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Abstract

We prove an invariance principle for Brownian motion in Gaussian or Poissonian ran-
dom scenery by the method of characteristic functions. Annealed asymptotic limits
are derived in all dimensions, with a focus on the case of dimension d = 2, which is
the main new contribution of the paper.
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1 Introduction

In this paper, we study the asymptotic distributions of random processes of the form∫ t
0
V (Bs)ds, with V some stationary random potential and Bs, s ∈ [0, 1] a standard Brow-

nian motion independent of V .
The corresponding discrete version is the Kesten-Spitzer model of random walk in

random scenery [4] of the form Wn =
∑n
i=1 ξSk . Here, Sk = X1 + . . . + Xk is a random

walk on Z with i.i.d. increments and ξn, n ∈ Z, are i.i.d. and independent of Xi. When
Xi and ξi belong to the domain of attraction of certain stable laws, then after proper
scaling a(n)−1W[nt] converges weakly as n→∞ to a self-similar process with stationary
increment. Non-stable limits may appear in that case. Assuming moreover that ξi has
zero mean and finite variance, it is shown in [2] that (n log n)−

1
2W[nt] converges weakly

to a Brownian motion when d = 2. When d ≥ 3, the argument contained in [4] essentially
proves that n−

1
2W[nt] converges weakly to a Brownian motion.

The continuous version Xn(t) = a(n)−1
∫ nt

0
V (Bs)ds has been analyzed in [9] for

piecewise constant potentials given by V (x) = ξ[x+U ], where ξi are i.i.d. random vari-
ables with zero mean and finite variance, and U is uniformly distributed in [0, 1)d and
independent of ξi. The results are similar to those obtained in the discrete setting. In
[5], Kipnis-Varadhan proved central limit results in both the discrete and continuous
settings for additive functionals of Markov processes. For the special case of Brownian
motion in random scenery and by adapting the point of view of "medium seen from an
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Brownian motion in random scenery

observer", their results can be applied to prove invariance principle for the most gen-
eral class of V (x) when d ≥ 3, including the ones analyzed in [9]. For more relevant
results and backgrounds, see [6] and the references therein.

In this paper, we consider two types of simple yet important potentials, namely the
Gaussian and Poissonian potentials, and derive the asymptotic distributions of Xn(t) =

a(n)−1
∫ nt

0
V (Bs)ds in all dimensions by method of characteristic functions. Since [8]

contains the results for d = 1 while [5] implies the results for d ≥ 3, our main con-
tribution is the case d = 2. For Gaussian and Poissonian potentials, the method of
characteristic functions offers a relatively simple proof, which we present in all dimen-
sions.

There are several physical motivations for studying functionals of the form
∫ t

0
V (Bs)ds.

We mention two examples here. The first is the parabolic Anderson model ut = 1
2∆u +

V u with random potential V and initial condition f . By Feynman-Kac formula, the so-
lution can be written as u(t, x) = ExB{f(Bt) exp(

∫ t
0
V (Bs)ds)}, where ExB denotes the

expectation with respect to the Brownian motion starting from x. It is clear that the
large time behavior of u(t, x) is affected by the asymptotics of Brownian functional
exp(

∫ t
0
V (Bs)ds), see e.g. the applications in the context of homogenization [7, 8, 3].

As a second example, if we look at the model of Brownian particle in Poissonian ob-
stacle denoted by V , then the integral

∫ t
0
V (Bs)ds measures the total trapping energy

received by the particle up to time t and exp(−
∫ t

0
V (Bs)ds) is used to define the Gibbs

measure. For Brownian motion in Poissonian potential, many existing results are of
large deviation type; see [10] for a review of such results.

The rest of the paper is organized as follows. We first describe the assumptions
on the potentials and state our main theorems in section 2. We then prove the con-
vergence of finite dimensional distributions and tightness results in section 3 for the
non-degenerate case and section 4 for the degenerate case (when the power spectrum
of the potential vanishes at the origin). We discuss possible applications and extensions
of our results in section 5 and present some technical lemmas in an appendix.

Here are notations used throughout the paper. We write a . b when there exists a
constant C independent of n such that a ≤ Cb. N(µ, σ2) denotes the normal random
variable with mean µ and variance σ2 and qt(x) is the density function of N(0, t). We
use a ∧ b = min(a, b) and a ∨ b = max(a, b). For multidimensional integrations,

∏
i dxi is

abbreviated as dx.

2 Problem setup and main results

The Gaussian and Poissonian potentials are denoted by Vg(x) and Vp(x), respectively,
throughout the paper.

For the Gaussian case, we assume Vg(x) is stationary with zero mean and the covari-
ance function Rg(x) = E{Vg(x + y)Vg(y)} is continuous and compactly supported. The
power spectrum

R̂g(ξ) =

∫
Rd
Rg(x)e−iξxdx,

and by Bochner’s theorem R̂g(0) =
∫
Rd
Rg(x)dx ≥ 0.

For the Poissonian case, we assume

Vp(x) =

∫
Rd
φ(x− y)ω(dy)− cp, (2.1)

where ω(dx) is a Poissonian field in Rd with the d−dimensional Lebesgue measure as
its intensity measure and φ is a continuous, compactly supported shape function such
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Brownian motion in random scenery

that
∫
Rd
φ(x)dx = cp. It is straightforward to check that Vp(x) is stationary and has zero

mean, and its covariance function

Rp(x) = E{Vp(x+ y)Vp(y)} =

∫
Rd
φ(x+ z)φ(z)dz (2.2)

is continuous and compactly supported as well. The power spectrum

R̂p(ξ) =

∫
Rd
Rp(x)e−iξxdx,

and since
∫
Rd
φ(x)dx = cp, we have R̂p(0) = c2p ≥ 0.

In the Poissonian case, the random field Vp(x) is mixing in the following sense. For
two Borel sets A,B ⊂ Rd, let FA and FB denote the sub-σ algebras generated by the
field Vp(x) for x ∈ A and x ∈ B, respectively. Then there exists a positive and decreasing
function ϕ(r) such that

|Cor(η, ζ)| ≤ ϕ(2d(A,B)) (2.3)

for all square integrable random variables η and ζ that are FA and FB measurable,
respectively. The multiplicative factor 2 is only here for convenience. Actually, when |x|
is sufficiently large, Vp(x+ y) is independent of Vp(y) and so the mixing coefficient ϕ(r)

can be chosen as a positive, decreasing function with compact support in [0,∞). We
will use this in the estimation of the fourth moment of Vp(x).

The following theorems are our main results.

Theorem 2.1. Let Bt, t ≥ 0 be a d−dimensional standard Brownian motion indepen-
dent of the stationary random potential V (x), which is chosen to be either Gaussian or
Poissonian, and R(x) = E{V (x+y)V (y)} be the covariance function, R̂(0) =

∫
Rd
R(x)dx.

Define Xn(t) = a(n)−1
∫ nt

0
V (Bs)ds with the scaling factor

a(n) =


n

3
4 d = 1,

(n log n)
1
2 d = 2,

n
1
2 d ≥ 3.

Then we have that Xn(t) converges weakly in C([0, 1]) to σdZt with the following repre-
sentations:

When d = 1, then Zt =
∫
R
Lt(x)W (dx), where Lt(x) is the local time of Bt and W (dx)

is a 1−dimensional white noise independent of Lt(x); σd =

√
R̂(0).

When d = 2, then Zt is a standard Brownian motion; σd =

√
R̂(0)/π.

When d ≥ 3, then Zt is a standard Brownian motion;

σd =

√
1

π
d
2

Γ(
d

2
− 1)

∫
Rd

R(x)

|x|d−2
dx.

