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Abstract

We consider a Bernoulli bond percolation on a random recursive tree of size n � 1,
with supercritical parameter pn = 1 − c/ lnn for some c > 0 fixed. It is known that
with high probability, there exists then a unique giant cluster of size Gn ∼ e−cn,
and it follows from a recent result of Schweinsberg [23] that Gn has non-Gaussian
fluctuations. We provide an explanation of this by analyzing the effect of percolation
on different phases of the growth of recursive trees. This alternative approach may
be useful for studying percolation on other classes of trees, such as for instance
regular trees.
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1 Introduction and main result

A famous result due to Erdös and Rényi shows that Bernoulli bond percolation on
the complete graph with n vertices and with parameter c/n for c > 1 fixed, produces
with high probability as n→∞, a unique giant cluster of size Γn ∼ θ(c)n, where θ(c) is
the strictly positive solution to the equation x + e−cx = 1. It has been known since the
work of Stepanov [25] that the fluctuations of Γn are normal, in the sense that

Γn − θ(c)n√
n

=⇒ N (0, σ2
c ),

where as usual N (0, σ2
c ) denotes a centered Gaussian variable with variance σ2

c , and⇒
means convergence in law. See also e.g. Pittel [22] and Barraez et al. [1] for alternative
proofs and refinements. Since then, several results have appeared in the literature,
establishing the asymptotic normality of giant components for various random graph
models. We refer in particular to Behrisch et al. [2], Bollobàs and Riordan [6], and
Seierstad [24].

The motivation of the present work stems from the feature that the giant cluster
resulting from supercritical bond percolation on a large random recursive tree has a
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Non-Gaussian fluctuations of the giant cluster

much different asymptotic behavior. Recall that a tree on an ordered set of vertices,
say [n] = {1, . . . , n}, is called recursive if when rooted at 1, the sequence of vertices
along any branch from the root to a leaf increases. The terminology comes from the
fact that such trees can be constructed recursively, incorporating each vertex one after
the other in the natural order to built a growing tree. See Drmota [9] for background
and further references.

We denote by Tn a recursive tree picked uniformly at random amongst the (n − 1)!

recursive trees on [n]. Equivalently, Tn can be constructed recursively by creating for
` = 1, . . . , n− 1 an edge between the vertices `+ 1 and u`, where u` has the uniform dis-
tribution on [`] and u1, . . . , un−1 are independent. Given Tn, we then perform a Bernoulli
bond percolation with parameter

pn = 1− c

lnn

where c > 0 is some fixed parameter. It is easy to show that this choice of the percolation
parameter corresponds precisely to the supercritical regime, in the sense that with high
probability for n � 1, the cluster containing the root is giant with size Gn ∼ e−cn. At
this point, it may be interesting to briefly sketch the proof of this result, referring to [4]
for details.

Pick a vertex un uniformly at random in [n], and denote its distance to the root by
hn. Then it is well known that hn ∼ lnn, and since the first moment of n−1Gn coincides
with the probability that un is connected to the root, one gets

E(n−1Gn) = E

((
1− c

lnn

)hn)
∼ e−c.

Similarly, if vn denotes a second uniform vertex chosen independently of the first, then
the easy fact that the height of the branch point of un and vn remains stochastically
bounded yields the second moment estimate E((n−1Gn)2) ∼ e−2c, from which the law
of large numbers for Gn follows.

Since it is also well-known that hn is asymptotically normal (see Devroye [8]), this
might suggest that the same could also hold for Gn. However, it follows from a recent
result due to Schweinsberg [23] that this is not the case. In order to give a precise
statement, recall that a real-valued random variable Z has the so-called continuous
Luria-Delbrück law when its characteristic function is given by

E(eiθZ) = exp
(
−π

2
|θ| − iθ ln |θ|

)
, θ ∈ R .

This distribution arises in limit theorems for sums of positive i.i.d. variables in the
domain of attraction of a completely asymmetric Cauchy process; see e.g. Geluk and de
Haan [11], Möhle [20], and further references therein. Its role in the context of large
random recursive trees was observed first by Drmota et al. [10] and Iksanov and Möhle
[14], in relation with a random algorithm for the isolation of the root; see also the recent
work by Kuba and Panholzer [16]. We further refer to Holmgren [13] and the comments
(a) and (b) in the forthcoming Section 2.3.

Theorem 1.1. (Schweinsberg) There is the weak convergence(
n−1Gn − e−c

)
lnn− ce−c ln lnn =⇒ −ce−c (Z + ln c) ,

where the variable Z has the continuous Luria-Delbrück distribution.

