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Abstract

We show that the zeros of the random power series with i.i.d. real Gaussian coeffi-
cients form a Pfaffian point process. We further show that the product moments for
absolute values and signatures of the power series can also be expressed by Pfaffi-
ans.
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1 Introduction

Zeros of Gaussian processes have attracted much attention for many years both from
theoretical and practical points of view. The first significant contribution to this study
was made by Paley and Wiener [16]. They computed the expectation of the number of
zeros of (translation invariant) analytic Gaussian processes on a strip in the complex
plane, which are defined as Wiener integrals. Their work was motivated by the theory,
developed by Bohr and Jessen, of almost periodic functions in the complex domain aris-
ing from Riemann’s zeta function. Kac gave an explicit expression for the probability
density function of real zeros of a random polynomial

fn(z) =

n∑
k=0

akz
k

with i.i.d. real standard Gaussian coefficients {ak}nk=0 and obtains precise asymptotics
of the numbers of real zeros as n → ∞ [9]. Rice also obtained similar formulas for the
zeros of random Fourier series with Gaussian coefficients in the theory of filtering [17].
Their results have been extended in various ways (e.g. [3, 12, 18]) and generalizations
of their formulas are sometimes called the Kac-Rice formulas. A recent remarkable
result on zeros of Gaussian processes is that the complex Gaussian process fC(z) :=∑∞
k=0 ζkz

k with i.i.d. complex standard Gaussian coefficients form a determinantal point
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process on the open unit disk D associated with the Bergman kernel K(z, w) = 1
(1−zw̄)2 ,

which was found by Peres and Virág [15]. Krishnapur extended this result to the zeros
of the determinant of the power series with coefficients being i.i.d. Ginibre matrices
[11].

In the present paper, we deal with the Gaussian power series

f(z) =

∞∑
k=0

akz
k, (1.1)

where {ak}∞k=0 are i.i.d. real standard Gaussian random variables. The radius of conver-
gence of f is almost surely 1, and the set of the zeros of f forms a point process on the
open unit disc D as does that of fC. The primary difference between f and fC comes
from the fact that f(z) is a real Gaussian process when the parameter z is restricted on
(−1, 1) and each realization of f(z) has symmetry with respect to the complex conjuga-
tion so that there appear both real zeros and complex ones in conjugate pairs.

Our main purpose is to show that both correlation functions for real zeros and com-
plex zeros of f are given by Pfaffians, i.e., they form Pfaffian point processes on (−1, 1)

and D, respectively. The most known examples of Pfaffian point processes appeared
as random eigenvalues of the Gaussian orthogonal/symplectic ensembles. Real and
complex eigenvalues of the real Ginibre ensemble are also proved to be Pfaffian point
processes on R and C, respectively [1, 5]. Recently, it is shown that the particle posi-
tions of instantly coalescing (or annihilating) Brownian motions on the real line under
the maximal entrance law form a Pfaffian point process on R [19], which is closely re-
lated to the real Ginibre ensemble. Our result on correlation functions of zeros of f is
added to the list of Pfaffian point processes, which is also obtained independently in
[4] via random matrix theory. Here we will give a direct proof by using Hammersley’s
formula for correlation functions of zeros of Gaussian analytic functions and a Pfaffian-
Hafnian identity due to Ishikawa, Kawamuko, and Okada [8]. This is a similar way to
that which was taken in [15] to prove that the zeros of fC form a determinantal point
process, and in the process of our calculus for real zero correlations, we obtain new
Pfaffian formulas for a real Gaussian process. The family {f(t)}−1<t<1 can be regarded
as a centered real Gaussian process with covariance kernel (1−st)−1. We show that, for
any −1 < t1, t2, . . . , tn < 1, both the moments of absolute values E[|f(t1)f(t2) · · · f(tn)|]
and those of signatures E[sgn(f(t1)) · · · sgn(f(tn))] are also given by Pfaffians. We stress
that it should be surprising because such combinatorial formulas cannot be expected
for general centered Gaussian processes. These are special features for the Gaussian
process with covariance kernel (1− st)−1.

The paper is organized as follows. In Section 2, we state our main results for corre-
lations of real and complex zeros of f (Theorems 2.1 and 2.7), and we give new product
moment formulas for absolute values and signatures of f (Theorems 2.5 and 2.6). Also
we observe a negative correlation property of real and complex zeros by showing nega-
tive correlation inequalities for 2-correlation functions. The asymptotics of the number
of real zeros inside intervals growing to (−1, 1) is also shown. In Section 3, we recall the
well-known Cauchy determinant formula and the Wick formula for product moments of
Gaussian random variables. In Section 4, after we show an identity in law for f and f ′

given that f is vanishing at some points, we give a preliminary version of Pfaffian formu-
las (Proposition 4.4) for the derivative of the expectation of products of sign functions.
In Sections 5, 6 and 7, we give the proofs of our results stated in Section 2.
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2 Results

2.1 Pfaffians

Our main results will be described by using Pfaffians, so let us recall the definition.
For a 2n× 2n skew symmetric matrix B = (bij)

2n
i,j=1, the Pfaffian of B is defined by

Pf(B) =
∑
η

ε(η)bη(1)η(2)bη(3)η(4) · · · bη(2n−1)η(2n),

summed over all permutations η on {1, 2, . . . , 2n} satisfying η(2i − 1) < η(2i) (i =

1, 2, . . . , n) and η(1) < η(3) < · · · < η(2n − 1). Here ε(η) is the signature of η. For
example,

Pf(B) = b11 if n = 1 and Pf(B) = b12b34 − b13b24 + b14b23 if n = 2. (2.1)

For an upper-triangular array A = (aij)1≤i<j≤2n, we define the Pfaffian of A as that
of the skew-symmetric matrix B = (bij)

2n
i,j=1, each entry of which is bij = −bji = aij if

i < j and bii = 0.

