
E l e c t r o n i
c

J
o

u
r n a l

o
f

P
r

o b a b i l i t y

Electron. J. Probab. 17 (2012), no. 88, 1–32.
ISSN: 1083-6489 DOI: 10.1214/EJP.v17-1962

Tracy-Widom law for the extreme eigenvalues of
sample correlation matrices∗

Zhigang Bao† Guangming Pan‡ Wang Zhou§

Abstract

Let the sample correlation matrix be W = Y Y T , where Y = (yij)p,n with yij =

xij/
√∑n

j=1 x
2
ij . We assume {xij : 1 ≤ i ≤ p, 1 ≤ j ≤ n} to be a collection of

independent symmetrically distributed random variables with sub-exponential tails.
Moreover, for any i, we assume xij , 1 ≤ j ≤ n to be identically distributed. We
assume 0 < p < n and p/n → y with some y ∈ (0, 1) as p, n → ∞. In this paper,
we provide the Tracy-Widom law (TW1) for both the largest and smallest eigenvalues
of W . If xij are i.i.d. standard normal, we can derive the TW1 for both the largest
and smallest eigenvalues of the matrix R = RRT , where R = (rij)p,n with rij =

(xij − x̄i)/
√∑n

j=1(xij − x̄i)2, x̄i = n−1 ∑n
j=1 xij .
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1 Introduction

Suppose we have a p-dimensional distribution with mean µ and covariance matrix
Σ. In recent three or four decades, in many research areas, including signal process-
ing, network security, image processing, genetics, stock marketing and other economic
problems, people are interested in the case where p is quite large or proportional to
the sample size. Naturally, one may ask how to test the independence among the p

components of the population. From the principal component analysis point of view,
the independence test statistic is usually the maximum eigenvalue of the sample covari-
ance matrices. Under the additional normality assumption, Johnstone [12] derived the
asymptotic distribution of the largest eigenvalue of the sample covariance matrices to
study the test H0 : Σ = I assuming µ = 0.
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Extreme eigenvalues of sample correlation matrices

However, sample covariance matrices are not scale-invariant. So if µ = 0, John-
stone [12] proposes to perform principal component analysis (PCA) by the maximum
eigenvalue of the matrix W = Y Y T , where

Y = (yij)p,n :=


x11

||x1||
x12

||x1|| · · ·
x1n

||x1||
...

...
...

...
xp1
||xp||

xp2
||xp|| · · ·

xpn
||xp||

 . (1.1)

Here xi = (xi1, · · · , xin)T contains n observations for the i-th component of the pop-
ulation, i = 1, · · · , p, and || · || represents the vector norm. Unfortunately, one can not
derive the limiting distribution of the largest eigenvalue of W by Johnstone’s machinery
for one decade.

Performing PCA on W amounts to PCA on the sample correlations of the original
data if µ = 0. So for simplicity, we call W the sample correlation matrix in this paper.
From now on, the eigenvalues of W will be denoted by

0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λp.

Then the empirical distribution (ESD) of W is defined by

Fp(x) =
1

p

p∑
i=1

1{λi≤x}.

The asymptotic property of Fp was studied in [11] and [2]. For the almost sure conver-
gence of λ1 and λp, see [11].

In this paper, we will study the fluctuations of the extreme eigenvalues λ1, λp of W
for a general population, including multivariate normal one. The basic assumption on
the distribution of our population throughout the paper is

Condition C1. We assume xij , 1 ≤ i ≤ p, 1 ≤ j ≤ n to be independent symmetri-
cally distributed random variables with common variance 1. And for any i, we as-
sume xi1, · · · , xin to be i.i.d. Furthermore, we request the distributions of the x′ijs
have sub-exponential tails, i.e., there exist positive constants C,C ′ such that for all
1 ≤ i ≤ p, 1 ≤ j ≤ n one has

P(|xij | ≥ tC) ≤ e−t

for all t ≥ C ′. And we also assume p/n→ y as p, n = n(p)→∞, where 0 < y < 1.