More precisely, Theorem 1.7 in [23] is stated in terms of the number of blocks in
the Bolthausen-Sznitman coalescent, and the remarkable construction of Goldschmidt
and Martin [12] of the latter based on random cuts on a random recursive tree entails
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Non-Gaussian fluctuations of the giant cluster

the present statement. The proof of Schweinsberg relies on delicate estimates on the
rate of decrease of the number of blocks in the Bolthausen-Sznitman coalescent and on
bounds on stable processes, and the purpose of this work is to propose an alternative
approach which may provide more intuitive explanations for the anomalous fluctuations
of Gn. We stress that Theorem 1.7 in [23] is a weak limit theorem for processes while
Theorem 1.1 only states a one-dimensional convergence result; however the present
approach immediately extends to finite-dimensional convergence at the price of slightly
heavier notations, and establishing tightness would require some further work.

In the sequel, it will be convenient to agree that the edges are enumerated naturally
in the order induced by the construction, i.e. the `-th edge refers to the edge linking
the vertex ` to its parent u`−1. Roughly speaking, one can then distinguish three phases
of the random dynamics. Because in percolation, each edge is removed with probability
c/ lnn, the first edges which are removed correspond to an early phase when the grow-
ing tree has size of order lnn. During this phase, only a stochastically bounded number
of edges are removed (more precisely, this number converges weakly to a Poisson dis-
tribution with parameter c as n→∞), and it has been shown in [5] that the percolation
clusters corresponding to those edges will eventually have size of order n/ lnn when
the construction is completed. Thus the total contribution of clusters corresponding
to this early phase is order n/ lnn, and informally, should be viewed as the source of
randomness of fluctuations in Theorem 1.1.

There is then an intermediate phase when the tree grows from a size of order lnn

to the size bln4 nc, during which about c ln3 n edges are removed. Each of the perco-
lation cluster born during this phase has only size o(n/ lnn) at the end of the process.
However, the cumulative effect of these clusters is nonetheless visible and yields the
deterministic correction involving the iterated logarithm factor in Theorem 1.1.

In the final phase when the recursive tree grows from size bln4 nc to size n, the root
cluster grows essentially regularly, i.e. without inducing further fluctuations. We point
out that the threshold ln4 n appearing in this work is somewhat arbitrary, and lnα n with
α close to 4 would work just as well. It is however crucial to choose a threshold which
is both sufficiently high so that fluctuations are already visible and spread afterwards
quite regularly, and also sufficiently low so that one can estimate the germ of fluctua-
tions with the desired accuracy.

The rest of this paper is mainly devoted to the proof of Theorem 1.1 along the preced-
ing lines. The starting point of our analysis is that it is useful to incorporate percolation
during the recursive construction of Tn, rather than first constructing completely Tn
and then performing percolation. In Section 2.1, we interrupt the construction of the
random recursive tree when it attains the size k = bln4 nc and perform a percolation on
Tk with parameter pn. We obtain a precise estimate of the number ∆k of vertices of Tk
which are disconnected from the root; this can be viewed as the germ of the anomalous
fluctuations for ∆n. In Section 2.2, we resume the construction of the random recursive
tree from the size k = bln4 nc to the size n. Using the basic connexion between random
recursive trees and Yule processes, we show that the germ of the anomalous fluctua-
tions ∆k spread regularly. Section 2.3 contains some miscellaneous comments. Finally,
in Section 3, we briefly point out that the present approach also applies to study the
fluctuations of the size of the giant cluster for percolation on regular trees.

2 Proof of Theorem 1.1

2.1 The germ of anomalous fluctuations

Imagine that we interrupt the construction of the random recursive tree when it
reaches size k = bln4 nc; plainly this yields a random recursive tree of size k which
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Non-Gaussian fluctuations of the giant cluster

we denote by Tk. Our purpose in this section is to estimate precisely the number of
vertices which are disconnected from the root when one performs a bond percolation
on Tk with parameter pn. It is convenient to work with the parameter k rather than n,
that is we write pn = qk and note the change in the asymptotic regime of the percolation
parameter as a function of the size of the tree :

qk = 1− ck−1/4 + o(k−1). (2.1)

We shall establish the following limit theorem in law.

