn, ∆Xn > ∆X̃n.

Because of the exponential tail, the variables ∆X̃n in the supercritical regime have
finite variance. Further its expectation turns out to be positive.

Lemma 4.2.
E(∆(X̃n)) =

√
3α− 2

√
α (4.2)

In particular, E(∆(X̃n)) > 0 for α ∈ (2/3, 1).

Proof. Observe that the expected change is given by

α−
∑
i≥1

ipi = 1−
∑
i≥1

(i+ 1)pi

where pi is given by 3.6 and the equality follows from the fact that
∑
i≥1 pi = 1−α. Now

from 3.6, ∑
i≥1

(i+ 1)pi =
∑
i≥1

2Cat(i− 1)

(
2/α− 2

4

)i
((3α− 2)i+ 1) (4.3)

where Cat(n) = 1
n+1

(
2n

n

)
is the nth catalan number. The sum in the right hand side of

4.3 can be easily computed using generating functions of catalan numbers. We leave
this last step to the reader.

Lemma 4.3. There exists a constant c > 0 such that almost surely

c < lim inf
Xn

n
≤ lim sup

Xn

n
≤ 1 (4.4)

Proof. lim supXn/n ≤ 1 follows trivially because ∆Xn ≤ 1. Since the steps in ∆(X̃i) are
i.i.d. with finite mean, strong law of large numbers imply that X̃n/n→

√
3α− 2

√
α > 0

almost surely as n → ∞. The required lower bound now follows from the fact that
Xn > X̃n by definition.

Recall that step τr in the peeling algorithm marks the step when the hull of the
ball of radius r is revealed. We now state some estimates on τr. The first part of the
following Lemma 4.4 is essentially rephrasing Lemma 4.2 of [2]. Further, we remark
that Lemma 4.4 is valid for any α ∈ [0, 1) and we shall use it again when dealing with
the subcritical case in Section 4.3.

Lemma 4.4. For any r ≥ 0,

(i) There exists some constants A > 1 and A′ > 0 such that for any integer n ≥ 1,

P(∆τr > An||Xτr | = n) < exp(−A′n) (4.5)
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(ii) For any integer k ≥ 1 and integers 1 ≤ l ≤ l′

P(∆τr > k||Xτr | = l) ≤ P(∆τr > k||Xτr | = l′).

Proof. The number of steps required for a vertex on ∂Br to go inside the revealed map
is a geometric random variable (we wait till a step of the form (L, i) occurs for some
i ≥ 1.) Thus ∆τr is a sum of at most n i.i.d. geometric variables. Thus part (i) follows
from a suitable large deviations estimate.

An easy coupling argument can be used to prove part (ii). To see this, let us consider
two marked contiguous segments S with l vertices and S′ with l′ vertices on the bound-
ary with the left most vertex being the root vertex. We can now perform the peeling
algorithm described in Section 4.1 until all the vertices in S is inside the revealed map.
Clearly, if at some step, some vertices of S are still not swallowed by the revealed map,
then some vertices of S′ are also not swallowed.

Lemma 4.4 along with Lemma 4.3 shows that almost surely for some positive con-
stants a, a′ and for all but finitely many r

a′τr+1 < Xτr+1
< ∆(τr) < aXτr < aτr. (4.6)

For the first and last inequality in the above display, we used Lemma 4.3, for the third in-
equality, we used Lemma 4.4 and for the second inequality we observe that the vertices
of ∂Br+1 are added only one at a time. This in turn shows that

Lemma 4.5. There exists constants 1 < c < C such that almost surely

lim inf c−rτr = ∞
lim supC−rτr < ∞

Let Vn denote the number of vertices in the revealed map Pn in the nth step of the
peeling algorithm. Our main goal is to estimate Vτr in order to prove Theorem 2.2. Now
suppose Sn = Vn −Xn. Then it is easy to see just from the description of the algorithm
that Sn is a sum of n i.i.d. random variables each of which is distributed as Y + IY+1

where Y = −∆X̃n1∆X̃n 6=1 and IY+1 is distributed as a the number of internal vertices
of a free triangulation of a (Y + 1)-gon with parameter αβ. Notice that this definition
makes sense for all values of α, not for just the supercritical regime. However in the
supercritical regime, exponential tail of Y entails that Y has finite expectation. Further
conditioned on Y , the expectation of IY+1 is 4θY/(1 − 6θ) + O(1) via Proposition 3.4
where θ is given by the relation θ(1− 2θ)2 = αβ. Thus Y + IY+1 has finite expectation.

Proof of Theorem Theorem 2.2. Recall that |Br| = Vτr . Now since Sn is a sum of i.i.d.
random variables with finite mean, Sn/n converges almost surely. This fact along with
(4.6) and Lemma 4.5 completes the proof.