2.2 Notation

We will often use the following functions: for −1 < s, t < 1,

σ(s, t) =
1

1− st
, µ(s, t) =

s− t
1− st

, (2.2)

c(s, t) =
σ(s, t)√

σ(s, s)σ(t, t)
=

√
(1− s2)(1− t2)

1− st
, (2.3)

where σ(s, t) is the covariance function for the real Gaussian process {f(t)}−1<t<1 and
c(s, t) is the correlation coefficient between f(s) and f(t). We define the skew symmetric
matrix kernel K by

K(s, t) =

(
K11(s, t) K12(s, t)

K21(s, t) K22(s, t)

)
with

K11(s, t) =
s− t√

(1− s2)(1− t2)(1− st)2
, K12(s, t) =

√
1− t2
1− s2

1

1− st
,

K21(s, t) =−
√

1− s2

1− t2
1

1− st
, K22(s, t) = sgn(t− s) arcsin c(s, t),

where sgn(t) = |t|/t for t 6= 0 and sgn(t) = 0 for t = 0. Note that K12(s, t) = −K21(t, s)

and

K(s, t) =

(
∂2

∂s∂tK22(s, t) ∂
∂sK22(s, t)

∂
∂tK22(s, t) K22(s, t)

)
. (2.4)

For −1 < t1, t2, . . . , tn < 1, we write (K(ti, tj))
n
i,j=1 for the 2n × 2n skew symmetric

matrix 
K(t1, t1) K(t1, t2) . . . K(t1, tn)

K(t2, t1) K(t2, t2) . . . K(t2, tn)
...

...
. . .

...
K(tn, t1) K(tn, t2) . . . K(tn, tn)

 ,

and denote the covariance matrix of the real Gaussian vector (f(t1), f(t2), . . . , f(tn)) by

Σ(t) = Σ(t1, . . . , tn) = (σ(ti, tj))
n
i,j=1. (2.5)

Throughout this paper, Xn denotes the set of all sequences t = (t1, . . . , tn) of n
distinct real numbers in the interval (−1, 1). If t ∈ Xn then Σ(t) is positive-definite.
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2.3 Real zero correlations

Our first theorem states that the real zero distribution of f defined in (1.1) forms a
Pfaffian point process.

Theorem 2.1. Let ρn be the n-point correlation function of real zeros of f . Then

ρn(t1, . . . , tn) = π−n Pf(K(ti, tj))
n
i,j=1 (−1 < t1, . . . , tn < 1).

For example, the first two correlations are given as follows:

ρ1(s) = π−1K12(s, s),

ρ2(s, t) = π−2{K12(s, s)K12(t, t)−K11(s, t)K22(s, t) +K12(s, t)K21(s, t)}, (2.6)

from which we easily see that

ρ1(s) =
1

π(1− s2)
, ρ2(s, t) =

1

2π(1− s2)3
|t− s|+O(|t− s|2)

as t→ s. The first correlation is observed by Kac and many others although Kac consid-
ered the random polynomial with i.i.d. real Gaussian coefficients. The second asymp-
totic expression means that the real zeros of f repel each other as expected. Moreover,
we can show that the 2-correlation is negatively correlated.

Corollary 2.2. Let R(s, t) = ρ2(s,t)
ρ1(s)ρ1(t) be the normalized 2-point correlation function.

Then, R(s, s) = 0, R(s,±1) = 1 and R(s, t) is strictly increasing (resp. decreasing) for
t ∈ [s, 1] (resp. t ∈ [−1, s]). In particular, ρ2(s, t) ≤ ρ1(s)ρ1(t) for every s, t ∈ (−1, 1).

By using (2.6), we can also compute the mean and variance of the number of points
inside [−r, r].

Corollary 2.3. Let Nr be the number of real zeros in the interval [−r, r] for 0 < r < 1.
Then,

ENr =
1

π
log

1 + r

1− r
, VarNr = 2

(
1− 2

π

)
ENr +O(1)

as r → 1.

Remark 2.4. The kernel K in Theorem 2.1 is not determined uniquely. For example,
we can replace K by K′, which is defined by

K′11(s, t) =
s− t

(1− st)2
, K′12(s, t) = −K′21(t, s) =

1

1− st
,

K′22(s, t) =
sgn(t− s)√

(1− s2)(1− t2)
arcsin c(s, t).

In fact, if we set

Q(s, t) = δst

(√
1− t2 0

0 1√
1−t2

)
then (Q(ti, tj))

n
i,j=1 · (K(ti, tj))

n
i,j=1 · (Q(ti, tj))

n
i,j=1 = (K′(ti, tj))

n
i,j=1, and therefore two

Pfaffians associated with K and K′ coincide from the following well-known identity: for
any 2n× 2n matrix A and 2n× 2n skew symmetric matrix B, Pf(ABAt) = (detA)(Pf B).
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2.4 Pfaffian formulas for a real Gaussian process

As corollaries of the proof of Theorem 2.1, we obtain Pfaffian expressions for aver-
ages of |f(t1) · · · f(tn)| and sgn f(t1) · · · sgn f(tn).

Theorem 2.5. For t = (t1, . . . , tn) ∈ Xn, we have

E[|f(t1)f(t2) · · · f(tn)|] =

(
2

π

)n/2
(det Σ(t))−

1
2 Pf(K(ti, tj))

n
i,j=1.

Theorem 2.6. For (t1, . . . , t2n) ∈ X2n, we have

E[sgn f(t1) sgn f(t2) · · · sgn f(t2n)]

=

(
2

π

)n ∏
1≤i<j≤2n

sgn(tj − ti) · Pf (K22(ti, tj))
2n
i,j=1 . (2.7)

In particular, if −1 < t1 < t2 < · · · < t2n < 1, then

E[sgn f(t1) sgn f(t2) · · · sgn f(t2n)] =

(
2

π

)n
Pf (arcsin c(ti, tj))1≤i<j≤2n , (2.8)

where c(s, t) is defined in (2.3).