Proposition 2.1. As k →∞, there is the weak convergence

k−3/4∆k −
3

4
c ln k =⇒ c (Z + ln c)

where Z has the continuous Luria-Delbrück distribution

The rest of this section is devoted to the proof of Proposition 2.1. Our guiding line is
similar to that in [3], although the percolation parameter there had a different asymp-
totic behavior. Namely we shall work with a continuous-time version of percolation in
which edges are removed independently one of the others at a given rate, and consider
the process that counts the number of vertices which are disconnected from the root as
time passed. It suffices to focus on the cuts made to the root-cluster, and we interpret
the latter as a continuous-time version of a random algorithm introduced by Meir and
Moon [18, 19] for the isolation of the root. In turn, this enables us to use a coupling
due to Iksanov and Möhle [14] and reduces the problem to the analysis of the asymp-
totic behavior of a remarkable random walk in the domain of attraction of a completely
asymmetric Cauchy distribution.

We shall follow the route sketched above, but in the reverse order for an easier
articulation of the argument. To start with, we recall briefly an asymptotic result on a
random walk which plays an important role in the study of the isolation of the root for
random recursive trees. Let ξ denote an integer-valued random variable with law

P(ξ = j) =
1

j(j + 1)
, j = 1, 2, . . . (2.2)

We consider the random walk

S` = ξ1 + · · ·+ ξ` , ` ∈ N ,

where the ξi are independent copies of ξ. According for instance to [11], there is the
weak convergence

`−1S` − ln ` =⇒ Z (2.3)

where Z has the continuous Luria-Delbrück law.
Iksanov and Möhle have pointed at a useful coupling which connects the preceding

random walk with an algorithm of Meir and Moon [18, 19] for the isolation of the root.
Following Meir and Moon, we define recursively a decreasing sequence of subtrees

Tk = Tk(0) ⊃ Tk(1) ⊃ . . .

as follows. We pick a first edge uniformly at random amongst the k − 1 edges of Tk
and remove it, which disconnects Tk into two subtrees. We denote by Tk(1) the subtree
which contains the root and imagine that the subtree which does not contain the root
is set aside. Then we pick a second edge uniformly at random in Tk(1), remove it. We
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write Tk(2) for the subtree which contains the root, set the other subtree aside, and
iterate in an obvious way until the root is finally isolated. We write

Dk(`) = k − |Tk(`)|

for the number of vertices which have been disconnected from the root after ` steps,
that is the sum of the sizes of the subtrees which have been set aside.

Iksanov and Möhle [14] have observed that one may couple the random walk S and
the algorithm of isolation of the root described above in such a way that there is the
identity

Dk(`) = S` for all ` < N(k) , (2.4)

where N(k) = min{` : S` ≥ k} denotes the first passage time of the random walk above
level k. See also Lemma 2 in [3] for a statement tailored for our needs. It follows easily
that, provided that the number of removed edges is relatively small, Dk(`) grows nearly
linearly. Here is a rather crude bound which will be however sufficient for our purpose.

Lemma 2.2. Suppose that ` = `(k) fulfills 1� ` ≤ k ln−2 k. Then

lim
k→∞

Dk(`)

` ln2 `
= 0 in probability .

Proof. Indeed, it follows immediately from (2.3) that

lim
`→∞

S`

` ln2 `
= 0 in probability. (2.5)

In particular the assumption ` ≤ k ln−2 k ensures that ` < N(k) with high probability,
so we can use the coupling (2.4) of Iksanov and Möhle. Then (2.5) is precisely our
statement.

We now turn our attention to a continuous time version of bond percolation on Tk.
We equip each of its k − 1 edges with an independent exponential variable with param-
eter k−1/4, and remove each edge at the time given by this variable. We define

tk = −k1/4 ln qk ,

so that the probability that a given edge has not yet been removed at time tk is equal
to exp(−k−1/4tk) = qk, and the configuration observed at time tk is thus precisely that
resulting from a bond percolation on Tk with parameter qk. Note also from (2.1) that

tk = c+O(k−1/4) . (2.6)

As we are only interested in the number of vertices which have been disconnected
from the root at time tn, we may focus on the evolution of the cluster which contains
the root. Plainly, if we write ρk(`) for the instant when the `-th edge is removed from
the root-cluster in this continuous-time percolation, then the root-cluster at time ρk(`)

can be identified as Tk(`), the subtree obtained by the isolation of the root algorithm
after ` steps. We will need the following bounds. For the sake of simplifying notations,
we henceforth agree that if f is a function or a process defined on nonnegative integers
and x ≥ 0 a real number, then we write f(x) rather than f(bxc). Similarly, we shall write∑x
i=0 ai for

∑bxc
i=0 ai.

