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Low rank perturbations
of large elliptic random matrices∗

Sean O’Rourke† David Renfrew‡

Abstract

We study the asymptotic behavior of outliers in the spectrum of bounded rank pertur-
bations of large random matrices. In particular, we consider perturbations of elliptic
random matrices which generalize both Wigner random matrices and non-Hermitian
random matrices with iid entries. As a consequence, we recover the results of Capi-
taine, Donati-Martin, and Féral for perturbed Wigner matrices as well as the results
of Tao for perturbed random matrices with iid entries. Along the way, we prove
a number of interesting results concerning elliptic random matrices whose entries
have finite fourth moment; these results include a bound on the least singular value
and the asymptotic behavior of the spectral radius.
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1 Introduction

In this note, we investigate the asymptotic behavior of outliers in the spectrum of
bounded rank perturbations of large random matrices. We begin by introducing the
empirical spectral distribution of a square matrix.

The eigenvalues of a N × N matrix M are the roots in C of the characteristic poly-
nomial det(M − zI), where I is the identity matrix. We let λ1(M), . . . , λN (M) denote the
eigenvalues of M . In this case, the empirical spectral measure µM is given by

µM :=
1

N

N∑
i=1

δλi(M).

The corresponding empirical spectral distribution (ESD) is given by

FM (x, y) :=
1

N
# {1 ≤ i ≤ N : Re(λi(M)) ≤ x, Im(λi(M)) ≤ y} .
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Low rank perturbations of large elliptic random matrices

Here #E denotes the cardinality of the set E. If the matrix M is Hermitian, then the
eigenvalues λ1(M), . . . , λN (M) are real. In this case the ESD is given by

FM (x) :=
1

N
# {1 ≤ i ≤ N : λi(M) ≤ x} .

Given a random N × N matrix YN , an important problem in random matrix theory
is to study the limiting distribution of the empirical spectral measure as N tends to
infinity. We will use asymptotic notation, such as O, o,Ω, under the assumption that
N →∞. See Section 2.2 for a complete description of our asymptotic notation.

1.1 Random matrices with independent entries

We consider two ensembles of random matrices with independent entries. We first
define a class of Hermitian random matrices with independent entries originally intro-
duced by Wigner [52].

Definition 1.1 (Wigner random matrices). Let ξ be a complex random variable with
mean zero and unit variance, and let ζ be a real random variables with mean zero and
finite variance. We say YN is a Wigner matrix of size N with atom variables ξ, ζ if YN =

(yij)
N
i,j=1 is a random Hermitian N ×N matrix that satisfies the following conditions.

• {yij : 1 ≤ i ≤ j ≤ N} is a collection of independent random variables.

• {yij : 1 ≤ i < j ≤ N} is a collection of independent and identically distributed (iid)
copies of ξ.

• {yii : 1 ≤ i ≤ N} is a collection of iid copies of ζ.

The prototypical example of a Wigner real symmetric matrix is the Gaussian orthog-
onal ensemble (GOE). The GOE is defined by the probability distribution

P(dM) =
1

Z
(β)
N

exp

(
−β

4
trM2

)
dM (1.1)

on the space of N × N real symmetric matrices when β = 1 and dM refers to the
Lebesgue measure on the N(N + 1)/2 different elements of the matrix. Here Z

(β)
N

denotes the normalization constant. So for a matrix YN = (yij)
N
i,j=1 drawn from the

GOE, the elements {yij : 1 ≤ i ≤ j ≤ N} are independent Gaussian random variables
with mean zero and variance 1 + δij .

The classical example of a Wigner Hermitian matrix is the Gaussian unitary ensem-
ble (GUE). The GUE is defined by the probability distribution given in (1.1) with β = 2,
but on the space of N ×N Hermitian matrices. Thus, for a matrix YN = (yij)

N
i,j=1 drawn

from the GUE, the N2 different real elements of the matrix,

{Re(yij) : 1 ≤ i ≤ j ≤ N} ∪ {Im(yij) : 1 ≤ i < j ≤ N},

are independent Gaussian random variables with mean zero and variance (1 + δij)/2.
A classical result for Wigner random matrices is Wigner’s semicircle law [5, Theorem

2.5].

Theorem 1.2 (Wigner’s Semicircle law). Let ξ be a complex random variable with mean
zero and unit variance, and let ζ be a real random variables with mean zero and finite
variance. For each N ≥ 1, let YN be a Wigner matrix of size N with atom variables ξ, ζ,
and let AN be a deterministic N × N Hermitian matrix with rank o(N). Then the ESD
of 1√

N
(YN +AN ) converges almost surely to the semicircle distribution Fsc as N →∞,

where

Fsc(x) :=

∫ x

−∞
ρsc(t)dt, ρsc(t) :=

{
1

2π

√
4− t2, if |t| ≤ 2

0, if |t| > 2.
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Low rank perturbations of large elliptic random matrices

Remark 1.3. Wigner’s semicircle law holds in the case when the entries of YN are not
identically distributed (but still independent) provided the entries satisfy a Lindeberg-
type condition. See [5, Theorem 2.9] for further details.

We now consider an ensemble of random matrices with iid entries.

Definition 1.4 (iid random matrices). Let ξ be a complex random variable. We say YN
is an iid random matrix of size N with atom variable ξ if YN is a N × N matrix whose
entries are iid copies of ξ.

When ξ is a standard complex Gaussian random variable, YN can be viewed as a
random matrix drawn from the probability distribution

P(dM) =
1

πN2 e
− tr(MM∗)dM

on the set of complex N × N matrices. Here dM denotes the Lebesgue measure on
the 2N2 real entries of M . This is known as the complex Ginibre ensemble. The real
Ginibre ensemble is defined analogously. Following Ginibre [28], one may compute the
joint density of the eigenvalues of a random N ×N matrix YN drawn from the complex
Ginibre ensemble.

Mehta [37, 38] used the joint density function obtained by Ginibre to compute the
limiting spectral measure of the complex Ginibre ensemble. In particular, he showed
that if YN is drawn from the complex Ginibre ensemble, then the ESD of 1√

N
YN con-

verges to the circular law Fcirc, where

Fcirc(x, y) := µcirc ({z ∈ C : Re(z) ≤ x, Im(z) ≤ y})

and µcirc is the uniform probability measure on the unit disk in the complex plane.
Edelman [22] verified the same limiting distribution for the real Ginibre ensemble.

For the general (non-Gaussian) case, there is no formula for the joint distribution
of the eigenvalues and the problem appears much more difficult. The universality phe-
nomenon in random matrix theory asserts that the spectral behavior of a random matrix
does not depend on the distribution of the atom variable ξ in the limit N →∞. In other
words, one expects that the circular law describes the limiting ESD of a large class of
random matrices (not just Gaussian matrices)

The first rigorous proof of the circular law for general (non-Gaussian) distributions
was by Bai [3, 5]. He proved the result under a number of assumptions on the moments
and smoothness of the atom variable ξ. Important results were obtained more recently
by Pan and Zhou [41] and Götze and Tikhomirov [31]. Using techniques from additive
combinatorics, Tao and Vu [46] were able to prove the circular law under the assump-
tion that E|ξ|2+ε <∞ for some ε > 0. Recently, Tao and Vu [47, 48] established the law
assuming only that ξ has finite variance.

For any matrix M , we denote the Hilbert-Schmidt norm ‖M‖2 by the formula

‖M‖2 :=
√

tr(MM∗) =
√

tr(M∗M). (1.2)

Theorem 1.5 (Tao-Vu, [48]). Let ξ be a complex random variable with mean zero and
unit variance. For eachN ≥ 1, let YN be aN×N matrix whose entries are iid copies of ξ,
and let AN be a N×N deterministic matrix. If rank(AN ) = o(N) and supN≥1

1
N2 ‖AN‖22 <

∞, then the ESD of 1√
N

(YN + AN ) converges almost surely to the circular law Fcirc as
N →∞.
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1.2 Outliers in the spectrum

From Theorem 1.2 and Theorem 1.5, we see that the low rank perturbation AN
does not effect the limiting ESD. In other words, the majority of the eigenvalues re-
main distributed according to semicircle law or circular law, respectively. However, the
perturbation AN may create one or more outliers.

Let YN be a N ×N random matrix whose entries are iid copies of ξ. When the atom
variable ξ has finite fourth moment, one can compute the asymptotic behavior of the
spectral radius [5, Thoerem 5.18]. We remind the reader that the spectral radius of a
square matrix is the largest eigenvalue in absolute value.

Theorem 1.6 (No outliers for iid matrices). Let ξ be a complex random variable with
mean zero, unit variance, and finite fourth moment. For each N ≥ 1, let YN be a N ×N
random matrix whose entries are iid copies of ξ. Then the spectral radius of 1√

N
YN

converges to 1 almost surely as N →∞.

In [49], Tao computes the asymptotic location of the outlier eigenvalues for bounded
rank perturbations of iid random matrices.

Theorem 1.7 (Outliers for small low rank perturbations of iid matrices, [49]). Let ξ be
a complex random variable with mean zero, unit variance, and finite fourth moment.
For each N ≥ 1, let YN be a N × N random matrix whose entries are iid copies of ξ,
and let CN be a deterministic matrix with rank O(1). Let ε > 0, and suppose that for
all sufficiently large N , there are no eigenvalues of CN in the band {z ∈ C : 1 + ε <

|z| < 1 + 3ε}, and there are j eigenvalues λ1(CN ), . . . , λj(CN ) for some j = O(1) in the
region {z ∈ C : |z| ≥ 1 + 3ε}. Then, almost surely, for sufficiently large N , there are
precisely j eigenvalues λ1( 1√

N
YN+CN ), . . . , λj(

1√
N
YN+CN ) of 1√

N
YN+CN in the region

{z ∈ C : |z| ≥ 1 + 2ε}, and after labeling these eigenvalues properly,

λi

(
1√
N
YN + CN

)
= λi(CN ) + o(1)

as N →∞ for each 1 ≤ i ≤ j.

Recently, Benaych-Georges and Rochet [11] obtained an analogous result for finite
rank perturbations of random matrices whose distributions are invariant under the left
and right actions of the unitary group. Benaych-Georges and Rochet also study the
fluctuations of the outlier eigenvalues.

Similar results have also been obtained for Wigner random matrices. When the atom
variables have finite fourth moment, the asymptotic behavior of the spectral radius can
be computed [5, Theorem 5.2].

Theorem 1.8 (No outliers for Wigner matrices). Let ξ be a complex random variable
with mean zero, unit variance, and finite fourth moment, and let ζ be a real random
variables with mean zero and finite variance. For each N ≥ 1, let YN be a Wigner
matrix of size N with atom variables ξ, ζ. Then the spectral radius of 1√

N
YN converges

to 2 almost surely as N →∞.

The asymptotic location of the outliers for bounded rank perturbations of Wigner
matrices and other classes of self adjoint random matrices have also been determined.
In fact, the fluctuations of the outlier eigenvalues can be explicitly computed. We refer
the reader to [8, 9, 10, 17, 18, 19, 23, 24, 35, 36, 42, 43, 44] and references therein for
further details.

Theorem 1.9 (Outliers for small low rank perturbations of Wigner matrices, [44]). Let
ξ be a real random variable with mean zero, unit variance, and finite fourth moment,

EJP 19 (2014), paper 43.
Page 4/65

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-3057
http://ejp.ejpecp.org/


Low rank perturbations of large elliptic random matrices

and let ζ be a real random variables with mean zero and finite variance. For each N ≥ 1,
let YN be a Wigner matrix of size N with atom variables ξ, ζ. Let k ≥ 1. For each N ≥ k,
let CN be a N ×N deterministic Hermitian matrix with rank k and nonzero eigenvalues
λ1(CN ), . . . , λk(CN ), where k, λ1(CN ), . . . , λk(CN ) are independent of N . Let S = {1 ≤
i ≤ k : |λi(CN )| > 1}. Then we have the following.

• For all i ∈ S, after labeling the eigenvalues of 1√
N
YN + CN properly,

λi

(
1√
N
YN + CN

)
−→ λi(CN ) +

1

λi(CN )

in probability as N →∞.

• For all i ∈ {1, . . . , k} \ S, after labeling the eigenvalues of 1√
N
YN + CN properly,∣∣∣∣λi( 1√

N
YN + CN

)∣∣∣∣ −→ 2

in probability as N →∞.

Remark 1.10. Under additional assumptions on the atom variables ξ, ζ, the conver-
gence in Theorem 1.9 can be strengthened to almost sure convergence [17].

Non-Hermitian finite rank perturbations of random Hermitian matrices have been
studied in the mathematical physics literature. We refer the reader to [25, 26, 27] and
references therein for further details.

1.3 Elliptic random matrices

We consider the following class of random matrices with dependent entries that
generalizes the ensembles introduced above. These so-called elliptic random matrices
were originally introduced by Girko [29, 30].

Definition 1.11 (Condition C1). Let (ξ1, ξ2) be a random vector in R2, where both ξ1, ξ2
have mean zero and unit variance. We set ρ := E[ξ1ξ2]. Let {yij}i,j≥1 be an infinite
double array of real random variables. For each N ≥ 1, we define the N × N random
matrix YN = (yij)

N
i,j=1. We say the sequence of random matrices {YN}N≥1 satisfies

condition C1 with atom variables (ξ1, ξ2) if the following hold:

• {yii : 1 ≤ i}∪{(yij , yji) : 1 ≤ i < j} is a collection of independent random elements,

• {(yij , yji) : 1 ≤ i < j} is a collection of iid copies of (ξ1, ξ2),

• {yii : 1 ≤ i} is a collection of iid random variables with mean zero and finite
variance.

Remark 1.12. Let {YN}N≥1 be a sequence of random matrices that satisfy condition
C1 with atom variables (ξ1, ξ2). If ρ := E[ξ1ξ2] = 1, then {YN}N≥1 is a sequence of
Wigner real symmetric matrices.

Remark 1.13. Let ξ be a real random variable with mean zero and unit variance. For
each N ≥ 1, let YN be a N × N random matrix whose entries are iid copies of ξ. Then
{YN}N≥1 is a sequence of random matrices that satisfy condition C1.

If {YN}N≥1 is a sequence of random matrices that satisfy condition C1, then it was
shown in [40] that the limiting ESD of 1√

N
YN is given by the uniform distribution on

the interior of an ellipse. The same conclusion was shown to hold by Naumov [39] for
elliptic random matrices whose atom variables satisfy additional moment assumptions.
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For −1 < ρ < 1, define the ellipsoid

Eρ :=

{
z ∈ C :

Re(z)2

(1 + ρ)2
+

Im(z)2

(1− ρ)2
≤ 1

}
. (1.3)

Let

Fρ(x, y) := µρ ({z ∈ C : Re(z) ≤ x, Im(z) ≤ y}) ,

where µρ is the uniformly probability measure on Eρ. It will also be convenient to define
Eρ when ρ = ±1. For ρ = 1, let E1 be the line segment [−2, 2], and for ρ = −1, we let E−1

be the line segment [−2, 2]
√
−1 on the imaginary axis1.

Theorem 1.14 (Elliptic law, [40]). Let {YN}N≥1 be a sequence of random matrices that
satisfies condition C1 with atom variables (ξ1, ξ2), where ρ = E[ξ1ξ2], and assume −1 <

ρ < 1. For each N ≥ 1, let AN be a N ×N matrix, and assume the sequence {AN}N≥1

satisfies rank(AN ) = o(N) and supN≥1
1
N2 ‖AN‖22 < ∞. Then the ESD of 1√

N
(YN + AN )

converges almost surely to Fρ as N →∞.

Remark 1.15. A version of Theorem 1.14 holds when ξ1, ξ2 are complex random vari-
ables [40]. However, this note will only focus on real elliptic random matrices.

2 Main results

In this note, we consider the outliers of perturbed elliptic random matrices. In par-
ticular, we consider versions of Theorem 1.6, Theorem 1.7, Theorem 1.8, and Theorem
1.9 for elliptic random matrices whose entries have finite fourth moment.

Definition 2.1 (Condition C0). Let (ξ1, ξ2) be a random vector in R2, where both ξ1, ξ2
have mean zero and unit variance. We set ρ := E[ξ1ξ2]. For each N ≥ 1, let YN be
a N × N random matrix. We say the sequence of random matrices {YN}N≥1 satisfies
condition C0 with atom variables (ξ1, ξ2) if the following conditions hold:

• The sequence {YN}N≥1 satisfies condition C1 with atom variables (ξ1, ξ2),

• We have

M4 := max{E|ξ1|4,E|ξ2|4} <∞.

We will also define the neighborhoods

Eρ,δ := {z ∈ C : dist(z, Eρ) ≤ δ}

for any δ > 0.

We first consider a version of Theorem 1.6 and Theorem 1.8 for elliptic random
matrices. Because of the elliptic shape of the limiting ESD, it is not enough to just
consider the spectral radius.

Theorem 2.2 (No outliers for elliptic random matrices). Let {YN}N≥1 be a sequence
of random matrices that satisfies condition C0 with atom variables (ξ1, ξ2), where ρ =

E[ξ1ξ2]. Let δ > 0. Then, almost surely, for N sufficiently large, all the eigenvalues of
1√
N
YN are contained in Eρ,δ.

Theorem 1.14 and Theorem 2.2 immediately imply the following asymptotic behavior
for the spectral radius of elliptic random matrices.

1We use
√
−1 to denote the imaginary unit and reserve i as an index.
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Corollary 2.3 (Spectral radius of elliptic random matrices). Let {YN}N≥1 be a se-
quence of random matrices that satisfies condition C0 with atom variables (ξ1, ξ2),
where ρ = E[ξ1ξ2]. Then the spectral radius of 1√

N
YN converges almost surely to 1 + |ρ|

as N →∞.

We now consider the analogue of Theorem 1.7 and Theorem 1.9 for elliptic random
matrices. Figure 1 shows an eigenvalue plot of a perturbed elliptic random matrix as
well as the location of the outlier eigenvalues predicted by the following theorem.

Theorem 2.4 (Outliers for low rank perturbations of elliptic random matrices). Let
k ≥ 1 and δ > 0. Let {YN}N≥1 be a sequence of random matrices that satisfies condition
C0 with atom variables (ξ1, ξ2), where ρ = E[ξ1ξ2]. For each N ≥ 1, let CN be a deter-
ministic N ×N matrix, where supN≥1 rank(CN ) ≤ k and supN≥1 ‖CN‖ = O(1). Suppose
for N sufficiently large, there are no nonzero eigenvalues of CN which satisfy

λi(CN ) +
ρ

λi(CN )
∈ Eρ,3δ \ Eρ,δ with |λi(CN )| > 1, (2.1)

and there are j eigenvalues λ1(CN ), . . . , λj(CN ) for some j ≤ k which satisfy

λi(CN ) +
ρ

λi(CN )
∈ C \ Eρ,3δ with |λi(CN )| > 1.

Then, almost surely, for N sufficiently large, there are exactly j eigenvalues of 1√
N
YN +

CN in the region C \ Eρ,2δ, and after labeling the eigenvalues properly,

λi

(
1√
N
YN + CN

)
= λi(CN ) +

ρ

λi(CN )
+ o(1)

for each 1 ≤ i ≤ j.

Remark 2.5. Theorem 2.4 generalizes the results of both Theorem 1.7 and Theorem
1.9. Indeed, if ρ = 1, then {YN}N≥1 is a sequence of Wigner real symmetric matrices. In
this case, Theorem 2.4 implies the almost sure convergence of the outlier eigenvalues
to the locations described by Theorem 1.9. Additionally, Theorem 2.4 also deals with
the case when CN is non-Hermitian. On the other hand, if {YN}N≥1 is a sequence of
random matrices whose entries are iid random variables, then ρ = 0, and Theorem 2.4
gives precisely the results of Theorem 1.7.

Remark 2.6. In [17, 19], Capitaine, Donati-Martin, Féral, and Février consider spiked
deformations of Wigner random matrices plus deterministic matrices. Theorem 2.4
can be viewed as a non-Hermitian extension of the results in [17, 19]. Indeed, the
subordination functions appearing in [19] appears very naturally in our analysis; see
Remark 5.4 for further details.

Remark 2.7. Theorem 2.4 requires that there are no nonzero eigenvalues of CN which
satisfy (2.1). Since δ is arbitrary, if the eigenvalues of CN do not change with N , this
condition can be ignored. This condition is analogous to the requirements of Theorem
1.7. Indeed, Theorem 1.7 requires that there are no eigenvalues of CN in the band
{z ∈ C : 1 + ε < |z| < 1 + 3ε}.

We now consider the case of elliptic random matrices with nonzero mean, which we
write as 1√

N
YN + µ

√
NϕNϕ

∗
N , where {YN}N≥1 is a sequence of random matrices that

satisfies condition C0 with atom variables (ξ1, ξ2), µ is a fixed nonzero complex number
(independent of N ), and ϕN is the unit vector ϕN := 1√

N
(1, . . . , 1)∗. This corresponds to

shifting the entries of YN by µ (so they have mean µ instead of mean zero). The elliptic
law still holds for this rank one perturbation of 1√

N
YN , thanks to Theorem 1.14. In view

of Theorem 2.4, we show there is a single outlier for this ensemble near µ
√
N .
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Figure 1: The plot on top shows the eigenvalues of a single N × N elliptic random
matrix with Gaussian entries when N = 1000 and ρ = 1/2. The plot on bottom shows
the eigenvalues of the same elliptic matrix after perturbing it by a diagonal matrix with
three nonzero eigenvalues: 2

√
−1,− 3

2 , and 1 +
√
−1. The three circles are centered at

7
4

√
−1,− 11

6 , and 5
4 + 3

4

√
−1, respectively, and each have radius N−1/4.
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Theorem 2.8 (Outlier for elliptic random matrices with nonzero mean). Let δ > 0.
Let {YN}N≥1 be a sequence of random matrices that satisfies condition C0 with atom
variables (ξ1, ξ2), where ρ = E[ξ1ξ2], and let µ be a nonzero complex number inde-
pendent of N . Then almost surely, for sufficiently large N , all the eigenvalues of

1√
N
YN + µ

√
NϕNϕ

∗
N lie in Eρ,δ, with a single exception taking the value µ

√
N + o(1).