We can easily see that E[sgn f(t1) · · · sgn f(tn)] = 0 when n is odd. More generally, if
(X1, . . . , Xn) is a centered real Gaussian vector, then E[sgnX1 · · · sgnXn] = 0 for n odd.
The formula (2.7) with n = 1 says that E[sgn f(s) sgn f(t)] = 2

π arcsin c(s, t), and hence
(2.8) can be rewritten as

E[sgn f(t1) sgn f(t2) · · · sgn f(t2n)] = Pf (E[sgn f(ti) sgn f(tj)])1≤i<j≤2n .

As explained later, the Wick formula (3.6) provides us a similar formula for products of
real Gaussian random variables, however, such neat formulas for E[|X1X2 · · ·Xn|] are
not known for general n except the cases with n = 2, 3 ([13, 14]). Similarly, there is no
known formula for E[sgnX1 sgnX2 · · · sgnX2n] except the n = 1 case

E[sgnX1 sgnX2] =
2

π
arcsin

σ12√
σ11σ22

,

where σij = E[XiXj ] for i, j = 1, 2. Theorem 2.5 and Theorem 2.6 state that the mo-
ments E[|X1 · · ·Xn|] and E[sgnX1 · · · sgnXn] have Pfaffian expressions if the covariance
matrix of the real Gaussian vector (X1, . . . , Xn) is of the form ((1− titj)−1)ni,j=1.

2.5 Complex zero correlations

The complex zero distribution of f also forms a Pfaffian point process. Put D+ =

{z ∈ C | |z| < 1, =z > 0}, the upper half of the open unit disc. We write i =
√
−1.

Theorem 2.7. Let ρc
n be the n-point correlation function for complex zeros of f . For

z1, z2, . . . , zn ∈ D+,

ρc
n(z1, . . . , zn) =

1

(πi)n

n∏
j=1

1

|1− z2
j |
· Pf(Kc(zi, zj))

n
i,j=1,

where Kc(z, w) is the 2× 2 matrix kernel

Kc(z, w) =

(
z−w

(1−zw)2
z−w̄

(1−zw̄)2
z̄−w

(1−z̄w)2
z̄−w̄

(1−z̄w̄)2

)
.
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For example, the first two correlations are given by

ρc
1(z) =

|z − z|
π|1− z2|(1− |z|2)2

,

ρc
2(z, w) =ρc

1(z)ρc
1(w) +

1

π2|1− z2||1− w2|

(∣∣∣∣ z − w1− zw

∣∣∣∣2 − ∣∣∣∣ z − w̄1− zw̄

∣∣∣∣2
)
.

It is easy to verify that ρc
2(z, w) < ρc

1(z)ρc
1(w) for z, w ∈ D+, which implies negative

correlation as well as the case of real zeros.
As we mentioned, Theorem 2.1 and Theorem 2.7 are obtained independently in [4]

via random matrix theory, but Theorem 2.5 and Theorem 2.6 are new.

3 Cauchy’s determinants and Wick formula

In this short section, we review Cauchy’s determinants and the Wick formula, which
are essential throughout this paper.

3.1 Cauchy’s determinant and its variations

The following identity for a determinant, the so-called Cauchy determinant identity,
is well known in combinatorics, see, e.g., [2, Proposition 4.2.3].

det

(
1

1− xiyj

)n
i,j=1

=

∏
1≤i<j≤n(xi − xj)(yi − yj)∏n

i=1

∏n
j=1(1− xiyj)

. (3.1)

Here the xi, yj are formal variables, but we will assume that they are complex numbers
with absolute values smaller than 1 when we apply formulas contained in this subsec-
tion. For each i = 1, 2, . . . , n, we define qi(x) = qi(x1, . . . , xn) by

qi(x) =
1

1− x2
i

∏
1≤k≤n
k 6=i

xi − xk
1− xixk

. (3.2)

Using (3.1), we have

q1(x)q2(x) · · · qn(x) = (−1)n(n−1)/2 det

(
1

1− xixj

)n
i,j=1

(3.3)

Recall the definition of Hafnians, which are sign-less analogs of Pfaffians. For a
2n× 2n symmetric matrix A = (aij)

2n
i,j=1, the Hafnian of A is defined by

Hf A =
∑
η

aη(1)η(2)aη(3)η(4) · · · aη(2n−1)η(2n), (3.4)

summed over all permutations η on {1, 2, . . . , 2n} satisfying η(2i − 1) < η(2i) (i =

1, 2, . . . , n) and η(1) < η(3) < · · · < η(2n− 1).
A Pfaffian version of Cauchy’s determinant identity is Schur’s Pfaffian identity (see,

e.g., [8]):

Pf

(
xi − xj
1− xixj

)2n

i,j=1

=
∏

1≤i<j≤2n

xi − xj
1− xixj

.

The following formula due to Ishikawa, Kawamuko, and Okada [8] will be an important
factor in our proofs of theorems.∏

1≤i<j≤2n

xi − xj
1− xixj

·Hf

(
1

1− xixj

)2n

i,j=1

= Pf

(
xi − xj

(1− xixj)2

)2n

i,j=1

. (3.5)
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3.2 Wick formula

We recall the method for computations of expectations of polynomials in real Gaus-
sian random variables. Let (Y1, . . . , Yn) be a centered real Gaussian random vector.
Then E[Y1 · · ·Yn] = 0 if n is odd, and

E[Y1Y2 · · ·Yn] = Hf(E[YiYj ])
n
i,j=1 (3.6)

if n is even. For example, E[Y1Y2Y3Y4] = E[Y1Y2]E[Y3Y4]+E[Y1Y3]E[Y2Y4]+E[Y1Y4]E[Y2Y3].
See, e.g., survey [22] for details.

4 Derivatives of sign moments

In this section, we provide a preliminary version of Pfaffian formulas for Theo-
rem 2.6.