We note that when d ≥ 3, then σd =
√

4(2π)−d
∫
Rd
R̂(ξ)|ξ|−2dξ. Since R̂(ξ) ≥ 0, σd > 0

in both cases and the limit is nontrivial. When d ≤ 2, the limit is nontrivial if R̂(0) 6= 0.
In the degenerate case when R̂(0) = 0, for instance if cp = 0 in the Poissonian case in
d = 1, 2, then the limit obtained in the previous theorem is trivial. The scaling factor
a(n) should be chosen smaller to obtain a nontrivial limit. We prove the following result:

Theorem 2.2. In d = 1, 2, let Bt, t ≥ 0 be a d−dimensional standard Brownian mo-
tion independent of the stationary random potential V (x), which is chosen to be either
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Brownian motion in random scenery

Gaussian or Poissonian, and R(x) = E{V (x+ y)V (y)} with R̂(ξ)|ξ|−2 integrable. Define
Xn(t) = n−

1
2

∫ nt
0
V (Bs)ds. Then we have Xn(t) converges weakly in C([0, 1]) to σWt, with

Wt a standard Brownian motion and σ =
√

4(2π)−d
∫
Rd
R̂(ξ)|ξ|−2dξ.

Remark 2.3. In the degenerate case, the scaling factor n−
1
2 is the same as in d ≥ 3.

In d = 1, the limiting processes are different for the non-degenerate and degenerate
cases. Since R̂(ξ) ∈ L1, for R̂(ξ)|ξ|−2 to be integrable, we only need to assume that
R̂(ξ) . |ξ|α at the origin with α > 1 when d = 1 and α > 0 when d = 2.

We will refer to Theorem 2.1 and 2.2 as non-degenerate and degenerate cases re-
spectively in the following sections. The proof contains convergence of finite dimen-
sional distributions and tightness result.

3 Non-degenerate case when d ≥ 1

3.1 Convergence of finite dimensional distributions

We first prove the weak convergence of finite dimensional distributions through the
estimation of characteristic functions.

For any 0 = t0 < t1 < . . . < tN ≤ 1 and αi ∈ R, i = 1, . . . , N , by considering
YN :=

∑N
i=1 αi(Xn(ti)−Xn(ti−1)), we have the following explicit expressions.

In the Gaussian case, since YN =
∑N
i=1 αia(n)−1

∫ nti
nti−1

Vg(Bs)ds, we obtain

E{exp(iθYN )} =E{E{exp(iθYN )|B}}

=E{exp(−1

2
θ2

N∑
i,j=1

αiαj
1

a(n)2

∫ nti

nti−1

∫ ntj

ntj−1

Rg(Bs −Bu)dsdu)}.
(3.1)

Since E{exp(iθYN )|B} is bounded by 1, to prove convergence of E{exp(iθYN )}, we only
need to prove the convergence in probability of a(n)−2

∫ nti
nti−1

∫ ntj
ntj−1

Rg(Bs −Bu)dsdu.
In the Poissonian case, we write

YN =

∫
Rd

(
N∑
i=1

αi
1

a(n)

∫ nti

nti−1

φ(Bs − y)ds

)
ω(dy)− cp

a(n)

N∑
i=1

αi(nti − nti−1),

and straightforward calculations lead to

E{exp(iθYN )} = E{exp(

∫
Rd

(eiθFn(y) − 1)dy)} exp(−iθ cp
a(n)

N∑
i=1

αi(nti − nti−1)),

where Fn(y) :=
∑N
i=1 αia(n)−1

∫ nti
nti−1

φ(Bs − y)ds. Since
∫
Rd
φ(x)dx = cp, we obtain

E{exp(iθYN )} = E{E{exp(iθYN )|B}} = E{exp(

∫
Rd

∞∑
k=2

1

k!
(iθFn(y))kdy)}. (3.2)

Similarly, E{exp(iθYN )|B} is bounded by 1, so it suffices to show the convergence in
probability of

∫
Rd

∑∞
k=2

1
k! (iθFn(y))kdy. When k = 2,

∫
Rd
Fn(y)2dy =

N∑
i,j=1

αiαja(n)−2

∫ nti

nti−1

∫ ntj

ntj−1

Rp(Bs −Bu)dsdu (3.3)

is the conditional variance of YN given Bs. We will see that the proof of the Poissonian
case implies the Gaussian case.
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3.1.1 Poissonian case d = 1

When d = 1, since Vp is mixing, [8, Theorem 2] implies the result. We give a different
proof using characteristic functions.

First of all, by scaling property of Brownian motion, we do not distinguish between
Fn(y) =

∑N
i=1 αin

− 3
4

∫ nti
nti−1

φ(Bs−y)ds and Fn(y) =
∑N
i=1 αin

1
4

∫ ti
ti−1

φ(
√
nBs−y)ds. Using

the second representation, we have

Fn(y) =

N∑
i=1

αin
1
4

∫ ti

ti−1

φ(
√
nBs − y)ds =

N∑
i=1

αin
1
4

∫
R

φ(
√
nx− y)(Lti(x)− Lti−1(x))dx,

where Lt(x) is the local time of Bs. So

∫
Rd
Fn(y)2dy =

N∑
i,j=1

αiαj
√
n

∫
R2

Rp(
√
n(z−x))(Lti(x)−Lti−1(x))(Ltj (z)−Ltj−1(z))dxdz.

(3.4)
We have the following two propositions.

Proposition 3.1.
∫
R
Fn(y)2dy → R̂p(0)

∑N
i,j=1 αiαj

∫
R

(Lti(x)−Lti−1
(x))(Ltj (x)−Ltj−1

(x))dx

almost surely.

Proposition 3.2.
∫
R

∑∞
k=3

1
k! (iθFn(y))kdy → 0 almost surely.

Proof of Proposition 3.1. For any i, j = 1, . . . , N , we consider

(i) :=
√
n

∫
R2

Rp(
√
n(z − x))(Lti(x)− Lti−1

(x))(Ltj (z)− Ltj−1
(z))dxdz

=

∫
R2

Rp(y)(Lti(x)− Lti−1(x))(Ltj (x+
y√
n

)− Ltj−1(x+
y√
n

))dydx,

and because Lt(x) is continuous with compact support almost surely, we have

(i)→ R̂p(0)

∫
R

(Lti(x)− Lti−1
(x))(Ltj (x)− Ltj−1

(x))dx,

which completes the proof.

Proof of Proposition 3.2. For a fixed realization of Bs, we have

|Fn(y)| . n
1
4

∫
|x|<M

|φ(
√
nx− y)|dx,

where M is a constant depending on the realization and thus

|
∫
R

Fn(y)kdy|

.n
k
4

∫
R

∫
[−M,M ]k

k∏
i=1

|φ(
√
nxi − y)|dxdy = n

k
4

∫
R

∫
[−M,M ]k

k∏
i=1

|φ(
√
n(xi − x1) + y)|dxdy

≤ 1

n
k−2
4

∫
Rk

∫
[−M,M ]

|φ(y)|
k∏
i=2

|φ(xi −
√
nx1 + y)|dxdy .

1

n
k−2
4

.

Since
∑∞
k=3

1
k!
|θ|k

n
k−2
4

→ 0 as n→∞, the proof is complete.
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Recalling (3.2), by Proposition 3.1 and 3.2, we have proved the almost sure conver-
gence of the exponents. Therefore, by the Lebesgue dominated convergence theorem
we have

E{exp(iθYN )} =E{exp(

∫
Rd

∞∑
k=2

1

k!
(iθFn(y))kdy)}

→E{exp(−1

2
θ2R̂p(0)

N∑
i,j=1

αiαj

∫
R

(Lti(x)− Lti−1
(x))(Ltj (x)− Ltj−1

(x))dx)}

=E{exp(iθσd

N∑
i=1

αi(Zti − Zti−1
))}

(3.5)
when Zt =

∫
R
Lt(x)W (dx).