Remark 2.9. A version of Theorem 2.8 was proven by Füredi and Komlós in [24] for
a class of real symmetric Wigner matrices. Moreover, Füredi and Komlós study the
fluctuations of the outlier eigenvalue. Tao [49] verified Theorem 2.8 when YN is a
random matrix with iid entries.

One of the keys to proving Theorem 2.4 and Theorem 2.8 is to control the least
singular value of a perturbed elliptic random matrix. Let M be a N × N matrix. The
singular values of M are the eigenvalues of |M | :=

√
MM∗. We let σ1(M) ≥ · · · ≥

σN (M) ≥ 0 denote the singular values of M . In particular, the largest and smallest
singular values are

σ1(M) := sup
‖x‖=1

‖Mx‖, σN (M) := inf
‖x‖=1

‖Mx‖,

where ‖x‖ denotes the Euclidian norm of the vector x. We let ‖M‖ denote the spectral
norm of M . It follows that the largest and smallest singular values can be written in
terms of the spectral norm. Indeed, σ1(M) = ‖M‖ and σN (M) = 1/‖M−1‖ provided M
is invertible.

We now consider a lower bound for the least singular value of perturbed elliptic
random matrices of the form 1√

N
YN − zI, where I denotes the identity matrix. A lower

bound of the form

σN

(
1√
N
YN − zI

)
≥ N−A,

for some A > 0, was shown to hold with high probability in [39, 40]. Below, we consider
only the case when z is outside the ellipse Eρ and thus obtain a constant lower bound
independent of N .

Theorem 2.10 (Least singular value bound). Let {YN}N≥1 be a sequence of random
matrices that satisfies condition C0 with atom variables (ξ1, ξ2), where ρ = E[ξ1ξ2]. Let
δ > 0. Then there exists c > 0 such that almost surely, for N sufficiently large,

inf
dist(z,Eρ)≥δ

σN

(
1√
N
YN − zI

)
≥ c.

In fact, Theorem 2.2 follows immediately from Theorem 2.10.

Proof of Theorem 2.2. We note that z is an eigenvalue of 1√
N
YN if and only if

det

(
1√
N
YN − zI

)
= 0.

On the other hand, ∣∣∣∣det

(
1√
N
YN − zI

)∣∣∣∣ =

N∏
i=1

σi

(
1√
N
YN − zI

)
.

Thus, we conclude that z is an eigenvalue of 1√
N
YN if and only if

σN

(
1√
N
YN − zI

)
= 0.

The claim therefore follows from Theorem 2.10.
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The condition number σ1(M)/σN (M) of a N × N matrix M plays an important role
in numerical linear algebra (see for example [7]). As a consequence of Theorem 2.10,
we obtain the following bound for the condition number of perturbed elliptic random
matrices that satisfy condition C0.

Corollary 2.11 (Condition number bound). Let {YN}N≥1 be a sequence of random
matrices that satisfies condition C0 with atom variables (ξ1, ξ2), where ρ = E[ξ1ξ2].
Fix z /∈ Eρ. Then there exists C > 0 (depending on z) such that almost surely, for N
sufficiently large,

σ1

(
1√
N
YN − zI

)
σN ( 1√

N
YN − zI)

≤ C.

Proof. In view of Theorem 2.10, it suffices to show that almost surely

σ1

(
1√
N
YN − zI

)
≤ C

for N sufficiently large. Since

σ1

(
1√
N
YN − zI

)
=

∥∥∥∥ 1√
N
YN − zI

∥∥∥∥ ≤ 1√
N
‖YN‖+ |z|,

it suffices to show that almost surely

1√
N
‖YN‖ ≤ C

forN sufficiently large. The claim now follow from Lemma 3.3 below. Indeed, the bound
on the spectral norm of YN has previously been obtained in [39] and follows from [5,
Theorem 5.2].

2.1 Overview

In order to prove Theorem 2.4, we will make use of Sylvester’s determinant identity:

det(I +AB) = det(I +BA), (2.2)

where A is a N × k matrix and B is a k × N matrix. In particular, the left-hand side of
(2.2) is a N ×N determinant, while the right-hand side is a k × k determinant.

To outline the main idea, which is based on the arguments of Benaych-Georges and
Rao [8], consider the rank one perturbation CN = vu∗. In order to study the outlier
eigenvalues, we will need to solve the equation

det

(
1√
N
YN + CN − zI

)
= 0 (2.3)

for z /∈ Eρ. Assume z is not an eigenvalue of 1√
N
YN , then we can rewrite (2.3) as

det

(
I +

(
1√
N
YN − zI

)−1

CN

)
= 0.

From (2.2), we find that this is equivalent to solving

1 + u∗
(

1√
N
YN − zI

)−1

v = 0.
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Thus, the problem of locating the outlier eigenvalues reduces to studying the resolvent

GN (z) :=

(
1√
N
YN − zI

)−1

.

We develop an isotropic limit law in Section 5 to compute the limit of u∗GNv; this limit
law is inspired by the isotropic semicircle law developed by Knowles and Yin [35, 36] for
Wigner random matrices. Namely in Theorem 5.1 we show that not only does the trace
of GN (z) almost surely converge to some function m(z) (defined in (4.3)) but arbitrary
bilinear forms u∗GNv almost surely converge to m(z)u∗v.

However, instead of working with GN directly, it will often be more convenient to
work with the 2N × 2N Hermitian matrix2

ΞN :=

[
0 1√

N
YN − zI

1√
N
Y ∗N − z̄I 0

]

and its resolvent (ΞN − ηI)−1. In fact, the eigenvalues of ΞN are given by the singular
values

±σ1

(
1√
N
YN − zI

)
, . . . ,±σN

(
1√
N
YN − zI

)
.

Thus, for Im(η) > 0, the matrix ΞN − ηI is always invertible. Moreover, when η = 0, the
resolvent becomes  0

(
1√
N
Y ∗N − z̄I

)−1(
1√
N
YN − zI

)−1

0

 .
In other words, we can recoverGN by letting η tend to zero. Similarly, we will bound the
least singular value of 1√

N
YN − zI and prove Theorem 2.10 by studying the eigenvalues

of the resolvent (ΞN − ηI)−1 when Im(η) = N−β for some β > 0.
The paper is organized as follows. We present our preliminary tools in Section 3 and

Section 4. In particular, Section 3 contains a standard truncation lemma; in Section
4, we study the stability of a fixed point equation which will determine the asymptotic
behavior of the diagonal entries of GN . In Section 5, we apply the truncation lemma
from Section 3 to reduce both Theorem 2.4 and Theorem 2.10 to the case where we
only need to consider elliptic random matrices whose entries are bounded. We also
introduce an isotropic limit law for GN and prove Theorem 2.8 in Section 5. Finally, we
complete the proof of Theorem 2.10 in Section 6 and complete the proof of Theorem
2.4 in Section 7.

A number of auxiliary proofs and results are contained in the appendix. Appendix A
contains a somewhat standard proof of the truncation lemma from Section 3. Appendix
B contains a large deviation estimate for bilinear forms. In Appendix C, we study some
additional properties of a limiting spectral measure which was analyzed in [40].

2.2 Notation

We use asymptotic notation (such as O, o,Ω) under the assumption that N → ∞.
We use X � Y, Y � X,Y = Ω(X), or X = O(Y ) to denote the bound X ≤ CY for all
sufficiently largeN and for some constant C. Notations such asX �k Y andX = Ok(Y )

mean that the hidden constant C depends on another constant k. X = o(Y ) or Y = ω(X)

means that X/Y → 0 as N →∞.

2Actually, for notational convenience we will work with ΞN conjugated by a permutation matrix (see Sec-
tion 3.2 for complete details).
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An event E, which depends on N , is said to hold with overwhelming probability if
P(E) ≥ 1−OC(N−C) for every constant C > 0. We let 1E denote the indicator function
of the event E. Ec denotes the complement of the event E.

We let ‖M‖ denote the spectral norm of M . ‖M‖2 denotes the Hilbert-Schmidt norm
of M (defined in (1.2)). We let IN denote the N ×N identity matrix. Often we will just
write I for the identity matrix when the size can be deduced from the context. For a
square matrix M , we let trN M := 1

N trM .
We write a.s., a.a., and a.e. for almost surely, Lebesgue almost all, and Lebesgue

almost everywhere respectively. We use
√
−1 to denote the imaginary unit and reserve

i as an index.
We let C and K denote constants that are non-random and may take on different

values from one appearance to the next. The notation Kp means that the constant K
depends on another parameter p.

3 Preliminary tools and notation

In this section, we consider a number of tools we will need to prove our main results.
We also introduce some new notation, which we will use throughout the paper.

Let {YN}N≥1 be a sequence of random matrices that satisfies condition C0 with atom
variables (ξ1, ξ2). We will work with the resolvent GN defined by

GN = GN (z) :=

(
1√
N
YN − zI

)−1

. (3.1)

and it’s trace, denoted mN (z)

mN (z) :=
1

N
trGN (z). (3.2)

In order to work with the resolvent, we will need control of the spectral norm ‖GN‖. We
bound the spectral norm of GN for z sufficiently large by bounding the spectral norm of

1√
N
YN in the next subsection.
When working with GN , we will take advantage of the following well known resol-

vent identity: for any invertible N ×N matrices A and B,

A−1 −B−1 = A−1(B −A)B−1. (3.3)

Suppose A is an invertible square matrix. Let u, v be vectors. If 1 + v∗A−1u 6= 0,
from (3.3) one can deduce the Sherman–Morrison rank one perturbation formula (see
[33, Section 0.7.4]):

(A+ uv∗)−1 = A−1 − A−1uv∗A−1

1 + v∗A−1u
(3.4)

and

(A+ uv∗)−1u =
A−1u

1 + v∗A−1u
. (3.5)

From [33, Section 0.7.3], we obtain the inverse of a block matrix and Schur’s com-
plement:[

A B

C D

]−1

=

[
(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 +D−1C(A−BD−1C)−1BD−1

]
, (3.6)

where A,B,C,D are matrix sub-blocks and D,A−BD−1C are non-singular. In the case
that A,D − CA−1B are invertible, we obtain[

A B

C D

]−1

=

[
A−1 +A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

]
.
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It follows from the block matrix inversion formula that

tr

(
A B

C D

)−1

= tr(A−1) + tr((D − CA−1B)−1(I + CA−2B)) (3.7)

provided A,D − CA−1B are invertible.

3.1 Bounds on the spectral norm

We begin with the following deterministic bound.

Lemma 3.1 (Spectral norm of the resolvent for large |z|). Let M be a N × N matrix
that satisfies ‖M‖ ≤ K. Then ∥∥∥(M − zI)

−1
∥∥∥ ≤ 1

ε

for all z ∈ C with |z| ≥ K + ε.

Proof. By writing out the Neumann series, we obtain∥∥∥(M − zI)
−1
∥∥∥ ≤ ∥∥∥∥∥1

z
+

1

z

∞∑
k=1

Mk

zk

∥∥∥∥∥ ≤ 1

K + ε

∞∑
k=0

(
K
K + ε

)k
≤ 1

ε

for |z| ≥ K + ε.

Remark 3.2. If H is a Hermitian matrix, we have

‖(H − zI)−1‖ ≤ | Im(z)|−1, (3.8)

provided Im(z) 6= 0.

We will use the following estimate for the spectral norm. We note that the bound in
Lemma 3.3 below is not sharp, but will suffice for our purposes.

Lemma 3.3 (Spectral norm bound). Let {YN}N≥1 be a sequence of random matrices
that satisfies condition C0 with atom variables (ξ1, ξ2). Then a.s.

lim sup
N→∞

∥∥∥∥ 1√
N
YN

∥∥∥∥ ≤ 4. (3.9)

Proof. We write

YN =
YN + Y ∗N

2
+
√
−1

YN − Y ∗N
2
√
−1

and hence

‖YN‖ ≤
∥∥∥∥YN + Y ∗N

2

∥∥∥∥+

∥∥∥∥YN − Y ∗N2
√
−1

∥∥∥∥ . (3.10)

We observe that YN+Y ∗N
2 and YN−Y ∗N

2
√
−1

are both Hermitian random matrices.

Consider the matrix YN+Y ∗N
2 . By assumption, the diagonal entries of the matrix have

mean zero and finite variance. The above-diagonal entries are iid copies of ξ1+ξ2
2 . Thus

the above-diagonal entries have mean zero and variance

1

4
E|ξ1 + ξ2|2 ≤

1

2
(E|ξ1|2 + E|ξ2|2) ≤ 1.

Moreover, the above-diagonal entries have finite fourth moment:

E

∣∣∣∣ξ1 + ξ2
2

∣∣∣∣4 ≤ E|ξ1|4 + E|ξ2|4 ≤ 2M4 <∞.
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By [5, Theorem 5.2], we obtain a.s.

lim sup
N→∞

∥∥∥∥YN + Y ∗N
2
√
N

∥∥∥∥ ≤ 2.

Similarly, we have a.s.

lim sup
N→∞

∥∥∥∥YN − Y ∗N2
√
N

∥∥∥∥ ≤ 2.

The claim follows from the bounds above and (3.10).

3.2 Hermitization

In order to study the spectrum of a non-normal matrix it is often useful to instead
consider the spectrum of a family of Hermitian matrices.

We define the Hermitization of an N×N matrix X to be an N×N matrix with entries
that are 2× 2 block matrices. The ijth entry is the 2× 2 block:(

0 Xij

Xji 0

)
We note the Hermitization of X can be conjugated by a 2N × 2N permutation matrix to(

0 X

X∗ 0

)
Let XN := 1√

N
YN and define HN to be the Hermization of XN . We will generally

treat HN as an N ×N matrix with entries that are 2× 2 blocks, but occasionally it will
instead be useful to consider HN as a 2N × 2N matrix.

Additionally we define the 2× 2 matrix

q :=

(
η z

z η

)
(3.11)

with η = E +
√
−1t ∈ C+ := {w ∈ C : Im(w) > 0} and z ∈ C. We define the Hermitized

resolvent
RN (q) = RN (η, z) := (HN − I ⊗ q)−1.

Note that this is the usual resolvent of the Hermitization of XN − zI, hence it inherits
the usual properties of resolvents. For example, its operator norm is bound from above
by t−1. We will use the Hermitized resolvent extensively in Section 6 to estimate the
least singular value of XN −zI and in Section 7.2 to estimate the expectation of bilinear
forms involving GN (z).

3.3 Truncation

Let {YN}N≥1 be a sequence of random matrices that satisfies condition C0 with atom
variables (ξ1, ξ2). Instead of working with YN directly, we will work with a truncated
version of this matrix. Specifically, we will work with a matrix ŶN where the entries are
truncated versions of the original entries of YN .

Recall that YN = (yij)
N
i,j=1. Let L > 0. We define

ξ̃i := ξi1{|ξi|≤L} − E
[
ξi1{|ξi|≤L}

]
for i ∈ {1, 2}, and

ρ̃ := E
[
ξ̃1ξ̃2

]
.
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Here 1E denotes the indicator function of the event E. We will also define the truncated
entries

ỹij := yij1{|yij |≤L} − E
[
yij1{|yij |≤L}

]
for i 6= j, and ỹii := 0 for all i ≥ 1. We set ỸN := (ỹij)

N
i,j=1.

We also define

ξ̂i :=
ξ̃i√

Var(ξ̃i)

for i ∈ {1, 2}, and
ρ̂ := E[ξ̂1ξ̂2].

We define the entries

ŷij :=
ỹij√

Var(ỹij)

for i 6= j, and ŷii := 0 for all i ≥ 1. We set ŶN := (ŷij)
N
i,j=1. We also introduce the

notations

ĜN = ĜN (z) :=

(
1√
N
ŶN − zI

)−1

, (3.12)

m̂N (z) :=
1

N
tr ĜN (z). (3.13)

We verify the following standard truncation lemma.

Lemma 3.4 (Truncation). Let {YN}N≥1 be a sequence of random matrices that satisfies
condition C0 with atom variables (ξ1, ξ2). Then there exists constants C0, L0 > 0 such
that the following holds for all L > L0.

• {ŶN}N≥1 is a sequence of random matrices that satisfies condition C0 with atom
variables (ξ̂1, ξ̂2).

• a.s., one has the bounds
max
1≤i,j

|ŷij | ≤ 4L (3.14)

and

|ρ− ρ̂| ≤ C0

L
. (3.15)

• a.s., one has

lim sup
N→∞

1√
N
‖YN − ŶN‖ ≤

C0

L
(3.16)

and

lim sup
N→∞

sup
|z|≥5

‖GN (z)− ĜN (z)‖ ≤ C0

L
. (3.17)

The proof of Lemma 3.4 follows somewhat standard arguments; we present the proof
in Appendix A.

For the truncated matrices ŶN , we have the following bound on the spectral norm.

Lemma 3.5 (Spectral norm bound for ŶN ). Let {YN}N≥1 be a sequence of random
matrices that satisfies condition C0 with atom variables (ξ1, ξ2). Consider the truncated
matrices {ŶN}N≥1 from Lemma 3.4 for any fixed L > 0. Let ε > 0. Then

1√
N
‖ŶN‖ ≤ 4 + ε

with overwhelming probability.

The proof of Lemma 3.5 is almost identical to the proof of Lemma 3.3 except one
applies [5, Remark 5.7] instead of [5, Theorem 5.2].
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3.4 Martingale inequalities

The following standard bounds were originally proven for real random variables; the
extension to the complex case is straightforward.

Lemma 3.6 (Rosenthal’s inequality, [16]). Let {xk} be a complex martingale difference
sequence with respect to the filtration {Fk}. Then, for p ≥ 2,

E

∣∣∣∑xk

∣∣∣p ≤ Kp

(
E
(∑

E(|xk|2|Fk−1)
)p/2

+ E
∑
|xk|p

)
.

Lemma 3.7 (Burkholder’s inequality, [16]). Let {xk} be a complex martingale differ-
ence sequence with respect to the filtration {Fk}. Then, for p ≥ 1,

E

∣∣∣∑xk

∣∣∣p ≤ KpE
(∑

|xk|2
)p/2

Lemma 3.8 (Dilworth, [21]). Let {Fk} be a filtration, {xk} a sequence of integrable
random variables, and 1 ≤ q ≤ p <∞. Then

E
(∑

|E(xk|Fk)|q
)p/q

≤
(
p

q

)p/q
E
(∑

|xk|q
)p/q

.

Lemma 3.9 (Lemma 6.11 of [5]). Let {Fn} be an increasing sequence of σ-fields and
{Xn} a sequence of random variables. Write Ek = E(·|Fk), E∞ = E(·|F∞), F∞ :=

∨
j Fj .

If Xn → 0 a.s. and supn |Xn| is integrable, then a.s.

lim
n→∞

max
k≤n

Ek[Xn] = 0.

3.5 Concentration of bilinear forms

We establish the following large deviation estimate for bilinear forms, which is a
consequence of Lemma B.1 from Appendix B.

Lemma 3.10 (Concentration of bilinear forms). Let (x, y) be a random vector in C2

where x, y both have mean zero, unit variance, and satisfy

• max{|x|, |y|} ≤ L a.s.,

• E[x̄y] = ρ.

Let (x1, y1), (x2, y2), . . . , (xN , yN ) be iid copies of (x, y), and set X = (x1, x2, . . . , xN )T and
Y = (y1, y2, . . . , yN )T. Let B be a N ×N random matrix, independent of X and Y . Then
for any integer p ≥ 2, there exists a constant Kp > 0 such that, for any t > 0,

P

(∣∣∣∣ 1

N
X∗BY − ρ

N
trB

∣∣∣∣ ≥ t) ≤ Kp
L2pE (tr(BB∗))

p/2

Nptp
. (3.18)

In particular, if ‖B‖ ≤ N1/4 a.s., then

P

(∣∣∣∣ 1

N
X∗BY − ρ

N
trB

∣∣∣∣ ≥ N−1/8

)
≤ Kp

L2p

Np/8
(3.19)

for any integer p ≥ 2.

Proof. We first note that (3.19) follows from (3.18) by taking t = N−1/8 and applying
the deterministic bound

(tr(BB∗))
p/2 ≤ Np/2‖BB∗‖p/2 ≤ Np/2‖B‖p.
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It remains to prove (3.18). By Markov’s inequality, it suffices to show

E |X∗BY − ρ trB|p �p L
2pE (tr(BB∗))

p/2 (3.20)

for any integer p ≥ 2. We will use Lemma B.1 from Appendix B to verify (3.20).
By conditioning on the matrix B (which is independent ofX and Y ), we apply Lemma

B.1 and obtain

E |X∗BY − ρ trB|p �p E
[(
L4 tr(BB∗)

)p/2
+ L2p tr(BB∗)p/2

]
�p L

2p
(
E (tr(BB∗))

p/2
+ E tr(BB∗)p/2

)
�p L

2pE (tr(BB∗))
p/2

since tr(BB∗)p/2 ≤ (tr(BB∗))
p/2.

3.6 ε-nets

We introduce ε-nets as a convenient way to discretize a compact set. Let ε > 0. A
set X is an ε-net of a set Y if for any y ∈ Y , there exists x ∈ X such that ‖x − y‖ ≤ ε.
We will need the following well-known estimate for the maximum size of an ε-net.

Lemma 3.11. Let D be a compact subset of {z ∈ C : |z| ≤M}. Then D admits an ε-net
of size at most (

1 +
2M

ε

)2

.

Proof. Let N be maximal ε separated subset of D. That is, |z − w| ≥ ε for all distinct
z, w ∈ N and no subset of D containing N has this property. Such a set can always be
constructed by starting with an arbitrary point in D and at each step selecting a point
that is at least ε distance away from those already selected. Since D is compact, this
procedure will terminate after a finite number of steps.