4.2.1 Anchored expansion

Now we turn to the proof of Theorem 2.3. Recall that internal boundary of a simply
connected sub-map with a simple boundary is the set of vertices and edges in the sub-
map which is incident to at least one finite degree face which do not belong to the sub-
map. Also recall that for any two vertices on the boundary, distance along the boundary
is the number of edges on the boundary between the vertices. Clearly, distance along
the boundary is at least the graph distance in the whole map. We show in the following
lemma that the graph distance between vertices on the boundary in the whole map is
at least linear in the distance between them along the boundary.
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k vertices

< tk vertices

i vertices

j vertices

k vertices

Figure 6: Left: An illustration of a t-bad segment. The segment consisting of blue
vertices is a t-bad segment. The gray area is some fixed finite triangulation. Right: The
red vertices form a (k, i+ j)-separating loop

Lemma 4.6. Let v be a vertex at distance n ≥ 1 along the boundary from the root vertex
on a map with law Hα where α ∈ (2/3, 1). There exists a constant t(α) > 0 depending
only on α such that the probability of the distance between v and the root being smaller
than t(α)n is at most exp(−cn) for some c > 0.

Proof. Let us assume without loss of generality that v is to the right of the root vertex.
We use the peeling algorithm described in Section 4.1 and reveal the hulls of radius r
for r ≥ 1 around the root vertex. Recall the notations Pn which denotes the revealed
map after n peeling steps and τr which denotes the step in which we finish exploring
the hull of radius r. Now the vertices of the boundary to the right of the root vertex
which goes inside the peeled map is entirely determined by the last step and is easily
seen to have exponential tail and a finite expectation depending only on α. Hence the
probability that v is in the hull of radius at most tn around the root vertex is at most the
probability of the event that the sum of tk independent variables with finite expectation
and exponential tail is larger than k. The latter event has probability exp(−ck) for
some c > 0 if t is small enough (depending only on α) by a suitable large deviations
estimate.

A connected segment X on the boundary of the map containing the root edge is said
to be a t-bad segment for some t > 0 if there exists a simply connected sub-map Q

with a simple boundary whose intersection with the boundary of the map is X and the
internal boundary has at most t|X| vertices (see Figure 6).

Lemma 4.7. For small enough t (depending on α), there exists finitely many t-bad
segments almost surely.

Proof. Let us fix a connected segment X of length k containing the root edge. The event
that X is t-bad is contained in the event that the distance (in the whole map) between
the leftmost and the rightmost vertices in X is at most tk. If t > 0 is small enough this
event has probability at most exp(−ck) for some c > 0 using Lemma 4.6 and translation
invariance. Since there are at most k connected segments of length k containing the
root, the rest of the proof follows from Borel-Cantelli.

We shall need the following Lemma which essentially follows from Lemma 3.2 of [5]
and Euler’s formula.

Lemma 4.8. Fix α ∈ [0, 1) and β is given by 3.1 and 3.4. Let Q be a simply connected
triangulation with k + i + j vertices and boundary size i + j. Let T be a sample from
Hα. The event that Q is a sub-map of T with a marked connected segment containing
i vertices on the boundary of Q being mapped to a marked connected segment on the
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boundary of T with i vertices and no other vertex of Q being mapped to the boundary
of T has probability

αk+jβi+k−2

We call a simple cycle in a half planar map a (k, l) separating loop if it has l vertices,
its intersection with the boundary forms a connected segment containing the root edge
and it separates k internal vertices of the map from infinity.

Lemma 4.9. Fix α ∈ (2/3, 1). There exists a constant c(α) depending upon α such that
Hα-almost surely there are finitely many (k, l)-separating loops with l < c(α)k.

Proof. Recall that φn,m denotes the number of triangulations of anm-gon with n internal
vertices. From Lemma 4.8, (3.4) and union bound, the probability that there exists a
(k, l)-separating loop with i vertices on the boundary of the map is at most

iφk,lα
k+j

(
α(1− α)

2

)k+i−2

(4.7)

where the factor i comes from the fact that the root can be any one of the edges of the
intersection of the separating loop with the boundary. Let j = l − i. Now it is easy to
see from (3.8) that

φk,l < (27/2)k9l
(

1 +
2l

3k

)2l+3k

k−5/2
√
l (4.8)

Combining (4.7) and (4.8) and summing over i < l where l < tk, we get that the proba-
bility of existence of a (k, l)-separating loop is at most

l5/2k−5/2 ·
(

27α2(1− α)

4

)k
·
(

9α(1− α)

2

)l
·
(

1 +
2t

3

)(2t+3)k

·
(

2

1− α

)tk
< exp(−ck) (4.9)

for some constant c > 0 if t is small enough. To see this, observe that α2(1 − α) < 4/27

and α(1 − α) < 2/9 if α ∈ (2/3, 1). The sum of the bound in (4.9) over k > l/t and then
over l is finite. The rest of the proof follows from Borel-Cantelli.

For S ⊂ V (G), recall that the notation |S|E denotes the sum of the degrees of the
vertices in S and ∂ES denotes the number of edges which are incident to one vertex in
S and another in G \ S.