Remark 1.1. The sample correlation matrix W is invariant under the scaling on the
elements xij , so the assumption V ar(xij) = 1 is not necessary indeed. We specify it to
be 1 here just for convenience.

Remark 1.2. Owing to the exponential tails, we can always truncate the variables so
that |xij | ≤ K with some K ≥ logO(1) n for all 1 ≤ i ≤ p, 1 ≤ j ≤ n. It is easy to
see that the truncated matrix equals to the original one with probability 1− o(1). Note
that xij are symmetric and xi1, · · · , xin are i.i.d for any 1 ≤ i ≤ p, thus the truncated
variables xi11{|xi1|≤K}, · · · , xin1{|xin|≤K} are still symmetric and i.i.d for any 1 ≤ i ≤ p.
Moreover, as mentioned above, the sample correlation matrix is invariant under scaling,
so we can adjust the variances of the truncated variables to be 1 by scaling. Therefore,
without loss of generality. We can always work with the condition C1 and the additional
assumption that |xij | ≤ K with some K ≥ logO(1) n for all 1 ≤ i ≤ p, 1 ≤ j ≤ n.
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Extreme eigenvalues of sample correlation matrices

A special sample correlation matrix model is the Bernoulli case, i.e. xij takes value
of 1 or −1 with equal probability. Notice that if xij are Bernoulli, we always have for all
1 ≤ i ≤ p

||xi||2 = x2
i1 + · · ·+ x2

in = n.

As a consequence, the sample correlation matrix with Bernoulli elements coincides with
its corresponding sample covariance matrix for which the limiting distribution of the
extreme eigenvalues are well known under some moment assumptions. One can refer
to [4],[10], [13], [15] and [20]. We only summarize their results for the special Bernoulli
case as the following theorem.

Theorem 1.3 (Bernoulli case). For the matrix W in (1.1), if xij are ±1 Bernoulli vari-
ables, we have

nλp − (p1/2 + n1/2)2

(n1/2 + p1/2)(p−1/2 + n−1/2)1/3

d−→ TW1,

and

nλ1 − (p1/2 − n1/2)2

(n1/2 − p1/2)(p−1/2 − n−1/2)1/3

d−→ TW1.

as p, n→∞ with p/n→ y ∈ (0, 1).

Here TW1 is the famous Tracy-Widom distribution of type 1, which was firstly raised
by Tracy and Widom in [19] for the Gaussian orthogonal ensemble. The distribution
function F1(t) of TW1 admits the representation

F1(t) = exp(−1

2

∫ ∞
t

[q(x) + (x− t)q(x)2]dx),

where q statisfies the Painlevé II equation

q′′ = tq + 2q3, q(t) ∼ Ai(t), as t→∞.

Here Ai(t) is the Airy function.
The main purpose of this paper is to generalize Theorem 1.3 to the population satis-

fying the basic condition C1. Our main results are the following two theorems.

Theorem 1.4. Let W be a sample correlation matrix satisfying the basic condition C1.
We have

nλp − (p1/2 + n1/2)2

(n1/2 + p1/2)(p−1/2 + n−1/2)1/3

d−→ TW1.

and

nλ1 − (p1/2 − n1/2)2

(n1/2 − p1/2)(p−1/2 − n−1/2)1/3

d−→ TW1.

as p→∞.

Remark 1.5. For technical reasons, it is convenient to work with the continuous ran-
dom variables xij . As a result, the events such as eigenvalue collision will only occur
with probability zero (see Lemma 3.10). Because none of our bounds depends on how
continuous the xij are, one can recover the discrete case from the continuous one by a
standard limiting argument by using Weyl’s inequality (see Lemma 2.2), especially for
the Bernoulli case.
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Extreme eigenvalues of sample correlation matrices

If the population is normal, then we can derive the Tracy-Widom law for both the
largest and smallest eigenvalues of the matrix R = RRT , where

R = (rij)p,n :=


x11−x̄1

||x1−x̄1||
x12−x̄1

||x1−x̄1|| · · ·
x1n−x̄1

||x1−x̄1||
...

...
...