We now claim that N is an ε-net of D. Suppose to the contrary. Then there would
exist z ∈ D that is at least ε from all points in N . In other words, N ∪ {z} would still be
an ε-separated subset of D. This contradicts the maximal assumption above.

We now proceed by a volume argument. At each point of N we place a ball of radius
ε/2. By the triangle inequality, it is easy to verify that all such balls are disjoint and lie
in the ball of radius M + ε/2 centered at the origin. Comparing the volumes give

|N | ≤ (M + ε/2)
2

(ε/2)2
=

(
1 +

2M

ε

)2

.

Similarly, if I is an interval on the real line with length |I|, then I admits an ε-net of
size at most 1 + |I|/ε.

4 Stability of the fixed point equation

We will study the limit of the sequence of functions {mN}N≥1 (defined in (3.2)). As is
standard in random matrix theory, we will not compute the limit explicitly, but instead
show that the limit satisfies a fixed point equation. In particular, we will show that the
limiting function satisfies

∆(z) = − 1

z + ρ∆(z)
. (4.1)
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Remark 4.1. When ρ > 0, (4.1) also characterizes the Stieltjes transform of the semi-
circle distribution with variance ρ (see for instance [5, Chapter 2]).

In this section, we study the stability of (4.1) for −1 ≤ ρ ≤ 1. We begin with a few
preliminary results.

Lemma 4.2. For −1 ≤ ρ ≤ 1, ±2
√
ρ ∈ Eρ.

Proof. Let z = ±2
√
ρ. First consider the case when 0 ≤ ρ ≤ 1. Then z2 = Re(z)2 = 4ρ.

Since 0 ≤ (1− ρ)2 = (1 + ρ)2 − 4ρ, it follows that

z2

(1 + ρ)2
=

4ρ

(1 + ρ)2
≤ 1,

and hence z ∈ Eρ. A similar argument works for the case −1 ≤ ρ ≤ 0.

Since (4.1) can be written as a quadratic polynomial, the solution of (4.1) has two
branches when ρ 6= 0. We refer to the two branches as the solutions of (4.1).

Lemma 4.3 (Solutions of (4.1)). Consider equation (4.1). Then one has the following.

(i) If ρ = 0, there exists exactly one solution of (4.1).

(ii) If −1 ≤ ρ ≤ 1 and ρ 6= 0, there exists two solutions of (4.1), which are distinct and
analytic outside the ellipsoid Eρ.

(iii) For any −1 ≤ ρ ≤ 1, there exists a unique solution of (4.1), which we denote by
m(z), which is analytic outside Eρ and satisfies

lim
|z|→∞

m(z) = 0. (4.2)

Furthermore,

m(z) :=

{
−z+
√
z2−4ρ

2ρ for ρ 6= 0
−1
z for ρ = 0

, (4.3)

where
√
z2 − 4ρ is the branch of the square root with branch cut [−2

√
ρ, 2
√
ρ] for

ρ > 0 and [−2
√
|ρ|, 2

√
|ρ|]
√
−1 for ρ < 0, and which equals z at infinity.

Proof. When ρ = 0, the results are trivial. Assume ρ 6= 0. By rewriting (4.1), we find

ρ∆(z)2 + z∆(z) + 1 = 0.

Thus, by the quadratic equation, we have two solutions

m1,m2 =
−z ±

√
z2 − 4ρ

2ρ
, (4.4)

where
√
z2 − 4ρ is the branch of the square root with branch cut [−2

√
ρ, 2
√
ρ] for ρ > 0

and [−2
√
|ρ|, 2

√
|ρ|]
√
−1 for ρ < 0, and which equals z at infinity.

Now suppose m1(z) = m2(z) for some z ∈ C. Then we find

z = ±2
√
ρ.

Since ±2
√
ρ ∈ Eρ by Lemma 4.2, the proof of (ii) is complete.

Finally, it is straightforward to check that

−z +
√
z2 − 4ρ

2ρ

is the only solution of (4.1) that satisfies (4.2).
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For the remainder of the paper, we let m(z) be the unique solution of equation (4.1)
given by (4.3). For ρ 6= 0, we let m2(z) denote the other solution of equation (4.1)
described in Lemma 4.3. Indeed, from the proof of Lemma 4.3, we have

m2(z) :=
−z −

√
z2 − 4ρ

2ρ
. (4.5)

Lemma 4.4. Let −1 ≤ ρ ≤ 1 with ρ 6= 0 and let δ > 0. Then

|m(z)−m2(z)| ≥ δ

|ρ|

for all z ∈ C with dist(z, Eρ) ≥ δ.

Proof. From (4.3) and (4.5), we have

|m(z)−m2(z)|2 =
|z2 − 4ρ|
|ρ|2

=
|z − 2

√
ρ||z + 2

√
ρ|

|ρ|2
.

Since ±2
√
ρ ∈ Eρ by Lemma 4.2, we conclude that

|m(z)−m2(z)|2 ≥ δ2

|ρ|2

for dist(z, Eρ) ≥ δ.

Lemma 4.5. Let D ⊂ C such that D ⊂ {z ∈ C : dist(z, Eρ) ≥ δ, |z| ≤ M}, for some
M, δ > 0. Then there exists ε, C, c > 0 (depending only on δ,M, ρ) such that the following
holds. Suppose m′ satisfies

m′(z) =
−1

z + ρm′(z) + ε1(z)
+ ε2(z), (4.6)

for all z ∈ D. If |ε1(z)|, |ε2(z)| ≤ ε for all z ∈ D, then:

1. |m′(z)| ≤ C for all z ∈ D,

2. |ρm′(z) + z| ≥ c for all z ∈ D.

Proof. When ρ = 0, we note that

|ρm′(z) + z| = |z| ≥ 1 + δ

for all z ∈ D. Moreover

|z + ε1(z)| ≥ |z| − ε ≥ 1 + δ − ε ≥ 1

2

for ε < 1/2 and all z ∈ D. Thus we obtain the bound |m′(z)| ≤ 5/2.
Assume ρ 6= 0. Let C be a large positive constant such that C > 100M and C2 > 2|ρ|.

Assume ε > 0 satisfies

ε <
49

100

√
2|ρ|.

Then ε < 49
100C by construction. We will show that |m′(z)| ≤ C/|ρ| for all z ∈ D. Suppose

to the contrary that |m′(z)| > C/|ρ| for some z ∈ D. Then

|z + ρm′(z) + ε(z)| ≥ |ρ||m′(z)| − |z| − ε ≥ C − C

100
− ε ≥ C

2
.
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Thus,
C

|ρ|
≤ |m′(z)| ≤ 2

C
,

which contradicts the assumption that C2 > 2|ρ|. We conclude that |m′(z)| ≤ C/|ρ| for
all z ∈ D.

Using the bound above, we have

|ρ|
C
≤ |z + ρm′(z) + ε(z)| ≤ |z + ρm′(z)|+ ε

for all z ∈ D. Thus, we have

|z + ρm′(z)| ≥ |ρ|
C
− ε ≥ |ρ|

2C

by taking ε sufficiently small.

Lemma 4.6. Let δ,M > 0. Then there exists C, c > 0 (depending only on δ,M, ρ) such
that c ≤ |m(z)| ≤ C for all z ∈ C satisfying dist(z, Eρ) ≥ δ and |z| ≤M .

Proof. Since m(z) satisfies (4.1), the claim follows from Lemma 4.5 by taking ε1(z) =

ε2(z) = 0 (alternatively, one can derive the bounds directly from (4.1) and obtain an
explicit expression for C, c in terms of δ, ρ,M ).

Lemma 4.7 (Stability). Let D ⊂ C be connected and satisfy D ⊂ {z ∈ C : dist(z, Eρ) ≥
δ, |z| ≤ M}, for some δ,M > 0. Then there exists ε, C > 0 (depending only on δ,M, ρ)
such that the following holds. Let m′ be a continuous function on D that satisfies (4.6)
for all z ∈ D. If |ε1(z)|, |ε2(z)| ≤ ε for all z ∈ D, then exactly one of the following holds:

1. |m′(z)−m(z)| ≤ C(|ε1(z)|+ |ε2(z)|) for all z ∈ D,

2. |m′(z)−m(z)| ≥ δ
2|ρ| for all z ∈ D.

Proof. First we consider the case ρ = 0. For ε ≤ 1/2, we have that

|z + ε1(z)| ≥ |z| − ε ≥ 1/2

for all z ∈ D. Thus

|m(z)−m′(z)| ≤ |ε1(z)|
|z||z + ε1(z)|

+ |ε2(z)| ≤ 2[|ε1(z)|+ |ε2(z)|].

Assume −1 ≤ ρ ≤ 1 with ρ 6= 0. By Lemma 4.5, there exists ε, C ′ > 0 such that if
|ε1(z)|, |ε2(z)| ≤ ε/2 for all z ∈ D, then |m′(z)| ≤ C ′ for all z ∈ D. By rearranging (4.6),
we then obtain∣∣∣∣m′(z)2 +

z

ρ
m′(z) +

1

ρ

∣∣∣∣ ≤ C ′

|ρ|
|ε1(z)|+ C ′|ρ|+M + ε

|ρ|
|ε2(z)| ≤ C(|ε1(z)|+ |ε2(z)|),

where C depends on M,ρ,C ′. Define ε̃ := |ε1(z)| + |ε2(z)|. Factoring the left-hand side
yields

|m′(z)−m(z)||m′(z)−m2(z)| ≤ Cε̃ (4.7)

for all z ∈ D. From Lemma 4.4, we obtain

δ

|ρ|
≤ |m(z)−m2(z)| ≤ |m(z)−m′(z)|+ |m′(z)−m2(z)| (4.8)
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for all z ∈ D. Combining (4.7) and (4.8) we obtain the quadratic inequality

|m′(z)−m(z)|2 − δ

|ρ|
|m′(z)−m(z)|+ Cε̃ ≥ 0.

For

ε̃ ≤ ε < δ2

4C|ρ|2
,

we obtain either

2|m′(z)−m(z)| ≤ δ

|ρ|
−

√
δ2

|ρ|2
− 4Cε̃ ≤ 4C|ρ|

δ
ε̃

or

2|m′(z)−m(z)| ≥ δ

|ρ|
+

√
δ2

|ρ|2
− 4Cε̃ ≥ δ

|ρ|
.

For ε sufficiently small, the two possibilities above are distinct. Because m′ − m is
continuous and since D is connected, a continuity argument implies that exactly one of
the possibilities above holds for all z ∈ D.

We also verify that m(z) is a continuous function of ρ.

Lemma 4.8. Fix z ∈ C with |z| > 2. Then m(z) is a continuous function of ρ ∈ [−1, 1].

Proof. In order to denote the dependence on ρ, we let mρ(z) be the function defined by
(4.3) for any −1 ≤ ρ ≤ 1. Fix z ∈ C with |z| > 2. Then z /∈ ∪−1≤ρ≤1Eρ. By definition,

ρm2
ρ(z) + zmρ(z) + 1 = 0 (4.9)

for −1 ≤ ρ ≤ 1. Since the roots of a (monic) polynomial are continuous functions
of the coefficients (see [20, 50]), we conclude that mρ(z) is a continuous function of
ρ ∈ [−1, 1] \ {0}. It remains to show mρ(z) is continuous at ρ = 0.

Multiplying (4.9) by ρ, we see that ρmρ(z) is a continuous function of ρ ∈ [−1, 1].
Thus, we have

lim
ρ→0

ρmρ(z) = 0,

and hence there exists ε, c > 0 such that

|ρmρ(z) + z| ≥ c

for all |ρ| ≤ ε. By (4.1), it follows that

|mρ(z)| ≤
1

c

for all |ρ| ≤ ε. Let m0(z) = −1/z (i.e. m0(z) is given by (4.3) when ρ = 0). Then

zm0(z) + 1 = 0.

Subtracting (4.9) from the equation above yields

|z||m0(z)−mρ(z)| = |ρ||mρ(z)|2 ≤
|ρ|
c2

for |ρ| ≤ ε. Since |z| > 2, we conclude that mρ(z) is continuous at ρ = 0.

5 Truncation arguments and the isotropic limit law

In this section, we begin the proof of Theorem 2.4 and Theorem 2.10 by reducing to
the case where we only need to consider the truncated matrices {ŶN}N≥1.
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5.1 Isotropic limit law

This subsection is devoted to Theorem 2.4. We will prove Theorem 2.4 using the
following isotropic limit law, which is inspired by the isotropic semicircle law developed
by Knowles and Yin [35, 36].

Theorem 5.1 (Isotropic limit law). Let {YN}N≥1 be a sequence of random matrices
that satisfies condition C0 with atom variables (ξ1, ξ2), where ρ = E[ξ1ξ2]. Let δ > 0. For
each N ≥ 1, let uN and vN be unit vectors in CN . Then a.s.

sup
dist(z,Eρ)≥δ

∣∣∣∣∣u∗N
(

1√
N
YN − zI

)−1

vN −m(z)u∗NvN

∣∣∣∣∣ −→ 0

as N →∞.

Assuming Theorem 2.10 and Theorem 5.1, we complete the proof of Theorem 2.4.
By the singular value decomposition, we write CN = ANBN , where AN is a N×k matrix
and BN is a k × N matrix. By assumption, both AN and BN have operator norm O(1).
Based on [49, Lemma 2.1], we have the following lemma.

Lemma 5.2 (Eigenvalue criterion). Let z be a complex number that is not an eigenvalue
of 1√

N
YN . Then z is an eigenvalue of 1√

N
YN + CN if and only if

det (I +BNGN (z)AN ) = 0.

Proof. Clearly z is an eigenvalue of 1√
N
YN + CN if and only if

det

(
1√
N
YN + CN − zI

)
= 0.

Since 1√
N
YN − zI is invertible by assumption, we rewrite the above equation as

det

(
I +

(
1√
N
YN − zI

)−1

ANBN

)
= 0.

The claim now follows from (2.2) and (3.1).

Remark 5.3. The proof of Lemma 5.2 actually reveals that

det (I +BNGN (z)AN ) =
det
(

1√
N
YN + CN − zI

)
det
(

1√
N
YN − zI

) (5.1)

provided the denominator does not vanish. Versions of this identity have appeared in
previous publications including [2, 8, 9, 10, 18].

Following Tao in [49], we define the functions

f(z) := det (I +BNGN (z)AN )

and
g(z) := det (I +m(z)BNAN ) ,

where m(z) is defined in (4.3). Both f and g are meromorphic functions outside Eρ that
are asymptotically equal to 1 at infinity. By Lemma 5.2, the zeroes of f coincide with the
eigenvalues of 1√

N
YN +CN outside the spectrum of 1√

N
YN . Moreover, from (5.1) we see
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that the multiplicity of any such eigenvalue is equal to the degree of the corresponding
zero of f . It follows from (2.2) that

g(z) =

k∏
i=1

(1 +m(z)λi(CN )) ,

where λ1(CN ), . . . , λk(CN ) are the non-trivial eigenvalues of CN (some of which may be
zero).

In order to study the zeroes of g, we consider the values of z /∈ Eρ for which

m(z) = − 1

λ
. (5.2)

Indeed, for 0 < |λ| ≤ 1, there does not exist z /∈ Eρ which solves (5.2); for |λ| > 1, (5.2)
holds if and only if

z = λ+
ρ

λ
. (5.3)

This follows from (4.1) and an analytic continuation argument3.
By Theorem 2.2 (which was proved in Section 2 assuming Theorem 2.10 holds), it

follows that a.s., for N sufficiently large, all the eigenvalues of 1√
N
YN are contained in

Eρ,δ. By Rouché’s theorem, in order to prove Theorem 2.4, it suffices to show that a.s.

sup
dist(z,Eρ)≥2δ

|f(z)− g(z)| −→ 0

as N →∞. Since AN , BN , GN a.s. have operator norm O(1) (by Theorem 2.10) and k is
fixed, independent of N , it suffices to show that a.s.

sup
dist(z,Eρ)≥2δ

‖BN (GN −m(z)I)AN‖ −→ 0

as N → ∞. Since BN (GN −m(z)I)AN is a k × k matrix, the claim now follows from
Theorem 5.1.

Remark 5.4. Equation (5.3) is similar to the formulas obtained in [19] for the location
of the outlier eigenvalues. Indeed, (5.3) can be obtained using techniques from free
probability. Let µsc,ρ be the semicircle distribution with variance ρ and let µcirc,1−ρ be
the uniform distribution on the disk centered at the origin in the complex plane with
radius (1− ρ)1/2. Let Sρ have distribution µsc,ρ, C1−ρ have distribution µcirc,1−ρ, and Eρ
have elliptic distribution µρ. Then

Eρ = Sρ + C1−ρ

with Sρ and C1−ρ free random variables. Outside of the ellipse, the Stieltjes transform
of µρ can be expressed as the Stieltjes transform of the circular law evaluated at the
subordination function F (z) = z + ρm(z). This can be seen by adding the R-transforms

3One technical issue that arises when ρ 6= 0 is that the solution of (4.1) has two distinct analytic branches
m,m2. In order to overcome this obstacle, we make the following observations.

(i) From (4.1), we see that if (5.2) holds, it must be the case that z = λ+ ρ
λ

.

(ii) The function λ 7→ λ + ρ
λ

maps circles to ellipses and is one-to-one when restricted to the domain
{λ ∈ C : 0 < |λ| < |ρ|} or {λ ∈ C : |λ| > 1}. Moreover λ+ ρ

λ
∈ Eρ if and only if |ρ| ≤ |λ| ≤ 1.

It follows that (5.2) has no solution outside the ellipse when |ρ| ≤ |λ| ≤ 1. Furthermore, for |λ| sufficiently
large, one can deduce the solution (5.3) for the branch m and then extend to the region |λ| > 1 by analytic
continuation. Similarly, one can show that (5.2) has no solution outside the ellipse when |λ| < |ρ|; in fact, for
|λ| < |ρ|, (5.3) is a solution of m2(z) = − 1

λ
.
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together and inverting to obtain the Stieltjes transform. The inverse function of F is
H(z) = z+ ρ/z, which is precisely the function appearing in (5.3). The function H plays
the same role here as in [19]. Since we are only interested in solutions outside the
ellipsoid, the domain of H is restricted to |z| > 1.

We now reduce the proof of Theorem 5.1 to the case where we only need to consider
the truncated matrices {ŶN}N≥1. We let m̂(z) be the function given by (4.3) with ρ

replaced by ρ̂.

Theorem 5.5 (Isotropic limit law for ŶN ). Let {YN}N≥1 be a sequence of random ma-
trices that satisfies condition C0 with atom variables (ξ1, ξ2), where ρ = E[ξ1ξ2]. Let
ε > 0. Let L > 0, and consider the truncated random matrices {ŶN}N≥1 from Lemma
3.4. For each N ≥ 1, let uN and vN be unit vectors in CN . Fix z ∈ C with 5 ≤ |z| ≤ 6.
Then a.s., for N sufficiently large,∣∣∣∣∣u∗N

(
1√
N
ŶN − zI

)−1

vN − m̂(z)u∗NvN

∣∣∣∣∣ ≤ ε.
We now prove Theorem 5.1 assuming Theorem 2.10 and Theorem 5.5.

Proof of Theorem 5.1. Let ε, δ > 0. It suffices to show that a.s., for N sufficiently large,

sup
dist(z,Eρ)≥δ

|u∗NGN (z)vN −m(z)u∗NvN | ≤ ε. (5.4)

Consider the compact set D := {z ∈ C : 5 ≤ |z| ≤ 6}. Since m is analytic on D,
it follows from the Heine–Cantor theorem (see for instance [45, Theorem 4.19]) that
m is uniformly continuous on D. Thus, there exists ε′ > 0 such that if z, w ∈ D, then
|z − w| ≤ ε′ implies |m(z)−m(w)| ≤ ε/100.

Set ε′′ := min{ε/100, ε′}, and let N be a ε′′-net of D. By Lemma 3.11, |N | = O(1). By
Theorem 5.5, we have a.s., for N sufficiently large,

sup
z∈N

∣∣∣u∗N ĜN (z)vN − m̂(z)u∗NvN

∣∣∣ ≤ ε

200
.

Furthermore, by Lemma 3.4 and Lemma 4.8 (taking L sufficiently large), we have a.s.,
for N sufficiently large,

sup
z∈N

∣∣∣u∗N ĜN (z)vN −m(z)u∗NvN

∣∣∣ ≤ ε

100
. (5.5)

We now extend this bound to all z ∈ D. By Lemma 3.1, Lemma 3.3, and (3.3), we have
a.s., for N sufficiently large,

‖ĜN (z)− ĜN (w)‖ ≤ 4|z − w| (5.6)

for all z, w ∈ D. Fix a realization in which (5.5) and (5.6) hold. Choose w ∈ D. Then
there exists z ∈ N with |z − w| ≤ ε′′. Thus, from (5.6), we have∣∣∣u∗N ĜN (z)vN − u∗N ĜN (w)vN

∣∣∣ ≤ ‖ĜN (z)− ĜN (w)‖ ≤ ε

10
.

On the other hand, from the uniform continuity of m, we have

|m(z)u∗NvN −m(w)u∗NvN | ≤ |m(z)−m(w)| ≤ ε

100
.

Combining the bounds above with (5.5), we conclude that, for N sufficiently large,

sup
z∈D

∣∣∣u∗N ĜN (z)vN −m(z)u∗NvN

∣∣∣ ≤ ε

2
(5.7)
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for any fixed realization in which (5.5) and (5.6) hold. In other words, we have a.s., for
N sufficiently large, (5.7) holds.

By Lemma 3.1, Lemma 3.3, and the resolvent identity (3.3), we have a.s., for N
sufficiently large,

sup
z∈D

∣∣∣u∗N ĜN (z)vN − uNGN (z)vN

∣∣∣ ≤ 4√
N
‖YN − ŶN‖.