Proof of Theorem 2.3. Consider a connected set of vertices S containing the root ver-
tex such that |S|E > n and suppose ∂ES < t2|S|E for some t > 0. By an abuse of
notation, denote by S the finite map induced by S and without loss of generality assume
it contains the root edge. Add to S all the faces which share at least one vertex with
S along with the edges and vertices incident to it. Then add all the connected finite
components of the complement and call the resulting finite triangulation S. Note that
S is simply connected with a simple boundary and |S| > n. Also, the vertices and edges
in the boundary of S form a separating loop. Suppose the internal boundary of S has j
vertices. From the definition of ∂ES: j < ∂ES < t2|S|E . Let i be the number of vertices
of S on the boundary of the map and suppose k = |S| − i − j. Now the assumption
∂ES < t2|S|E and Euler’s formula for S yields

k >
1− 5t2

6
|S|E −

2i

3
(4.10)

If i < t|S|E then i + j < tCk for some universal constant C > 0 using (4.10) which can
occur for finitely many n almost surely via Lemma 4.9 if t is small enough. If i > t|S|E
then j < ti and this can occur for finitely many n almost surely via Lemma 4.7.
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Proofs of Lemma 4.9 and Lemma 4.7 and Theorem 2.3 in fact says that the probabil-
ity of the existence of a set with small boundary containing the root vertex is exponen-
tially small. We record it here for future reference.

Proposition 4.10. There exists a t > 0 depending only upon α such that the probability
that there exists a connected set of vertices S containing the root vertex such that
|S|E > n and ∂ES < t|S|E is at most exp(−cn) for some c > 0.

4.3 Subcritical

In this section we prove Theorem 2.5. We shall use the notations of Section 4.1 and
Section 4.2 and assume α ∈ [0, 2/3) throughout this section. Further, Br will denote
the hull of the ball of radius r around the root in a map T with law Hα Recall that in
this regime, probability that a peeling step of the form (L, i) or (R, i) occurs for i ≥ k is
roughly k−1/2.

4.3.1 Boundary size estimates

To understand the boundary sizes, we need to understand the variables Xτr for r ≥ 1.
As a warm up we prove

Proposition 4.11. In a half planar triangulation with law Hα where α ∈ [0, 2/3), there
exists infinitely many cutsets each of which consists of a single edge almost surely.

Proof. Notice thatXn ≤ n+2 for all n ∈ N just by its definition. If the event ∪j>2k+2{(R, j)}
occur at step 2k and the event ∪j>2k+2{(L, j)} occur at step 2k + 1, then X2k+2 = 2.
But this event has probability at least c/k for some c > 0 and for different k’s these
events are independent by the domain Markov property. The proof follows by Borel-
Cantelli.

Proposition 4.11 and the Nash-Williams criterion for recurrence (see [19], Proposi-
tion 9.15) immediately implies

Proposition 4.12. Simple random walk on a half planar triangulation with law Hα is
recurrent almost surely for α ∈ [0, 2/3).

We know via Proposition 4.1 that Xτr is an irreducible aperiodic Markov chain with
state space N \ {0, 1}. We now show that {Xτr}r≥1 is a tight sequence with exponential
tail. Suppose Nk(r) for k ≥ 0 denote the number of vertices in the internal boundary of
Pτr+k which do not belong to ∂Br.

Lemma 4.13. For any r ≥ 0, k ≥ 1,n ≥ 1

P(Nk(r) > n|Xτr ) < exp(−Bn)

for some positive constant B which do not depend upon r, k or n. In particular, this
bound is independent of the conditioning on Xτr .

Proof. First fix an n0 large enough such that

α− 1

2

bn0/2c∑
i=1

ipi < −ε

for some ε > 0 where pi is given by (3.3) (observe that such a choice of n0 exists due to
the heavy tail of pi.) The above choice of n0 depends only on α. Now choose an integer
n > n0. Let ∆Nk(r) := Nk+1(r) − Nk(r) for k ≥ 1. Observe that Nk(r) increases by
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at most 1 in any step because of the evolution of Xk and N0(r) = 0. This has several
implications. Firstly, this implies that it is enough to consider k > n or otherwise the
requested probability is 0. Secondly, if Nk(r) > n, then for some integer 1 ≤ j ≤ k,
Nj(r) is equal to n0. Let M = max{1 ≤ j ≤ k : Nj(r) = n0}. Finally, we must have
M ≤ k − n+ n0. Now note that

P(Nk(r) > n,M = j) < P(Ni(r) ≥ n0 for all j ≤ i ≤ k) (4.11)

Now for any i > j, conditioned on Ni(r) ≥ n0, there are at least n0/2 vertices of the
internal boundary of Pτr+k which do not belong to ∂Br either to the left or right of the
edge we perform the (i + 1)th peeling step because of the way the exploration process
evolves. Hence it is clear that conditioned on Ni(r) ≥ n0, ∆(Ni(r)) is dominated by a
variable D with E(D) < −ε because of the choice of n0. Thus,

P(Ni(r) ≥ n0 for all j ≤ i ≤ k) < P

(
k−j∑
i=1

Di > 0

)
< γk−j (4.12)

for some 0 < γ < 1 depending only on n0 where {Di}i≥1 are i.i.d. copies of D and
the last inequality of (4.12) follows from suitable large deviations estimate. Now using
(4.11) and (4.12),

P(Nk(r) > n|Xτr ) =

k−n+n0∑
j=1

P(Nk(r) > n,M = j) <

k−n+n0∑
j=1

γk−j < exp(−Bn) (4.13)

for some B > 0 for large enough n. Decrease B suitably so that the requested bound is
true even for smaller values of n.