Lemma 2.3. Take any α ∈ (1/2, 3/4). Then

lim
k→∞

P
(
ρk

(
ck3/4 − kα

)
≤ tk ≤ ρk

(
ck3/4 + kα

))
= 1.
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Proof. It should be clear from the dynamics of continuous-time percolation and elemen-
tary properties of independent exponential variables that ρk(`) can be expressed in the
form

ρk(`) =

`−1∑
j=0

k1/4

k −Dk(j)− 1
εj

where ε0, ε1, . . . is a sequence of i.i.d. standard exponential variables, which is further
independent of the algorithm of isolation of the root (the denominator in the fraction
above is the number of edges of Tk(j), and for j exceeding the number of steps needed
to isolate the root, the general term of the series becomes infinite by convention).

We take first ` = ck3/4 − kα and use the obvious lower-bound

ρk(ck3/4 − kα) ≥ k−3/4
ck3/4−kα−1∑

j=0

εj .

Elementary arguments based on the computation of first moment and variance show
that the right-hand side can be bounded from below by c−2kα−3/4 with high probability
as k →∞ (note that α > 3/8).

Similarly, we then take ` = ck3/4 + kα and use Lemma 2.2 to see that with high
probability for k � 1, there is the upper-bound

ρk(ck3/4 + kα) ≤ k1/4

k − (ck3/4 + kα) ln2 k

ck3/4+kα−1∑
j=0

εj .

Again, the sum in the right hand side is easily bounded from above by ck3/4 + 2kα with
high probability. On the other hand, the quotient is bounded from above by k−3/4(1 +

2ck−1/4 ln2 k) whenever k is sufficiently large. Putting the pieces together and recalling
that 3/4− α < 1/4, we get that

ρk(ck3/4 + kα) ≤ c+ 3kα−3/4

with high probability for k � 1. We conclude the proof with an appeal to (2.6).

We are now able to establish Proposition 2.1.

Proof of Proposition 2.1. Lemma 2.3 and an argument of monotonicity show that for
any α ∈ (1/2, 3/4), the bounds

Dk(ck3/4 − kα) ≤ ∆k ≤ Dk(ck3/4 + kα)

hold with high probability. On the other hand, we see from (2.5) that

lim
k→∞

k−3/4Skα = 0 in probability,

and we also know from (2.3) that

k−3/4Sck3/4 −
3

4
c ln k =⇒ c (Z + ln c) .

It follows that

k−3/4Sck3/4±kα −
3

4
c ln k =⇒ c (Z + ln c) ,

and an appeal to the coupling (2.4) completes the proof.
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2.2 The spread of anomalous fluctuations

We now recall the well-known connexion between random recursive trees and the
Yule process. Imagine that once the tree T` of size ` = 1, . . . , n−1 has been constructed,
the vertex ` + 1 is incorporated after an exponential time with parameter `, and then
connected by a new edge to some vertex u` ∈ [`] which is picked uniformly at random
and independently of the exponential waiting time. We further mark that edge with
probability 1 − pn = c/ lnn, independently of the preceding events. A mark on an edge
indicates that this edge will be removed when percolation is performed; equivalently it
can also be interpreted as a mutation occurring in the population. The dynamics de-
scribed above are those of a Yule process with unit rate of birth per individual and with
rare neutral mutations which affect each birth event with probability c/ lnn, indepen-
dently of the other birth events.

In this section, we begin our observation of this process with rare neutral mutations
once it has reached the size k = bln4 nc. We thus write Y = (Yt)t≥0 for a standard Yule
process started from Y0 = k, and consider the time

τ(n) = inf{t ≥ 0 : Yt = n}

at which it hits n. Equivalently, τ(n) is the time needed to complete the construction of
Tn from Tk. We shall first estimate this quantity.

In the sequel, we shall often use the notation

An = Bn + o(f(n)) in probability,

where An and Bn are two sequences of real random variables and f : N → (0,∞) a
function, to indicate that limn→∞ |An −Bn|/f(n) = 0 in probability.

Lemma 2.4. We have

eτ(n) =
n

ln4 n
+ o(1/ lnn) in probability.

Proof. From elementary properties of Yule processes (see, e.g., Equation (6) in [7]), we
know that for every α > 1/2, we have

P

(
sup
t≥0
|e−tYt − k| ≥ kα

)
≤ k−α+1/2 . (2.7)

It follows that
lim
n→∞

P
(∣∣∣ne−τ(n) − k

∣∣∣ > kα
)

= 0 ,

and in particular, for α < 3/4, this yields

ne−τ(n) =
(
1 + o(ln−1 n)

)
ln4 n in probability.

Our claim follows.