Thus, by Lemma 3.4, we obtain a.s., for N sufficiently large,

sup
z∈D

∣∣∣u∗N ĜN (z)vN − uNGN (z)vN

∣∣∣ ≤ C

L
≤ ε

2

by taking L sufficiently large. Combining the bound above with (5.7), we conclude that
a.s., for N sufficiently large,

sup
z∈D
|u∗NGN (z)vN −m(z)u∗NvN | ≤ ε.

Since ε is arbitrary, we in fact obtain that a.s.

sup
z∈D
|u∗NGN (z)vN −m(z)u∗NvN | −→ 0

as N →∞.
By definition (4.3), there exists M > 0 such that |m(z)| ≤ ε/100 for all |z| ≥ M .

Moreover, from Lemma 3.1 and Lemma 3.3 (by increasing M if necessary), we have
a.s., for N sufficiently large,

sup
|z|≥M

‖GN (z)‖ ≤ ε

100
. (5.8)

Consider the compact set D′ := {z ∈ C : dist(z, Eρ) ≥ δ, |z| ≤ M}. By Theorem 2.10 and
Lemma 4.6, we have a.s., for N sufficiently large, u∗N (GN (z)−m(z)I)vN is analytic and
uniformly bounded on D′. We apply Vitali’s convergence theorem to obtain a.s.

sup
z∈D′

|u∗NGN (z)vN −m(z)u∗NvN | −→ 0

as N →∞. This implies that a.s., for N sufficiently large,

sup
z∈D′

|u∗NGN (z)vN −m(z)u∗NvN | ≤ ε/2. (5.9)

On the other hand, by (5.8), we have a.s., for N sufficiently large,

sup
|z|≥M

|u∗NGN (z)vN −m(z)u∗NvN | ≤ sup
|z|≥M

(‖GN (z)‖+ |m(z)|) ≤ ε/2. (5.10)

Combining (5.9) and (5.10), we obtain (5.4), and the proof is complete.

We will prove Theorem 5.5 in Section 7.

5.2 Elliptic random matrices with nonzero mean

In this subsection, we use Theorem 5.1 to prove Theorem 2.8. The proof is based on
the arguments in [49, Section 3].

Let {YN}N≥1, µ, and ϕN be as in Theorem 2.8; let δ > 0. It suffices to show that
a.s. there exists one eigenvalue of XN + µ

√
NϕNϕ

∗
N outside Eρ,δ, with this eigenvalue

occurring within o(1) of µ
√
N . We begin with the following lemma.
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Lemma 5.6. Let {YN}N≥1 and ϕN be as in Theorem 2.8. Then a.s.

ϕ∗NXNϕN −→ 0

as N →∞.

Proof. By Markov’s inequality and the Borel–Cantelli lemma, it suffices to show that

E |ϕ∗NXNϕN |4 = OM4

(
1

N2

)
. (5.11)

We write

E |ϕ∗NXNϕN |4 =
1

N6

N∑
i1,i2,i3i4,j1,j2,j3,j4=1

E[yi1j1yi2j2yi3j3yi4j4 ].

We now consider the pairs

(i1, j1), (i2, j2), (i3, j3), (i4, j4)

for which E[yi1j1yi2j2yi3j3yi4j4 ] is nonzero. From Definition 1.11, we see that each pair
(is, js) must correspond to some (ir, jr) or (jr, ir) for s 6= r. Counting all such pairs
yields (5.11).

Define the functions

f(z) := 1 + µ
√
Nϕ∗NGN (z)ϕN ,

g(z) := 1 + µ
√
Nm(z),

h(z) := 1− µ
√
N

z
.

By (5.3), it follows that g has precisely one zero outside Eρ located at µ
√
N + ρ

µ
√
N

.

By Lemma 5.2 and Theorem 2.2, a.s. the eigenvalues of XN + µ
√
NϕNϕ

∗
N outside Eρ,δ

correspond to the zeroes of f . From Theorem 5.1, we see that a.s.

f(z) = g(z) + o(
√
N)

uniformly for z /∈ Eρ,δ. We conclude that if f has a zero outside Eρ,δ, it must tend to
infinity with N . Thus, for the remainder of the proof, we restrict our attention to the
region |z| ≥ 5. It remains to show that f a.s. has exactly one zero outside |z| ≥ 5 taking
the value z = µ

√
N + o(1).

By writing out the Neumann series and applying Lemma 3.3, we obtain a.s.

f(z) = h(z)− µ
√
N

z2
ϕ∗NXNϕN +O

(√
N

|z|3

)
uniformly for |z| ≥ 5. Thus, by Lemma 5.6, we conclude that a.s.,

f(z) = h(z) + o

(√
N

|z|2

)
+O

(√
N

|z|3

)
(5.12)

uniformly for |z| ≥ 5. Let ε > 0; from Rouché’s theorem, we conclude that a.s., for N
sufficiently large, f has exactly one zero in the disk of radius ε centered at µ

√
N .

Let z be any zero of f outside Eρ,δ. Since z tends to infinity with N , we apply (5.12)
and obtain a.s.

h(z) = o

(√
N

|z|2

)
.
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Thus, |z| = Ω(
√
N), and hence a.s.

z = µ
√
N + o

(√
N

|z|

)
= µ
√
N + o(1).

Therefore, we conclude that a.s., for N sufficiently large, f has precisely one zero out-
side Eρ,δ taking the value z = µ

√
N + o(1), and the proof is complete.

5.3 Least singular value bound

We now turn our attention to Theorem 2.10. Again, we will reduce to the case where
we only need to consider the truncated matrices {ŶN}N≥1.

Theorem 5.7. Let {YN}N≥1 be a sequence of random matrices that satisfies condition
C0 with atom variables (ξ1, ξ2), where ρ = E[ξ1ξ2]. Let δ > 0. Then there exists c > 0

such that the following holds. Let L > 0 and consider the truncated random matrices
{ŶN}N≥1 from Lemma 3.4. Then a.s., for N sufficiently large,

inf
dist(z,Eρ)≥δ

σN

(
1√
N
ŶN − zI

)
≥ c.

Assuming Theorem 5.7, we now prove Theorem 2.10.

Proof of Theorem 2.10. In order to prove Theorem 2.10, it suffices to show that a.s., for
N sufficiently large,

sup
dist(z,Eρ)≥δ

‖GN (z)‖ ≤ C ′

for some constant C ′ > 0. From (3.3), we obtain

GN (z) = ĜN (z)[I − (X̂N −XN )ĜN (z)]−1

provided all the relevant matrices on the right-hand side are invertible. From Theorem
5.7, we have a.s., for N sufficiently large,

sup
dist(z,Eρ)≥δ

‖ĜN (z)‖ ≤ 1

c
.

It thus suffices to show that a.s., for N sufficiently large,

sup
dist(z,Eρ)≥δ

‖[I − (X̂N −XN )ĜN (z)]−1‖ ≤ C ′′ (5.13)

for some constant C ′′ > 0.
From Lemma 3.4, it follows that a.s., for N sufficiently large,

‖X̂N −XN‖ ≤
C

L

for some constant C > 0. Thus, by taking L sufficiently large, we conclude that

sup
dist(z,Eρ)≥δ

‖(X̂N −XN )ĜN (z)‖ ≤ C

Lc
< 1.

Thus, by the Neumann series, we obtain a.s., for N sufficiently large,

sup
dist(z,Eρ)≥δ

‖[I − (X̂N −XN )ĜN (z)]−1‖ ≤ sup
dist(z,Eρ)≥δ

∞∑
k=0

‖(X̂N −XN )ĜN (z)‖k

≤ 1

1− C
Lc

,

and the proof is complete.
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We now reduce to the case where z is fixed (as opposed to taking the infimum over
an uncountable number of complex numbers). We proceed using an ε-net argument and
the following theorem.

Theorem 5.8. Let {YN}N≥1 be a sequence of random matrices that satisfies condition
C0 with atom variables (ξ1, ξ2), where ρ = E[ξ1ξ2]. Let δ > 0. Then there exists a
constant c > 0 such that the following holds. Let L > 0, and consider the truncated
random matrices {ŶN}N≥1 from Lemma 3.4. Then for any z with dist(z, Eρ) ≥ δ and
|z| ≤ 6, a.s., for N sufficiently large,

σN

(
1√
N
ŶN − zI

)
≥ c.

We now verify Theorem 5.7 assuming Theorem 5.8.

Proof of Theorem 5.7. Let δ > 0, and let c > 0 be the constant from Theorem 5.8. We
first note that a.s., for N sufficiently large,

sup
|z|≥6

‖ĜN (z)‖ ≤ 1

by Lemma 3.1 and Lemma 3.3. Thus, it suffices to show that a.s., for N sufficiently
large,

inf
z∈D

σN

(
1√
N
ŶN − zI

)
≥ c′

for some constant c′ > 0, where D := {z ∈ C : dist(z, Eρ) ≥ δ, |z| ≤ 6}.
Let N be a c/10-net of the compact region D. By Lemma 3.11, |N | = O(1). Thus, by

applying Theorem 5.8 to each z ∈ N , we obtain a.s., for N sufficiently large,

inf
z∈N

σN

(
1√
N
ŶN − zI

)
≥ c. (5.14)

We now extend this bound to all z ∈ D. Fix a realization in which (5.14) holds. Choose
z ∈ D. Then there exists z′ ∈ N with |z − z′| ≤ c/10. By Weyl’s perturbation theorem
(see for instance [12]),∣∣∣∣σN ( 1√

N
ŶN − zI

)
− σN

(
1√
N
ŶN − z′I

)∣∣∣∣ ≤ |z − z′| ≤ c

10
.

Thus, we conclude that

inf
z∈D

σN

(
1√
N
ŶN − zI

)
≥ c

2

for any realization in which (5.14) holds. The proof of the theorem is complete.

We will prove Theorem 5.8 in Section 6.

5.4 Notation

It remains to prove Theorem 5.5 and Theorem 5.8. As such, for the remainder of
the paper we only consider the truncated matrices {ŶN}N≥1 from Lemma 3.4 for some
arbitrarily large fixed constant L > 0. Thus, we drop the decorations from our notation
and simply write YN , XN , GN for the matrices ŶN , X̂N , ĜN . Similarly, we write mN (z)

for the function m̂N (z); we also write m(z) for the function m̂(z).

6 Least singular value bound

This section is devoted to Theorem 5.8. For this entire section we work with fixed z
satisfying the hypothesis of Theorem 5.8.
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6.1 Hermitization

Recall the Hermitization HN and its resolvent RN (q) defined in Section 3.2.
In this section, for any matrix H with entries that are 2×2 blocks, we mean trN (H) =

1
N

∑
iHii where Hii is the ith diagonal 2 × 2 block of H. When working with N × N

matrices with entries that are 2×2 blocks, we use superscripts to refer to entries of the
2 × 2 blocks. Additionally, when forming an N × N matrix whose ijth entry is the abth

entry (a, b ∈ {1, 2}) of the ijth 2× 2 blocks we also use superscripts. For example, R21 is
the N ×N matrix formed from taking each Rij block and replacing it by its (2,1)-entry.

Let ΓN (q) := trN (RN ). By the symmetry of the matrix HN ,
∑
lR

22
ll =

∑
lR

11
ll , i.e.

Γ11
N = Γ22

N . Let aN (q) := Γ11
N (q), bN (q) := Γ12

N (q) and cN (a) := Γ21
N (q).

From the calculations in [40] (see also [39]), it follows that ΓN (q) converges almost
surely to a limit

Γ(q) :=

(
a(q) b(q)

c(q) a(q)

)
for each fixed q. This block matrix Stieltjes transform satisfies the fixed point equation

Γ(q) = −(q + Σ(Γ(q)))−1, (6.1)

where Σ is the operator on 2× 2 matrices defined by

Σ

(
a b

c d

)
:=

(
d ρc

ρb a

)
.

The fixed point equation should be viewed as a matrix version of (4.1). For more infor-
mation on the use of this block matrix resolvent, we refer the reader to [14, 15] and the
references within.

For a N ×N matrix A, let νA denote the symmetric empirical measure built from the
singular values of A. That is,

νA :=
1

2N

N∑
i=1

(δσi(A) + δ−σi(A)), (6.2)

where σ1(A) ≥ · · · ≥ σN (A) are the singular values of A. The measure νA is also the
empirical spectral measure of the Hermitization of A. It was established in [40] that
νXN−zI converges almost surely to a probability measure νz as N → ∞. In Appendix
C, we study the properties of Γ(q) and νz. In particular, we will establish the following
bound on the support of νz when z is outside the ellipsoid.

Theorem 6.1. Fix −1 < ρ < 1 and let δ > 0. Then there exists c > 0 such that

νz([−c, c]) = 0

for all z ∈ C with dist(z, Eρ) ≥ δ.

Remark 6.2. Theorem 6.1 also holds when ρ = ±1. When ρ = 1, YN is a real symmetric
Wigner matrix, and the singular values of 1√

N
YN − zI are given by∣∣∣∣ 1√

N
λ1(YN )− z

∣∣∣∣ , . . . , ∣∣∣∣ 1√
N
λN (YN )− z

∣∣∣∣ ,
where λ1(YN ), . . . , λN (YN ) are the eigenvalues of YN . In this case, a lower bound on
the singular values follows from [5, Chapter 5]. The ρ = −1 case can be obtained by
symmetry.
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Remark 6.3. We give a complete proof of Theorem 6.1 in Appendix C. We quickly
describe an alternative proof using techniques from free probability. From [40] and
the work of Voiculescu [51], one can study the limiting measure νz by considering the
distribution of

Az := (
√
ρS +

√
1− ρC − zI)(

√
ρS +

√
1− ρC − zI)∗

for 0 ≤ ρ ≤ 1, where S and C are free non-commutative random variables, S is a semi-
circular variable, and C is a circular variable. Indeed, Biane and Lehner [13] showed
that the spectrum of

√
ρS +

√
1− ρC is the ellipsoid Eρ. Therefore, for any z ∈ C with

dist(z, Eρ) ≥ δ, it follows that 0 is not in the spectrum of Az, and hence 0 is not in
the support of the distribution of Az. A continuity argument then implies that for any
M > 0, there exists some c > 0 such that for a.e. z ∈ C with |z| ≤M and dist(z, Eρ) ≥ δ,
we have νz([−c, c]) = 0.

Proving Theorem 5.8 is equivalent to showing that a.s. νXN−zI([0, c]) = 0 for some
c > 0. By Theorem 6.1, we choose c such that νz([0, 2c]) = 0. In order to show that
νXN−zI([0, c]) = 0 we will show that aN (q) is close to a(q) for q as in (3.11) with η

= E +
√
−1t, E ∈ [0, c] and t sufficiently small. As aN (q) and a(q) are the Stieltjes

transform of νXN−zI and νz, respectively, at the point η this will allow us to compare
the two measures. The equations involving aN (q) depend crucially on bN (q) and cN (q)

so it is actually more straightforward to show ΓN (q) is close to Γ(q). We should note
that the empirical spectral measure, µXN , can be recovered by the formula −πµXN =

limη=
√
−1t→0 ∂zbN . This formula only uses purely imaginary η. We consider more general

η and a connection to the empirical spectral measure does not seem to be available.

In order to show that almost surely there are no singular values of XN − zI less
than c, we follow the ideas of Bai and Silverstein [4]. First we prove an a priori
bound on ΓN (q) − Γ(q), then use martingale inequalities to bound ΓN (q) − E[ΓN (q)],
and finally bound E[ΓN (q)] − Γ(q). Because of the correlations between Xij and Xji

we don’t directly study the Stieltjes transform of the empirical spectral measure of
(XN−zI)∗(XN−zI), but instead consider the linearized problem and study ΓN (q). Sim-
ilar linearization tricks have been used to study eigenvalues of polynomials of Wigner
matrices (e.g. see [1, 34]).

Since the vector space of 2 × 2 matrices is finite dimensional, all norms on it are
equivalent. Therefore the use of ‖ · ‖ in the this section can be any norm, but the reader
might find it useful to think of it is the max of each entry of the matrix. In order to show
a 2 × 2 matrix converges, it suffices to show that each entry of the matrix converges.
We will often employ this strategy.

We conclude this section with some useful matrix identities and notation.

We write Hi to be the ith column (of 2×2 blocks) of HN and H(i)
i to be the ith column

of HN with the ith block removed. We let R(i)
N be the resolvent of HN where the ith row

and ith column of HN (viewed as an N ×N matrix of 2× 2 blocks) have been removed.
Finally Γ

(i)
N (q) := 1

N

∑
j 6=iR

(i)
jj .

6.2 A priori estimate

Following the ideas of [4] we begin with an a priori bound on ΓN (q) − Γ(q) for η =

E +
√
−1tN , with tN going to zero polynomially and E ∈ [0, c]. This gives an upper

bound on the number of singular values of XN − zI less than c. In the second and
third steps we use this bound to show that a.s. E[ΓN (q)] − ΓN (q) = o((tNN)−1) and
E[ΓN (q)]− Γ(q) = O(N−1)
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By Schur’s Complement, the diagonal entries of the resolvent are

Rii = −(q +H
(i)
i R

(i)
N H

(i)
i )−1

= −(q + Σ(ΓN )− Σ(ΓN ) + Σ(Γ
(i)
N )− Σ(Γ

(i)
N ) +H

(i)∗
i R

(i)
N H

(i)
i )−1

Recall that the diagonal elements of XN and hence HN have been set to zero. Let

γ̂
(i)
N := H

(i)∗
i R

(i)
N H

(i)
i − Σ(Γ

(i)
N ). (6.3)

Summing over i gives the trace:

ΓN (q) =
∑
i

−(q + Σ(ΓN (q))− Σ(ΓN (q)) + Σ(Γ
(i)
N (q)) + γ̂

(i)
N )−1 (6.4)

Let SN be a N−1-net of the interval [0, c]. Clearly |SN | = O(N).

Lemma 6.4. There exist some α, β > 0 such that if q is as in (3.11) with tN ≥ N−β ,
then almost surely

sup
1≤i≤N,E∈SN

‖Σ(ΓN (q))− Σ(Γ
(i)
N (q))− γ̂(i)

N ‖ = O(N−α).

The proof will show that we can take α = 1/3 and β = 1/16; these values are not
optimal, but are sufficient for our purposes. We will require that α+β < 1/2 and β < α.

Proof. We begin by showing

‖Σ(ΓN − Γ
(i)
N )‖ = O((NtN )−1). (6.5)

Since Σ is a bounded operator it suffices to show ‖ΓN − Γ
(i)
N ‖ = O((NtN )−1).

We define the modified resolvent Ř(i)
N (q) := (q − (HN − eiH∗i − Hie

∗
i ))
−1. Where ei

is the N × 1 vector whose ith 2× 2 block is the identity matrix and whose other entries
are zero. The difference between the trace of Ř(i)

N (q) and the trace of R(i)
N (q) is q−1. The

difference between the trace of RN (q) and of Ř(i)
N (q) is bounded by the operator norm

of RN (q)− Ř(i)
N (q) times its rank.

The matrix RN (q)−Ř(i)
N (q) has rank at most 4 (viewed as a 2N by 2N matrix). Indeed,

by the resolvent identity,

RN (q)− Ř(i)
N (q) = RN (q)(eiH

∗
i +Hie

∗
i ))Ř

(i)
N (q).

The trivial bound on the resolvent, (3.8), shows the operator norm of the difference is
bounded by 2t−1

N .
Thus, we obtain the estimate

‖ΓN − Γ
(i)
N ‖ =

1

N
‖ tr(RN (q))− tr(Ř

(i)
N (q)) + tr(Ř

(i)
N (q))− tr(R

(i)
N (q))‖ = O((NtN )−1).

Since we assume tN ≥ N−β , this term is deterministically bounded by CNβ−1 uniformly
for E ∈ [0, c] and 1 ≤ i ≤ N .

We now bound ‖γ̂(i)
N ‖ by applying the bound on quadratic forms (Lemma B.1) to each

entry of this block.

E[|γ̂(i)ab
N |p] ≤ Kp

Np
E
[
(tr(R(i)a′b′(R(i)a′b′)∗))p/2

]
≤
Kpt

−p
N

Np/2
(6.6)
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with a and b either 1 or 2, and a′ = a+ 1 (mod 2), b′ = b+ 1 (mod 2). The final estimate
uses that N times the operator norm of a self adjoint matrix bounds its trace. The trivial
bound shows the operator norm is bounded by t−2

N .
Then by Chebyshev’s inequality and the union bound

P( max
1≤i≤N,Ej∈SN

‖γ̂(i)
N ‖ ≥ N

−α) ≤
∑

1≤i≤N,Ej∈SN

NpαE(‖γ̂(i)
N ‖

p)

≤ KpN
2+p(α+β−1/2)

In order for this term to converge to zero we require that α + β < 1/2. Then, p can
be chosen large enough to make the right-hand side summable. An application of the
Borel-Cantelli lemma implies almost sure convergence.

Since α+ β < 1/2 implies that β − 1 < −α, we conclude the proof of the lemma.

Now we state and prove our a priori bound.

Lemma 6.5. Let q be as in (3.11) with tN ≥ N−β and β as in Lemma 6.4. Then almost
surely

sup
E∈[0,c]

‖ΓN (q)− Γ(q)‖ = o(N−β)

Proof. First note that it is sufficient to prove the estimate on SN . If |E − E′| ≤ δ, then
‖ΓN (q) − ΓN (q′)‖ = ‖ΓN (q)(q − q′)ΓN (q′)‖ ≤ δt−2

N . Therefore showing that ‖ΓN (q)‖ =

O(N−β) for E ∈ SN with tN > N−β implies the bound ‖ΓN (q′)‖ = O(N−β) for all q′ with
E′ ∈ [0, c].