...
xp1−x̄p
||xp−x̄p||

xp2−x̄p
||xp−x̄p|| · · ·

xpn−x̄p
||xp−x̄p||

 . (1.2)

Here x̄i = n−1
∑n
j=1 xij and xi−x̄i means each element xij of xi will be subtracted by x̄i,

i = 1, · · · , p. We denote the ordered eigenvalues of R by 0 ≤ λ1(R) ≤ · · · ≤ λp(R) below.
Actually R is the sample correlation matrix when the population mean is unknown.

Theorem 1.6. For the sample correlation matrix R with i.i.d N(0, 1) elements, if p/n→
y ∈ (0, 1), we have

nλp(R)− (p1/2 + n1/2)2

(n1/2 + p1/2)(p−1/2 + n−1/2)1/3

d−→ TW1.

and

nλ1(R)− (p1/2 − n1/2)2

(n1/2 − p1/2)(p−1/2 − n−1/2)1/3

d−→ TW1

as p→∞.

Throughout the paper, We will use C,C0, C1, C2, C
′ to denote some positive constants

independent of p, which may differ from line to line. And we will use Cα to denote some
positive constants depending on the parameter α. The notation || · ||op, || · ||F represent
the operator norm and Frobenius norm of a matrix respectively. And || · || represents a
Euclidean norm of a vector.

And we will use the following ad hoc definitions on the frequent events provided in
[16].

Definition 1.7 (Frequent events, [16]). Let E be an event depending on n.

• E holds asymptotically almost surely if P(E) = 1− o(1).
• E holds with high probability if P(E) ≥ 1−O(n−c) for some constant c > 0 (indepen-
dent of n).
• E holds with overwhelming probability if P(E) ≥ OC(n−C) for every constant C > 0.
• E holds almost surely if P(E) = 1.

The main strategy is to prove a so-called “Green function comparison theorem”,
which was raised by Erdös, Yau and Yin in [9] for generalized Wigner matrices. Very
recently, Pillai and Yin provided an analogous comparison theorem for sample covari-
ance matrices in [14]. Moreover, a rigidity result was derived for a class of matrices
including sample correlation matrices, which is crucial for our proof (see Theorem 1.5
of [14]). Different from the Wigner matrix case, the authors of [14] used a strategy to
replace the matrix entries column by column instead of replacing entries one at a time
in the swapping procedure. We will pursue this strategy to sample correlation matrices
to provide a “Green function comparison theorem” to the sample correlation matrices
obeying the assumption C1 in Section 4, see Theorem 4.3. Then by the comparison
theorem, we can compare the general distributed case with the Bernoulli case to get
Theorem 1.4. And as an application, we can also get Theorem 1.6.
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Extreme eigenvalues of sample correlation matrices

Our article is organized as follows. In Section 2, we state some basic tools, which
can be also found in the series work [16], [17], [18] and [20]. And we provide some
main technical lemmas and theorems in Section 3. The most important one is the so-
called delocalization property of singular vectors, which will be shown as an obstacle
to establish the Green function comparison theorem in the sample correlation matrices
case. And in Section 4, we provide a Green function comparison theorem (Theorem
4.3). The proof is a combination of Pillai and Yin’s arguments in [14] and the delocaliza-
tion property of singular vectors proved in Section 3. In Section 5, we state the proofs
for our main results: Theorem 1.4 and Theorem 1.6.

2 Basic Tools

In this section, we state some basic tools from linear algebra and probability theory.
Firstly, we denote the ordered singular values of Y by

0 ≤ σ1 ≤ σ2 ≤ · · · ≤ σp,

then we have σi = λ
1/2
i . If we further denote the unit right singular vector of Y corre-

sponding σi by ui and the left one by vi, we have

Y ui = σivi (2.1)

and

Y T vi = σiui. (2.2)

Below we shall state some tools for eigenvalues, singular values and singular vectors
without proof.

Lemma 2.1 (Cauchy’s interlacing law). . Let 1 ≤ p ≤ n

(i) If An is an n × n Hermitian matrix, and An−1 is an n − 1 × n − 1 minor, then
λi(An) ≤ λi(An−1) ≤ λi+1(An) for all 1 ≤ i < n.