We remarked before that Lemma 4.4 is true for any value of α. We shall now use
this fact and induction to prove Theorem 2.5.

Proof of Theorem 2.5. First, get hold of the constants A > 1, A′ > 0, B > 0 such that
Lemma 4.4, part (i) and Lemma 4.13 are true for n ≥ 1. Fix a C such that 0 < C < B.
Then choose a large N to ensure that for all n > N ,

max{exp(−A′n2), An2 exp(−Bn), exp(−Cn2)} < 1

3
exp(−Cn).

We shall prove that for all n > N , the Theorem is true for the above choice of C > 0 by
induction on r. Note that for r = 0, the Theorem is true trivially since Xτ0 = X0 = 1.
Now assume, the Theorem is true for r′ = r − 1 for any n > N for above choice of C,N .
Now recall the notation Nj from Lemma 4.13 and observe that Nj = Xj for j ≥ ∆τr.
Clearly, for n > N , using Lemma 4.13

P(Xτr > n,∆τr−1 = j|Xτr−1) < P(Nj > n|Xτr−1) < exp(−Bn) (4.14)

Now for any choice of n > N , using (4.14),

P(Xτr > n) < P(Xτr−1
> n2) + P(∆τr−1 > An2|Xτr−1

≤ n2) +

An2∑
j=1

exp(−Bn)

< exp(−Cn2) + exp(−A′n2) +An2 exp(−Bn) (4.15)

< exp(−Cn) (4.16)

where (4.15) follows from induction step, Lemma 4.13 and Lemma 4.4. Also, (4.16)
follows from the choice of N . The proof is completed by induction.
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4.3.2 Hull Volumes

First, we wish to estimate the growth rate of τr. Note that conditioned on Xτr the dis-
tribution of ∆(τr) depends only on Xτr and not r. It is easy to see that Zr := (Xτr ,∆τr)

is an irreducible aperiodic Markov chain. Using Theorem 2.5 and Lemma 4.4 it is not
difficult to see that the sequence {Zr}r≥1 forms a tight sequence. Hence, Zr has a sta-
tionary probability distribution. Let us denote the marginal of the second coordinate of
this stationary distribution by π. It is also easy to see using Theorem 2.5 and Lemma 4.4
that π has exponential tail and hence finite expectation. If we start the Markov chain
{Zr}r≥1 from stationarity, ergodic theorem gives us that τr/r converges almost surely
to
∑
i≥0 iπ(i). However if we start the Markov chain {Zr}r≥1 from any fixed number,

the resulting measure is absolutely continuous with respect to the corresponding chain
starting from stationarity. This argument proves

Lemma 4.14. Almost surely,
τr
r
→
∑
i≥0

iπ(i)

Recall the notation Y,Z, {Sn}n≥1 from Section 4.2. Recall that the volume of the
triangulation revealed at the n-th step of peeling is given by Vn = Sn +Xn. We wish to
estimate Vτr = |Br|. Recall that Sn is a sum of n i.i.d. copies of W where W = Y + IY+1.
From Lemma 3.5 part (i), we conclude P(W > x) ∼ cαx

−1/2 as x → ∞ for the constant
cα given by (3.9).

Lemma 4.15. For some sequence of real numbers an and bn

Vn − bn
an

⇒ S (4.17)

where S follows a stable distribution of type 1/2. Also an ∼ c2αn
2 and bn ∼ c2αn

2 where
cα is given by (3.9).

Proof. Note that since Xn ≤ n and since Vn = Sn +Xn, it is enough to prove the result
with Vn replaced by Sn. Since Sn is a sum of an i.i.d. sequence distributed as W , we ap-
ply Theorem 3.6. Recall from Theorem 3.6, the centering sequence an = inf{t : P(W > t) ≤ 1/n}.
Recall that we also obtained the tail estimate of W , P(W > x) ∼ cαx−1/2. It is easy to
see from this tail estimate of W that an ∼ c2αn

2. The asymptotics of bn is provided in
Lemma 3.5 part (ii).

We need one final lemma before we prove Theorem 2.6. Recall the distribution π

from Lemma 4.14.

Lemma 4.16. Vτr/Vbγrc converges in probability to 1 where γ =
∑
i≥0 iπ(i).

Proof. Observe that it is enough to prove Sτr/Sbγrc converges to 1 in probability. Notice
that since Sr is nondecreasing in r, for any η > 0 and ε > 0, we have

P(|Sτr/Sbγrc − 1| > η, (1− ε)γr < τr < (1 + ε)γr)

< P

(
Sb(1+ε)γrc − Sb(1−ε)γrc

Sbγrc
> η, (1− ε)γr < τr < (1 + ε)γr

)
(4.18)

Recall that a stable law is absolutely continuous (see [13], Chapter VI.1, Lemma 1) and
hence via Lemma 4.15 we can conclude both {Sr/r2}r≥1 and {r2/Sr}r≥1 form a tight
sequence in r. Further notice that τr/γr → 1 almost surely via Lemma 4.14. Combining
all these pieces, it is easy to see that for any η > 0, there exists an ε > 0 such that
the right hand side of (4.18) can be made smaller than any prescribed δ > 0 for large
enough r. The details are left to the reader.
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Proof of Theorem Theorem 2.6. Notice Vτr = |Br|. Also observe

Vτr − bbγrc
abγrc

=
Vbγrc − bbγrc

abγrc
+
Vbγrc
abγrc

(
Vτr
Vbγrc

− 1

)
(4.19)

The first term of (4.19) converges to a stable random variable of type 1/2 via Lemma
4.15. The second term in (4.19) converges to 0 in probability via Lemma 4.16. The proof
follows combining these two facts.