We introduce the notation

εiN := −Σ(ΓN (q)) + Σ(Γ
(i)
N (q)) + γ̂

(i)
N

and

εN :=
1

N

N∑
i=1

(q + Σ(ΓN (q)))−1(εiN )(q + Σ(ΓN (q)) + εiN )−1.

Let ΛN be the event that max1≤i≤N ‖εiN‖ ≤ N−α. By Lemma 6.4, 1ΛN = 1 almost surely.
With this notation we rewrite (6.4) as

ΓN (q) = −(q + Σ(ΓN (q)))−1 + εN . (6.7)

For sufficiently large N we have the bound,

‖1/N
∑
i

(εiN )(q + Σ(ΓN (q)) + εiN )−1‖1ΛN = ‖1/N
N∑
i=1

(εiN )Rii‖1ΛN = O(N−αt−1
N ) < 1/2.

Thus, we can solve for −(q + Σ(ΓN (q)))−11ΛN :

−(q + Σ(ΓN (q)))−11ΛN = ΓN (q)(1− 1/N

N∑
i=1

(εiN )Rii)
−11ΛN ,

and conclude
‖(q + Σ(ΓN (q)))−1‖1ΛN ≤ Ct−1

N .

This leads to the bound

‖εN‖1ΛN = ‖ 1

N

N∑
i=1

(q + Σ(ΓN (q)))−1(εiN )Rii‖1ΛN ≤ CN−αt−2
N .

The following lemma will allow us to complete the proof.
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Lemma 6.6. Let q̃ = q̃N := q + Σ(εN ) with q as in (3.11), E ∈ [0, c], and t ≥ N−β . Then
almost surely

ΓN (q) = Γ(q̃) + εN .

We defer the proof of this lemma until the end of the current proof.
Now, assuming Lemma 6.6, almost surely, we can replace Γ(q) with ΓN (q−Σ(εN ))−

εN and conclude

‖ΓN (q)− Γ(q)‖ = ‖Γ(q̃) + εN − Γ(q)‖
≤ ‖Γ(q̃) (Σ(εN )) Γ(q)‖+ ‖εN‖
≤ ‖Γ(q̃)‖‖εN‖‖Γ(q)‖+ ‖εN‖
= O(t−4

N N−α).

Choosing α = 1/3 and β = 1/16 gives the almost sure bound supE∈SN ‖ΓN (q)− Γ(q)‖ =

o(N−β).

Proof of Lemma 6.6. Applying the resolvent identity to the difference between (6.1) and
(6.7) leads to

ΓN (q)− Γ(q̃)− εN = −(q + Σ(ΓN (q)))−1 + (q̃ + Σ(Γ(q̃)))−1

= −(q + Σ(ΓN (q)))−1 (q̃ − q + Σ(Γ(q̃)− ΓN (q))) (q̃ + Σ(Γ(q̃)))−1

= (q + Σ(ΓN (q)))−1 (Σ(ΓN (q)− Γ(q̃)− εN )) (q̃ + Σ(Γ(q̃)))−1

From the (C.11) and Remark C.4 there exist a K such that

‖(q + Σ(Γ(q)))−1‖ = ‖Γ(q)‖ ≤ K

for all q with t > 0.
Since q̃1ΛN = (q + Σ(εN ))1ΛN and ‖Σ(εN )‖1ΛN converges to zero, we can choose N

sufficiently large such that the imaginary part of the diagonal entries of q̃ are almost
surely greater than zero, yielding the almost sure bound ‖Γ(q̃)‖ ≤ K.

Then using that ‖ΓN (q)‖ ≤ t−1
N , we obtain almost surely

‖ΓN (q)− Γ(q̃)− εN‖ ≤ K|tN |−1‖ΓN (q)− Γ(q̃)− εN‖.

We conclude for η such that 1 > K|tN |−1, E ∈ [0, c] and then for all η with tN > N−β and
E ∈ [0, c] by analytic continuation that almost surely

ΓN (q) = Γ(q̃) + εN .

Now we define the Stieltjes transforms of the measure νXN−zI and νz restricted to
[−2c, 2c] and its complement to be

ainN (q) =

∫
[−2c,2c]c

dνXN−zI(x)

x− η
, ain(q) =

∫
[−2c,2c]c

dνz(x)

x− η

aoutN (q) =

∫
[−2c,2c]

dνXN−zI(x)

x− η
, aout(q) =

∫
[−2c,2c]

dνz(x)

x− η
= 0.

Note that t−1
N Im(ainN (q)) =

∫
[−2c,2c]c

dνXN−zI(x)

(x−E)2+t2N
, and observe that 1

(x−E)2+t2N
forms a

uniformly bounded, equicontinuous family as a function of E ∈ [0, c] for x 6∈ [−2c, 2c].
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Furthermore, since νXN−zI converges almost surely to νz by the calculations in [40]
(see also [39]), we can conclude that a.s.

sup
E∈SN

t−1
N (Im(ainN (q))− Im(ain(q))) −→ 0.

Combining this estimate with Lemma 6.5 gives that a.s.

sup
E∈SN

t−1
N Im(aoutN (q)− aout(q)) −→ 0.

We conclude this section with a bound on the number of singular values less than c
and then turn this into a bound on the trace of the resolvent. Let TN be an tN -net of
[0, c]. Using the inequality 1[Ej−tN ,Ej+tN ](x) ≤ −2tN Im(1/(x−Ej +

√
−1tN )), we obtain

νXN−zI([0, c]) ≤
∑

Ej∈TN

∫ Ej+tN

Ej−tN
dνXN−zI(x)

≤
∑

Ej∈TN

∫ c

0

2t2N
(Ej − x)2 + t2N

dνXN−zI(x)

≤ Ct−1
N tN sup

Ej∈TN
| Im(aoutN (q)− aout(q))| = o(N−β) a.s.

So we conclude on the almost sure event ΛN that there are o(N1−β) eigenvalues
in the interval [0, c]. We will require a similar a priori bound on the number of small

eigenvalues for the N − 1 × N − 1 submatrices X(i)
N , defined by removing the ith row

and column of XN . Thus, we define the event Λi that ν
X

(i)
N −zI

([0, c]) = o(N−β). By the

interlacing theorem, ΛN ⊂ Λi, so Λi also occurs almost surely.

For k = 1, . . . , N , let Ek be averaging with respect to the first k rows and columns
of XN , and let E0 be the identity. Since νXN−zI([0, c]) is bounded, almost surely o(N−β)

and Ek[νXN−zI([0, c])] forms a martingale, we can apply Lemma 3.9 to obtain the almost
sure estimate

max
k≤N

Ek[νXN−zI([0, c])] = o(N−β). (6.8)

Repeating the argument shows this estimate also holds for maxk≤N Ek[ν
X

(i)
N −zI

([0, c])].

Now we use the spectral theorem to turn this bound on the number of singular
values into a bound on the trace of powers of the resolvent. In order for this bound to
be useful we will increase the imaginary part of η.

Lemma 6.7. Let q be as in (3.11) with E ∈ [0, c], t = N−β/4 and β as in Lemma 6.4.
Then

max
k≤N

Ek[trN (|RabN |2)1ΛN ] = O(1), max
k≤N

Ek[trN (|(RNRN )ab|2)1ΛN ] = O(1)

max
i,k≤N

Ek[trN (|R(i)ab
N |2)1Λi ] = O(1), max

i,k≤N
Ek[trN (|(R(i)

N R
(i)
N )ab|2)1Λi ] = O(1). (6.9)

Proof. Let XN−z have singular value decomposition UNDNVN with Dii = σi = σi(XN−
z), then the block matrix(

R11
N R12

N

R21
N R22

N

)p
=

1

2

(
UN UN
V ∗N −V ∗N

)(
(DN − η)−1 0

0 (−DN − η)−1

)p(
U∗N VN
U∗N −VN

)
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max
k≤N

Ek[trN (|(RpN )11|2)]1ΛN = max
k≤N

Ek[

N∑
i=1

N∑
j=1

Uij

∣∣∣∣( 1

σj − η

)p
+

(
1

−σj − η

)p∣∣∣∣2 U∗ji]1ΛN

≤max
k≤N

Ek[
C

N

∑
|σj |≤c

1

|η − σj |2p
+
C

N

∑
|σj |≥c

1

|η − σj |2p
]1ΛN

≤C(N−1(N1−β)t−2p
N +N−1Nc−1).

max
k≤N

Ek[trN (|R12
N |p)]1ΛN = max

k≤N
Ek[

N∑
i=1

N∑
j=1

Uij

∣∣∣∣( 1

σj − η

)p
−
(

1

−σj − η

)p∣∣∣∣2 Vji]1ΛN

≤max
k≤N

Ek[

N∑
j=1

∣∣∣∣∣ σj
η2 − σ2

j

∣∣∣∣∣
2p

‖U·j‖2‖Vj·‖2]1ΛN

≤C(N−1(N1−β)t−2p
N +N−1Nc−1).

This term is O(1) if p = 1, 2 because tN = N−β/4. The same argument bounds the 21

and 22 term. The above computation also verifies the lemma when a row or column has
been removed.

6.3 Estimating ΓN − E[ΓN ]

Theorem 6.8. Let q be as in (3.11) with t = N−β/4 and β as in Lemma 6.4. Then almost
surely

sup
E∈[0,c]

NtN (ΓN (q)− E[ΓN (q)])→ 0.

Before proceeding with the proof, we define the relevant notation and give a lemma
containing crude estimates.

Applying (3.7) to RN (which we view as an N ×N matrix) yields

ΓN − Γ
(i)
N =− 1

N
(q +H

(i)∗
i R

(i)
N H

(i)
i )−1(I2 +H

(i)∗
i R

(i)
N R

(i)
N H

(i)
i ) (6.10)

Note that by Schur’s Complement (3.6) the first term is an entry of the resolvent:

Rii = −(q +H
(i)∗
i R

(i)
N H

(i)
i )−1.

We define
ζ

(i)
N := (I2 +H

(i)∗
i R

(i)
N R

(i)
N H

(i)
i ).

In order to study Rii we introduce the non-random 2× 2 matrix

R̂ii := −(q + E[Σ(Γ
(i)
N )])−1.

Note that this is not actually an entry of a resolvent. In order to control the fluctuations
of Rii, we use the resolvent identity to compare the Rii with R̂ii:

Rii − R̂ii = R̂ii(H
(i)∗
i R

(i)
N H

(i)
i − E[Σ(Γ

(i)
N )])Rii. (6.11)

This motivates the definition

γ
(i)
N := H

(i)∗
i R

(i)
N H

(i)
i − E[Σ(Γ

(i)
N )]. (6.12)
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We remind the reader

γ̂
(i)
N := H

(i)∗
i R

(i)
N H

(i)
i − Σ(Γ

(i)
N ).

Redefine SN to be a N−2-net of the interval [0, c]. Once again it suffices to prove the
theorem for E ∈ SN .

Lemma 6.9. For a, b ∈ {1, 2}, and p ≥ 2:

E[|Γ(i)ab
N (q)− E[Γ

(i)ab
N (q)]|p] ≤ KpN

−p/2t−pN (6.13)

E[|γ(i)ab
N |p] ≤

Kpt
−p
N

Np/2
. (6.14)

There exist some K such that for all large N ,

‖R̂ii‖ ≤ K. (6.15)

We note that part of the use of the first inequality is the equality γ
(i)
N − γ̂

(i)
N =

Σ(Γ
(i)
N (q)− E[Γ

(i)
N (q)]).

Proof. Using the martingale inequality, (3.7), and the bound on a trace of a matrix and
a submatrix, (6.5), we can bound any entry as

E[|Γ(i)ab
N (q)− E[Γ

(i)ab
N (q)]|p] = E[|

∑
j 6=i

(Ej−1 − Ej)(Γ(i)ab
N − Γ

(i,j)ab
N )|p]

≤ KpE[
∑
j 6=i

|(Ei − Ei−1)(Γ
(i)ab
N − Γ

(i,j)ab
N |2)p/2]

≤ KpN
−p/2t−pN .

Combining this estimate with (6.6) leads to

E[|γ(i)ab
N |p] = E[|γ̂(i)ab

N + Σ(Γ
(i)ab
N (q))− Σ(E[Γ

(i)ab
N (q)])|p] ≤

Kpt
−p
N

Np/2

To bound R̂ii, we begin with

E[Rii] = E[ΓN ].

Since ‖E[ΓN ]−Γ‖ = o(tN ) and Γ is bounded by some constant K, so is E[Rii] Combining
this estimate with the trivial bound, |Rii| ≤ |tN |−1, leads to:

‖R̂ii − E[Rii]‖

=
∥∥∥E [R̂iiγ(i)

N E[Rii]
]∥∥∥

≤ Im(η)−1E
[∥∥∥γ(i)

N

∥∥∥]K
≤ Im(η)−3N−1/2K

So

‖R̂ii‖ ≤ K + Im(η)−3N−1/2K

The last term is bounded for η in our domain, and the proof is complete.
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Proof of Theorem 6.8. To control ΓN (q) − E[ΓN (q)], we rewrite it as a sum of martin-

gale differences. Using the equality Ei[Γ
(i)
N (q)] = Ei−1[Γ

(i)
N (q)] and the formula for the

differences of traces of submatrices (6.10), we have

ΓN −E[ΓN ] =
∑
i

(Ei−1 −Ei)ΓN =
∑
i

(Ei−1 −Ei)(ΓN − Γ
(i)
N ) =

1

N

∑
i

(Ei−1 −Ei)Riiζ(i)
N .

(6.16)
To complete the proof it suffices to show that for arbitrary ε > 0,

P( max
E∈SN

NtN‖ΓN − E[ΓN ]‖ ≥ ε, i.o.) = 0.

Recalling that
P(∪Ni=1{1Λi = 0}, i.o.) = 0,

leads to the estimate

P( max
E∈SN

NtN‖ΓN − E[ΓN ]‖ > ε, i.o.)

=P(( max
E∈SN

NtN‖ΓN − E[ΓN ]‖ > ε) ∩Ni=1 [1Λi = 1], i.o.)

≤P( max
E∈SN

tN‖
N∑
i=1

(Ei−1 − Ei)Riiζ(i)
N ‖1Λi > ε, i.o.). (6.17)

To estimate (6.17) we iteratively apply (6.11) leading to:

Riiζ
(i)
N =

(
Rii − R̂ii

)
ζ

(i)
N + R̂iiζ

(i)
N

= R̂iiγ
(i)
N Riiζ

(i)
N + R̂iiζ

(i)
N

= R̂iiγ
(i)
N R̂ii(I2 + Σ(trN (R

(i)
N R

(i)
N ))

+ R̂iiγ
(i)
N R̂ii

(
H

(i)∗
i R

(i)
N R

(i)
N H

(i)
i − Σ(trN (R

(i)
N R

(i)
N ))

)
+ R̂iiγ

(i)
N R̂iiγ

(i)
N Riiζ

(i)
N + R̂iiζ

(i)
N .

After applying this expansion to (6.17), it suffices to show that each entry of the 2×2

block converges to zero almost surely. By the triangle inequality, it suffices to bound an
arbitrary product of entries of the blocks in the expansion. For the remainder of this
section, we use lower case superscripts starting with the beginning of the alphabet to
denote the values 1 or 2.

To bound R̂iiγ
(i)
N R̂ii(I2 + Σ(trN (R

(i)
N R

(i)
N ))) we apply Rosenthal’s inequality (Lemma

3.6), the bound on moments of quadratic forms (Lemma B.1), the bound on R̂ii (6.15),
and the a priori bound (6.9). We obtain

E[|tN
N∑
i=1

(Ei−1 − Ei)(R̂abii γ
(i)bc
N R̂cdii (I2 + Σ(trN (R

(i)
N R

(i)
N )))de)1Λi |p]

≤ Kpt
p
NE[(

N∑
i=1

Ei|γ̂(i)bc
N 1Λi |2)p/2 +

N∑
i=1

|γ̂(i)bc
N 1Λi |p]

≤ Kpt
p
NE[(

N∑
i=1

N−2Ei[tr(R
b′c′(i)Rb

′c′(i)∗)1Λi ])
p/2] +KpNN

−p/2t−pN

≤ Kpt
p
N (C +N1−p/2t−pN ),

which is summable for large p. Recall that b′ = b + 1 (mod 2). The same estimates are
used to bound the R̂iiζ(i) term.
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In order to bound R̂iiγ
(i)
N R̂iiγ

(i)
N Riiζ

(i)
N , we begin with Burkholder’s inequality (Lemma

3.7) and then apply Riiζ
(i)
N = N(ΓN (q) − Γ

(i)
N (q)) ≤ Kt−1

N by (6.5) and the bound on R̂ii
given in (6.15) along with the Cauchy-Schwarz inequality and the estimate on quadratic
forms (6.14).

E[|tN
N∑
i=1

(Ei−1 − Ei)R̂abii γ
(i)bc
N R̂cdii γ

(i)de
N (Riiζ

(i)
N )ef1Λi |p]

≤ Kpt
p
N t
−p
N

(
N∑
i=1

E[|γ(i)bc
N γ

(i)de
N 1Λi |2]

)p/2

≤ Kp

(
N∑
i=1

(E[|γ(i)bc
N |4]E[|γ(i)de

N |4])1/2

)p/2
≤ KpN

p/2N−pt−2p
N = KpN

−p/2t−2p
N .

The estimate of the R̂iiγ
(i)
N R̂ii

(
H

(i)∗
i R

(i)
N R

(i)
N H

(i)
i − Σ(trN (R

(i)
N R

(i)
N ))

)
term is done the

same way.
Choosing p large enough in the above estimates to make the right-hand sides summable

and an application of Borel-Cantelli shows that almost surely

max
E∈SN

NtN‖ΓN − E[ΓN ]‖ → 0

6.4 Estimating E[ΓN (q)]− Γ(q)

We now show that for q as in (3.11) with tN = N−β/4 and β as in Lemma 6.4

sup
E∈[0,c]

‖E[ΓN (q)]− Γ(q)‖ = O(N−1). (6.18)

We begin in a similar fashion to the a priori estimates with Schur’s Complement,

E[ΓN (q)] = E[R11] = −E[(q +H
(1)∗
1 R

(1)
N H

(1)
1 )−1],

from which we will subtract −(q + Σ(E[ΓN (q)]))−1. We will apply the resolvent identity,

add and subtract Σ(E[Γ
(1)
N (q)]), and repeatedly apply the identity

E[ΓN (q)] + (q + Σ(E[Γ
(1)
N (q)]))−1 = E[−(q +H

(1)∗
1 R

(1)
N H

(1)
1 )−1 + (q + Σ(E[Γ

(1)
N (q)]))−1]

= E[ΓN (q)γ
(1)
N (q + Σ(E[Γ

(1)
N (q)]))−1].

Leading to the expansion

E[ΓN (q) + (q + Σ(E[ΓN (q)]))−1]

=E[ΓN (z)
(
H

(1)∗
1 R

(1)
N H

(1)
1 − Σ(E[ΓN (q)])

)
(q + Σ(E[ΓN (q)]))−1]

=E[ΓN (z)
(

Σ(E[Γ
(1)
N ])− Σ(E[ΓN (q)])

)
(q + Σ(E[Γ(q)]))−1] + E[ΓN (z)

(
γ

(1)
N

)
(q + Σ(E[ΓN (q)]))−1]

=E[ΓN (z)
(

Σ(E[Γ
(1)
N ])− Σ(E[ΓN (q)])

)
(q + Σ(E[Γ(q)]))−1]

+ E[R̂11

(
γ

(1)
N

)
(q + Σ(E[ΓN (q)]))−1]

+ E[R̂11

(
γ

(1)
N

)
R̂11

(
γ

(1)
N

)
(q + Σ(E[ΓN (q)]))−1]

+ E[ΓN (q)
(
γ

(1)
N

)
R̂11

(
γ

(1)
N

)
R̂11

(
γ

(1)
N

)
(q + Σ(E[ΓN (q)]))−1].
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Note that the third line is zero, because E[γ
(1)
N ] = 0 and the other terms are non-

random. To bound the rest of the terms we need the following lemma:

Lemma 6.10. Let q be as in (3.11) with E ∈ [0, c], tN = N−β/4, and β as in Lemma 6.4.
Then

‖E[ΓN (q)− Γ
(1)
N (q)]‖ = O(N−1), (6.19)

E[|γ(1)ab|2] ≤ K(E[|γ̂(1)ab|2] + E[|γ̂(1)ab − γ(1)ab|2]) = O(N−1), (6.20)

‖(q + Σ(E[ΓN (q)]))−1‖ = O(1). (6.21)

Before proving the lemma note that (6.18) will follow from a straight forward ap-
plication of this lemma, the triangle inequality, Hölder’s inequality and the estimates
‖ΓN‖ ≤ t−1

N , ‖R̂ii‖ ≤ K, and the estimate on quadratic forms (6.14).

Proof. Using the formula for the difference between traces, (6.10), the bound on the
trace of the resolvent, (6.9), and the bound on quadratic forms, (3.18), we obtain

|E[ΓN (q)ab − Γ
(1)ab
N (q)]| = 1

N
|E[(R11ζ

(1)
N )ab]|

=
1

N
|E[(R̂11ζ

(1))ab] +
1

N
E[(R̂11γ

(1)
N R11ζ

(1)
N )ab]|

≤ K

N
E[1 + ‖ trN ((R

(1)
N )2)‖]

+
K

N

2∑
c,d=1

E[|γ(1)cd
N |]Kt−1

N

≤ K

N
(1 +

t−2
N

N1/2
).

The first term of (6.20) is bounded from a direct calculation and the second term uses
the martingale difference decomposition and the expansions of the previous estimates.