(ii) IfAn,p is a p×nmatrix, andAn,p−1 is a p−1×nminor, then σi(An,p) ≤ σi(An,p−1) ≤
σi+1(An,p) for all 1 ≤ i < p.

(iii) If p < n, An,p is a p× n matrix, and An−1,p is a p× n− 1 minor, then σi−1(An,p) ≤
σi(An−1,p) ≤ σi(An,p) for all 1 ≤ i ≤ p, with the understanding that σ0(An,p) = 0. (For
p = n, one can consider its transpose and use (ii) instead.)

Lemma 2.2 (Weyl’s inequality). Let 1 ≤ p ≤ n

• If M,N are n × n Hermitian matrices, then ||λi(M) − λi(N)|| ≤ ||M −N ||op for all
1 ≤ i ≤ n.

• If M,N are p× n matrices, then ||σi(M)− σi(N)|| ≤ ||M −N ||op for all 1 ≤ i ≤ p.

The following lemma is on the components of a singular vector, which can be found
in [18].

Lemma 2.3. [18] Let p, n ≥ 1, and let

Ap,n = (Ap,n−1 h)
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Extreme eigenvalues of sample correlation matrices

be a p × n matrix with h ∈ Cp, and let
(
u
x

)
be a right unit singular vector of Ap,n with

singular value σi(Ap,n), where x ∈ C and u ∈ Cn−1. Suppose that none of the singular
values of Ap,n−1 is equal to σi(Ap,n). Then

|x|2 =
1

1 +
∑min(p,n−1)
j=1

σj(Ap,n−1)2

(σj(Ap,n−1)2−σi(Ap,n)2)2 |vj(Ap,n−1) · h|2
,

where {v1(Ap,n−1), · · · , vmin(p.n−1)(Ap,n−1) ∈ Cp} is an orthonormal system of left singu-
lar vectors corresponding to the non-trivial singular values of Ap,n−1 and
vj(Ap,n−1)·h = vj(Ap,n−1)∗h with vj(Ap,n−1)∗ being the complex conjugate of vj(Ap,n−1).

Similarly, if

Ap,n =

(
Ap−1,n

l∗

)
for some l ∈ Cn, and (vT , y)T is a left unit singular vector of Ap.n with singular value
σi(Ap,n), where y ∈ C and v ∈ Cp−1, and none of the singular values of Ap−1,n are equal
to σi(Ap,n), then

|y|2 =
1

1 +
∑min(p−1,n)
j=1

σj(Ap−1,n)2

(σj(Ap−1,n)2−σi(Ap,n)2)2 |uj(Ap−1,n) · l|2
,

where {u1(Ap−1,n), · · · , umin(p−1,n)(Ap−1,n) ∈ Cn} is an orthonormal system right singu-
lar vectors corresponding to the non-trivial singular values of Ap−1,n.

Further, we need a frequently used tool in the Random Matrix Theory: the Stieltjes
transform of ESD Fp(x), which is defined by

sp(z) =

∫
1

x− z
dFp(x)

for any z = E + iη with E ∈ R and η > 0. If we introduce the Green function G(z) =

(W − z)−1, we also have

sp(z) =
1

p
TrG(z) =

1

p

p∑
k=1

Gkk. (2.3)

Here we denote Gjk as the (j, k) entry of G(z). As is well known, the convergence of
a tight probability measure sequence is equivalent to the convergence of its Stieltjes
transform sequence towards the corresponding transform of the limiting measure. So
corresponding to the convergence of Fp(x) towards FMP,y(x), the famous Marc̆enko-
Pastur law FMP,y(x) whose density function is given by

ρMP,y =
1

2πxy

√
(b− x)(x− a)1[a,b](x), (2.4)

where a = (1 − √y)2, b = (1 +
√
y)2, sp(z) almost surely converges to the Stieltjes

transform s(z) of FMP,y(x). Here

s(z) =
1− y − z +

√
(z − 1− y)2 − 4y

2yz
, (2.5)

where the square root is defined as the analytic extension of the positive square root of
the positive numbers. Moreover, s(z) satisfies the equation

s(z) +
1

y + z − 1 + yzs(z)
= 0. (2.6)
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Extreme eigenvalues of sample correlation matrices

If we denote the k-th row of Y by yTk and the remaining (p − 1) × n matrix after
deleting yTk by Y (k), one has

W =

(
1 yT1 Y

(1)T

Y (1)y1 Y (1)Y (1)T

)
.