3.1.2 Poissonian case d ≥ 2

When d ≥ 2, the local time does not exist, and to prove the convergence of the con-
ditional variance of Xn(t) given Bs, we need to calculate fourth moments. First, we
define

Vn = E{Xn(t)2|Bs, s ∈ [0, t]} =
1

a(n)2

∫ nt

0

∫ nt

0

Rp(Bs −Bu)dsdu (3.6)

so that E{Xn(t)2} = E{Vn}. The following two lemmas show that the conditional vari-
ance converges in probability.

Lemma 3.3. E{Vn} → σ2
dt as n→∞.

Lemma 3.4. E{V2
n} → σ4

dt
2 as n→∞.

In the proofs, we deal with d = 2 and d ≥ 3 in different ways. For the latter, we only
use the fact that R̂p(ξ)|ξ|−2 is integrable and so the proof also applies in the degenerate
case. Both Rp(x) and R̂p(ξ) are even functions, a fact that we will use frequently in the
proof.

Proof of Lemma 3.3. We first consider the case d = 2. For fixed x, by change of vari-

ables λ = |x|2
2u , we have

E{Vn} =
2

a(n)2

∫ nt

0

∫ s

0

∫
Rd
Rp(x)

1

(2πu)
d
2

e−
|x|2
2u dxduds

=
n

a(n)2

∫ t

0

∫
Rd

∫ ∞
|x|2
2ns

Rp(x)
1

π
d
2

λ
d
2−2e−λ

1

|x|d−2
dλdxds.

(3.7)

Since a(n) = (n log n)
1
2 , by integrations by parts in λ, we have

E{Vn} =
1

log n

∫ t

0

∫
Rd

1

π
Rp(x)

(
e−
|x|2
2ns log

2ns

|x|2
+

∫ ∞
|x|2
2ns

e−λ log λdλ

)
dxds→ t

π
R̂p(0)

(3.8)
by the Lebesgue dominated convergence theorem.

Consider now the case d ≥ 3. Then, a(n) = n
1
2 and by Fourier transform, we have

E{Vn} =
1

(2π)dn

∫
[0,nt]2

∫
Rd
R̂p(ξ)e

− 1
2 |ξ|

2|s−u|dξdsdu

=
4

(2π)d

∫
Rd

R̂p(ξ)

|ξ|2

∫ t

0

(1− e− 1
2 |ξ|

2ns)dsdξ → 4t

(2π)d

∫
Rd

R̂p(ξ)

|ξ|2
dξ

(3.9)

as n→∞.

EJP 19 (2014), paper 1.
Page 6/19

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-2894
http://ejp.ejpecp.org/


Brownian motion in random scenery

Proof of Lemma 3.4. By symmetry of R(x), we write

V2
n = a(n)−4

∫
[0,nt]4

Rp(Bs1 −Bs2)Rp(Bs3 −Bs4)ds = 8((i) + (ii) + (iii)),

where

(i) =
1

a(n)4

∫
0<s1<s2<s3<s4<nt

Rp(Bs1 −Bs2)Rp(Bs3 −Bs4)ds, (3.10)

(ii) =
1

a(n)4

∫
0<s1<s3<s2<s4<nt

Rp(Bs1 −Bs2)Rp(Bs3 −Bs4)ds, (3.11)

(iii) =
1

a(n)4

∫
0<s1<s3<s4<s2<nt

Rp(Bs1 −Bs2)Rp(Bs3 −Bs4)ds. (3.12)

We consider first the case d = 2.
(i): for fixed x, y, by change of variables u1 = s1

n , u3 = s3−s2
n , λ2 = |x|2

2(s2−s1) , λ4 =
|y|2

2(s4−s3) , we have

E{(i)} =
n2

a(n)4

∫
R4

+

∫
R2d

Rp(x)

|x|d−2

Rp(y)

|y|d−2

1

4πd
λ
d
2−2
2 e−λ2λ

d
2−2
4 e−λ4

1
0≤u1+u3≤t; |x|

2

2λ2
+
|y|2
2λ4
≤n(t−u1−u3)

dxdydλ2dλ4du1du3.

We define

f(c) =
1

(log n)2

∫
R2

+

1

λ2
e−λ2

1

λ4
e−λ41 |x|2

2λ2
≤cn(t−u1−u3);

|y|2
2λ4
≤cn(t−u1−u3)

dλ2dλ4

for c > 0. Using integrations by parts, f(c)→ 1 as n→∞ as long as x, y 6= 0, u1 +u3 < t.
Moreover, f(c) . (1 + | log c(t− u1− u3)|+ | log |x||)(1 + | log c(t− u1− u3)|+ | log |y||). On
the other hand, we note that

f(
1

2
) ≤ 1

(log n)2

∫
R2

+

1

λ2
e−λ2

1

λ4
e−λ41 |x|2

2λ2
+
|y|2
2λ4
≤n(t−u1−u3)

dλ2dλ4 ≤ f(1),

so by the Lebesgue dominated convergence theorem, we have E{(i)} → t2

8π2 R̂p(0)2.
(ii): by a similar change of variables as for (i), we have

E{(ii)} =
n2

a(n)4

∫
R4

+

∫
R3d

Rp(x− z)
|x|d−2

Rp(y − z)
|y|d−2

1

4πd
λ
d
2−2
2 e−λ2λ

d
2−2
4 e−λ4

1
0≤u1+u3≤t; |x|

2

2λ2
+
|y|2
2λ4
≤n(t−u1−u3)

qnu3
(z)dxdydzdλ2dλ4du1du3.

By a change of variables and integration by parts in λ2, λ4, we have

|E{(ii)}|

.

(
n

log n

)2 ∫
[0,t]2

∫
R6

|Rp(
√
n(x− z))Rp(

√
n(y − z))|qu3

(z)

(
e−
|x|2
2u log

2u

|x|2
+

∫ ∞
|x|2
2u

log λe−λdλ

)
(
e−
|y|2
2u log

2u

|y|2
+

∫ ∞
|y|2
2u

log λe−λdλ

)
dudu3dxdydz.

Note that e−
|x|2
2u log 2u

|x|2 +
∫∞
|x|2
2u

log λe−λdλ . 1+ | log u|+ | log |x||. By Lemma A.1, we have

n

log n

∫
R2

|Rp(
√
n(x− z))|

(
e−
|x|2
2u log

2u

|x|2
+

∫ ∞
|x|2
2u

log λe−λdλ

)
dx

.
1

log n

(
1 + | log u|+ | log |z||+ log n1|z|< 2√

n

)
.
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The integral in y is controlled in the same way and we obtain

|E{(ii)}| .
∫

[0,t]2

∫
R2

1

(log n)2

(
1 + | log u|+ | log |z||+ log n1|z|< 2√

n

)2

qu3(z)dzdudu3.

So |E{(ii)}| → 0 as n→∞.
(iii): by a similar change of variables as for (i) and by symmetry of R(x), we have

E{(iii)} =
n2

a(n)4

∫
R4

+

∫
R3d

Rp(x− y + z)

|x|d−2

Rp(y)

|y|d−2

1

4πd
λ
d
2−2
2 e−λ2λ

d
2−2
4 e−λ4

1
0≤u1+u3≤t; |x|

2

2λ2
+
|y|2
2λ4
≤n(t−u1−u3)

qnu3
(z)dxdydzdλ2dλ4du1du3.

After integrations by parts in λ2, λ4, we have

|E{(iii)}|

.