5 Percolation

In this Section, we prove Theorem 2.7 and Theorem 2.8 and Theorem 2.9. We will
use the peeling procedure and use the notations Pn, Tn introduced in Section 3.1. Along
with revealing the face on the edge we peel, we might also reveal the color of the new
vertex (if any) revealed. It will be useful to consider several boundary conditions, which
specifies the colors of the boundary vertices. If we consider a percolation configura-
tion on the whole graph including the boundary vertices, we say it is a random i.i.d.
boundary condition.

Algorithm: We start with the root vertex black and every other vertex on the boundary
white. At the n+ 1th step, we perform a peeling step at the edge on the boundary
of Tn with a black vertex to the right and a white vertex to the left. We stop at the
nth step if there is no black vertex left on the boundary of Tn.

Notice that until we stop in the above algorithm, the boundary condition on Tn re-
mains the same as the initial one. A simple topological argument shows that the event
that the above algorithm stops is the same as the event that the black cluster containing
the root vertex is finite. Now consider the following variable B. If the peeling step is
an α-step and a black vertex is revealed set B = 1. If the peeling step is of the form
(R, i), set B = −i. Otherwise set B = 0. The following Lemma is a computation which
essentially follows from Lemma 4.2.

Lemma 5.1. Suppose α ∈ (2/3, 1)

Ep(B) = αp− 1

2
(α−√α

√
3α− 2) (5.1)

In particular, Ep(B) > 0 if and only if p > 1/2(1−
√

3− 2/α).

The following proof is an imitation of the idea of [4]. We add it for completeness.
Recall the notation Tn from Section 3.1.

Proof of Theorem 2.7( for pc). Assume the following boundary condition: the root ver-
tex is black and the rest of the vertices on the boundary are white. Apply the algorithm
described above. Start with B0 = 1 and suppose Bk is the number of black vertices left
in the boundary of Tk. Clearly Bk+1 − Bk are i.i.d. with the same distribution as B as
long as Bk+1 6= 0. Lemma 5.1 shows that Bk eventually goes to 0 almost surely if and
only if p ≤ 1

2 (α − √α
√

3α− 2). Modifying the proof to a random i.i.d. boundary is an
easy exercise of imitating Proposition 9 of [4] and is left to the reader. The almost sure
existence of a black cluster if p > 1

2 (α−√α
√

3α− 2) follows from ergodicity of the map
with respect to translation of the root (see [5], Proposition 1.3).

Corollary 5.2. With random i.i.d. boundary condition, Hα-almost surely,

pu ≤ 1/2(1 +
√

3− 2/α) (5.2)
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Figure 7: An illustration of an interface between a black and a white cluster for perco-
lation in a half planar triangulation.

Proof. Assume p ≥ 1/2(1 +
√

3− 2/α). Consider the event E that there are two infinite
black clusters. Then one of the components of the complement of one of them must be
infinite. Then the vertices in this component which connect to the infinite black cluster
must be white. This means that there is also an infinite white cluster since the map is
locally finite and one ended almost surely. Since white clusters are finite almost surely
in the given regime of p (using Theorem 2.7 (i) and symmetry), E has probability 0.

One can define an interface between the black and white clusters of a percolation
configuration. An interface is a well defined path in the dual configuration which sepa-
rates the white and black clusters (see Figure 7). Recall that in the dual configuration
of a half planar map, we break up the vertex corresponding to the infinite face into an
infinite number of vertices one corresponding to each boundary edge. We are inter-
ested in the interfaces which cross a boundary edge. These are the interfaces which
start on those edges on the boundary which are incident to a black vertex and a white
vertex. Interfaces mark the boundary between a white and a black cluster on both its
side. An interface might be finite or infinite. Finite interface separate finite clusters
from infinity while infinite interfaces correspond to an infinite black cluster on one side
and an infinite white cluster on the other. So in particular, if p ∈ [0, pc] ∪ [pu, 1] in a
supercritical half planar triangulation, every interface is finite almost surely.

In the following exploration procedure the vertices whose colors have not been re-
vealed yet will be called free vertices.

Algorithm 2: We start with the root vertex colored white, the vertex incident to the
right of the root edge colored black and every other vertex on the boundary free.
Now we start performing peeling on the root edge.