E[|γ̂(1)ab − γ(1)ab|2]

= E[|Γ(1)ab
N (q)− E[Γ

(1)ab
N (q)]|2] =

N∑
i=2

E[|(Ei − Ei−1)(Γ
(1)
N (q)− Γ

(1,i)
N (q))ab|2]

=
1

N2

N∑
i=2

E[|(Ei − Ei−1)(R
(1)
ii ζ

(1,i)
N )ab|2]

≤ 1

N2
K

N∑
i=2

E[|(Ei − Ei−1)(R̂
(1)
ii ζ

(1,i)
N )ab|2]

+K
1

N2

N∑
i=2

E[|(Ei − Ei−1)(R̂
(1)
ii γ

(i,1)
N R

(1)
ii ζ

(1,i)
N )ab|2]

≤ K

N2

N∑
i=2

 2∑
c=1

E[trN (|R(1,i)c′b′(q)|4)] +

2∑
c,d=1

2Kt−2
N E[|γ(i,1)cd

N |2]


≤ 1

N
.

The final estimate follows from

E[ΓN (q)]+(q+Σ(E[Γ
(1)
N (q)]))−1 = E[ΓN (q)

(
H

(1)∗
1 R

(1)
N H

(1)
1 −Σ(E[Γ

(1)
N (q)])

)
(q+Σ(E[Γ

(1)
N (q)]))−1]

and the boundedness of E[ΓN (q)]. The proof of the lemma is complete.
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To estimate ‖E[ΓN (q)]− Γ(q)‖, we proceed as in the end of Section 6.2. Let

εN := E[ΓN (q)] + (q + Σ(E[ΓN (q)]))−1]

and
q̃ := q̃N = q + Σ(εN ).

Then the arguments of Lemma 6.6 can be repeated to prove (6.18).

6.5 No small singular values

Following Bai and Silverstein in [4], we construct a uniformly bounded, equicontin-
uous family of functions, and then use weak convergence of νXN−zI to show a.s. there
are no singular values outside the support of the limiting distribution.

The arguments of this section can be repeated to show for any fixed k, and tN =√
kN−β/4, one has a.s.

sup
E∈[0,c]

|aN (q)− a(q)| = o((NtN )−1). (6.22)

Taking the imaginary part of the above equation for any k = 1, . . . , 2/β leads to

sup
k=1,...,2/β;E∈[0,c]

∣∣∣∣∫ d(νXN−zI − νz)(x)

(E − x)2 + kt2N

∣∣∣∣ = o(N−1t−2
N ). (6.23)

Taking differences for different k1 and k2 gives

sup
k1 6=k2;E∈[0,c]

∣∣∣∣∫ t2Nd(νXN−zI − νz)(x)

((E − x)2 + k1t2N )((E − x)2 + k2t2N )

∣∣∣∣ = o(N−1t−2
N ). (6.24)

Repeating this for all values of k and splitting the integral over two regions leads to:

sup
E∈[0,c]

∣∣∣∣∣∣
∫
I[0,c+ε]cd(νXN−z − νz)(λ)∏2/β

k=1(E − λ)2 + kt2N
+

∑
λj∈[0,c+ε]

t
4/β
N∏2/β

k=1(E − λj)2 + kt2N

∣∣∣∣∣∣ = o(1).

The first integrand forms a uniformly bounded, equicontinuous family so the integral
converges to zero by the weak convergence of νXN−z to νz. The summand is uniformly
bounded away from zero when evaluated at a singular value in the interval [0, c]. So we
conclude that almost surely there are no singular values in the interval [0, c].

7 Isotropic limit law

This section is devoted to Theorem 5.5. We divide the proof of Theorem 5.5 into the
following three steps.

1. Showing that the diagonal entries of GN (z) convergence uniformly to m(z).

2. Establishing a rate of convergence of the off-diagonal entries of GN (z) to zero.

3. Establishing a concentration inequality for u∗NGN (z)vN .

7.1 Diagonal entries

Define the event
ΩN := {‖XN‖ ≤ 4.5} .

By Lemma 3.5, it follows that ΩN holds with overwhelming probability. We establish the
following convergence result for the diagonal entries of GN (z).
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Lemma 7.1 (Diagonal entries). Let ε > 0. Then, for N sufficiently large,

sup
5≤|z|≤6

sup
1≤i≤N

E |(GN (z))ii −m(z)|1ΩN ≤ ε.

Proof. We introduce the following notation. For any 1 ≤ i ≤ N , we let Y (i)
N be the

(N − 1)× (N − 1) matrix formed from YN by removing the i-th row and i-th column. We
let ri denote the i-th row of YN with the i-th entry removed; let ci denote the i-th column
of YN with the i-th entry removed. We define

G
(i)
N (z) :=

(
1√
N
Y

(i)
N − zI

)−1

and m
(i)
N (z) := 1

N trG
(i)
N (z). We let Y̌ (i)

N denote the N × N matrix formed from YN by
setting the entries in the i-row and i-th column to zero. We define

Ǧ
(i)
N (z) :=

(
1√
N
Y̌

(i)
N − zI

)−1

and m̌(i)
N (z) := 1

N tr Ǧ
(i)
N (z).

Since Y (i)
N and Y̌ (i)

N are formed from YN , it follows that

sup
1≤i≤N

∥∥∥∥ 1√
N
Y

(i)
N

∥∥∥∥ ≤ 4.5, sup
1≤i≤N

∥∥∥∥ 1√
N
Y̌

(i)
N

∥∥∥∥ ≤ 4.5

on the event ΩN . By Lemma 3.1, we have

sup
|z|≥5

‖GN (z)‖ ≤ 2, sup
|z|≥5

sup
1≤i≤N

‖G(i)
N (z)‖ ≤ 2, sup

|z|≥5

sup
1≤i≤N

‖Ǧ(i)
N (z)‖ ≤ 2 (7.1)

on the event ΩN . It follows that

sup
|z|≥5

|mN (z)| ≤ 2, sup
|z|≥5

sup
1≤i≤N

|m(i)
N (z)| ≤ 2, sup

|z|≥5

sup
1≤i≤N

|m̌(i)
N (z)| ≤ 2 (7.2)

and
inf
|z|≥5

|z + ρmN (z)| ≥ 3 (7.3)

on the event ΩN .
Fix 1 ≤ i ≤ N and z ∈ C with |z| ≥ 5. Let ε > 0. By the Schur complement (since the

diagonal entries of YN are zero), we have that

(GN (z))ii = − 1

z + ρmN (z) + εN (z)
, (7.4)

where

εN (z) := ρm
(i)
N (z)− ρmN (z) +

1

N
riG

(i)
N (z)ci − ρm(i)

N (z).

We observe that (rT
i , ci) and G

(i)
N are independent. Thus, by conditioning on the event

{‖G(i)
N (z)‖ ≤ 2} (which holds with overwhelming probability), we apply Lemma 3.10 and

obtain ∣∣∣∣ 1

N
riG

(i)
N (z)ci − ρm(i)

N (z)

∣∣∣∣ ≤ ε
with overwhelming probability. Since the eigenvalues of Y̌ (i)

N are the eigenvalues of Y (i)
N

with an additional eigenvalue of zero, it follows that

|m(i)
N (z)− m̌(i)

N (z)| ≤ 1

5N
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on ΩN because |z| ≥ 5. Observe that Y̌ (i)
N − YN is at most rank 2. By the resolvent

identity, we have∣∣∣m̌(i)
N (z)−mN (z)

∣∣∣ =
1

N

∣∣∣∣tr [GN (z)
1√
N

(
YN − Y̌ (i)

N

)
Ǧ

(i)
N (z)

]∣∣∣∣
≤ 2

N
‖GN (z)‖ 1√

N

(
‖YN‖+ ‖Y̌ (i)

N ‖
)
‖Ǧ(i)

N (z)‖

≤ C

N

on the event ΩN . We conclude that, for N sufficiently large,

εN (z) = O(ε)

with overwhelming probability. By (7.3) and (7.4), it follows that

(GN (z))ii = − 1

z + ρmN (z)
+O(ε) (7.5)

with overwhelming probability.
Let D be a compact, connected set that satisfies

{z ∈ C : 5 ≤ |z| ≤ 6} ⊂ D ⊂ {z ∈ C : |z| ≥ 5}.

If ρ 6= 0, we additionally assume that there exists z0 ∈ D with

|m(z0)| ≤ δ

100|ρ|
, |z0| ≥ 5 +

100|ρ|
δ

. (7.6)

Such a choice of z0 in (7.6) always exists by (4.2).
We now extend (7.5) to all z ∈ D. LetN be an ε-net ofD. By Lemma 3.11, |N | = O(1).

Thus, by the union bound, we have

sup
z∈N

∣∣∣∣(GN (z))ii +
1

z + ρmN (z)

∣∣∣∣ ≤ Cε, (7.7)

with overwhelming probability. Fix a realization in the event ΩN such that (7.7) holds.
By (3.3) and (7.1),

‖GN (z)−GN (z′)‖ ≤ 4|z − z′|, |mN (z)−mN (z′)| ≤ 4|z − z′|

for all z, z′ ∈ D. Let z′ ∈ D. Then there exists z ∈ N with |z − z′| ≤ ε. Thus, we have∣∣∣∣(GN (z′))ii +
1

z′ + ρmN (z′)

∣∣∣∣ ≤ (4 + C)ε+

∣∣∣∣ 1

z′ + ρmN (z′)
− 1

z + ρmN (z)

∣∣∣∣
≤ (5 + C)ε

by (7.3). Therefore, we conclude that

sup
z∈D

∣∣∣∣(GN (z))ii +
1

z + ρmN (z)

∣∣∣∣ ≤ Cε
with overwhelming probability.

By the union bound, we have

sup
1≤i≤N

sup
z∈D

∣∣∣∣(GN (z))ii +
1

z + ρmN (z)

∣∣∣∣ ≤ Cε (7.8)
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with overwhelming probability. Thus, with overwhelming probability,

sup
z∈D

∣∣∣∣mN (z) +
1

z + ρmN (z)

∣∣∣∣ ≤ Cε. (7.9)

If ρ = 0, we conclude that

sup
z∈D
|mN (z)−m(z)| ≤ Cε (7.10)

with overwhelming probability. We now obtain this bound in the case that ρ 6= 0 by
applying Lemma 4.7. In view of (7.6) and Lemma 3.1, we have

|mN (z0)−m(z0)| ≤ |mN (z0)|+ |m(z0)| ≤ δ

50|ρ|

on the event ΩN . Thus, by Lemma 4.7, we conclude that (7.10) holds with overwhelming
probability for any −1 ≤ ρ ≤ 1.

By (7.8), (7.9), and (7.10), we obtain

sup
1≤i≤N

sup
z∈D
|(GN (z))ii −m(z)| ≤ Cε

with overwhelming probability. Since ΩN holds with overwhelming probability, we have

sup
1≤i≤N

sup
z∈D
|(GN (z))ii −m(z)|1ΩN ≤ Cε

with overwhelming probability. By Lemma 4.6 and (7.1), we conclude that, for N suffi-
ciently large,

sup
1≤i≤N

sup
z∈D

E |(GN (z))ii −m(z)|1ΩN ≤ Cε.

The proof of the lemma is complete.

7.2 Off-diagonal entries

Let HN be the Hermitization of XN as in Section 6. Once again we will view HN as
a N × N matrix of 2 × 2 blocks. We reuse the notation from Section 6 with q = q(z, η).
Let R21

N (η, z) be the N × N matrix with (R21
N (η, z))ij = R21

ij (η, z). We begin by noting
that when defined, u∗NGN (z)vN = u∗N (R21

N (0, z))vN . Just as in Section 6 when we only
needed to control R11

ii but found it easier to instead control the block Rii, here we will
estimate the 2× 2 block Rij for i 6= j in order to control R21

ij . We should note that many
of our estimates will involve the norm ‖RN (z, η)‖, but on the event that there are no
eigenvalues outside the ellipse this norm is O(1).

Lemma 7.2 (Off-diagonal entries). Fix z, η ∈ C with 5 ≤ |z| ≤ 6 and Im(η) > 0. Then

sup
i 6=j
‖E[(RN )ij ]‖ = O(N−3/2).

Proof. We begin with Schur’s complement, (3.6), with A being the upper 1 by 1 block, D
being the lower N−1 by N−1 block, and B and C being the corresponding off-diagonal
blocks. Then for i 6= 1

R1i = −R11(H
(1)∗
1 R(1))i (7.11)

and
Ri1 = −(R(1)H

(1)
1 )iR11. (7.12)

Other elements of RN can be computed by permuting the rows and columns of HN

before applying Schur’s complement.
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Combining the identities (generalized to an arbitrary element) for i 6= j leads to

Rij = R
(j)
ii (Hij +H

(i,j)∗
i R(i,j)H

(i,j)
j )Rjj . (7.13)

Let

ξ
(i,j)
N := Hij +H

(i,j)∗
i R(i,j)H

(i,j)
j .

Additionally, recall the diagonal entries of the resolvent are

Rii = (−q −H(i)∗
i R(i)H

(i)
i )−1,

the definition

R̂ii = (q − E[Σ(Γ(i))])−1

and

Rii − R̂ii = R̂ii(γ
(i)
N )Rii.

We begin with (7.11) and then apply (6.11) two times and finally (7.12) to obtain

E[Rij ] =
∑
l 6=i

E[−Rii(HilR
(i)
lj )]

=
∑
l 6=i

E[−R̂ii(HilR
(i)
lj )− R̂ii(γ(i)

N )R̂ii(HilR
(i)
lj )− R̂ii(γ(i)

N )R̂ii(γ
(i)
N )Rii(HilR

(i)
lj )]

=E[
∑
l 6=i

(
−R̂ii(HilR

(i)
lj )− R̂ii(γ(i)

N )R̂ii(HilR
(i)
lj )
)

− R̂ii(γ(i)
N )R̂ii(γ

(i)
N )Rii(Hij −

∑
l,k 6=i,j

HilR
(i,j)
lk Hkj)R

(i)
jj ].

The first term is zero because E[Hil] = 0. We estimate the other terms as in Section 6
and bound each entry of the 2 × 2 blocks. Each entry is a sum of products of entries
from the blocks. Thus, by the triangle inequality, it suffices to bound arbitrary products
of each block’s entries. As before lower case superscripts from the beginning of the
alphabet are all either 1 or 2.

To bound the third term we apply Hölder’s inequality and directly compute the mo-
ments:

E[R̂abii (γ
(i)
N )bcR̂cdii (γ

(i)
N )deRefii (ξ

(i,j)
N )fgR

(i)gh
jj ]

≤ KE[|(γ(i)
N )bc|4]1/4E[|(γ(i)

N )de|4]1/4E[|(ξ(i,j)
N )fg|2]1/2

= O(N−3/2). (7.14)

We begin estimating the second term by averaging over the ith row and column of
H. Let µ3 = max{E[|H12|3],E[|H21|3]}. Then

|
∑

l,m,n6=i

E[R̂abii (HimR
(i)
mnHni − E[trN (R

(i)
N )])bcR̂cdii (HilR

(i)
lj )de]|

≤
∑
l 6=i

µ3

N3/2
|E[R̂abii (R

(i)
ll )bcR̂cdii (R

(i)
lj )de]| (7.15)

We now apply the Cauchy-Schwarz inequality with (6.15) to get a weaker bound
than desired. Once the weaker bound is proven, we will return to (7.15) and prove the
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desired bound. ∑
l 6=i

µ3

N3/2
|E[R̂abii (R

(i)
ll )bcR̂cdii (R

(i)
lj )de]|

≤ K

N3/2
(E[
∑
l 6=i

|R(i)
ll |

2])1/2(E[
∑
l 6=i

|R(i)
lj |

2])1/2

≤ K

N3/2
(E[
∑
l 6=i

|R(i)
ll |

2])1/2‖R(i)
N ‖

= O(N−1),

which combed with (7.14) implies ‖E[Rij ]‖ = O(N−1). Returning to (7.15), applying
(6.11) and (7.13) leads to:∑

l 6=i

µ3

N3/2
|E[R̂abii (R̂

(i)
ll )bcR̂cdii (R

(i)
lj )de]|

+
∑
l 6=i

µ3

N3/2
|E[R̂abii (R̂

(i)
ll γ

(l;i)
N R

(i)
ll )bcR̂cdii (R

(i,j)
ll ξ

(l,j;i)
N R

(i)
jj )de]|

= O(N−3/2),

where ξ(l,j;i)
N := Hlj+H

(l,j,i)∗
l R(l,j,i)H

(l,j,i)
j and γ(l;i)

N = H
(l,i)∗
l R

(l,i)
N H

(l,i)
i −E[Σ(Γ

(l,i)
N )]. The

first term uses the just verified O(N−1) bound and the second uses the Cauchy-Schwarz
inequality and a direct computation.

7.3 Concentration of u∗NGNvN

We now establish the following concentration result.

Lemma 7.3 (Concentration of bilinear forms). Let ε > 0. Fix z ∈ C with 5 ≤ |z| ≤ 6.
Then a.s., for N sufficiently large,

|u∗NGN (z)1ΩN vN − Eu∗NGN (z)1ΩN vN | ≤ ε.

Proof. The proof below is based on the arguments of Bai and Pan [6]. Let ε > 0 and
fix 5 ≤ |z| ≤ 6. We will drop the dependence on z and simply write GN to denote the

matrix GN (z). We introduce the following notation. Let X(k)
N be the matrix obtained

from XN by replacing all elements in the k-th column and k-th row with zero. Define
G

(k)
N := (X

(k)
N − zI)−1. Let rk be the k-th row of XN ; let ck be the k-th column of XN .

Let Ek denote the conditional expectation given rk+1, . . . , rN , ck+1, . . . , cN . Let e1, . . . , eN
denote the standard basis of CN . Let uN = (uN,i)

N
i=1 and vN = (vN,i)

N
i=1.

We will take advantage of the fact that all the elements of the k-th column and k-th
row of G(k)

N are zero except that the (k, k)-th element is −1/z. Thus,

e∗kG
(k)
N ek = −1

z
, e∗kG

(k)
N vN = −vN,k

z
, u∗NG

(k)
N ek = − ūN,k

z
, (7.16)

e∗kG
(k)
N ck = 0, rkG

(k)
N ek = 0. (7.17)

It follows from the definitions above that

XN = X
(k)
N + cke

∗
k + ekrk.

We define
X

(k1)
N := X

(k)
N + ekrk, X

(k2)
N := X

(k)
N + cke

∗
k,
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and

G
(kj)
N :=

(
X

(kj)
N − zI

)−1

, j = 1, 2.

Define the events
Ω

(k)
N :=

{
‖X(k)

N ‖ ≤ 4.5
}
.

We let 1
Ω

(k)
N

denote the indicator function of the event Ω
(k)
N . Since ΩN ⊂ Ω

(k)
N , it follows

that 1ΩN ≤ 1
Ω

(k)
N

. By Lemma 3.1, we have

‖GN‖ ≤ 2, sup
1≤k≤N

‖G(k)
N ‖ ≤ 2, sup

1≤k≤N
‖G(kj)

N ‖ ≤ 2, j = 1, 2

on the event ΩN . Moreover, ‖G(k)
N ‖ ≤ 2 on the event Ω

(k)
N .

Set

α
(k)
N :=

1

1 + z−1rkG
(k)
N 1ΩN ck

,

γ
(k)
N :=

1

1 + z−1 ρ
N

(
trG

(k)
N + 1/z

)
1ΩN

,

ξ
(k)
N := rkG

(k)
N ck −

ρ

N

(
trG

(k)
N +

1

z

)
,

and

η
(k)
N := rkG

(k)
N vNu

∗
NG

(k)
N ck −

ρ

N

(
u∗NG

(k)
N

2
vN − z−2uN,kvN,k

)
.

We now collect a variety of preliminary calculations and bounds we will need to
complete the proof.

(i) By (3.4) and (7.17), we have

e∗kG
(k1)
N ck = e∗kG

(k)
N ck −

e∗kG
(k)
N ekrkG

(k)
N ck

1 + rkG
(k)
N ek

= z−1rkG
(k)
N ck,

and hence
1

1 + e∗kG
(k1)
N 1ΩN ck

= α
(k)
N .

Similarly, we obtain
1

1 + rkG
(k2)
N 1ΩN ek

= α
(k)
N .

By the Schur complement, we have that

(GN )kk = − 1

z + rkG
(k)
N ck

.

Thus, on the event ΩN , we have

|α(k)
N | =

∣∣∣∣∣ z

z + rkG
(k)
N ck

∣∣∣∣∣ ≤ 6‖G(k)
N ‖ ≤ 12.

On the event Ωc
N , α(k)

N = 1. Therefore, we conclude that a.s.,

|α(k)
N | ≤ 12.

Similarly, we have a.s.,

|γ(k)
N | ≤

|z|
|z| − ‖G(k)

N ‖1ΩN − 1
|z|N

≤ 3.
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(ii) By the Burkholder inequality (Lemma 3.7), for any p > 2, we have

E

∣∣∣∣∣
N∑
k=1

(Ek−1 − Ek)u∗NG
(k)
N vN

(
1

Ω
(k)
N

− 1ΩN

)∣∣∣∣∣
p

≤ CpE

(
N∑
k=1

|u∗NG
(k)
N vN |21Ω

(k)
N ∩Ωc

N

)p/2
≤ CpNp/2P(Ωc

N ).

(iii) By (3.5) and (i), we have

u∗NGNck1ΩN =
u∗NG

(k1)
N ck1ΩN

1 + e∗kG
(k1)
N ck

=
u∗NG

(k1)
N ck1ΩN

1 + e∗kG
(k1)
N ck1ΩN

= u∗NG
(k1)
N ck1ΩNα

(k)
N .

Similarly,
u∗NGNek1ΩN = u∗NG

(k2)
N ek1ΩNα

(k)
N .

(iv) By (3.4) and (7.17), we have

G
(k1)
N = G

(k)
N −G

(k)
N ekrkG

(k)
N

and
G

(k2)
N = G

(k)
N −G

(k)
N cke

∗
kG

(k)
N .

(v) By definition of α(k)
N , we have

z−1(Ek−1 − Ek)rkG
(k)
N ckα

(k)
N = −(Ek−1 − Ek)(α

(k)
N ).