(
n

log n

)2 ∫
[0,t]2

∫
R6

|Rp(
√
n(x− y + z))Rp(

√
ny)|qu3(z)

(
e−
|x|2
2u log

2u

|x|2
+

∫ ∞
|x|2
2u

log λe−λdλ

)
(
e−
|y|2
2u log

2u

|y|2
+

∫ ∞
|y|2
2u

log λe−λdλ

)
dudu3dxdydz.

Note that e−
|x|2
2u log 2u

|x|2 +
∫∞
|x|2
2u

log λe−λdλ . 1 + | log u|+ | log |x||. By applying Lemma A.1

to the integral in x, we have

n

log n

∫
R2

|Rp(
√
n(x− (y − z)))|

(
e−
|x|2
2u log

2u

|x|2
+

∫ ∞
|x|2
2u

log λe−λdλ

)
dx

.
1

log n

(
1 + | log u|+ | log |y − z||+ log n1|y−z|< 2√

n

)
.

So

|E{(iii)}| . n

(log n)2

∫
[0,t]2

∫
R4

(
1 + | log u|+ | log |y − z||+ log n1|y−z|< 2√

n

)
|Rp(
√
ny)|qu3

(z)

(1 + | log u|+ | log |y||)dydzdu3du.

Since |Rp(
√
ny)| . 1 ∧ |

√
ny|−α for some α > 2, by Lemma A.1, we know E{(iii)} → 0 as

n→∞.

We now consider the case d ≥ 3.
(i): after Fourier transform and changing of variables ui = si − si−1 for i = 1, 2, 3, 4

with s0 = 0, we derive

E{(i)} =
1

(2π)2dn2

∫
R4

+

∫
R2d

1∑4
i=1 ui≤nt

R̂p(ξ1)R̂p(ξ2)e−
1
2 |ξ1|

2u2e−
1
2 |ξ2|

2u4dξ1dξ2du

=
1

(2π)2d

∫
R2

+

∫
R2d

R̂p(ξ1)R̂p(ξ2)10≤u1+u3≤tFn(
1

2
|ξ1|2,

1

2
|ξ2|2, t− u1 − u3)dξ1dξ2du,

where Fn(a, b, t) :=
∫
R2

+
10≤s+u≤nte

−ase−budsdu for a ≥ 0, b ≥ 0. It is straightforward to

check that abFn(a, b, t) is uniformly bounded and Fn(a, b, t)→ 1
ab as n→∞. Thus,

E{(i)} → 1

(2π)2d

∫
R2

+

∫
R2d

R̂p(ξ1)R̂p(ξ2)10≤u1+u3≤t
4

|ξ1|2|ξ2|2
dξ1dξ2du1du3

=
2t2

(2π)2d

(∫
Rd

R̂p(ξ)

|ξ|2
dξ

)2

.
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(ii): similarly we have

E{(ii)}

=
1

(2π)2dn2

∫
R4

+

∫
R2d

1∑4
i=1 ui≤nt

R̂p(ξ1)R̂p(ξ2)e−
1
2 |ξ1|

2u2e−
1
2 |ξ1+ξ2|2u3e−

1
2 |ξ2|

2u4dξ1dξ2du

.t
∫
R2d

∫ t

0

R̂p(ξ1)R̂p(ξ2)

|ξ1|2|ξ2|2
e−

1
2 |ξ1+ξ2|2nu3du3dξ1dξ2 → 0

as n→∞.
(iii): by the same change of variables, we obtain

E{(iii)}

=
1

(2π)2dn2

∫
R4

+

∫
R2d

1∑4
i=1 ui≤nt

R̂p(ξ1)R̂p(ξ2)e−
1
2 |ξ1|

2u2e−
1
2 |ξ1+ξ2|2u3e−

1
2 |ξ1|

2u4dξ1dξ2du

.
t

n

∫
R2d

∫
R2

+

1u3+u4≤nt
R̂p(ξ1)

|ξ1|2
R̂p(ξ2)e−

1
2 |ξ1+ξ2|2u3e−

1
2 |ξ1|

2u4du3du4dξ1dξ2

.
t

n

∫
R2d

∫
R2

+

1u3+u4≤nt
R̂p(ξ1)R̂p(ξ2)

|ξ1|2|ξ2|2
(|ξ1 + ξ2|2 + |ξ1|2)e−

1
2 |ξ1+ξ2|2u3e−

1
2 |ξ1|

2u4du3du4dξ1dξ2

≤t
∫
R2d

∫ t

0

∫
R+

R̂p(ξ1)R̂p(ξ2)

|ξ1|2|ξ2|2
|ξ1 + ξ2|2e−

1
2 |ξ1+ξ2|2u3e−

1
2 |ξ1|

2nu4du3du4dξ1dξ2

+t

∫
R2d

∫ t

0

∫
R+

R̂p(ξ1)R̂p(ξ2)

|ξ1|2|ξ2|2
|ξ1|2e−

1
2 |ξ1|

2u4e−
1
2 |ξ1+ξ2|2nu3du4du3dξ1dξ2 → 0

as n→∞.
To summarize, we have shown that E{V2

n} → σ4
dt

2. The proof is complete.

Remark 3.5. The proof of Lemma 3.4 only requiresR(x) to be symmetric, bounded, and
to satisfy certain integrability condition. In particular, if R(x) is compactly supported,
then the result holds. This will be used in the proof of tightness.

The following lemma proves that those cross terms appearing in the conditional
variance vanish in the limit. When d ≥ 3, as in the proof of Lemma 3.3 and 3.4, we use
the Fourier transform and the integrability of R̂p(ξ)|ξ|−2 so that the proof also applies
to the degenerate case.

Lemma 3.6. 1
a(n)2

∫ nti
nti−1

∫ ntj
ntj−1

Rp(Bs −Bu)dsdu→ 0 in probability when i 6= j.

Proof. Assume i > j,

Consider the case d = 2. For fixed x, u, by change of variables λ = |x|2
2(s−u) , we have

1

a(n)2

∫ nti

nti−1

∫ ntj

ntj−1

E{|Rp(Bs −Bu)|}dsdu

=
n

a(n)2

∫
Rd

∫
R2

+

1
(
|x|2

2n(ti−u)
,

|x|2
2n(ti−1−u)

)
(λ)1(tj−1,tj)(u)

1

2π
d
2

|Rp(x)|
|x|d−2

λ
d
2−2e−λdλdudx.

Recalling that a(n) =
√
n log n, an integration by parts leads to∫

R

1
(
|x|2

2n(ti−u)
,

|x|2
2n(ti−1−u)

)
(λ)λ−1e−λdλ . 1 + log n+ | log(ti − u)|+ | log(ti−1 − u)|+ | log |x||,

and 1
logn

∫
R

1
(
|x|2

2n(ti−u)
,

|x|2
2n(ti−1−u)

)
(λ)λ−1e−λdλ → 0 as n → ∞. We apply the dominated

convergence theorem to conclude the proof.
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Consider now the case d ≥ 3 and

(i) :=
1

n2

∫
R4

+

1s1,s2∈[nti−1,nti]1u1,u2∈[ntj−1,ntj ]Rp(Bs1 −Bu1
)Rp(Bs2 −Bu2

)dsdu.

We show E{(i)} → 0 so the cross term goes to zero in probability. Actually, we have
(i) = 2((I) + (II)), where

(I) =
1

n2

∫
R4

+

1ntj−1≤u2≤u1≤ntj1≤nti−1≤s2≤s1≤ntiRp(Bs1 −Bu1
)Rp(Bs2 −Bu2

)dsdu,

(II) =
1

n2

∫
R4

+

1ntj−1≤u1≤u2≤ntj1nti−1≤s2≤s1≤ntiRp(Bs1 −Bu1)Rp(Bs2 −Bu2)dsdu.