Suppose after n steps of peeling, the boundary of Tn consists of free vertices
except for a finite contiguous white segment followed by a finite contiguous black
segment to the right of the white segment. We now peel on the unique boundary
edge of Tn connecting the black and white segments. If after a peeling step the
third vertex of the face revealed is free, we reveal its color. If the triangle revealed
swallows all the black vertices to the right (resp. white vertices to the left) and the
revealed third free vertex is white (resp. black), then we reveal the colors of the
vertices along the boundary to the right (resp. left) of revealed third vertex until
we find a black (resp. white) vertex. Notice that after such a step, we are again
left with a boundary which consists of free vertices except for a finite contiguous
white segment followed by a finite contiguous black segment to its right. We can
now continue this procedure.

Let I be the event that there is an infinite interface starting from the root edge.
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Lemma 5.3. Let p ∈ (1/2(1−
√

3− 2/α), 1/2(1 +
√

3− 2/α)) and assume random i.i.d.
boundary condition. Then

Pp(I) > 0.

Proof. Suppose we are on the event that the root vertex is colored white, the vertex
incident to the right of the root edge colored black. Now we perform algorithm 2. Let
Bk be the size of the black connected segment and Wk be that of the white connected
segment at the kth step of the algorithm. Recall the definition of the variable B defined
in Lemma 5.1. Conditioned on Bk, Bk+1 stochastically dominates a variable which has
the same distribution as (Bk + B)+ + 1{Bk+B≤0} and Bk+1 − Bk are independent for
every k. The domination comes from the fact that if a white segment is swallowed, we
add a geometric p number of black vertices to Bk which we ignore in the prescribed
expression. Now for p in the given range, E(B) > 0, hence Bk forms a random walk
with a positive drift. This implies Bk →∞ almost surely. Similarly by symmetry, Wk →
∞ almost surely for p in the given range. All this implies the event {Bk > 1,Wk >

1 for all k ≥ 0} has positive probability. But Bk > 1 and Wk > 1 for all k ≥ 0 implies that
the interface we started with is infinite. This completes the proof.

Recall the notations W∞k , B∞k the number of black and white infinite clusters respec-
tively which has least one vertex on the boundary within distance k along the boundary
from the root vertex.

Proof of Theorem 2.7 (for pu) and Theorem 2.8. Fix a number p in the following range:
p ∈ (1/2(1 −

√
3− 2/α), 1/2(1 +

√
3− 2/α)). Let Ek be the number of edges within

distance k from the root edge along the boundary such that there is an infinite interface
starting from that edge. Now note that the measure Pp is ergodic with respect to
translation of the root (follows easily from [5] Proposition 1.3). Hence Birkhoff’s ergodic
theorem implies that almost surely,

Ek
k
→ Pp(I). (5.3)

Note that W∞k +B∞k = Ek + 1 and also |W∞k −B∞k | ≤ 1. Hence,

W∞k /k → ρ and B∞k /k → ρ

where ρ = Pp(I)/2 > 0 from Lemma 5.3. This proves Theorem 2.8 as well as shows that
pu ≥ 1/2(1 +

√
3− 2/α).

Now we turn to the proof of Theorem 2.9. We will need the following technical
Lemma which can be easily shown using optional stopping Theorem. For details, we
refer the reader to [14] Corollary 9.4.1 and Exercise 9.13.

Lemma 5.4. LetX1, X2, . . . be an i.i.d. sequence of random variables such that E(X1) >

0 and E(exp(λX1)) exists for values of λ in a neighbourhood around 0. Let Sn =
∑n
i=1Xi.

Then for any k > 0 there exists some constant c > 0 such that

P(∪n≥1{Sn ≤ −k}) < exp(−ck)

Lemma 5.5. Fix p ∈ (pc, pu) and assume random i.i.d. boundary condition. The Pp
probability that the root vertex is contained in an infinite black cluster with one end or
an infinite white cluster with one end is 0.
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Proof. Suppose without loss of generality the color of the root vertex is black and we
shall prove that the probability that this vertex is contained in an infinite black cluster
with one end is 0. Reveal vertices to the left and right of this vertex along the boundary
until we find a white vertex on both sides. In the exploration we describe now, there
will be a contiguous finite white segment followed by a contiguous finite black segment
followed by a contiguous finite white segment on the boundary and the rest of the
vertices on the boundary are free. We shall peel alternately at the two edges connecting
the black and the white segments to the left and to the right. If at any step we swallow
all the black vertices we stop. If we swallow all the white vertices to the left (resp. to
the right), we reveal black vertices to the left (resp. to the right) along the boundary
until we find a white vertex. Consider the sequence of maps Tn. Define the root edge of
this map to be the same root edge as in the previous step if it has not been swallowed
in that step. If it is swallowed, define the edge in the middle of the black segment in the
boundary of Tn oriented from left to right to be the new root edge.

Lemma 5.6. The root edge is swallowed finitely many times almost surely in the above
described exploration.

Proof. Notice that on the event we stop the exploration, the Lemma is true by definition.
Let Ln (resp. Rn) be the distance between the root vertex and edge to the left (resp.
right) on which we perform the nth peeling step in the above described exploration and
let Bn = Ln + Rn be the length of the black segment. Clearly, the sequence {∆Bn}n≥1

is an i.i.d. sequence of variables with each of which is distributed as B. Recall that
B has positive expectation in the given regime of p (using Lemma 5.1). Hence using
standard large deviation estimates, on the event that we do not stop the exploration,
the probability of Bn ≤ tn for small enough t has probability at most exp(−cn) for some
constant c > 0.