An individual in the population corresponds to a vertex of the tree, and vice-versa.
It is called a mutant if its ancestral lineage (i.e. its branch to the root) contains at least
one mark, and a clone otherwise. The population of size k at the time when we start our
observation consists in ∆k mutants and k−∆k clones. We focus on the clone population
and write Y (c) = (Y

(c)
t , t ≥ 0) for the process that counts the number of clones as time

passes. Because each clone gives birth to a clone child at rate pn and independently
of the other clones, Y (c) is a Yule process with reproduction rate pn per individual, and
started from Y

(c)
0 = k −∆k.
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In this framework, it should be plain that the size Gn of the root-cluster of Tn after
percolation with parameter pn, coincides with the number of clone individuals at the
time when the total population generated by the Yule process reaches n, i.e. there is
the identity

Gn = Y
(c)
τ(n) . (2.8)

One readily gets the following estimate.

Lemma 2.5. We have

Gn = epnτ(n)
(
ln4 n−∆k

)
+ o(n/ lnn) in probability,

Proof. Again from the basic estimate (2.7) and the fact that Y (c)
0 ≤ k, we have for any

α > 1/2 that

lim
n→∞

P
(∣∣∣e−pnτ(n)Y (c)

τ(n) − Y
(c)
0

∣∣∣ > kα
)

= 0 .

We choose α < 3/4 and deduce that

Y
(c)
τ(n) = epnτ(n)

(
ln4 n−∆k

)
+ epnτ(n)o(ln3 n) , in probability.

Since pn ≤ 1, we see from Lemma 2.4 that

epnτ(n)o(ln3 n) = o(n/ lnn) ,

and our claim follows from (2.8).

We have now all the ingredients to establish Theorem 1.1

Proof of Theorem 1.1. First, it is convenient to apply Skorokhod’s representation the-
orem and assume that the weak convergence in Proposition 2.1 holds in fact almost
surely. This enables us to write

ln4 n−∆k = ln4 n− ln3 n (3c ln lnn+ c(Z + ln c)) + o(ln3 n) , almost surely,

and then to re-express Lemma 2.5 in the form

Gn = epnτ(n)
(
ln4 n− ln3 n (3c ln lnn+ c(Z + ln c))

)
+ o(n/ lnn) , in probability.

We next note from Lemma 2.4 that

epnτ(n) =

(
n

ln4 n
+ o(1/ lnn)

)1−c/ lnn

, in probability,

and it follows from a couple of lines of calculations that

epnτ(n) = e−c
n

ln4 n
+ 4ce−cn

ln lnn

ln5 n
+ o(n ln−5 n) , in probability.

Another line of calculation yields

Gn = e−cn+ ce−cn
ln lnn

lnn
− ce−c n

lnn
(Z + ln c) + o(n/ lnn) , in probability,

which completes the proof.

EJP 19 (2014), paper 24.
Page 8/15

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-2822
http://ejp.ejpecp.org/


Non-Gaussian fluctuations of the giant cluster

It may be interesting to point out that the same technique can be applied to estimate
the descent of the initial mutant population. Specifically, the sub-population that stems
from the ∆k mutants at the initial time is described by a Yule process Y (m) with unit
birth rate per individual and started from Y

(m)
0 = ∆k. It should be plain that Y (m)

τ(n)

coincides with ∆k,n, the number of vertices i ∈ [n] such that, on the branch from i to the
root 1, at least one edge with label at most k is removed when performing percolation.
From the same argument as in Lemma 2.5, one can check that for any 1/2 < α < 1,

lim
n→∞

P
(∣∣∣∆k,n − eτ(n)∆k

∣∣∣ > eτ(n)kα
)

= lim
n→∞

P
(∣∣∣e−τ(n)Y (m)

τ(n) − Y
(m)
0

∣∣∣ > kα
)

= 0 .

It follows that
∆k,n = eτ(n)∆k + o(n/ lnn) in probability. (2.9)

On the one hand, recall from Lemma 2.4 that eτ(n)kα = o(n/ lnn) in probability. On
the other hand, combining Proposition 2.1 and Lemma 2.4, we get

lnn

n
eτ(n)∆k − 3c ln lnn =⇒ c (Z + ln c) ,

and we conclude that

lnn

n
∆k,n − 3c ln lnn =⇒ c (Z + ln c) . (2.10)

More precisely, this weak convergence holds jointly with that in Theorem 1.1, as we can
see from Lemma 2.5 and (2.9)

2.3 Miscellaneous comments

For the purpose of this section, it is convenient to rewrite Theorem 1.1 in terms of
∆n = n − Gn, the number of vertices in Tn which are disconnected from the root after
performing a bond percolation with parameter pn. We have then(

n−1∆n − (1− e−c)
)

lnn+ ce−c ln lnn =⇒ ce−c (Z + ln c) . (2.11)

We also introduce a standard Luria-Delbrück variable Zm with parameter m > 0,
which has generating function

E
(
sZm

)
= (1− s)m(1−s)/s , 0 ≤ s ≤ 1 .