For (I) we have

E{(I)} =
1

(2π)2dn2

∫
R4

+

∫
R2d

1ntj−1≤u2≤u1≤ntj1≤nti−1≤s2≤s1≤ntiR̂p(ξ1)R̂p(ξ2)

e−
1
2 |ξ1|

2(s1−s2)e−
1
2 |ξ1+ξ2|2(s2−u1)e−

1
2 |ξ2|

2(u1−u2)dξ1dξ2dsdu,

which implies E{(I)} . (tj − tj−1)
∫
R2d

∫ ti−tj−1

ti−1−tj
R̂p(ξ1)R̂p(ξ2)
|ξ1|2|ξ2|2 e−

1
2 |ξ1+ξ2|2nududξ1dξ2 → 0 as

n→∞. Similarly, for (II) we have

E{(II)} =
1

(2π)2dn2

∫
R4

+

∫
R2d

1ntj−1≤u1≤u2≤ntj1≤nti−1≤s2≤s1≤ntiR̂p(ξ1)R̂p(ξ2)

e−
1
2 |ξ1|

2(s1−s2)e−
1
2 |ξ1+ξ2|2(s2−u2)e−

1
2 |ξ1|

2(u2−u1)dξ1dξ2dsdu,

so

E{(II)}

.
1

n

∫
[ntj−1,nti]2

∫
R2d

R̂p(ξ1)R̂p(ξ2)

|ξ1|2|ξ2|2
(|ξ1 + ξ2|2 + |ξ1|2)e−

1
2 |ξ1+ξ2|2u1e−

1
2 |ξ1|

2u2dξ1dξ2du1du2

.(ti − tj−1)

∫
R2d

∫ ti

tj−1

R̂p(ξ1)R̂p(ξ2)

|ξ1|2|ξ2|2
e−

1
2 |ξ1+ξ2|2nududξ1dξ2

+(ti − tj−1)

∫
R2d

∫ ti

tj−1

R̂p(ξ1)R̂p(ξ2)

|ξ1|2|ξ2|2
e−

1
2 |ξ1|

2nududξ1dξ2 → 0

as n→∞.

The two following propositions holds, so
∫
Rd

∑∞
k=2

1
k! (iθFn(y))kdy converges in prob-

ability.

Proposition 3.7.
∫
Rd
Fn(y)2dy →

∑N
i=1 α

2
iσ

2
d(ti − ti−1) in probability.

Proposition 3.8.
∫
Rd

∑∞
k=3

1
k! (iθFn(y))kdy → 0 in probability.

Proof of Proposition 3.7. Note that∫
Rd
Fn(y)2dy =

N∑
i,j=1

αiαj
1

a(n)2

∫ nti

nti−1

∫ ntj

ntj−1

Rp(Bs −Bu)dsdu,

when i = j, Lemma 3.3 and 3.4 lead to

1

a(n)2

∫ nti

nti−1

∫ nti

nti−1

Rp(Bs −Bu)dsdu→ σ2
d(ti − ti−1)
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in probability as n→∞.
When i 6= j, by Lemma 3.6, we have

1

a(n)2

∫ nti

nti−1

∫ ntj

ntj−1

Rp(Bs −Bu)dsdu→ 0

in probability as n→∞. The proof is complete.

Proof of Proposition 3.8. We will use C for possibly different constants in the following
estimation. Recall that Fn(y) =

∑N
i=1 αi

1
a(n)

∫ nti
nti−1

φ(Bs − y)ds, so we have |Fn(y)| ≤
C 1
a(n)

∫ n
0
|φ(Bs − y)|ds, and thus∫
Rd
E{|Fn(y)|k}dy ≤ Ck

∫
Rd

1

a(n)k

∫
[0,n]k

E{
k∏
i=1

|φ(Bsi − y)|}dsdy. (3.13)

From now on, we use RHS to denote the RHS of (3.13). By change of variables ui =

si − si−1 for i = 1, . . . , k with s0 = 0, and λi = |xi|2
2ui

for i = 2, . . . , k when xi is fixed, we
have

RHS =
Ckk!

a(n)k

∫
R(k+1)d

∫
Rk+

1∑k
i=1 ui≤n

|φ|(y)|φ|(x2 + y) . . . |φ|(
k∑
i=2

xi + y)

k∏
i=1

qui(xi)dudxdy

=
Ckk!

a(n)k

∫
Rkd

∫
Rk+

1
u1+

∑k
i=2

|xi|2
2λi
≤n
|φ|(y)

|φ|(x2 + y)

|x2|d−2
. . .
|φ|(
∑k
i=2 xi + y)

|xk|d−2

k∏
i=2

1

2π
d
2

λ
d
2−2
i e−λidu1dλdxdy.

When d ≥ 3, note that
∫
Rd
|φ|(y + x)|y|2−ddy is uniformly bounded in x, so after inte-

gration in xk, . . . , x2, y and λ2, . . . , λk, we have RHS ≤ Ckk!n−
k
2 +1 where the factor n

comes from the integration in u1. This leads to

E{|
∫
Rd

∞∑
k=3

1

k!
(iθFn(y))kdy|} ≤

∞∑
k=3

|Cθ|k 1

n
k
2−1
→ 0

as n→∞.
When d = 2, we have

RHS ≤ Ck nk!

a(n)k

∫
Rkd

∫
R
k−1
+

|φ|(y)|φ|(x2 + y) . . . |φ|(
k∑
i=2

xi + y)

k∏
i=2

1

2π
1
λi≥

|xi|2
2n

1

λi
e−λidλdxdy.

(3.14)
By integration by parts, we have 1

(logn)k−1

∫
R
k−1
+

∏k
i=2

1
2π1

λi≥
|xi|2
2n

1
λi
e−λidλ .

∏k
i=2(1 +

| log |xi||). Since φ is compactly supported, we know that xi, i = 2, . . . , k are uniformly

bounded. After integration in xk, . . . , x2, y, we have RHS ≤ Ckk!
(

logn
n

) k
2−1

. So

E{|
∫
Rd

∞∑
k=3

1

k!
(iθFn(y))kdy|} ≤

∞∑
k=3

|Cθ|k
(

log n

n

) k
2−1

→ 0

as n→∞. The proof is complete.

Remark 3.9. In (3.14), if we choose a(n) = n
1
2 instead of a(n) = (n log n)

1
2 , by the same

calculation we still have

E{|
∫
Rd

∞∑
k=3

1

k!
(iθFn(y))kdy|} ≤

∞∑
k=3

|Cθ|k log nk−1

n
k
2−1

→ 0, (3.15)

and this could be used in the proof for the degenerate Poissonian case when d = 2.
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Recall (3.2), by using Propositions 3.7 and 3.8 and the Lebesgue dominated conver-
gence theorem, we have proved

E{exp(iθYN )} = E{exp(

∫
Rd

∞∑
k=2

1

k!
(iθFn(y))kdy)} →E{exp(−1

2
θ2

N∑
i=1

α2
iσ

2
d(ti − ti−1))}

=E{exp(iθσd

N∑
i=1

αi(Wti −Wti−1))}

(3.16)
when Wt is a standard Brownian motion.

3.1.3 Gaussian case

When d = 1, by Proposition 3.1, we have

E{exp(iθYN )} =E{exp(−1

2
θ2

N∑
i,j=1

αiαj
1

a(n)2

∫ nti

nti−1

∫ ntj

ntj−1

Rg(Bs −Bu)dsdu)}

→E{exp(−1

2
θ2R̂g(0)

N∑
i,j=1

αiαj

∫
R

(Lti(x)− Lti−1
(x))(Ltj (x)− Ltj−1

(x))dx)}

=E{exp(iθσd

N∑
i=1

αi(Zti − Zti−1
))},

(3.17)
when Zt =

∫
R
Lt(x)W (dx).