(vi) By definition of α(k)
N , γ

(k)
N , ξ

(k)
N , we have

α
(k)
N − γ

(k)
N = −z−1α

(k)
N γ

(k)
N ξ

(k)
N 1ΩN .

(vii) We note that the entries of rk and ck have mean zero, variance 1/N , and are a.s.

bounded by 4L/
√
N . Moreover, (rT

k , ck) and G
(k)
N 1

Ω
(k)
N

are independent. Thus, by

Lemma B.1 in Appendix B, for any p ≥ 2, we have

sup
1≤k≤N

Ek

∣∣∣ξ(k)
N

∣∣∣p 1ΩN ≤ sup
1≤k≤N

Ek

∣∣∣ξ(k)
N

∣∣∣p 1Ω
(k)
N

= OL,p(N
−p/2).

Similarly,

sup
1≤k≤N

Ek

∣∣∣η(k)
N

∣∣∣p 1ΩN ≤ sup
1≤k≤N

Ek

∣∣∣η(k)
N

∣∣∣p 1Ω
(k)
N

= OL,p(N
−p/2).

(viii) By the bounds in (i), we have

sup
1≤k≤N

∣∣∣∣∣∣γ(k)
N 1ΩN −

1

1 + z−1 ρ
N

(
trG

(k)
N + 1

z

)
1

Ω
(k)
N

1
Ω

(k)
N

∣∣∣∣∣∣ ≤ C1Ωc
N
.

Thus, by the Burkholder inequality, for any p ≥ 2, we have

E

∣∣∣∣∣∣
N∑
k=1

(Ek−1 − Ek)uN,kvN,k

γ(k)
N 1ΩN −

1

1 + z−1 ρ
N

(
trG

(k)
N + 1

z

)
1

Ω
(k)
N

1
Ω

(k)
N

∣∣∣∣∣∣
p

≤ CpP(Ωc
N )

(
N∑
k=1

|uN,k|2|vN,k|2
)p/2

≤ CpP(Ωc
N ).
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We now complete the proof of the lemma. Indeed, it suffices to show that, for any
p > 2,

E |u∗NGNvN1ΩN − Eu∗NGNvN1ΩN |
p

= OL,p(N
−p/2).

We begin by decomposing u∗NGNvN1ΩN − Eu∗NGNvN as a martingale difference se-
quence. Since

Eku
∗
NG

(k)
N vN1

Ω
(k)
N

= Ek−1u
∗
NG

(k)
N vN1

Ω
(k)
N

,

we have

u∗NGNvN1ΩN − Eu∗NGNvN1ΩN =

N∑
k=1

(Ek−1 − Ek)u∗NGNvN1ΩN

=

N∑
k=1

(Ek−1 − Ek)u∗N

(
GN1ΩN −G

(k)
N 1

Ω
(k)
N

)
vN .

In view of (ii) and the fact that ΩN holds with overwhelming probability, it suffices to
show that, for any p > 2,

E |φN |p = OL,p(N
−p/2),

where

φN :=
N∑
k=1

(Ek−1 − Ek)u∗N

(
GN −G(k)

N

)
vN1ΩN .

By the resolvent identity, we have

φN = −
N∑
k=1

(Ek−1 − Ek)u∗NGN (cke
∗
k + ekrk)G

(k)
N vN1ΩN

=: −(φN1 + φN2).

By (iii), (iv), (v), and (7.16), we decompose

φN1 :=

N∑
k=1

(Ek−1 − Ek)u∗NGNcke
∗
kG

(k)
N vN1ΩN

= −
N∑
k=1

(Ek−1 − Ek)z−1u∗NG
(k1)
N ckvN,kα

(k)
N 1ΩN

= −
N∑
k=1

(Ek−1 − Ek)z−1vN,kα
(k)
N

(
u∗NG

(k)
N ck + z−1uN,krkG

(k)
N ck

)
1ΩN

= −
N∑
k=1

(Ek−1 − Ek)z−1
(
u∗NG

(k)
N ckvN,k − uN,kvN,k

)
αN,k1ΩN

=: φN11 + φN12.

Similarly, by (iii), (iv), and (7.16), we have

φN2 :=

N∑
k=1

(Ek−1 − Ek)u∗NGNekrkG
(k)
N vN1ΩN

=

N∑
k=1

(Ek−1 − Ek)u∗NG
(k2)
N ekrkG

(k)
N vNα

(k)
N 1ΩN

= −
N∑
k=1

(Ek−1 − Ek)z−1
(
ūN,k − u∗NG

(k)
N ck

)
rkG

(k)
N vNα

(k)
N 1ΩN

=: φN21 + φN22.
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Therefore, in order to complete the proof, it suffices to show that, for any p > 2,

E|φN11|p + E|φN12|p + E|φN21|p + E|φN22|p = OL,p(N
−p/2).

We bound each term individually.
By Rosenthal’s inequality (Lemma 3.6), we have, for any p > 2,

E|φN11|p = E

∣∣∣∣∣
N∑
k=1

(Ek−1 − Ek)z−1u∗NG
(k)
N ckvN,kα

(k)
N 1ΩN

∣∣∣∣∣
p

≤ Cp
|z|p

[
E

(
N∑
k=1

Ek

∣∣∣(Ek−1 − Ek)u∗NG
(k)
N ckvN,kα

(k)
N 1ΩN

∣∣∣2)p/2

+

N∑
k=1

E

∣∣∣(Ek−1 − Ek)u∗NG
(k)
N ckvN,kα

(k)
N 1ΩN

∣∣∣p ]

≤ Cp

[
E

(
N∑
k=1

|vN,k|2Ek
∣∣∣u∗NG(k)

N ck

∣∣∣2 1Ω
(k)
N

)p/2

+

N∑
k=1

|vN,k|pE
∣∣∣u∗NG(k)

N ck

∣∣∣p 1Ω
(k)
N

]
= OL,p(N

−p/2).

Here we used Lemma B.3 from Appendix B to verify that, for any p ≥ 2,

Ek

∣∣∣u∗NG(k)
N 1

Ω
(k)
N

ck

∣∣∣p = Ek

∣∣∣c∗k (G(k)
N

)∗
uNu

∗
NG

(k)
N ck

∣∣∣p/2 1Ω
(k)
N

= OL,p(N
−p/2)

uniformly for 1 ≤ k ≤ N .
Similarly, by another application of Rosenthal’s inequality, one obtains, for any p > 2,

E|φN21|p = OL,p(N
−p/2).

By (vi), we have

φN12 :=

N∑
k=1

(Ek−1 − Ek)z−1uN,kvN,kα
(k)
N 1ΩN

=

N∑
k=1

(Ek−1 − Ek)z−1uN,kvN,k

(
γ

(k)
N − z−1α

(k)
N γ

(k)
N ξ

(k)
N

)
1ΩN

=: φN121 + φN122.

Since

(Ek−1 − Ek)
1

1 + z−1 ρ
N

(
trG

(k)
N + 1

z

)
1

Ω
(k)
N

1
Ω

(k)
N

= 0,

we apply (viii) to obtain E|φN121|p = OL,p(N
−p/2) for any p ≥ 2. By (i), (vii), and Rosen-

thal’s inequality, we have, for any p > 2,

E|φN122|p ≤ Cp

E( N∑
k=1

|uN,k|2|vN,k|2Ek
∣∣∣ξ(k)
N

∣∣∣2)p/2 +

N∑
k=1

|uN,k|p|vN,k|pE
∣∣∣ξ(k)
N

∣∣∣p


= OL,p(N
−p/2).
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By definition of η(k)
N , we have

φN22 :=

N∑
k=1

(Ek−1 − Ek)z−1u∗NG
(k)
N ckrkG

(k)
N vN1ΩNα

(k)
N

=

N∑
k=1

(Ek−1 − Ek)z−1α
(k)
N 1ΩN

(
η

(k)
N +

ρ

N

(
u∗NG

(k)
N vN − z−2uN,kvN,k

))
.

From (i), we have∣∣∣z−1α
(k)
N 1ΩN

ρ

N

(
u∗NG

(k)
N vN − z−2uN,kvN,k

)∣∣∣2 = O(N−2),

and thus, by the Burkholder inequality, we have, for any p ≥ 2,

E

∣∣∣∣∣
N∑
k=1

(Ek−1 − Ek)z−1α
(k)
N 1ΩN

ρ

N

(
u∗NG

(k)
N vN − z−2uN,kvN,k

)∣∣∣∣∣
p

= Op(N
−p/2).

On the other hand, by (vii) and Rosenthal’s inequality, for any p > 2, we conclude that

E

∣∣∣∣∣
N∑
k=1

(Ek−1 − Ek)z−1α
(k)
N 1ΩN η

(k)
N

∣∣∣∣∣
p

= OL,p(N
−p/2).

The proof of the lemma is complete.

7.4 Proof of Theorem 5.5

We are now ready to prove Theorem 5.5 using the results of the previous subsec-
tions.

Proof of Theorem 5.5. Let 0 < ε < 1/2 and fix 5 ≤ |z| ≤ 6. Let η :=
√
−1t, where

t := ε/100. By Lemma 3.1 and Lemma 3.3, it follows that

‖GN (z)‖ ≤ 2 (7.18)

on the event ΩN . Moreover, since the eigenvalues of RN (η, z) are given by

1

±σi(XN − zI)− η
, i = 1, . . . , N,

it follows that
‖RN (η, z)‖ ≤ 4

on the event ΩN .
Since ΩN holds with overwhelming probability, it suffices to show that a.s., for N

sufficiently large,
|u∗NGN (z)vN1ΩN −m(z)u∗NvN1ΩN | ≤ ε.

By the triangle inequality, we have

|u∗NGN (z)vN1ΩN −m(z)u∗NvN1ΩN | ≤ |u∗NGN (z)vN1ΩN − Eu∗NGN (z)vN1ΩN |
+
∣∣Eu∗NGN (z)vN1ΩN − Eu∗NR21

N (η, z)vN1ΩN

∣∣
+
∣∣Eu∗NR21

N (η, z)vN1ΩN −m(z)u∗NvN1ΩN

∣∣ .
The first term is a.s. less than ε/8 by Lemma 7.3. The second term is bounded by noting
that R21

N (0, z) = GN (z) and using (3.3) to conclude that

‖RN (η, z)−RN (0, z)‖1ΩN ≤ 8|η| ≤ ε

8
. (7.19)
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Thus, it suffices to show that∣∣Eu∗NR21
N (η, z)vN1ΩN −m(z)u∗NvN1ΩN

∣∣ ≤ ε/2. (7.20)

We will verify (7.20) by considering the diagonal entries and off-diagonal entries of
R21
N (η, z) separately. For the diagonal terms we write∣∣∣∣∣E

N∑
i=1

ūiR
21
ii (η, z)vi1ΩN −m(z)u∗NvN

∣∣∣∣∣
≤

N∑
i=1

|ui||vi| max
1≤i≤N

E
∣∣R21

ii (η, z)−m(z)
∣∣1ΩN

≤ max
1≤i≤N

E
∣∣R21

ii (η, z)−m(z)
∣∣1ΩN

by the Cauchy-Schwarz inequality. By (7.19) and Lemma 7.1, we have

max
1≤i≤N

E
∣∣R21

ii (η, z)−m(z)
∣∣1ΩN ≤

ε

8
+ max

1≤i≤N
E |(GN (z))ii −m(z)|1ΩN ≤

ε

4
.

Thus, it suffices to show that

E
∑
i 6=j

ūiR
21
ij (η, z)vj1ΩN = o(1).

Since ΩN holds with overwhelming probability, we have (say)

E
∑
i 6=j

ūiR
21
ij (η, z)vj1ΩN = E

∑
i 6=j

ūiR
21
ij (η, z)vj +O(N−100)

by the deterministic bound ‖RN (η, z)‖ ≤ Im(η)−1. Thus, it suffices to show that

E
∑
i 6=j

ūiR
21
ij (η, z)vj = o(1).

From Lemma 7.2 and the Cauchy-Schwarz inequality, we see that∣∣∣∣∣∣E
∑
i 6=j

ūiR
21
ij (η, z)vj

∣∣∣∣∣∣ ≤
∑
i 6=j

|ui||vj |max
i6=j
|ER21

ij (η, z)|

≤ N max
i 6=j
|ER21

ij (η, z)| = o(1),

and the proof is complete.

A Truncation of elliptic random matrices

In this appendix, we establish Lemma 3.4.

Proof of Lemma 3.4. We begin by noting that, for i ∈ {1, 2},

Var(ξ̃i) ≤ E|ξi|21{|ξi|≤L} ≤ 1 (A.1)

and, by the dominated convergence theorem,

lim
L→∞

Var(ξ̃i) = 1.

We take L0 > 1 sufficiently large such that, for each i ∈ {1, 2}, Var(ξ̃i) ≥ 1/2 for all
L > L0. Assume L > L0. Then (3.14) follows by an application of the triangle inequality.
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Moreover, ξ̂1, ξ̂2 have mean zero and unit variance by construction. Thus, {ŶN}N≥1 is a
sequence of random matrices that satisfies condition C0 with atom variables (ξ̂1, ξ̂2).

We now make use of the following bounds: if ψ is a random variable with finite fourth
moment, then

|Eψ1{|ψ|>L}| ≤
E|ψ|4

L3
and E|ψ|21{|ψ|>L} ≤

E|ψ|4

L2
. (A.2)

We note that

ρ = E[ξ1ξ21{|ξ1|≤L}1{|ξ2|≤L}] + E[ξ1ξ21{|ξ1|>L}1{‖ξ2≤L}]

+ E[ξ1ξ21{|ξ1|≤L}1{|ξ2|>L}] + E[ξ1ξ21{|ξ1|>L}1{|ξ2|>L}].

Thus, by the Cauchy-Schwarz inequality and (A.2), we obtain

|ρ− ρ̃| ≤ C

L
(A.3)

for some constant C > 0 depending on M4. Similarly, we have

|1−Var(ξ̂i)| ≤ E|ξi|21{|ξi|>L} + |Eξi1{|ξi|>L}|
2 ≤ C

L2
(A.4)

for i ∈ {1, 2}.
By (A.1), we have

|ρ̃− ρ̂| ≤ |ρ̃|

∣∣∣∣∣∣ 1√
Var(ξ̃1) Var(ξ̃2)

− 1

∣∣∣∣∣∣
≤ 2|ρ̃|

∣∣∣∣√Var(ξ̃1) Var(ξ̃2)− 1

∣∣∣∣
≤ 2|ρ̃|

∣∣∣Var(ξ̃1) Var(ξ̃2)− 1
∣∣∣

≤ 2|ρ̃|
(∣∣∣1−Var(ξ̃1)

∣∣∣+
∣∣∣1−Var(ξ̃2)

∣∣∣) .
From (A.4), we conclude that |ρ̃ − ρ̂| ≤ C

L2 for some constant C > 0 depending on M4.
Combining this bound with (A.3) yields (3.15).

It remains to prove (3.16) and (3.17). By Lemma 3.3, it follows that a.s.

lim sup
N→∞

1√
N
‖YN‖ ≤ 4 and lim sup

N→∞

1√
N
‖ŶN‖ ≤ 4.

By Lemma 3.1, we have (say) a.s.

lim sup
N→∞

sup
|z|≥5

‖GN (z)‖ ≤ 2 and lim sup
N→∞

sup
|z|≥5

‖ĜN (z)‖ ≤ 2.

Thus, by the resolvent identity (3.3), we have a.s.

lim sup
N→∞

sup
|z|≥5

‖GN (z)− ĜN (z)‖ ≤ 4 lim sup
N→∞

1√
N
‖YN − ŶN‖

≤ 4 lim sup
N→∞

1√
N

(
‖YN − ỸN‖+ ‖ỸN − ŶN‖

)
.

Therefore, in order to prove (3.16) and (3.17), it suffices to show that a.s.

lim sup
N→∞

1√
N

(
‖YN − ỸN‖+ ‖ỸN − ŶN‖

)
≤ C

L
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for some constant C > 0 depending on M4. Consider the second term on the left-hand
side. We write

‖ỸN − ŶN‖ ≤

∥∥∥∥∥∥∥
(
ỸN − ŶN

)
+
(
ỸN − ŶN

)∗
2

∥∥∥∥∥∥∥+

∥∥∥∥∥∥∥
(
ỸN − ŶN

)
−
(
ỸN − ŶN

)∗
2
√
−1

∥∥∥∥∥∥∥ .
We now apply [5, Theorem 5.2] as in the proof of Lemma 3.3. By (A.4), we obtain a.s.

lim sup
N→∞

1√
N
‖ỸN − ŶN‖ ≤

C

L

for some constant C > 0 depending on M4. Similarly, by another application of [5,
Theorem 5.2] and (A.2), we have a.s.

lim sup
N→∞

1√
N
‖YN − ỸN‖ ≤

C

L
.

The proof of the lemma is complete.

B Large Deviation Estimates

This section is devoted to proving a large deviation estimate for bilinear forms.
Throughout this section, we let Kp denote a constant that depends only on p. These
constants are non-random and may take on different values from one appearance to the
next.

Lemma B.1 (Concentration of bilinear forms). Let (x1, y1), (x2, y2), . . . , (xN , yN ) be iid
random vectors in C2 such that

E[x1] = E[y1] = 0, E|x1|2 = E|y1|2 = 1, E[x̄1y1] = ρ.

Let µp = max{E|x1|p,E|y1|p} for p ≥ 4. Let B = (bij) be a deterministic complex N ×N
matrix and write X = (x1, x2, . . . , xN )T and Y = (y1, y2, . . . , yN )T. Then, for any p ≥ 2,

E |X∗BY − ρ trB|p ≤ Kp

(
(µ4 tr(BB∗))p/2 + µ2p tr(BB∗)p/2

)
.

The proof of Lemma B.1 is based on the proof of [4, Lemma 2.7]. In fact, when ρ = 1,
we recover [4, Lemma 2.7].

We will need the following results.

Lemma B.2 ((3.3.41) of [32]). ForN×N HermitianA = (aij) with eigenvalues λ1, λ2, . . . , λN ,
and f convex, we have

N∑
i=1

f(aii) ≤
N∑
i=1

f(λi).

Lemma B.3 (Lemma A.1 of [4]). For X = (x1, x2, . . . , xN )T iid standardized complex
entries, B N ×N Hermitian nonnegative definite matrix, we have, for any p ≥ 1,

E|X∗BX|p ≤ Kp

(
(trB)p + E|x1|2p trBp

)
.

We are now ready to prove Lemma B.1.

Proof of Lemma B.1. Let {Fi}Ni=0 denote the sequence of increasing σ-algebras defined
by

Fi = σ(x1, y1, x2, y2, . . . , xi, yi)
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for i = 1, 2, . . . , N . Following the usual convention, we let F0 denote the trivial σ-
algebra. We will continually make use of this filtration throughout the proof.

We begin by writing

X∗BY − ρ trB =

N∑
i=1

(x̄iyi − ρ)bii +

N∑
i=2

x̄i
∑
j<i

yjbij +

N∑
j=2

yj
∑
i<j

x̄ibij

and hence

E |X∗BY − ρ trB|p

≤ Kp

E ∣∣∣∣∣
N∑
i=1

(x̄iyi − ρ)bii

∣∣∣∣∣
p

+ E

∣∣∣∣∣∣
N∑
i=2

x̄i
∑
j<i

yjbij

∣∣∣∣∣∣
p

+ E

∣∣∣∣∣∣
N∑
j=2

yj
∑
i<j

x̄ibij

∣∣∣∣∣∣
p . (B.1)

We will bound each of the three terms on the right-hand side of (B.1) separately. We
begin with the first term. By Lemma 3.6,

E

∣∣∣∣∣
N∑
i=1

(x̄iyi − ρ)bii

∣∣∣∣∣
p

≤ Kp

( N∑
i=1

E|x̄iyi − ρ|2|bii|2
)p/2

+

N∑
i=1

E|x̄iyi − ρ|p|bii|p


≤ Kp

(
(µ4 tr(BB∗))p/2 + µ2p

N∑
i=1

|bii|p
)
.

Here we have used

(E|x̄1y1 − ρ|p)1/p ≤
(
E|x1|2p

)1/p
+
(
E|y1|2p

)1/p
+ 1 ≤ 3µ

1/p
2p .

From Lemma B.2, we have

N∑
i=1

|bii|p ≤
N∑
i=1

(BB∗)
p/2
ii ≤

N∑
i=1

λi(BB
∗)p/2 = tr(BB∗)p/2,

where λ1(BB∗), . . . , λN (BB∗) denote the eigenvalues of BB∗. Combining the bounds
above yields

E

∣∣∣∣∣
N∑
i=1

(x̄iyi − ρ)bii

∣∣∣∣∣
p

≤ Kp

(
(µ4 trBB∗)p/2 + µ2p tr(BB∗)p/2

)
.

We now consider the second term on the right-hand side of (B.1). By Lemma 3.6,

E

∣∣∣∣∣∣
N∑
i=2

x̄i
∑
j<i

yjbij

∣∣∣∣∣∣
p

≤ Kp

E
 N∑
i=2

∣∣∣∣∣∣
∑
j<i

yjbij

∣∣∣∣∣∣
2

p/2

+ µpE

N∑
i=2

∣∣∣∣∣∣
∑
j<i

yjbij

∣∣∣∣∣∣
p
 .

We will bound each of the terms on the right-hand side separately. For the first term,
we write

E

 N∑
i=2

∣∣∣∣∣∣
∑
j<i

yjbij

∣∣∣∣∣∣
2

p/2

= E

 N∑
i=2

∣∣∣∣∣∣
N∑
j=1

E(yjbij |Fi−1)

∣∣∣∣∣∣
2

p/2

.
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Applying Lemma 3.8 and Lemma B.3, we have

E

 N∑
i=2

∣∣∣∣∣∣
N∑
j=1

E(yjbij |Fi−1)

∣∣∣∣∣∣
2

p/2

≤ KpE

 N∑
i=2

∣∣∣∣∣∣
N∑
j=1

yjbij

∣∣∣∣∣∣
2

p/2

≤ KpE (Y ∗B∗BY )
p/2

≤ Kp

(
(trBB∗)p/2 + µ2p tr(BB∗)p/2

)
≤ Kp

(
(µ4 trBB∗)p/2 + µ2p tr(BB∗)p/2

)
.