By Schur’s complement,

G11 =
1

1− z − yT1 Y
(1)T (Y (1)Y (1)T − z)−1Y (1)y1

=
1

1− z − yT1 Y
(1)TY (1)(Y (1)TY (1) − z)−1y1

. (2.7)

The formula of Gkk is analogous. By (2.3), we have the following lemma on the decom-
position of sp(z):

Lemma 2.4. For the matrix W , we have

sp(z) =
1

p

p∑
k=1

1

1− z − yTk Y
(k)TY (k)(Y (k)TY (k) − z)−1yk

.

The last main tool we need comes from the probability theory, which is a concentra-
tion inequality for projections of random vectors. The details of the proof can also be
found in [16].

Lemma 2.5. Let X = (ξ1, · · · , ξn)T ∈ Cn be a random vector whose entries are inde-
pendent with mean zero, variance 1, and are bounded in magnitude by K almost surely
for some K, where K ≥ 10(E|ξ|4 + 1). Let H be a subspace of dimension d and πH the
orthogonal projection onto H. Then

P(|||πH(X )|| −
√
d| ≥ t) ≤ 10 exp(− t2

10K2
).

In particular, one has

||πH(X )|| =
√
d+O(K log n)

with overwhelming probability.

3 Main Technical Results

In this section, we provide our main technical results: the local MP law for sample
correlation matrices, and the delocalization property for the singular vectors. Both
results will be proved under much weaker assumption than C1. We form them into the
following two theorems.

Let us introduce more notation. For any interval I ⊂ R, we use NI to denote the
number of the eigenvalues of W falling into I, and use |I| to denote the length of I.

Theorem 3.1 (Local MP law). . Assume that p/n→ y with 0 < y < 1. And {xij : 1 ≤ i ≤
p, 1 ≤ j ≤ n} is a collection of independent (but not necessary identically distributed)
random variables with mean zero and variance 1. If |xij | ≤ K almost surely for some
K = o(p1/C0δ2log−1p) with some 0 < δ < 1/2 and some large constant C0 for all i, j, one
has with overwhelming probability that the number of eigenvalues NI for any interval

I ⊂ [a/2, 2b] with |I| ≥ K2 log7 p
δ9p obeys

|NI − p
∫
I

ρMP,y(x)dx| ≤ δp|I| (3.1)

when p is sufficiently large.
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Extreme eigenvalues of sample correlation matrices

Remark 3.2. The topic of the limiting spectrum distribution on short scales was firstly
raised by Erdős, Schlein and Yau in [6] for Wigner matrices. Such type of results are
shown to be quite necessary for the proof of the famous universality conjectures in the
Random Matrix Theory, for example, see [8] and [16].

Remark 3.3. The local MP law for sample covariance matrices was proved in [8], [18]
and [20]. And a strong type of the local MP law has been established for more general
matrix models in a very recent paper of Pillai and Yin, see Theorem 1.5, [14]. In fact,
from Theorem 1.5 of [14], one can get a more precise bound than that in (3.1) if we
replace ρMP,y(x) by the nonasymptotic MP law ρW (x) defined in Section 4. Moreover,
Pillai and Yin’s strong local MP law also provides some crucial estimates on individual
elements of the Green function G, which will be used to establish our Green function
comparison theorem in Section 4.

Theorem 3.4 (Delocalization of singular vectors). Under the assumptions of Theorem
3.1 and Ex3

ij = 0, if we assume x′ijs are continuous random variables, then with over-
whelming probability all the left and right unit singular vectors of W have all compo-
nents uniformly of size at most p−1/2KC0/2 logO(1) p.