4.1 Derivatives of real Gaussian processes

The derivative of the product-moment of signs of a smooth real Gaussian process is
given by a conditional expectation in the following way.

Lemma 4.1. Let {X(t)}−1<t<1 be a smooth real Gaussian process with covariance ker-
nelK. Let (t1, t2, . . . , tn, s1, s2, . . . , sm) ∈ Xn+m and suppose that detK(t) = det(K(ti, tj))

n
i,j=1

does not vanish. Then,

∂n

∂t1∂t2 · · · ∂tn
E[sgnX(t1) · · · sgnX(tn) sgnX(s1) · · · sgnX(sm)]

=

(
2

π

)n
2

(detK(t))−
1
2E[X ′(t1) · · ·X ′(tn) sgnX(s1) · · · sgnX(sm) | X(t1) = · · · = X(tn) = 0].

Proof. We will give a heuristic proof. The derivative of sgn t is ∂
∂t sgn t = 2δ0(t), where

δ0(t) is Dirac’s delta function at 0. Hence, if we abbreviate as Y (s) = sgnX(s1) · · · sgnX(sm),
then

∂n

∂t1∂t2 · · · ∂tn
E[sgnX(t1) · · · sgnX(tn) · Y (s)]

= 2nE[δ0(X(t1))X ′(t1) · · · δ0(X(tn))X ′(tn) · Y (s)]

= 2nE[X ′(t1) · · ·X ′(tn) · Y (s) | X(t1) = · · · = X(tn) = 0] · pt(0),

where pt(0) is the density of the Gaussian vector (X(t1), . . . , X(tn)) at (0, . . . , 0). Since
pt(0) = (2π)−n/2(detK(t))−1/2, the claim follows.

The above formal computation can be justified by using Watanabe’s generalized
Wiener functionals in the framework of Malliavin calculus over abstract Wiener spaces
[20, 21].

4.2 Conditional expectations

Recall the Gaussian power series f defined in (1.1) and functions σ(s, t) and µ(s, t)

defined in (2.2). The process {f(t)}−1<t<1 is centered real Gaussian with covariance
kernel σ(s, t). The following identity in law is a crucial property which the Gaussian
process with covariance kernel σ(s, t) enjoys.

Lemma 4.2. For given (t1, t2, . . . , tn) ∈ Xn, we have

(f |f(t1) = · · · = f(tn) = 0)
d
= µ(·, t)f, (4.1)
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where µ(s, t) =
∏n
i=1 µ(s, ti). Moreover,

(f, f ′(ti), i = 1, . . . , n|f(t1) = · · · = f(tn) = 0)
d
= (µ(·, t)f, qi(t)f(ti), i = 1, . . . , n),

where qi(t) = qi(t1, . . . , tn) is defined in (3.2).

Proof. If a Gaussian process X has a covariance kernel K(x, y), then that of the Gaus-
sian process (X|X(t) = 0) (i.e. X givenX(t) = 0) is equal toK(x, y)−K(x, t)K(t, y)/K(t, t)

whenever K(t, t) > 0. In the case of the kernel σ(x, y), we see that

σ(x, y)− σ(x, t)σ(t, y)

σ(t, t)
= µ(x, t)µ(y, t)σ(x, y).

This implies that (f |f(t) = 0)
d
= µ(·, t)f as a process. Hence we obtain (4.1) by induction.

As f ′ is a linear functional of f , we also have the identity in law as a Gaussian system

(f, f ′ | f(t1) = · · · = f(tn) = 0)
d
= (µ(·, t)f, µ′(·, t)f + µ(·, t)f ′).

Since µ(ti, t) = 0 and µ′(ti, t) = qi(t) for every i = 1, 2, . . . , n, we obtain the second
equality in law.

4.3 Pfaffian expressions for derivatives of signs

The following lemma is a consequence of Lemmas 4.1 and 4.2.

Lemma 4.3. Let (t, s) = (t1, t2, . . . , tn, s1, s2, . . . , sm) ∈ Xn+m. Then

∂n

∂t1∂t2 · · · ∂tn
E[sgn f(t1) · · · sgn f(tn) sgn f(s1) · · · sgn f(sm)]

= (−1)n(n−1)/2
n∏
i=1

m∏
j=1

sgn(sj − ti)

×
(

2

π

)n/2
(det Σ(t))1/2E[f(t1) · · · f(tn) sgn f(s1) · · · sgn f(sm)]

with Σ(t) defined in (2.5).

Proof. From Lemma 4.2 and (3.3) we have

E[f ′(t1) · · · f ′(tn) sgn f(s1) · · · sgn f(sm) | f(t1) = · · · = f(tn) = 0]

=

m∏
j=1

sgnµ(sj , t) ·
n∏
i=1

qi(t) · E[f(t1) · · · f(tn) sgn f(s1) · · · sgn f(sm)]

=

n∏
i=1

m∏
j=1

sgn(sj − ti) · (−1)n(n−1)/2 det Σ(t) · E[f(t1) · · · f(tn) sgn f(s1) · · · sgn f(sm)].

We have finished the proof by Lemma 4.1 with X(t) = f(t).

Proposition 4.4. For t = (t1, . . . , t2n) ∈ X2n, we have

∂2n

∂t1∂t2 · · · ∂t2n
E[sgn f(t1) sgn f(t2) · · · sgn f(t2n)]

=

(
2

π

)n ∏
1≤i<j≤2n

sgn(tj − ti) ·
2n∏
i=1

1√
1− t2i

· Pf

(
ti − tj

(1− titj)2

)2n

i,j=1

. (4.2)
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Proof. Lemma 4.3 with m = 0 and with the replacement n by 2n gives

∂2n

∂t1 · · · ∂t2n
E[sgn f(t1) · · · sgn f(t2n)] = (−1)n

(
2

π

)n
(det Σ(t))1/2E[f(t1) · · · f(t2n)].