Recall that as m→∞, there is the weak convergence

Zm
m
− lnm =⇒ Z (2.12)

where Z has the continuous Luria-Delbrück distribution. See Pakes [21] or Theorem
4.1 in Möhle [20].

(a) It has been argued that for certain populations models with a small rate of neu-
tral mutation, the number of mutants has a Luria-Delbrück law ; see Section 2 in Kemp
[15] and references therein. In this setting, the parameter is given by m = gN(a + g)

where N is the total population size, a the rate of birth of clones, and g the rate of birth
of new mutants. We stress however that, as pointed out by Kemp, the models lead-
ing to these Luria-Delbrück laws ‘involve simplifying assumptions that leave realism
somewhat in doubt’.

In our framework, interpreting the recursive construction of Tn as a Yule process
and percolation as rare neutral mutations, this suggests that the number ∆n of vertices
disconnected from the root might have a distribution close to the Luria-Delbrück law
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with parameter m = cn/ lnn. If we write ∆′n = Zm for the latter, then (2.12) yields the
weak convergence (

n−1∆′n − c
)

lnn+ c ln lnn =⇒ c (Z + ln c) .

This resembles (2.11), but with fundamental discrepancies. Note in particular that for
c > 1, the estimation above would imply that for n � 1, the mutant population is close
to cn, a quantity strictly larger than the total population! It is therefore unlikely that
Theorem 1.1 could be established rigorously from such arguments.

(b) If we write C1,n ≥ C2,n ≥ . . . for the sequence of the sizes of the percolation
clusters disconnected from the root and ranked in the decreasing order, then there is
clearly the identity

∆n =
∑
i

Ci,n . (2.13)

Theorem 1 in [3] states that for every fixed integer j,(
lnn

n
C1,n, . . . ,

lnn

n
Cj,n

)
=⇒ (x1, . . . , xj) (2.14)

where x1 > x2 > . . . denotes the sequence of the atoms of a Poisson random measure
on (0,∞) with intensity ce−cx−2dx . It is certainly tempting to expect that the finite
dimensional convergence (2.14) might be reinforced and then yield (2.11) via (2.13).

An obvious obstacle is that the series
∑

xi diverges a.s.; however this can be cir-
cumvented by considering

Xn :=
∑
i

⌊ n

lnn
xi

⌋
.

The reason for taking integer parts above is of course because cluster sizes are integers.
Note that this limits de facto the sum to atoms such that xi ≥ n−1 lnn, and then Xn <∞
a.s. More precisely, by the elementary mapping theorem for Poisson random measures,
bx1n ln−1 nc, . . . can be viewed as the sequence of atoms of a Poisson random measure
on N with intensity mµ where m = ce−cn ln−1 n and µ is the probability measure given
by µ(k) = k−1 − (k + 1)−1. Thus Xn = Zm has the Luria-Delbrück law with parameter
m, see Section 3 in Möhle [20].

As a consequence of (2.12), there is the weak convergence(
n−1Xn − ce−c

)
lnn+ ce−c ln lnn =⇒ ce−c (Z + ln c− c) .

This again resembles (2.11), in particular one captures the deterministic correction
involving the iterated logarithm, and the random fluctuations are the same up-to a con-
stant. This corroborates the fact that the fluctuations for the size of the giant component
are chiefly due to the largest percolation clusters. However, this fails to give the correct
first order (ce−c instead of 1 − e−c), showing that Theorem 1.1 cannot be derived from
weak limits theorems as (2.14).

(c) We now conclude this section by pointing out that the problem considered in
this work could also have been formulated in terms of an urn model à la Pólya-Hoppe.
Indeed, the recursive construction of Tn together with marks on edges corresponding
to percolation can also be described as follows. We start with an urn containing a single
red ball (the root), and at each step, we add either a red ball or a black ball according to
the following random algorithm. With probability c/ lnn, we add a black ball to the urn,
and with probability pn = 1 − c/ lnn, we pick a ball uniformly at random in the current
contain of the urn, and then replace it into the urn together with a new ball of the same
color. Then ∆n is the number of black balls when the urn contains exactly n balls, and
(2.14) thus gives then a precise limit theorem for the proportion of black balls.
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3 Percolation on a regular tree

The purpose of this section is to point out that the approach used in the proof of
Theorem 1.1 can be also applied to study percolation on other classes of trees; we shall
focus here on the simplest case, namely regular trees. Specifically, let d ≥ 2 be a fixed
integer, consider the rooted infinite d-regular tree (i.e. each vertex has outer-degree d)
and perform a Bernoulli bond percolation with parameter

p′h = exp(−c/h) ,

where c > 0 is fixed and h ∈ N. Observe that the probability that a given vertex at height
h has been disconnected from the root equals 1 − e−c. Since there are dh vertices at
height h, first and second moments calculations as explained in the Introduction readily
show that the number ∇h of vertices at height h which have been disconnected from
the root fulfills

lim
h→∞

d−h∇h = 1− e−c in probability.