Remark 3.5. Note that a little weaker delocalization property for the left singular
vector vi can also be found in Theorem 1.2 (iv) of Pillai and Yin [14].

Now if we denote

X =


x11√
n

x12√
n
· · · x1n√

n
...

...
...

...
xp1√
n

xp2√
n
· · · xpn√

n

 ,

then S := XXT is the sample covariance matrix corresponding to W . We further denote
the ordered eigenvalues of S by 0 ≤ λ̃1 ≤ · · · ≤ λ̃p and introduce the matrix

D =


√
n

||x1||
. . .

n
||xp||

 .

By Theorem 5.9 of [1], we have λ̃p = b+o(1) holds with overwhelming probability. In fact,
it is easy to see λ̃1 = a + o(1) holds with overwhelming probability as well by a similar
discussion through moment method. Observe that W = DSD, and ||D − I||op = o(1)

holds with overwhelming probability. By Lemma 2.2, we also have

λ1 = a+ o(1), λp = b+ o(1) (3.2)

holds with overwhelming probability. So below we always assume λi ∈ (a/2, 2b), 1 ≤ i ≤
p.

The proof of Theorem 3.1 is partially based on the lemmas of Section 2. It turns out
to be quite similar to the case of sample covariance matrices and Wigner matrices, see
[7], [8], [18] and [20]. However, the delocalization of the right singular vector ui of Y is
an obstacle, owing to the lack of independence between the columns of Y .

For the convenience of the reader, we provide a short proof of Theorem 3.1 at first.
Our main task in this section is the proof of Theorem 3.4, more precisely, the right
singular vector part of the theorem.
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Proof of Theorem 3.1. To show the local MP law, we will pursue the approach provided
in [8]. Though the argument in [8] was presented for the sample covariance matrices,
with slight modification it can also be used to the sample correlation matrices. We need
the following crude upper bound on NI at first.

Lemma 3.6. Under the assumptions of Theorem 3.1, we have for any interval I ⊂ R
with |I| � K2 log2 p/p, and large enough C > 0

NI ≤ Cp|I|

with overwhelming probability.

Proof. Firstly we introduce the notation

W (k) = Y (k)Y (k)T , W(k) = Y (k)T Y (k), G(k) = (W (k) − z)−1, G(k) = (W(k) − z)−1.

Let λ(1)
α , α = 1, · · · , p − 1 denote the eigenvalues of the (p − 1) × (p − 1) matrix W (1).

Thus λ(1)
α , α = 1, · · · , p − 1 are also the eigenvalues of the n × n matrix W(1), whose

other eigenvalues are all zeros. We further use να to denote the eigenvector of W(1)

corresponding to the eigenvalue λ(1)
α , and introduce the quantity

ξα = n|y1 · να|2 =
n

||x1||2
|x1 · να|2 =:

n

||x1||2
ξ̃α. (3.3)

We can rewrite (2.7) as

G11 =
1

1− z − 1
n

∑p−1
α=1

λ
(1)
α ξα

λ
(1)
α −z

. (3.4)

By Cauchy’s interlacing law, we also have λ(1)
α ∈ [a/2, 2b] with overwhelming proba-

bility. Then for any z = E + iη such that E ∈ [a/2, 2b], we have

|=Gkk| ≤
1

η + η
n

∑p−1
α=1

λ
(1)
α ξα

(λ
(1)
α −E)2+η2

≤ C1pη∑
α:|λ(1)

α −E|≤η
ξα

(3.5)

for any k ∈ {1, · · · , p}. Now we set I = [E − η/2, E + η/2]. Notice that there always
exists some positive constant C2 such that

NI ≤ C2pη=sp(z) = C2η

p∑
k=1

=Gkk. (3.6)

If we set C3 = C1C2, it follows from (3.5) and (3.6) that

P(NI ≥ Cpη)

= P

( p∑
k=1

=Gkk ≥ C−1
2 Cp and NI ≥ Cpη

)
≤ pP

( ∑
α:|λ(1)

α −E|≤η/2

ξα ≤ C3C
−1pη and NI ≥ Cpη

)