Here the Wick formula (3.6) gives

E[f(t1) · · · f(t2n)] = Hf(E[f(ti)f(tj)])
2n
i,j=1 = Hf

(
(1− titj)−1

)2n
i,j=1

and Cauchy’s determinant identity (3.1) gives

(−1)n(det Σ(t))1/2 =
∏

1≤i<j≤2n

sgn(tj − ti) ·
2n∏
i=1

1√
1− t2i

·
∏

1≤i<j≤2n

ti − tj
1− titj

.

Hence we obtain

∂2n

∂t1∂t2 · · · ∂t2n
E[sgn f(t1) sgn f(t2) · · · sgn f(t2n)]

=

(
2

π

)n ∏
1≤i<j≤2n

sgn(tj − ti) ·
2n∏
i=1

1√
1− t2i

·
∏

1≤i<j≤2n

ti − tj
1− titj

·Hf

(
1

1− titj

)2n

i,j=1

.

The desired Pfaffian expression follows from the Pfaffian-Hafnian identity (3.5).

5 Proof of Theorems 2.5 and 2.6

5.1 Some lemmas

Proposition 4.4 can be expressed as

∂2n

∂t1∂t2 · · · ∂t2n
E[sgn f(t1) sgn f(t2) · · · sgn f(t2n)]

=

(
2

π

)n ∏
1≤i<j≤2n

sgn(tj − ti) · Pf (K11(ti, tj))
2n
i,j=1

=

(
2

π

)n ∏
1≤i<j≤2n

sgn(tj − ti) ·
∂2n

∂t1 · · · ∂t2n
Pf (K22(ti, tj))

2n
i,j=1 .

If we remove the differential symbol ∂2n

∂t1···∂t2n in the above equation, then we get the
equality in Theorem 2.6. The goal of the present subsection is to prove that this obser-
vation is veritably true.

For each subset I of {1, 2, . . . , 2n}, we define the 2n × 2n skew symmetric matrix
LI = LI(t), the (i, j)-entry of which is

LIij =


K11(ti, tj) = ∂2

∂ti∂tj
K22(ti, tj) if i, j ∈ I,

K12(ti, tj) = ∂
∂ti
K22(ti, tj) if i ∈ I and j ∈ Ic,

K21(ti, tj) = ∂
∂tj
K22(ti, tj) if i ∈ Ic and j ∈ I,

K22(ti, tj) if i, j ∈ Ic.

(5.1)

In particular, we put L[k] = LI if I = {1, 2, . . . , k} and L[0] = L∅.

Lemma 5.1. The following two claims hold true.

1. For each k = 0, 1, . . . , 2n− 1, ∂
∂tk+1

Pf L[k] = Pf L[k+1].

2. Pf L[k] is skew symmetric in t1, t2, . . . , tk and in tk+1, tk+2, . . . , t2n, respectively.
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Proof. Recalling the definition of the Pfaffian, we have

∂

∂tk+1
Pf L[k] =

∑
η

ε(η)
∂

∂tk+1

n∏
i=1

L
[k]
η(2i−1)η(2i).

For each i < j, we see that:

if j = k + 1, then
∂

∂tk+1
L

[k]
i,k+1 =

∂

∂tk+1
K12(ti, tk+1) = K11(ti, tk+1) = L

[k+1]
i,k+1;

if i = k + 1, then
∂

∂tk+1
L

[k]
k+1,j =

∂

∂tk+1
K22(tk+1, tj) = K12(tk+1, tj) = L

[k+1]
k+1,j ;

if i, j 6= k + 1, then
∂

∂tk+1
L

[k]
i,j = 0.

Hence we obtain

∂

∂tk+1
Pf L[k] =

∑
η

ε(η)

n∏
i=1

L
[k+1]
η(2i−1)η(2i) = Pf L[k+1],

which is the first claim.
Pfaffians are skew symmetric with respect to the change of the order of rows/columns,

i.e., Pf(aη(i)η(j)) = ε(η) Pf A for any 2n × 2n skew symmetric matrix A = (aij) and a
permutation η on {1, 2, . . . , 2n}. Hence the second claim follows from the definition of
L[k].

Put

X<2n = {(t1, . . . , t2n) ∈ X2n | t1 < · · · < t2n}.

Lemma 5.2.

lim
t2n→1

(t1,...,t2n)∈X<2n

E[sgn f(t1) · · · sgn f(t2n)] = 0.

Proof. If we put X(t) =
√

1− t2f(t), then

E[sgn f(t1) · · · sgn f(t2n)] = E[sgnX(t1) · · · sgnX(t2n)]

and E[X(ti)X(tj)] = c(ti, tj) with c(s, t) in (2.3). Furthermore, since limt2n→1 c(ti, t2n) =

δi,2n, the random variable X(t2n) converges in distribution to a standard Gaussian vari-
able independent of other Xi (i < 2n), which means that E[sgnX(t1) · · · sgnX(t2n)] →
0.

Lemma 5.3. For each k = 0, 1, 2 . . . , 2n− 1,

lim
t2n→1

(t1,...,t2n)∈X<2n

Pf L[k] = 0.

Proof. Taking the limit t2n → 1, each entry in the last row and column of L[k] converges
to zero, and thus so does Pf L[k].

Lemma 5.4. Let (t1, . . . , t2n) ∈ X<2n. For each k = 0, 1, . . . , 2n,

∂k

∂t1 · · · ∂tk
E[sgn f(t1) · · · sgn f(t2n)] =

(
2

π

)n
Pf L[k]. (5.2)
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Proof. Consider the function Z [k] on X2n defined by

Z [k](t1, . . . , t2n)

=
∂k

∂t1 · · · ∂tk
E[sgn f(t1) · · · sgn f(t2n)]−

(
2

π

)n ∏
1≤i<j≤2n

sgn(tj − ti) · Pf L[k].