We are interested in the fluctuations of ∇h. In this direction, it is convenient to use
the notation logd x = lnx/ ln d for the logarithm with base d of x > 0, and y = byc + {y}
for the decomposition of a real number y as the sum of its integer and fractional parts.
We introduce for every b ∈ [0, 1) and x > 0

Λ̄b(x) =
dbb−logd xc+1

d− 1
.

The function Λ̄b decreases and can be viewed as the tail of a measure Λb on (0,∞).
Clearly Λ̄b(x) � x−1, and it follows in particular that Λb fulfills the integral condition∫

(0,∞)

(1 ∧ x2)Λb(dx) <∞ .

This enables us to introduce a spectrally positive Lévy process Lb = (Lb(t))t≥0 with
Laplace exponent

Ψb(a) =

∫
(0,∞)

(e−ax − 1 + ax1{x<1})Λb(dx) ,

that is

E (exp(−aLb(t))) = exp {tΨb(a)} , a ≥ 0 .

We stress that a similar process arises in relation with limit theorems for the number of
random records on a complete regular tree; see Janson [17].

We are now able to state the following analog of Theorem 1.1 (or rather of Equation
(2.11)).

Theorem 3.1. In the regime where h → ∞ with {logd h} → b ∈ [0, 1), here is the weak
convergence

h
(
d−h∇h − (1− e−c)

)
+ ce−c logd h =⇒ e−c (Lb(c) + cb) .

We now prepare the ground for the proof of Theorem 3.1. The main technical issue is
to analyze the birth of fluctuations of ∇h, their propagation being then an easy matter.

For every k ∈ N, we enumerate the dk vertices at height k, and for i = 1, . . . , dk, we
write η(h)k,i for the total number of edges on the branch from the i-th vertex to the root

which have been deleted after percolation with parameter e−c/h. So each η
(h)
k,i has the
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binomial distribution with parameter (k, 1− e−c/h) and η(h)k,i = 0 if and only if that vertex
is still connected to the root. We write

∇(h)
k =

dk∑
i=1

1{η(h)k,i≥1}

for the number of vertices at height k which are disconnected from the root, in particu-
lar for k = h, ∇h = ∇(h)

h . We also set

Σ
(h)
k =

dk∑
i=1

η
(h)
k,i .

Clearly, ∇(h)
k ≤ Σ

(h)
k , and the purpose of the next lemma is to point out that these two

quantities are close when k � h. This will be useful in the sequel as the distribution of
Σ

(h)
k is easier to estimate than that of ∇(h)

k .

Lemma 3.2. We have

E(∇(h)
k ) = dk

(
1− e−ck/h

)
and E(Σ

(h)
k ) = kdk

(
1− e−c/h

)
.

Proof. The probability that a given vertex at level k has been disconnected from the
root equals 1 − P(η

(h)
k,i = 0) = 1 − e−ck/h, and as there are dk vertices at that level, the

first assertion is obvious. Next, consider the edges at height ` ∈ N, and for j = 1, . . . , d`,
write ε`,j = 1 if the j-th edge is removed after percolation and ε`,j = 0 otherwise. So the

ε`,j are i.i.d. Bernoulli variables with parameter 1− e−c/h and η(h)k,i =
∑k
`=1 ε`,`(i) where

`(i) denotes the ancestor of i at level `. Because there are exactly dk−` vertices at level
k whose branch to the root passes through a given edge at height `, there is the identity

Σ
(h)
k =

k∑
`=1

d`∑
j=1

dk−`ε`,j , (3.1)

and this yields our second assertion.

We next analyze the asymptotic behavior of Σ
(h)
k in appropriate regimes.

Lemma 3.3. In the regime where h → ∞ with k2 � h � dk and {logd h} → b ∈ [0, 1),
there is the weak convergence

hd−kΣ
(h)
k − c(k − blogd hc) =⇒ Lb(c).