When d ≥ 2, by Proposition 3.7, we have

E{exp(iθYN )} =E{exp(−1

2
θ2

N∑
i,j=1

αiαj
1

a(n)2

∫ nti

nti−1

∫ ntj

ntj−1

Rg(Bs −Bu)dsdu)}

→E{exp(−1

2
θ2

N∑
i=1

α2
iσ

2
d(ti − ti−1))} = E{exp(iθσd

N∑
i=1

αi(Wti −Wti−1))},

(3.18)
when Wt is a standard Brownian motion.

3.2 Tightness

Proposition 3.10. Xn(t) is tight in C([0, 1]).

Proof. Since Xn(t) = a(n)−1
∫ nt

0
V (Bs)ds, then Xn(0) = 0. To prove tightness of Xn by

[1, Theorem 12.3], we only need to show

E{|Xn(t)−Xn(s)|β} ≤ C|t− s|1+δ (3.19)

for some constant β,C, δ > 0.

Consider d = 1. E{|Xn(t)−Xn(s)|2} = n−
3
2

∫
[0,n(t−s)]2 E{R(Bu1

−Bu2
)}du1du2. Since
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R is bounded and compactly supported, we have

E{|Xn(t)−Xn(s)|2} ≤ C

n
3
2

∫ n(t−s)

0

∫ n(t−s)

0

P(|Bu1
−Bu2

| ≤ C)du1du2

=C
√
n

∫ t−s

0

∫ t−s

0

P(|N | ≤ C√
n|u1 − u2|

)du1du2

=C

∫ t−s

0

∫ t−s

0

∫
R

1|x|< C√
|u1−u2|

1√
2π
e−
|x|2
2n dxdu1du2

≤C
∫ t−s

0

∫ t−s

0

1√
|u1 − u2|

du1du2 ≤ C(t− s) 3
2 .

For the case d ≥ 2, we calculate the 4−th moment of Xn(t) − Xn(s). When V (x) =

Vg(x) is Gaussian, we have

E{|Xn(t)−Xn(s)|4} =
1

a(n)4

∫
[0,n(t−s)]4

∑
{τi}={ui}

E{Rg(Bτ1 −Bτ2)Rg(Bτ3 −Bτ4)}du.

When V (x) = Vp(x) is Poissonian, by Lemma A.2, we have

E{|Xn(t)−Xn(s)|4} ≤ C

a(n)4

∫
[0,n(t−s)]4

∑
{τi}={ui}

E{ϕ 1
2 (|Bτ1 −Bτ2 |)ϕ

1
2 (|Bτ3 −Bτ4 |)}du.

where ϕ is a bounded, compactly supported function. The proof of Lemma 3.4 applies
to ϕ

1
2 (|x|) replacing Rp(x) in light of Remark 3.5. Since E{V2

n} ≤ Ct2, in both cases we
have E{|Xn(t)−Xn(s)|4} ≤ C(t− s)2.

In (3.19), when d = 1, we choose β = 2, δ = 1
2 while when d ≥ 2, we choose β =

4, δ = 1. The proof is complete.

4 Degenerate case when d = 1, 2

Recall that in the degenerate case d = 1, 2, Xn(t) = n−
1
2

∫ nt
0
V (Bs)ds, where V

is either Gaussian or Poissonian, and we make the key assumption that R̂(ξ)|ξ|−2 is
integrable. Our goal is to show that Xn(t) ⇒ σWt in C([0, 1]) for standard Brownian

motion Wt and σ =
√

4(2π)−d
∫
Rd
R̂(ξ)|ξ|−2dξ.

4.1 Gaussian case

To consider the finite dimensional distributions, we define YN =
∑N
i=1 αi(Xn(ti) −

Xn(ti−1)) for 0 = t0 < t1 < . . . < tN ≤ 1 and αi ∈ R, i = 1, . . . , N , so YN has mean zero
and conditional variance

E{Y 2
N |Bs, s ∈ [0, 1]} =

N∑
i,j=1

αiαj
1

n

∫ nti

nti−1

∫ ntj

ntj−1

R(Bs −Bu)dsdu. (4.1)

The convergence of E{Y 2
N |B} →

∑N
i=1 α

2
iσ

2(ti− ti−1) in probability is given by the proof
of the case d ≥ 3 in Lemmas 3.3, 3.4 and 3.6.

The proof of tightness in C([0, 1]) is the same as in the case d ≥ 3 in Proposition 3.10
so the proof of Gaussian case is complete.
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4.2 Poissonian case

If we define Fn(y) =
∑N
i=1 αin

− 1
2

∫ nti
nti−1

φ(Bs − y)ds as in the Gaussian case, we com-
bine Lemmas 3.3, 3.4 and 3.6 to show that∫

Rd
Fn(y)2dy →

N∑
i=1

α2
iσ

2(ti − ti−1). (4.2)

To prove the convergence of the finite dimensional distributions, it suffices to show∫
Rd

∞∑
k=3

1

k!
(iθFn(y))kdy → 0 (4.3)

in probability. However, it turns out that a direct proof of (4.3) also involves a tight-
ness result. Instead, we apply Kipnis-Varadhan’s approach involving solving a corrector
equation and a martingale approximation. It turns out the results in [5] already contain
our special case. We briefly recall their results and prove the required assumption holds
in our context.

The following Proposition comes from [5, Theorem 1.8, Corollary 1.9].

Proposition 4.1. Let y(t) be a Markov process, reversible with respect to a probabil-
ity measure π, and let us suppose that the reversible stationary process P with π as
invariant measure is ergodic. Let V be a function on the state space in L2(π) satisfying∫

Ω
Vdπ = 0 and the condition 〈−L−1V,V〉 < ∞ with 〈., .〉 denoting the inner product

in L2(π) and L the infinitesimal generator of the process. Let X(t) =
∫ t

0
V (y(s))ds,

then 1√
n
X(nt) satisfies a functional central limit theorem relative to P and the limiting

variance σ2 = 2〈−L−1V,V〉.

In the following, we present a setup of Brownian motion in random scenery bor-
rowed from [6, Section 9.3], to which Proposition 4.1 can be applied.

Let (Ω,F , π) be a probability space associated with a group of measure-preserving
transformations {τx, x ∈ Rd}, i.e, π ◦ τx = π for all x ∈ Rd. Furthermore, its action is
ergodic and stochastically continuous, i.e.,

1. π{A} = 0 or 1 for any event A such that π{A4 τx(A)} = 0 for all x ∈ Rd and

2. for any δ > 0 and G bounded we have

lim
h→0

π{ω : |G(τhω)−G(ω)| ≥ δ} = 0. (4.4)

The probability space (Ω,F , π) satisfying the above assumption is called random
medium.

For any f ∈ L2(π), let Txf(ω) = f(τxω). The family {Tx, x ∈ Rd} forms a d−parameter
group of unitary operators on L2(π), and stochastic continuity implies that the group is
strongly continuous. The generators of the group {Tx, x ∈ Rd} correspond to differenti-
ation (in L2(π)) in the canonical directions ek and are denoted by {Dk, k = 1, . . . , d}.