Since L[2n] = (K11(ti, tj))
2n
i,j=1, Proposition 4.4 implies that Z [2n] ≡ 0 on X2n. Let k ∈

{0, 1, . . . , 2n − 1} and suppose that Z [k+1] ≡ 0 on X<2n. Our goal is to prove Z [k] ≡ 0 on
X<2n.

From the first statement of Lemma 5.1, ∂
∂tk+1

Z [k](t1, . . . , t2n) = Z [k+1](t1, . . . , t2n),

and hence our assumption implies ∂
∂tk+1

Z [k](t1, . . . , t2n) = 0. Therefore Z [k] is indepen-

dent of tk+1. From the second statement of Lemma 5.1, Z [k] is symmetric in tk+1, . . . , t2n,
and therefore Z [k] is also independent of t2n. However,

lim
t2n→1

(t1,...,t2n)∈X<2n

Z [k] = 0

by Lemmas 5.2 and 5.3. Hence, Z [k] must be identically zero on X<2n.

5.2 Proof of Theorem 2.6

Proof of Theorem 2.6. Lemma 5.4 for k = 0 implies

E[sgn f(t1) · · · sgn f(t2n)] =

(
2

π

)n
Pf(K22(ti, tj))

2n
i,j=1

for t1 < · · · < t2n. Since Pf(K22(ti, tj))
2n
i,j=1 is skew symmetric in t1, . . . , t2n,∏

1≤i<j≤2n

sgn(tj − ti) · Pf(K22(ti, tj))
2n
i,j=1

is symmetric and coincides with E[sgn f(t1) · · · sgn f(t2n)] on X2n. Thus we have obtained
Theorem 2.6.

The following corollary is a consequence of Theorem 2.6.

Corollary 5.5. For (t1, . . . , t2n) ∈ X2n and a subset I = {i1 < i2 < · · · < ik} in
{1, 2, . . . , 2n},

∂k

∂ti1 · · · ∂tik
E[sgn f(t1) · · · sgn f(t2n)] =

(
2

π

)n ∏
1≤i<j≤2n

sgn(tj − ti) · Pf LI ,

where LI is defined in (5.1).

Proof. Observe that ∂k

∂ti1 ···∂tik
Pf L∅ = Pf LI .

Note that if tr = ts for some r 6= s then the both sides in the equation of the corollary
vanish.

5.3 Proof of Theorem 2.5

Lemma 5.6. For (t1, . . . , tn) ∈ Xn,

lim
s1→t1+0

· · · lim
sn→tn+0

∂n

∂t1 · · · ∂tn
E[sgn f(t1) · · · sgn f(tn) sgn f(s1) · · · sgn f(sn)]

=

(
2

π

)n
Pf(K(ti, tj))

n
i,j=1.
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Proof. Take −1 < t1 < s1 < t2 < s2 < · · · < tn < sn < 1. Corollary 5.5 with I =

{1, 3, 5, . . . , 2n− 1} and with the replacement (t1, . . . , t2n) by (t1, s1, . . . , tn, sn) gives

∂n

∂t1 · · · ∂tn
E[sgn f(t1) · · · sgn f(tn) sgn f(s1) · · · sgn f(sn)] =

(
2

π

)n
Pf(Kij)

n
i,j=1,

where

Kij =

(
K11(ti, tj) K12(ti, sj)

K21(si, tj) K22(si, sj)

)
.

Taking the limit s1 → t1, . . . , sn → tn, it converges to
(

2
π

)n
Pf(K(ti, tj))

n
i,j=1 for t1 <

· · · < tn. From the symmetry for t1, . . . , tn, the achieved result holds true for every
(t1, . . . , tn) ∈ Xn.

Proof of Theorem 2.5. We use Lemma 4.3 with m = n. The identity in the lemma holds
true for −1 < t1 < s1 < t2 < s2 < · · · < tn < sn < 1. Note that

∏n
i=1

∏n
j=1 sgn(sj − ti) =

(−1)n(n−1)/2. Taking the limit s1 → t1, . . . , sn → tn,

lim
s1→t1+0

· · · lim
sn→tn+0

∂n

∂t1 · · · ∂tn
E[sgn f(t1) · · · sgn f(tn) sgn f(s1) · · · sgn f(sn)]

=

(
2

π

)n/2
(det Σ(t))1/2E[|f(t1) · · · f(tn)|]

for −1 < t1 < · · · < tn < 1. From the symmetry for t1, . . . , tn, the above equation holds
true for every (t1, . . . , tn) ∈ Xn. Combining this fact with Lemma 5.6, we obtain Theorem
2.5.

6 Proofs of Theorem 2.1, Corollary 2.2 and Corollary 2.3

6.1 Proof of Theorem 2.1

Hammersley’s formula [6] describes correlation functions of zeros of random poly-
nomials, which was observed by Hammersley and it is extended to Gaussian analytic
functions as Corollary 3.4.2 in [7]. The following lemma is a real version of Hammers-
ley’s formula for correlation functions of Gaussian analytic functions.

Lemma 6.1. Let X(t) be a random power series with independent real Gaussian coeffi-
cients defined on an interval (−1, 1) with covariance kernelK. If detK(t) = det(K(ti, tj))

n
i,j=1

does not vanish anywhere on Xn, then the n-point correlation function for real zeros of
f exists and is given by

ρn(t1, . . . , tn) =
E[|X ′(t1) · · ·X ′(tn)| | X(t1) = · · · = X(tn) = 0]

(2π)n/2
√

detK(t)

for t = (t1, . . . , tn) ∈ Xn.

Proof. This can be proved in almost the same way as in the proof of (3.4.1) in Corollary
3.4.2 in [7]. The only difference is that the exponent of |X ′(t1) · · ·X ′(tn)| is 1 in the case
of real Gaussian coefficients instead of 2 in the complex case. This is due to the fact that
the Jacobian determinant of F (t) = (X(t1), . . . , X(tn)) is equal to |X ′(t1) · · ·X ′(tn)| when
X is a real-valued differentiable function while |X ′(t1) · · ·X ′(tn)|2 when X is complex-
valued.