Proof. We compute the Laplace transform of Σ
(h)
k from the identity (3.1) and get

E
(

exp(−aΣ
(h)
k )
)

= exp

(
−

k∑
`=1

d` ln
(

e−c/h + (1− e−c/h)e−ad
k−`
))

.

As a consequence, the cumulant of hd−kΣ
(h)
k ,

κ
(h)
k (a) = − lnE

(
exp(−ahd−kΣ

(h)
k )
)

can be expressed as

κ
(h)
k (a) =

k∑
`=1

d` ln
(

1− (1− e−c/h)(1− e−ahd
−`

)
)
.
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In the regime where h→∞ with k2 � h, we get

κ
(h)
k (a) = c

k∑
`=1

d`

h
(1− e−ahd

−`
) + o(1)

= c

∫
(0,∞)

(1− e−ax − ax1{x≤1})Π
(h)
k (dx) + ac

∫
(0,1]

xΠ
(h)
k (dx) + o(1) ,

where the measure Π
(h)
k is given by

Π
(h)
k =

k∑
`=1

d`

h
δhd−` .

One has immediately ∫
(0,1]

xΠ
(h)
k (dx) = k − blogd hc .

On the other hand, the tail Π̄
(h)
k (x) = Π

(h)
k ((x,∞)) is given for h� dk by

Π̄
(h)
k (x) =

k∑
`=1

d`

h
1{hd−`>x} =

blogd(h/x)c∑
`=1

d`

h
.

We write the quantity above as

h−1
dblogd(h/x)c+1 − d

d− 1
=
db{logd h}−logd xc+1 − dh−1

d− 1
,

so that in the regime h→∞ with {logd h} → b, we have

lim Π̄
(h)
k (x) =

dbb−logd xc+1

d− 1
= Λ̄b(x) .

It is now easy to conclude that in the regime of the statement,

lim
(
κ
(h)
k (a)− ac(k − blogd hc)

)
= −cΨb(a) ,

and this establishes our claim.

It follows now readily from Lemma 3.2 that ∇(h)
k and Σ

(h)
k have the same asymptotic

behavior. Specifically, we have:

Corollary 3.4. In the regime where h→∞ with k2 � h� dk and {logd h} → b ∈ [0, 1),
there is the weak convergence

hd−k∇(h)
k − c(k − blogd hc) =⇒ Lb(c).

Proof. Indeed we get from Lemma 3.2 that for h� dk

E
(

Σ
(h)
k −∇

(h)
k

)
= O

(
dkk2h−2

)
,

and therefore if further k2 � h, then

limhd−k
(

Σ
(h)
k −∇

(h)
k

)
= 0 in probability.

We can thus conclude from Lemma 3.3.
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We can now complete the proof of Theorem 3.1 along the same line as for Theorem
1.1; for the sake of avoiding repetitions, technical details will be skipped.

Proof of Theorem 3.1. For every h ≥ 1, we write (W
(h)
j , j ∈ N) for a Galton-Watson

process with binomial reproduction law with parameter (d, e−c/h). Then(
d−jecj/hW

(h)
j : j ∈ N

)
is a square integrable martingale which converges a.s., and more precisely, one readily
checks from martingale arguments that for every α > 1/2

lim
n→∞

Pn

(
sup
j≥0

∣∣∣d−jecj/hW (h)
j − n

∣∣∣ > nα
)

= 0 uniformly in h ≥ 1 ,

where the notation Pn refers to the law of the process W (h) started from W
(h)
0 = n

ancestors.
We fix a starting level k = blog4

d hc, and consider the process which counts for j =

0, 1, . . . the number of vertices of the d-regular tree at level k+j which are still connected
to the root after percolation. We obtain a version of the Galton-Watson process above,
starting from W

(h)
0 = dk − ∇(h)

k . Skorokhod’s representation theorem enables us to
assume that the weak convergence in Corollary 3.4 holds almost surely, that is

hd−k∇(h)
k = c(k − blogd hc) + Lb(c) + o(1).

We now observe the process for j = h− k, so W (h)
h−k = dh −∇h, and we deduce from

above that for e.g. α = 2/3, we have with high probability

dk−hec(h−k)/h(dh −∇h) = dk −∇(h)
k + o(d2k/3)

= dk − dk

h
c(k − blogd hc)−

dk

h
Lb(c) + o(dk/h).

It follows that

1− d−h∇h = e−c(1−k/h)
(

1− c

h
(k − blogd hc)−

Lb(c)

h
+ o(1/h)

)
= e−c +

ce−c

h
blogd hc − e−c

Lb(c)

h
+ o(1/h)

and this entails our claim.
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