Now consider the event En that the root edge is swallowed in the nth step and is
swallowed again in some step after the nth step. On the event Bn > tn if the root edge
is swallowed in the nth step, then by description of the exploration both Ln and Rn are
at least tn/2−1. If the root edge is swallowed again, then either {Lk}k≥n or {Rk}k≥n has
to reach 0 starting from at least tn/2 − 1. This event has probability at most exp(−c′n)

for some c′ > 0 via Lemma 5.4 since Ln as well as Rn has i.i.d. increments with positive
expectation in every alternate step until the root edge is swallowed. Combining the
pieces, we see that En has probability at most exp(−c′′n) for some c′′ > 0 which means
En occurs for finitely many n by Borel-Cantelli lemma. This completes the proof.

Let T be a map with law Pp and we perform the above exploration. Let Bn be
the number of black vertices on the boundary of Tn. On the event that Bn → ∞, Tn
converges almost surely to a submap T∞ of T since the root edge is swallowed finitely
often almost surely via Lemma 5.6 (see Figure 8). However, on the event Bn →∞, from
the domain Markov property, T∞ has law Pp with all boundary vertices black and the
rest of the vertices free. This map almost surely contains an infinite white cluster for
the given range of p via Theorem 2.7. To see this notice that we can perform peeling
until we expose the hull of radius 1 around the boundary (that is all the faces which
are incident to at least one vertex of the boundary along with the finite components
of their complement.) The complement of this revealed map is another independent
percolation configuration on a half planar triangulation with law Hα and random i.i.d.
boundary condition. So we can apply Theorem 2.7. However the presence of an infinite
white cluster in T∞ means that the cluster containing the root has at least two ends
almost surely on the event that the cluster is infinite. The rest of the details are left to
the reader.

EJP 19 (2014), paper 47.
Page 23/28

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-3238
http://ejp.ejpecp.org/


Geometry and percolation on half planar triangulations

Tn

T∞

n → ∞

Figure 8: An illustration of the proof of Lemma 5.5. The gray area to the left denotes
the revealed part in the exploration.

Corollary 5.7. Every infinite cluster do not contain an isolated end almost surely.

Proof. We prove the corollary for an infinite cluster containing the root vertex. The
proof for any infinite cluster is an easy exercise using the domain Markov property,
and is left to the reader. Let Br be the hull of the ball of radius r from the root of
a map with law Hα. Let T be a half planar triangulation with law Pp. Suppose with
positive probability there is an infinite cluster in T containing the root vertex which
has an isolated end. This implies that with positive probability there exists an r such
that T \ Br has an infinite cluster incident to the boundary with one end. This is a
contradiction because of Lemma 5.5 and domain Markov property.

Proof of Theorem 2.9. 5.7 shows that each infinite cluster do not contain an isolated
end. Since END is compact, the non-isolated points form a perfect subset via the Cantor
Bendixson Theorem. Hence this implies that the set of ends has cardinality of the
continuum (see [18]).

6 Conclusion

6.1 Spectral dimension for α ∈ [0, 2/3).

Recall that the spectral dimension of a graph ds(G) is defined as

ds(G) = −2 lim
n→∞

log pG2n(x, x)

log n

where pG2n(x, x) is the probability that simple random walk on the graph G starting from
x returns to x in 2n steps. The small cutsets of the subcritical maps give us the hint
that these maps fall in the class of strongly recurrent graphs as in [17] and the spectral
dimension should be almost surely 4/3. Let us now argue briefly why this should be
true. We alert the reader is that what follows is not a rigorous proof but just a proof
outline which we believe can be made into a complete proof by the diligent reader.

Consider the functions v, r : N→ [0,∞) where v(R) = R2 and r(R) = R. Then v and
r satisfy (1.12) of [17]. The function v(R) correspond to the volume frowth of the ball
of radius R and r(R) correspond to the effective resistance (see [19] for background)
between the root and the complement of the ball of radius R. Let P denote the measure
of a simple random walk X0, X1, . . . starting from the root ρ on a map T with law Hα.
Let ET denote the expectation corresponding to the simple random walk measure given
an instance of the map T and let d(., .) denote the graph distance metric on the map T .
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Also suppose eR denote the smallest time when the simple random walk is not in the
ball of radius R around the root.

We aim to give a sketchy argument to show that assumption 1.2 (1) and (3) of [17]
are satisfied for the above choice of v and r. Then it would follow via equation (1.19) of
Proposition 1.3 and Theorem 1.5(III) of [17] that

(i) P(M−1 < (1 + d(ρ,Xn))n−2/3, d(ρ,Xn)n−2/3 < M)
M→∞−−−−→ 1

(ii) Hα- almost surely,

ds(T ) := −2 lim
n→∞

log pT2n(ρ, ρ)

log n
=

4

3

(iii) Hα- almost surely,

lim
R→∞

logET (eR)

logR
= 3

To show that assumption 1.2 (1) and (3) of [17], it is enough to show that for all large
enough λ, R ≥ 1 and some constant c > 0,