Proof of Theorem 2.1. From Lemma 4.2 and (3.3) we have

E[|f ′(t1) · · · f ′(tn)| | f(t1) = · · · = f(tn) = 0] = |q1(t) · · · qn(t)|E[|f(t1) · · · f(tn)|]
= det Σ(t) · E[|f(t1) · · · f(tn)|],
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and it follows from Lemma 6.1 that

ρn(t1, . . . , tn) = (2π)−n/2(det Σ(t))1/2E[|f(t1) · · · f(tn)|].

Hence Theorem 2.1 follows from Theorem 2.5.

6.2 Proof of Corollaries 2.2 and 2.3

Proof of Corollary 2.2. From (2.6) we observe that

R(s, t) = 1 + |µ(s, t)|c(s, t) arcsin c(s, t)− c(s, t)2,

and so R(s, s) = 0 and R(s,±1) = 1. A simple calculation yields

∂

∂t
|µ(s, t)| = sgn(t− s)

1− t2
c(s, t)2,

∂

∂t
c(s, t) = − sgn(t− s)

1− t2
|µ(s, t)|c(s, t),

∂

∂t
arcsin c(s, t) = − sgn(t− s)

1− t2
c(s, t)

and hence we obtain
∂

∂t
R(s, t) =

sgn(t− s)
1− t2

c(s, t)g(s, t),

where

g(s, t) := {c(s, t)2 arcsin c(s, t)− |µ(s, t)|2 arcsin c(s, t) + c(s, t)|µ(s, t)|}.

Since g(s,±1) = 0 and

∂

∂t
g(s, t) =

−4 sgn(t− s)
1− t2

|µ(s, t)|c(s, t)2 arcsin c(s, t),

we have g(s, t) ≥ 0. This implies the claim.

Proof of Corollary 2.3. The first equality immediately follows from ENr =
∫ r
−r ρ1(s)ds.

Recall that

VarNr =

∫ r

−r

∫ r

−r
ρ2(s, t)dsdt+

∫ r

−r
ρ1(s)ds−

(∫ r

−r
ρ1(s)ds

)2

.

We recall the 2-correlation function

ρ2(s, t) = π−2{K12(s, s)K12(t, t)−K11(s, t)K22(s, t) +K12(s, t)K21(s, t)}

from (2.6). Taking the discontinuity of K22(s, t) at s = t into account and using integra-
tion by parts together with (2.4), we have∫ r

−r
K11(s, t)K22(s, t)dt

=

∫ s

−r

∂2K22

∂s∂t
(s, t)K22(s, t)dt+

∫ r

s

∂2K22

∂s∂t
(s, t)K22(s, t)dt

= [
∂K22

∂s
(s, t)K22(s, t)]s−0

t=−r + [
∂K22

∂s
(s, t)K22(s, t)]rt=s+0 −

∫ r

−r
K12(s, t)K21(s, t)dt

= {K12(s, r)K22(s, r)−K12(s,−r)K22(s,−r)− πK12(s, s)} −
∫ r

−r
K12(s, t)K21(s, t)dt.

EJP 18 (2013), paper 49.
Page 13/18

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-2545
http://ejp.ejpecp.org/


Correlation functions for zeros and Pfaffians

It is easy to see that∫ r

−r
ds{K12(s, r)K22(s, r)−K12(s,−r)K22(s,−r)}

=
1

2
[K22(s, r)2 −K22(s,−r)2]r−r = K22(r, r)2 −K22(r,−r)2 = O(1).

Hence, we obtain

VarNr =2π−2

(
π

∫ r

−r
K12(s, s)ds+

∫ r

−r

∫ r

−r
K12(s, t)K21(s, t)dsdt

)
+O(1)

=2π−2

(
π log

1 + r

1− r
− 2 log

1 + r2

1− r2

)
+O(1).

This implies the assertion.

7 Proof of Theorem 2.7

7.1 Complex-valued Gaussian processes

Let X = {X(λ)}λ∈Λ be a centered complex-valued Gaussian process in the sense
that the real and imaginary parts form centered real Gaussian processes. Here we say
that a complex-valued Gaussian process is a complex Gaussian process if the real and
imaginary parts are mutually independent and have the same variance.

For a complex-valued Gaussian process X, we use three 2× 2 matrices

MX(λ, µ) =

(
E[X(λ)X(µ)] E[X(λ)X(µ)]

E[X(λ)X(µ)] E[X(λ)X(µ)]

)
,

M̂X(λ, µ) =

(
E[X(λ)X(µ)] E[X(λ)X(µ)]

E[X(λ)X(µ)] E[X(λ)X(µ)]

)
= MX(λ, µ)

(
0 1

1 0

)
,

M̃X(λ, µ) =

(
E[<X(λ)<X(µ)] E[<X(λ)=X(µ)]

E[=X(λ)<X(µ)] E[=X(λ)=X(µ)]

)
.

For λ1, λ2, . . . , λn ∈ Λ, the matrix (MX(λi, λj))
n
i,j=1 is Hermitian, (M̂X(λi, λj))

n
i,j=1 is

complex symmetric, and (M̃X(λi, λj))
n
i,j=1 is real symmetric. The real Gaussian vector

(<X(λ1),=X(λ1), . . . ,<X(λn),=X(λn))

has the covariance matrix (M̃X(λi, λj))
n
i,j=1. We can see that

M̃X(λ, µ) =
1

4
UMX(λ, µ)U∗, U =

(
1 1

−i i

)
. (7.1)

A (centered) complex-valued Gaussian process is uniquely determined by MX or M̂X .