Since {Tx, x ∈ Rd} is strongly continuous, by spectral theory we have

Tx =

∫
Rd
eiξxU(dξ)

with U(dξ) the associated projection valued measure. Let L = 1
2

∑d
k=1D

2
k andV ∈ L2(π)

satisfies
∫

Ω
Vdπ = 0 and 〈−L−1V,V〉 <∞. By the spectral representation, we have

−L−1 = 2

∫
Rd
|ξ|−2U(dξ).
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Let R̂V(ξ) be the power spectrum associated with V, i.e.,

R̂V(ξ)dξ = (2π)d〈U(dξ)V,V〉,

and we obtain that

〈−L−1V,V〉 = 〈2
∫
Rd
|ξ|−2U(dξ)V,V〉 =

2

(2π)d

∫
Rd

R̂V(ξ)

|ξ|2
dξ. (4.5)

Therefore, the condition that 〈−L−1V,V〉 < ∞ is equivalent with the integrability of
R̂V(ξ)|ξ|−2. On the other hand, by defining V (x) = V(τ−xω), we obtain that

R(x) = E{V (−x)V (0)} = 〈TxV,V〉 =

∫
Rd
eiξx〈U(dξ)V,V〉 =

1

(2π)d

∫
Rd
eiξxR̂V(ξ)dξ,

so R̂(ξ) = R̂V(ξ).
Now if we consider a stationary ergodic random scenery V (x) = V(τ−xω), the Brow-

nian motion in random scenery with property scaling is Xn(t) = 1√
n

∫ nt
0
V (Bs)ds =

1√
n

∫ nt
0
V(yωs )ds with

yωs := τ−Bsω, (4.6)

and we only have to prove the environment process yωs satisfies the assumptions in
Proposition 4.1 and the Poissonian random potential lives indeed on a random medium.
In the following, we denote the probability only with respect to Brownian motion by PB.

Lemma 4.2. yωs is a stationary, ergodic Markov process taking values in Ω, reversible
with respect to the invariant measure π.

Proof. Since τx is a group of transformations, we have τ−Btω = τ−(Bt−Bs)τ−Bsω, and by
the independence of increments of Brownian motion, yωs is Markov.

Now we show yωs is reversible with respect to π by proving∫
A1

π(dω)PB(yωt ∈ A2) =

∫
A2

π(dω)PB(yωt ∈ A1) (4.7)

for any A1, A2 ∈ F . Actually, we have∫
A1

π(dω)PB(yωt ∈ A2) =

∫
Ω

∫
Rd

1ω∈A11τ−xω∈A2qt(x)dxπ(dω),∫
A2

π(dω)PB(yωt ∈ A1) =

∫
Ω

∫
Rd

1ω∈A21τ−xω∈A1qt(x)dxπ(dω).

Using measure-preserving property of τx and the fact that qt(x) = qt(−x), (4.7) is
proved.

Since yωs is reversible with respect to π, π is an invariant measure. Furthermore, yωs
starts from its invariant measure, so it is stationary.

For ergodicity, we only need to show that if A ∈ F such that PB(yωs ∈ A) = 1ω∈A for
all s ≥ 0, then π(A) = 0 or 1. Actually, PB(yωs ∈ A) =

∫
Rd

1τ−xω∈Aqs(x)dx = 1ω∈A implies
1τ−xω∈A = 1ω∈A for all x ∈ Rd, since qs(x) > 0,∀x ∈ Rd. By the ergodicity of τx, we have
π(A) = 0 or 1.

The infinitesimal generator of yωs is given by L. For detailed proof, we refer to [6,
Proposition 9.8].

Next, we show that the Poissonian potential fits the framework of random medium.
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Let ω = ω(dy) be a Poissonian field in Rd with Lebesgue measure dy as its intensity,
we can write it as

ω(dy) =
∑
i

δξi(dy)

where δz(dy) is the Dirac delta measure at z, {ξi} is the Poisson point process with π

being its law. If ω(A) denotes the number of points in {ξi} that fall inside A, we have
π(ω(A) = n) = e−|A||A|n(n!)−1 with |A| the Lebesgue measure of A.

The group of transformation {τx, x ∈ Rd} acts on ω = ω(dy) ∈ Ω as

(τxω)(dy) =
∑
i

δx+ξi(dy),

and we have the following standard result:

Lemma 4.3. {τx, x ∈ Rd} is measure-preserving, ergodic and stochastically continuous
in the following sense:

1. π ◦ τx = π for all x ∈ Rd, where π ◦ τx is the law of Poisson point process {ξi + x}.
2. any f ∈ L2(π) that satisfies f(τxω) = f(ω) for all x ∈ Rd has to be a contant.

3. for any δ > 0 and G bounded, we have limh→0 π(ω : |G(τhω)−G(ω)| ≥ δ) = 0.

Proof. For the measure-preserving property, since the Laplace functional characterize
the Poisson point process, for any positive smooth test function of compact support f ,
we consider

E{e−
∫
Rd
f(y)(τxω)(dy)} = exp(

∫
Rd

(e−f(x+y) − 1)dy) = exp(

∫
Rd

(e−f(y) − 1)dy)

=E{e−
∫
Rd
f(y)ω(dy)},

so π ◦ τx = π.
For ergodicity, if A ∩ B = ∅, ω(A) and ω(B) are independent, so mixing property

implies ergodicity.
For stochastic continuity, by approximation, we can assume that

G(ω) = G(

∫
Rd
φ1(x)ω(dx), . . . ,

∫
Rd
φN (x)ω(dx))

for some test functions G, φi, hence we only need to show that∫
Rd
φi(x)(τhω)(dx)→

∫
Rd
φi(x)ω(dx)

in L2(π), and this comes from the fact that

E{
(∫

Rd
φi(x)(τhω)(dx)−

∫
Rd
φi(x)ω(dx)

)2

} =

∫
Rd

(φi(x+ h)− φi(x))2dx→ 0

as h→ 0.

To summarize, we could apply Proposition 4.1 toV(ω) =
∫
Rd
φ(−y)ω(dy), which leads

to V (x) = V(τ−xω) =
∫
Rd
φ(x− y)ω(dy). We only need to recall (4.5) that

σ2 = 2〈−L−1V,V〉 =
4

(2π)d

∫
Rd

R̂V(ξ)

|ξ|2
dξ =

4

(2π)d

∫
Rd

R̂(ξ)

|ξ|2
dξ

to complete the proof.
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Remark 4.4. We point out that by martingale approximation, the results obtained in
[5] is stronger than the annealed convergence. It is weak convergence in measure, see
[5, Remark (1.10)].

Remark 4.5. When d = 2, by Remark 3.9, we could derive (4.3) and prove the con-
vergence of the finite dimensional distributions in the Poissonian case by the method of
characteristic functions. When d = 1, the estimation turns out to be more involved and
our method does not lead to (4.3). In both cases, the proof of tightness as in Proposi-
tion 3.10 fails to hold. To use the same fourth moment method, for technical reasons

we need the more restrictive condition that |φ̂(ξ)||ξ|−2 =

√
R̂(ξ)|ξ|−2 is integrable.

5 Conclusions and discussions

In this paper, we have proved an invariance principle for Brownian motion in a Gaus-
sian or Poissonian scenery in all dimension. The result is consistent with the discrete
case [4, 2] and other types of potentials in the continuous case [9, 5]. Our main contri-
bution is the non-degenerate case d = 2, where a logarithm scaling shows up and the
functional central limit theorem for martingale can not be applied as in [5]. It is natural
to expect the invariance principle to hold as long as the random scenery is sufficiently
mixing, e.g. in our case, the covariance function R(x) is compactly supported. In the
non-degenerate case, when d = 1, the limit is of the form

∫
R
Lt(x)W (dx) for Brown-

ian local time Lt(x) and independent white noise W (dx), and when d ≥ 2, the limit is
Brownian motion. However, as observed in [3], when the random scenery is long-range
correlated, such convergence does not hold and depending on the tail of covariance
function, we need to choose different scaling factors.