For the second term, we apply Lemma 3.6 and obtain

E

N∑
i=2

∣∣∣∣∣∣
∑
j<i

yjbij

∣∣∣∣∣∣
p

≤ Kp

N∑
i=2


∑
j<i

|bij |2
p/2

+ µp
∑
j<i

|bij |p


≤ Kp(1 + µp)

N∑
i=2

∑
j<i

|bij |2
p/2

.

We now note that

N∑
i=2

∑
j<i

|bij |2
p/2

≤
N∑
i=1

((BB∗)ii)
p/2 ≤ tr(BB∗)p/2

by Lemma B.2. Thus

µpE

N∑
i=2

∣∣∣∣∣∣
∑
j<i

yjbij

∣∣∣∣∣∣
p

≤ Kpµ2p tr(BB∗)p/2

since µp(1 + µp) ≤ 2µ2
p ≤ 2µ2p. Combining the two bounds above, we obtain

E

∣∣∣∣∣∣
N∑
i=2

x̄i
∑
j<i

yjbij

∣∣∣∣∣∣
p

≤ Kp

(
(µ4 trBB∗)p/2 + µ2p tr(BB∗)p/2

)
.

The third term on the right-hand side of (B.1) is similarly bounded. The proof of the
lemma is complete.

C Properties of the limiting measure

This section is devoted to studying the limiting distribution of the singular values of
1√
N
YN − zI, where z ∈ C and {YN}N≥1 is a sequence of random matrices that satisfy

condition C0 with atom variables (ξ1, ξ2). In particular, this section contains the proof
of Theorem 6.1. Throughout this section, we fix ρ := E[ξ1ξ2] with −1 < ρ < 1. Let Eρ be
the ellipsoid defined in (1.3). We let

√
−1 denote the imaginary unit and reserve i as an

index.

Remark C.1. Many of the results in this section also hold when ρ = ±1 (although the
proofs are different). In particular, Theorem 6.1 holds when ρ = ±1; see Remark 6.2 for
further details.
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Let aN (η, z) be the Stieltjes transform of ν 1√
N
YN−zI (defined in (6.2)). That is, for

each z ∈ C,

aN (η, z) :=

∫
R

1

u− η
ν 1√

N
YN−zI(du)

for η ∈ C+ := {w ∈ C : Im(w) > 0}. We study the limiting distribution of the singular
values by characterizing the limiting Stieltjes transform. We begin with the following
lemma.

Lemma C.2 (Self-consistent equation). Let z, η ∈ C with Im(η) > 0. Fix −1 < ρ < 1. If
a, b, c ∈ C satisfy [

a b

c a

]
=

[
−η − a −ρc− z
−ρb− z̄ −η − a

]−1

, (C.1)

then
1

(a+ η)a
+ 1 =

Re(z)2

(η + (1 + ρ)a)2
+

Im(z)2

(η + (1− ρ)a)2
. (C.2)

Proof. We rewrite (C.1) as the system of equations

a

a2 − bc
= −η − a, −b

a2 − bc
= −ρc− z, −c

a2 − bc
= −ρb− z̄. (C.3)

Since Im(η) > 0, the first equation implies a 6= 0. Thus, we obtain

−b
(
η + a

a

)
= ρc+ z

−c
(
η + a

a

)
= ρb+ z̄.

Solving these equations for b and c yields

bq = a2ρz̄ − a(η + a)z (C.4)

cq = a2ρz − a(η + a)z̄, (C.5)

where q := (η + a)2 − ρ2a2. Thus, we have

bcq2 = a2|z|2(a2ρ2 + (η + a)2)− a3(η + a)ρ(z2 + z̄2),

and hence

(a2 − bc)q2 = a2q2 − a2|z|2(a2ρ2 + (η + a)2) + a3(η + a)ρ(z2 + z̄2).

Equation (C.2) can now be obtained by combining the calculation above with the first
equation from (C.3) and noting that

|z|2(a2ρ2 + (η + a)2)−a(η + a)ρ(z2 + z̄2)

= Re(z)2(η + (1− ρ)a)2 + Im(z)2(η + (1 + ρ)a)2.

The proof of the lemma is complete.

Remark C.3. One can also use (C.4) and (C.5) to solve for b and c. Indeed, from (C.4)
it follows that

b = a

(
aρz̄ − (η + a)z

q

)
= −a

(
Re(z)

η + a(1 + ρ)
+
√
−1

Im(z)

η + a(1− ρ)

)
.

Similarly, from (C.5), we have

c = −a
(

Re(z)

η + a(1 + ρ)
−
√
−1

Im(z)

η + a(1− ρ)

)
.
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Remark C.4. Fix z ∈ C. If (C.1) holds for all η with Im(η) > 0, then a, b, c can be viewed
as functions of η. In this case, an upper bound for a can be obtained (see (C.11)). In
fact, in view of Lemma C.7, a can be uniformly bounded from above for all Im(η) > 0.
Thus, one can use (C.2) and Remark C.3 to obtain uniform upper bounds on b, c for all
Im(η) > 0.

We will also need the following lemma for Stieltjes transforms of probability mea-
sures on the real line.

Lemma C.5. Let ν be a probability measure on the real line. Let m be the Stieltjes
transform of ν. That is,

m(η) =

∫
R

1

u− η
ν(du), η ∈ C+.

Then
lim
y→∞

sup
x∈R
|m(x+

√
−1y)| = 0 (C.6)

and
lim
y→∞

sup
|x|≤√y

∣∣(x+
√
−1y)m(x+

√
−1y) + 1

∣∣ = 0. (C.7)

Proof. Equation (C.6) follows from the trivial bound |m(η)| ≤ | Im(η)|−1. We now prove
(C.7). We note that

(x+
√
−1y)m(x+

√
−1y) + 1 =

∫
R

u

(u− x) +
√
−1y

ν(du)

and hence∣∣(x+
√
−1y)m(x+

√
−1y) + 1

∣∣
≤
∫
|u|≤2

√
y

|u|√
(u− x)2 + y2

ν(du) +

∫
|u|>2

√
y

|u− x|+ |x|√
(u− x)2 + y2

ν(du)

≤ 2
√
y

+ ν((−∞,−2
√
y) ∪ (2

√
y,∞)) +

|x|
y
.

Thus, we have

sup
|x|≤√y

∣∣(x+
√
−1y)m(x+

√
−1y) + 1

∣∣ ≤ 3
√
y

+ ν((−∞,−2
√
y) ∪ (2

√
y,∞))

and the claim follows.

We will use Lemma C.2 and Lemma C.6 to study the limit of aN (η, z) for each z ∈ C
and η ∈ C+. Indeed, it follows from the calculations in [40] (see also [39]) that aN (η, z)

converges almost surely as N →∞ to a solution of

1

a(η, z)(η + a(η, z))
+ 1 =

Re(z)2

(η + (1 + ρ)a(η, z))2
+

Im(z)2

(η + (1− ρ)a(η, z))2
. (C.8)

Lemma C.6 (Existence and uniqueness). Fix −1 < ρ < 1. For each z ∈ C, there exists
a unique probability measure νz on the real line such that

a(η, z) :=

∫
1

u− η
νz(du) (C.9)

is a solution of (C.8) for all η ∈ C+.
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Proof. Fix z ∈ C. Since almost surely ‖ 1√
N
YN−zI‖ = Oz(1) by Lemma 3.3, the sequence

of measures {
ν 1√

N
YN−zI

}
N≥1

(C.10)

is almost surely tight. Existence now follows from a subsequence argument and by
applying [5, Theorem B.9] and Lemma C.2.

We now prove uniqueness. Suppose νz and ν′z are two probability measures on the
real line whose Stieltjes transforms

a(η, z) =

∫
1

u− η
νz(du),

s(η, z) =

∫
1

u− η
ν′z(du)

satisfy (C.8) for all η ∈ C+. Seeking a contradiction, assume vz 6= v′z. Since a(η, z) and
s(η, z) are analytic functions of η in the upper half plane, it follows from [5, Theorem
B.8] that the set

E :=
{
η ∈ C+ : m(η, z) = s(η, z)

}
has no accumulation point in C+. Define the set Q ⊂ C+ \E such that η ∈ Q if and only
if

|η + s(η, z) + a(η, z)|
|a(η, z)(η + a(η, z))s(η, z)(η + s(η, z))|

≥ 16
R2 (|η|+ |a(η, z)|+ |s(η, z)|)
|η + ra(η, z)|2|η + rs(η, z)|2

for each r ∈ {1 + ρ, 1 − ρ} and R := max{Re(z)2, Im(z)2}. By taking Im(η) sufficiently
large, it follows from Lemma C.5 that Q contains an open disk D of radius ε > 0. Thus,
by analytic continuation (and [5, Theorem B.8]), it suffices to show that a(η, z) = s(η, z)

for all η ∈ D.
Indeed, consider (C.8) for both functions a(η, z) and s(η, z). We will subtract one

equation from the other. We first note that

1

a(η, z)(η + a(η, z))
− 1

s(η, z)(η + s(η, z))

= (s(η, z)− a(η, z))
η + s(η, z) + a(η, z)

a(η, z)(η + a(η, z))s(η, z)(η + s(η, z))
.

We also have ∣∣∣∣ 1

(η + ra(η, z))2
− 1

(η + rs(η, z))2

∣∣∣∣
≤ 4|s(η, z)− a(η, z)| |η|+ |s(η, z)|+ |a(η, z)|

|η + ra(η, z)|2|η + rs(η, z)|2

for each r ∈ {1 + ρ, 1− ρ}. Thus, for η ∈ D, we obtain

|s(η, z)− a(η, z)| |η + s(η, z) + a(η, z)|
|a(η, z)(η + a(η, z))s(η, z)(η + s(η, z))|

≤ |s(η, z)− a(η, z)|
2

|η + s(η, z) + a(η, z)|
|a(η, z)(η + a(η, z))s(η, z)(η + s(η, z))|

.

Since Im(η + s(η, z) + a(η, z)) > 0, we conclude that

|s(η, z)− a(η, z)| ≤ |s(η, z)− a(η, z)|
2

for all η ∈ D, and the claim follows.
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For the remainder of the section, we fix −1 < ρ < 1 and let vz denote the unique
probability measure from Lemma C.6. Let a(η, z) be its Stieltjes transform defined by
(C.9) for all η ∈ C+. It follows from Lemma C.2, Lemma C.6, and the calculations in
[40] (see also [39]) that aN (η, z) converges almost surely to a(η, z) as N → ∞ for each
fixed z ∈ C and η ∈ C+. By [5, Theorem B.9], the sequence of measures given in (C.10)
converge almost surely to νz for each fixed z ∈ C. We now derive some properties of vz.

Lemma C.7 (Properties of νz). Fix −1 < ρ < 1. For each z ∈ C, νz is compactly
supported and has continuous, bounded density.

Proof. Fix z ∈ C. Since almost surely ‖ 1√
N
YN − zI‖ = Oz(1) by Lemma 3.3, it follows

that νz is compactly supported.

We now verify that νz has bounded density. Consider the Stieltjes transform a(η, z)

as a solution of (C.8). We claim that for any C ′ > 0 there exists a corresponding C > 0

such that

sup
η∈C+,|η|≤C′

|a(η, z)| ≤ C. (C.11)

Indeed, suppose there exists η ∈ C+ such that |η| ≤ C ′ and |a(η, z)| ≥ C for some
sufficiently large constant C > 0. We take C large enough to satisfy

rC − C ′ ≥ rC

2
(C.12)

and
4|z|2

r2C2
+

2

rC2
< 1, (C.13)

where r := min{1− ρ, 1 + ρ}. From (C.12), we obtain the bounds

1

|η + (1 + ρ)a(η, z)|
≤ 2

rC
,

1

|η + (1− ρ)a(η, z)|
≤ 2

rC
,

1

|η + a(η, z)|
≤ 2

rC
.

Applying the bounds above to (C.8) yields

1 ≤ 4|z|2

r2C2
+

2

rC2
.

This contradicts our choice of C in (C.13), and (C.11) follows.

Choose C ′ sufficiently large such that νz is supported on [−C ′/2, C ′/2]. Let C > 0

be the corresponding constant such that (C.11) holds. For any finite interval I ⊂ R, it
follows from [5, Theorem B.8] that

νz(I) ≤ 2C|I|. (C.14)

Here we used the fact that the continuity points of the function x 7→ νz((−∞, x]) are
dense in R. It follows from (C.14) that νz has bounded density. As the roots of a polyno-
mial depend continuously on the coefficients (see [20, 50]), (C.8) and [5, Theorem B.10]
imply that νz has continuous density.

Lemma C.8. Fix −1 < ρ < 1 and z /∈ Eρ. Then there exists c > 0 such that

νz([−c, c]) = 0.
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Proof. Fix −1 < ρ < 1 and z /∈ Eρ. Since νz is the almost sure limit of the measures in
(C.10), it suffices to show that there exists c > 0 such that νz([0, c]) = 0.

From (C.8), a(η, z) can be continuously extended to the closed upper plane {η ∈ C :

Im(η) ≥ 0}. We claim that a(0, z) = 0. Suppose to the contrary. Taking the sequence
η =
√
−1y with y ↘ 0, we obtain

1 + lim
y↘0

(
a(
√
−1y, z)

)2
=

Re(z)2

(1 + ρ)2
+

Im(z)2

(1− ρ)2
. (C.15)

However, since Re
(
aN (
√
−1y, z)

)
= 0 for all y > 0, it follows that

lim
y↘0

(
a(
√
−1y, z)

)2 ≤ 0.

Thus, (C.15) contradictions the assumption that z /∈ Eρ. We conclude that a(0, z) = 0.
From Lemma C.7, νz has bounded, continuous density pz. We now derive some

properties of pz. From (C.8), we obtain

1
a(η,z)
η (1 + a(η,z)

η )
+ η2 =

Re(z)2(
1 + (1 + ρ)a(η,z)

η

)2 +
Im(z)2(

1 + (1− ρ)a(η,z)
η

)2 (C.16)

for η ∈ C+. We now claim that η−1a(η, z) is bounded for all η ∈ C+. In order to reach a
contradiction, assume η−1a(η, z) is not bounded. From (C.11) and Lemma C.7, it must
be the case that |η−1a(η, z)| tends to infinity as η tends to zero through the upper half
plane. Thus, by multiplying (C.16) by η−2a2(η, z) and taking the limit η → 0, we obtain

1 =
Re(z)2

(1 + ρ)2
+

Im(z)2

(1− ρ)2

since a(0, z) = 0. This is clearly a contradiction for z /∈ Eρ. We conclude that η−1a(η, z)

is bounded for all η ∈ C+. Thus, there exists C > 0 such that

Im
(
a(
√
−1y, z)

)
≤ Cy

for all y > 0. Equivalently, for all y > 0, we have∫
R

1

u2 + y2
pz(u)du ≤ C.

By a change of variables, we obtain∫ ∞
0

1

u+ y2
qz(u)du ≤ C (C.17)

for all y > 0, where qz is the probability density given by

qz(u) :=

{
1√
u
pz(
√
u), u > 0

0, u ≤ 0
.

Let µz be the probability measure with density qz. Let s(η, z) be the Stieltjes trans-
form of µz. That is,

s(η, z) :=

∫
R

1

u− η
µz(du) =

∫
R

1

u− η
qz(u)du, η ∈ C+.

By definition of µz, it follows that a(η, z) = ηs(η2, z) for all z ∈ C and η ∈ C+ with
Im(η2) 6= 0. Thus, a(η, z) satisfies

1

s(η, z)(1 + s(η, z))
+ η =

Re(z)2

(1 + (1 + ρ)s(η, z))2
+

Im(z)2

(1 + (1− ρ)s(η, z))2
(C.18)
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for η ∈ C+. By (C.16) and the argument above for η−1a(η, z), it follows that, for z /∈ Eρ,
s(η, z) is bounded for all η ∈ C+. By [5, Theorem B.8], we conclude that the density qz
is bounded. Moreover, from (C.18), it follows that s(η, z) can be continuously extended
to {η ∈ C : Im(η) ≥ 0, η 6= 0}.

By (C.17) and Lemma C.11 below, we conclude that there exists a sequence of pos-
itive real numbers {xk}k≥1 with limk→∞ xk = 0 such that limk→∞ qz(xk) = 0. By [5,
Theorem B.10], we equivalently have

lim
k→∞

Im (s(xk, z)) = 0. (C.19)

In order to prove the lemma, it suffices to show that there exists c > 0 such that
µz([0, c]) = 0. In order to reach a contradiction, suppose for all c > 0, µz([0, c]) > 0. We
write s(η, z) = g(η) +

√
−1h(η), for real-valued functions g, h. Choose η = x ∈ R with

h(x) > 0. We now compare the real and imaginary parts for both sides of (C.18) and let
x approach the boundary of the support (which we have assumed to be 0). By allowing
x to approach 0 along the subsequence in (C.19), we have that h(x)→ 0. Since s(η, z) is
bounded, we conclude (by possibly taking a further subsequence) that g(x)→ g ∈ R as
x approaches the boundary. We obtain

1

g(1 + g)
=

Re(z)2

(1 + (1 + ρ)g)2
+

Im(z)2

(1 + (1− ρ)g)2
(C.20)

1 + 2g

g2(1 + g)2
=

2 Re(z)2(1 + ρ)

(1 + (1 + ρ)g)3
+

2 Im(z)2(1− ρ)

(1 + (1− ρ)g)3
. (C.21)

Since µz is supported on the non-negative real line, it follows that g > 0. Suppose ρ = 0.
From (C.20) and (C.21), we obtain

1 + 2g

g2(1 + g)
=

2

g(1 + g)
,

a contradiction. For the remainder of the proof, we assume ρ 6= 0. Returning to (C.20)
and (C.21), we have

2

g(1 + g)
=

2 Re(z)2

(1 + (1 + ρ)g)3
+

2 Im(z)2

(1 + (1− ρ)g)3
+

1 + 2g

g(1 + g)2

and hence
1

g(1 + g)2
=

2 Re(z)2

(1 + (1 + ρ)g)3
+

2 Im(z)2

(1 + (1− ρ)g)3
. (C.22)

Combining this equation with (C.21), we obtain

1

g2(1 + g)
= 2ρ

[
Re(z)2

(1 + (1 + ρ)g)3
− Im(z)2

(1 + (1− ρ)g)3

]
. (C.23)

From (C.22) and (C.23), we have

1

g2(1 + g)2
= 4ρ

Re(z)2

(1 + (1 + ρ)g)4

−1

g2(1 + g)2
= 4ρ

Im(z)2

(1 + (1− ρ)g)4
.

Since ρ 6= 0, we conclude that

0 =
Re(z)2

(1 + (1 + ρ)g)4
+

Im(z)2

(1 + (1− ρ)g)4
.

This implies z = 0 ∈ Eρ, a contradiction. The proof of the lemma is complete.
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Remark C.9. The measure µz, defined in the proof of Lemma C.8 above, is the almost
sure limit of the empirical spectral measures built from the eigenvalues of ( 1√

N
YN −

zI)∗( 1√
N
YN − zI). In fact, equation (C.18) has appeared in the work of Girko (see for

instance [30, Lemma 8.1]). Girko discusses the support of µz in [30, Section 10].

Remark C.10. In the case ρ = 0, the exact interval of support of the measure νz can
be computed for all z ∈ C. See [31, Remark 3.1] for further details.

Lemma C.11. Let C > 0. Suppose f : R→ [0,∞) is a probability density function that
satisfies ∫ ∞

0

1

x+ ε
f(x)dx ≤ C

for all ε > 0. Then there exists a sequence of positive real numbers {xk}k≥1 with
limk→∞ xk = 0 such that

lim
k→∞

f(xk) = 0.

Lemma C.11 follows from a simple indirect proof; we leave the details to the reader.
Using Lemma C.8, we now verify Theorem 6.1.

Proof of Theorem 6.1. Since νz is the almost sure limit of the measures in (C.10), it
suffices to show that there exists c > 0 such that

νz([0, c]) = 0

for all z ∈ C with dist(z, Eρ) ≥ δ. For each z ∈ C, we define

xz := sup{x ≥ 0 : νz([0, x]) = 0}.

By Lemma C.7 the set above is nonempty, and hence xz ≥ 0 for all z ∈ C.

We remind the reader that the least singular value of 1√
N
YN −zI is trivially bounded

almost surely by Lemma 3.1 for |z| sufficiently large because we have the almost sure
bound ‖ 1√

N
YN‖ = O(1) from Lemma 3.3. Thus, it suffices to prove the theorem for all z

in a compact set D ⊂ {z ∈ C : dist(z, Eρ) ≥ δ}.
We now claim that xz is continuous in z. Indeed, since νz is the almost sure limit of

the measures in (C.10), we obtain almost surely

ν 1√
N
YN−zI([0, xz]) −→ νz([0, xz]) = 0

as N →∞. Thus, by Weyl’s perturbation bound (see for instance [12]), for |z − z′| ≤ xz,
we have almost surely

ν 1√
N
YN−z′I([0, xz − |z − z

′|]) −→ 0

as N →∞. We conclude that νz′([0, xz − |z − z′|]) = 0 and hence

xz′ ≥ xz − |z − z′|. (C.24)

We note that (C.24) trivially holds when |z − z′| > xz. Repeating the argument with z

and z′ reversed, we obtain

|xz − xz′ | ≤ |z − z′|.

We conclude that xz is continuous in z. Since D is compact, it suffices to show that
xz > 0 for all z ∈ D. The claim now follows from Lemma C.8.
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