P(|BallR|/R2 ∈ (λ−1, λ)) > 1− cλ−1/2 (6.1)

P(Reff(0, T \BallR) ≥ λ−1r) > 1− cλ−1 (6.2)

where BallR denote the ball of radius R around the root vertex. Recall the notations and
the peeling algorithm to reveal the hull of the ball of radius r in Section 4.1. Notice that
the edges of the triangle revealed (excluding the finite holes) in every step of peeling
for all steps from τr to τr+1 gives a cut-set separating the root from the complement of
the ball of radius R if r < R. Further these cutsets are disjoint for different r’s. Hence
using Nash Williams criterion ([19], Prop 9.15),

Reff(0, T \BR) ≥
R∑
k=1

(2∆τk)−1 (6.3)

The required lower bound for the right hand side of (6.3) follows from the fact that ∆τR
converges to a stationary distribution. To show (6.1), we need to show that the ball of
radius R is roughly R2. An upper bound follows from Theorem 2.6 and the term λ−1/2

is obtained from the tail of the stable 1/2 variable. The only problem is obtaining the
lower bound for the ball volume. But this should not be too difficult to obtain using the
ideas of [2] Section 6. We do not attempt to show this part of the proof in this paper.

6.2 Open questions

We conclude with several open problems for possible future research. In Theorem
2.2, it is shown that the volume growth is exponential. A natural question is: what is
the exact rate of growth of the volume? We expect similar behaviour as exhibited by a
supercritical Galton-Watson tree.

Question 6.1. Suppose T is a map with law Hα where α ∈ (2/3, 1). Show that almost
surely,

log |Br(T )|
r

→ c

for some constant c depending only on α. Show further that |Br(T )|/cr converges to
some non-degenerate random variable.

In Theorem 2.9 it is shown that the supercritical percolation clusters in the regime
p ∈ (pc, pu) have uncountably any ends. It would be interesting to know how a super-
critical percolation cluster behave.
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Question 6.2. Fix α ∈ (2/3, 1) and p ∈ (pc, pu). Does the supercritical percolation
cluster have exponential volume growth? Anchored expansion? Is the simple random
walk on it transient? Has positive speed?

The key to understand the supercritical cluster in this regime is to understand if the
supercritical clusters have long thin cutsets which kills anchored expansion.

A Proof of Lemma 3.5

Recall that Im(q) is the number of internal vertices of a free triangulation of a m-gon
with parameter q and recall the variable θ used in Section 3.2 where q = θ(1− 2θ)2.

Proof of Lemma 3.5 part (i). Without loss of generality assume x is an integer. Let dθ =
4θ

(1−6θ) . For simplicity of notation let Im(q) = Im. Notice that conditioned on Y = k,

expectation of IY+1 is dθk +O(1) as k →∞. We want,

P(Y + IY+1 > x) =
∑
k≥1

P(IY+1 > x− k|Y = k)P(Y = k) (A.1)

The trick is to break the sum in (A.1) into sums over three subsets of indices:

(i) A1 = {1 ≤ k ≤ bx/(1 + dθ)− x3/4c}
(ii) A3 = {k > bx/(1 + dθ) + x3/4c}
(iii) A2 = N \ (A1 ∪A3)

The sum over A2 is O(x−3/4) by bounding P(IY+1 > x − k|Y = k) by 1 and using
P(Y = k) ∼ ck−3/2. Now note∑

A1

P(IY+1 > x− k|Y = k)P(Y = k) (A.2)

<
∑
A1

P(IY+1 − E(IY+1|Y = k) > x3/4 +O(1)|Y = k)P(Y = k) (A.3)

<
∑
A1

V ar(IY+1|Y = k)

x3/2
P(Y = k) = O(x−1). (A.4)

where we used Proposition 3.4 part (i) for (A.3) and Chebyshev’s inequality followed by
Proposition 3.4 part (ii) for (A.4). Finally,∑

k∈A3

P(IY+1 > x− k|Y = k)P(Y = k) (A.5)

=
∑
k∈A3

P(Y = k)−
∑
k∈A3

P(IY+1 ≤ x− k|Y = k)P(Y = k) (A.6)

=
∑
k∈A3

P(Y = k)−O(x−1) (A.7)

where the bound in the second term in the right hand side of (A.7) follows in the same
way as (A.4) using Chebyshev’s inequality and Proposition 3.4 part (ii) plus the fact that
the summands are 0 when k > x. Finally it is easy to verify using (3.7) and the definition
of dθ that ∑

k∈A3

P(Y = k) ∼ (1− 3α/2)
√

1− 2θ√
π(1− 6θ)

x−1/2
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Proof of Lemma 3.5 part (ii). Note that

E((Y + IY+1)1{Y+IY+1<x}) =

x−1∑
k=1

(P(Y + IY+1 ≥ k)− P(Y + IY+1 ≥ x)) (A.8)

Now from the asymptotics of part (i),

x−1∑
k=1

P(Y + IY+1 ≥ k) = 2cα
√
x(1 + o(1)) (A.9)

and
(x− 1)P(Y + IY+1 ≥ x) = cα

√
x(1 + o(1)) (A.10)

Hence the result follows.
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