In the degenerate case, i.e., R̂(0) = 0 with R̂(ξ)|ξ|−2 integrable when d = 1, 2, we
have derived the limits with scaling factor n−

1
2 . The results are essentially the same

as in d ≥ 3 and all directly come from [5], since under the general assumption of sta-
tionarity and ergodicity, the only requirement for their result to hold is the finiteness
of asymptotic variance, i.e., integrability of R̂(ξ)|ξ|−2. Brownian motion turns out to be
the limit for d = 1 as well.

A Technical lemmas

Lemma A.1. Assume d = 2, α > 2, c > 0. Then we have the following inequalities∫
R2

(
1 ∧ 1

|
√
ny|α

)
| log |y||dy .

1

n
+

1

n
log n, (A.1)∫

R2

(
1 ∧ 1

|
√
n(x− y)|α

)
| log |y||dy .

1

n
+

1

n
| log |x||+ 1

n
log n1|x|< 2√

n
, (A.2)∫

|x−y|< c√
n

| log |y||dy .
1

n
+

1

n
| log |x||+ 1

n
log n1|x|< 2c√

n
, (A.3)∫

|x−y|< c√
n

(
1 ∧ 1

|
√
ny|α

)
| log |y||dy .

1

n
+

1

n
| log |x||+ 1

n
log n1|x|< 2c√

n
, (A.4)

∫
R2

| log |x− y||
(

1 ∧ 1

|
√
ny|α

)
| log |y||dy

.
1

n
+

1

n
log n+

1

n
| log |x||+ 1

n
log n| log |x||+ 1

n
(log |x|)2 +

1

n
(log n)21|x|< 1√

n
.

(A.5)
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Proof. For the first inequality, we have∫
R2

(
1 ∧ 1

|
√
ny|α

)
| log |y||dy = −

∫ 1√
n

0

r log rdr +
1

n
α
2

∫ ∞
1√
n

1

rα−1
| log r|dr,

and by integrations by parts, we have−
∫ 1√

n

0 r log rdr . 1
n log n and 1

n
α
2

∫∞
1√
n

1
rα−1 | log r|dr .

1
n (1 + log n).

For the other inequalities, they are all in the form of convolutions and are proved in
a similar way. We only present the proof for the second one. We have∫

R2

(
1 ∧ 1

|
√
n(x− y)|α

)
| log |y||dy = (I) + (II),

where

(I) =

∫
|x−y|< 1√

n

| log |y||dy,

(II) =
1

n
α
2

∫
|x−y|> 1√

n

1

|x− y|α
| log |y||dy.

Let ρ = |x|, and define B(x, r) = {y : |x − y| ≤ r}, (i) = {y : |y| < |y − x|}, (ii) = {y :

|y| ≥ |y−x|}. We divideRd into three disjoint parts, A1 = B(0, ρ)
⋂

(i), A2 = B(x, ρ)
⋂

(ii),
and A3 = Rd\(A1

⋃
A2).

For (I), when y ∈ A1, |y − x| ≥ ρ
2 , so ρ ≤ 2√

n
and

∫
A1
| log |y||dy ≤

∫ ρ
0
| log r|rdr =

ρ2( 1
4 −

1
2 log ρ), so we have

∫
A1
| log |y||dy . 1

n (1 + log n)1ρ≤ 2√
n

. When y ∈ A2, 2ρ ≥
|y| ≥ ρ

2 , so | log |y|| . 1 + | log ρ|, thus
∫
A2
| log |y||dy . 1

n (1 + | log ρ|). When y ∈ A3,

ρ ≤ |y| ≤ 2|y−x| ≤ 2√
n

, so
∫
A3
| log |y||dy ≤

∫ 2√
n

ρ
r| log r|dr . 1

n (1+log n1ρ≤ 2√
n

). Therefore,

we have shown that

(I) .
1

n
(1 + | log ρ|+ log n1ρ≤ 2√

n
).

For (II), similarly, when y ∈ A1, |x − y| ≥ ρ
2 , so if ρ > 1, 1

n
α
2

∫
A1

1
|x−y|α | log |y||dy .

1

n
α
2 ρα

∫ ρ
0
r| log r|dr . 1

n , else if ρ ∈ ( 2√
n
, 1], we have 1

n
α
2

∫
A1

1
|x−y|α | log |y||dy . 1

n (1 +

| log ρ|), and for the last case ρ ≤ 2√
n

, we have 1

n
α
2

∫
A1

1
|x−y|α | log |y||dy .

∫
|y|<ρ | log |y||dy .

1
n (1 + log n1ρ≤ 2√

n
). When y ∈ A2, | log |y|| . 1 + | log ρ|, so 1

n
α
2

∫
A2

1
|x−y|α | log |y||dy .

1
n (1 + | log ρ|). When y ∈ A3, | log |y|| . 1 + | log |x − y||, so we only need to estimate
1

n
α
2

∫∞
ρ∨ 1√

n

1
rα−1 (1 + | log r|)dr. Following the same discussion as in A1, and considering

the different cases ρ > 1, 1 ≥ ρ > 1√
n

and 1√
n
≥ ρ, we can show 1

n
α
2

∫∞
ρ∨ 1√

n

1
rα−1 (1 +

| log r|)dr . 1
n (1 + | log ρ|+ log n1ρ≤ 1√

n
). Therefore, we have obtained that

(II) .
1

n
(1 + | log ρ|+ log n1ρ≤ 2√

n
).

The proof is complete.

Lemma A.2. Let V (x) be a mean zero stationary random field with E{V (x)6} < ∞
satisfying the mixing property (2.3) with positive, non-increasing mixing coefficient ϕ.
Then we have

|E{V (x1)V (x2)V (x3)V (x4)}| ≤ C
∑

{yk}={xk}

ϕ
1
2 (|y1 − y2|)ϕ

1
2 (|y3 − y4|)E{V (x)6} 2

3 . (A.6)
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Thus, (A.6) holds for the Poissonian potential V (x) =
∫
Rd
φ(x − y)ω(dy) − cp when φ is

continuous and compactly supported, and the mixing coefficient ϕ could be chosen as
some continuous, compactly supported function as well.

Proof. Let y1 and y2 be two points in {xk}1≤k≤4 such that d(y1, y2) ≥ d(xi, xj) for all
1 ≤ i, j ≤ 4 and such that d(y1, {y3, y4}) ≤ d(y2, {y3, y4}), where {yk}1≤k≤4 = {xk}1≤k≤4.
We assume d(y3, y1) ≤ d(y4, y1). Therefore by (2.3), we have

E := |E{V (x1)V (x2)V (x3)V (x4)}| . ϕ(2|y1−y3|)(E{V (y1)2}) 1
2 (E{(V (y2)V (y3)V (y4))2}) 1

2 .

The last two terms are bounded by E{V (x)6} 1
6 and E{V (x)6} 1

2 respectively. Because
ϕ(r) is decaying in (0,∞), we have E . ϕ(|y1 − y3|)E{V (x)6} 2

3 . On the other hand, if
y4 is (one of) the closest point(s) to y2, the same argument shows that E . ϕ(|y2 −
y4|)E{V (x)6} 2

3 . Otherwise, y3 is the closest point to y2, and we find E . ϕ(2|y2 −
y3|)E{V (x)6} 2

3 . However, by construction, we have

|y2 − y4| ≤ |y1 − y2| ≤ |y1 − y3|+ |y2 − y3| ≤ 2|y2 − y3|,

so we still have E . ϕ(|y2 − y4|)E{V (x)6} 2
3 . To summarize, we have

E . ϕ
1
2 (|y1 − y3|)ϕ

1
2 (|y2 − y4|)E{V (x)6} 2

3 ,

and this completes the proof.
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