Lemma 7.1. For λ1, . . . , λn ∈ Λ,

E[|X(λ1) · · ·X(λn)|2] = Hf(M̂X(λi, λj))
n
i,j=1. (7.2)

Proof. Let Ya(λ) = <X(λ) + a=X(λ) for a ∈ R. It follows from the Wick formula (3.6)
that

E[Ya(λ1)Yb(λ1) · · ·Ya(λn)Yb(λn)] = Hf(Yij)
n
i,j=1, (7.3)

where

Yij =

(
E[Ya(λi)Ya(λj)] E[Ya(λi)Yb(λj)]

E[Yb(λi)Ya(λj)] E[Yb(λi)Yb(λj)]

)
.

By analytic continuation, the formula (7.3) still holds for a, b ∈ C. Therefore, by setting
a = −b = i, we obtain the result.
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7.2 Conditional expectations for complex cases

Let D be the open unit disc D = {z ∈ C | |z| < 1}. We naturally extend the definition
µ in (2.2) to D:

µ(z, w) =
z − w
1− zw

(z, w ∈ D).

For z1, . . . , zn ∈ D and i = 1, 2, . . . , 2n, we consider

qi(z) = qi(z1, . . . , zn, zn+1, . . . , z2n)

defined in (3.2) with zj+n := zj (j = 1, 2, . . . , n).

Recall that D+ is the upper half of the open unit disc: D+ = {z ∈ D | =(z) > 0}.
If f is the Gaussian power series defined by (1.1), then {f(z)}z∈D+ is a complex-valued
Gaussian process with

Mf (z, w) =

( 1
1−zw

1
1−zw

1
1−zw

1
1−zw

)
.

Lemma 7.2. For η ∈ D+,

(f | f(η) = 0)
d
= µ(·, η)µ(·, η̄)f. (7.4)

Moreover,

(f ′(zi), i = 1, 2, . . . , n | f(z1) = · · · = f(zn) = 0)
d
= (qi(z)f(zi), i = 1, 2, . . . , n). (7.5)

Proof. The real Gaussian vector (<f(z),=f(w)), given <f(η) = =f(η) = 0, has the
covariance matrix

M̃f (z, w)− M̃f (z, η)M̃f (η, η)−1M̃f (η, w)

=
1

4
U [Mf (z, w)−Mf (z, η)Mf (η, η)−1Mf (η, w)]U∗

by (7.1). A direct computation gives

Mf (z, w)−Mf (z, η)Mf (η, η)−1Mf (η, w) = Mgη (z, w)

with gη(z) = µ(z, η)µ(z, η)f(z), and we obtain (7.4). The remaining statement follows
from (7.4) in a manner similar to the proof of Lemma 4.2.

7.3 Correlation functions for complex zeros

We finally compute the correlation function ρc
n(z1, . . . , zn) for complex zeros of f .

Our starting point is the following Hammersley’s formula (complex version), see [7]
and compare with Lemma 6.1:

ρc
n(z1, . . . , zn) =

E[|f ′(z1) · · · f ′(zn)|2 | f(z1) = · · · = f(zn) = 0]

(2π)n
√

det(M̃f (zi, zj))ni,j=1

. (7.6)

Note that (2π)−n[det(M̃f (zi, zj))]
−1/2 is the density of the real Gaussian vector

(<f(z1),=f(z1), . . . ,<f(zn),=f(zn))

at (0, 0, . . . , 0, 0).

EJP 18 (2013), paper 49.
Page 15/18

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-2545
http://ejp.ejpecp.org/


Correlation functions for zeros and Pfaffians

Proposition 7.3. Let

M(z) =

(
1

1− ziz̄j

)2n

i,j=1

and M̂(z) =

(
1

1− zizj

)2n

i,j=1

.

Then

ρc
n(z1, . . . , zn) =

(−1)n det M̂(z) ·Hf M̂(z)

πn
√

detM(z)
.

Proof. Let us compute the numerator on (7.6). Equation (7.5) gives

E[|f ′(z1) · · · f ′(zn)|2 | f(z1) = · · · = f(zn) = 0] = |q1(z) · · · qn(z)|2E[|f(z1) · · · f(zn)|2].

Here, since qj(z) = qj+n(z) for j = 1, 2, . . . , n, it follows from (3.3) that

|q1(z) · · · qn(z)|2 =

2n∏
i=1

qi(z) = (−1)n det M̂(z).

Furthermore, from (7.2) we have

E[|f(z1) · · · f(zn)|2] = Hf(M̂f (zi, zj))
n
i,j=1 = Hf M̂(z).

On the other hand, the denominator on (7.6) is computed by using (7.1):

det(M̃f (zi, zj))
n
i,j=1 = 4−n detM(z).

Consequently, we obtain the result from (7.6).

Proof of Theorem 2.7. By the Cauchy determinant formula (3.1),

det M̂(z) =

2n∏
i=1

1

1− z2
i

∏
1≤i<j≤2n

(
zi − zj
1− zizj

)2

,

√
detM(z) =

2n∏
i=1

1√
1− |zi|2

·
∏

1≤i<j≤2n

∣∣∣∣ zi − zj1− zizj

∣∣∣∣ .
By noting that zi+n = z̄i (i = 1, 2, . . . , n), We can see that

det M̂(z)√
detM(z)

= (−1)n(n−1)/2
n∏
i=1

1

|1− z2
i |
·
n∏
i=1

zi − z̄i
|zi − z̄i|

 ∏
1≤i<j≤2n

zi − zj
1− zizj

 .

Since z−z̄
|z−z̄| = i for =z > 0, from Proposition 7.3 and Pfaffian-Hafnian identity (3.5) we

see that

ρc
n(z1, . . . , zn) =

(−1)n(n−1)/2

(πi)n

n∏
i=1

1

|1− z2
i |
· Pf

(
zi − zj

(1− zizj)2

)2n

i,j=1

.

By changing rows and columns in the Pfaffian, we finally obtain

ρc
n(z1, . . . , zn) =

1

(πi)n

n∏
i=1

1

|1− z2
i |
· Pf (Kc(zi, zj))

n
i,j=1 .
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