≤ pP

(
n

||x1||2
∑

α:|λ(1)
α −E|≤η/2

ξ̃α ≤ C3C
−1pη and NI ≥ Cpη

)

≤ pP(||x1||2 ≥ 2n) + pP

( ∑
α:|λ(1)

α −E|≤η/2

ξ̃α ≤ 2C3C
−1pη and NI ≥ Cpη

)
. (3.7)
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The first term of (3.7) is obviously exponential small by the Hoeffding inequality. For
the second term, we use Lemma 2.5. Now we specialize X in Lemma 2.5 to be x1 and
the subspace H to be the one generated by eigenvectors {να : λ

(1)
α ∈ I}. Thus one has

d = NI ≥ Cpη � CK2 log2 n.

Then by Lemma 2.5 we have∑
α:|λ(1)

α −E|≤η/2

ξ̃α = ||πH(X )||2 > 1

2
Cpη

with overwhelming probability. This implies that the second term of (3.7) is exponential
small when C is large enough. So we conclude the proof of Lemma 3.6.

Now we proceed to prove Theorem 3.1. We follow the strategy in [8] to compare
sp(z) and s(z) with small imaginary part η. In fact, we have the following proposition.

Proposition 3.7. Let 1/10 ≥ η ≥ 1
n , and L1, L2, ε, δ > 0. Suppose that one has the

bound

|sp(z)− s(z)| ≤ δ

with (uniformly) overwhelming probability for all z = E + iη such that E ∈ [L1, L2] and
=z ≥ η. Then for any interval I ⊂ [L1 + ε, L2 − ε] with |I| ≥ max(2η, ηδ log 1

δ ), one has

|NI − n
∫
I

ρMP,y(x)dx| ≤ δn|I|

with overwhelming probability.

Remark 3.8. Proposition 3.7 is an extension of Lemma 30 of [18] up to the edge, whose
proof can be found in [20]. In fact, the proof can be taken in the same manner as that
of Lemma 64 in [16] for the Wigner matrix.

So in view of Proposition 3.7, to prove Theorem 3.1, we only need to prove that the
bound

|sp(z)− s(z)| ≤ δ (3.8)

holds with (uniformly) overwhelming probability for all z = E + iη such that E ∈ [a/2−
ε, 2b+ ε] and 1/10 ≥ η ≥ K2 log6 n

nδ8 . To prove (3.8) we need to derive a consistent equation
for sp(z), which is similar to the equation (2.6) for s(z).

Firstly by Lemma 2.4 we can rewrite sp(z) as

sp(z) =
1

p

p∑
k=1

1

1− z − dk
,

with

dk = yTkW(k)G(k)yk.

Then the proof of (3.8) can be taken in the same manner as the counterpart of the
sample covariance matrix case (see the proof of formula (4.12) of [20]). We only state
the different parts below and leave the details to the reader. We remark here that we
consider the domain [L1, L2] = [a/2 − ε, 2b + ε] rather than [a, b] in [20]. However, if
one goes through the proof in [20], it is not difficult to see that the proof towards any
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domain [L1, L2] containing [a, b] is the same. The only minor difference between our
case and the sample covariance matrix in [20] is the estimation of dk. We will only deal
with d1 in the sequel. The others are analogous. By (3.3) and (3.4), we have

d1 =
1

n

p−1∑
α=1

λ
(1)
α ξα

λ
(1)
α − z

=
1

n

p−1∑
α=1

λ
(1)
α

λ
(1)
α − z

+
1

n

p−1∑
α=1

λ
(1)
α (ξα − 1)

λ
(1)
α − z

. (3.9)

For the first term of (3.9) we have

1

n

p−1∑
α=1

λ
(1)
α

λ
(1)
α − z

=
p− 1

n
+
z

n

p−1∑
j=1

1

λ
(1)
α − z

:=
p− 1

n
(1 + zs(1)

p (z)),

where

s(1)
p (z) =

1

p− 1

p−1∑
j=1

1

λ
(1)
α − z

is the Stieltjes transform of the ESD of W (1). Then by the Cauchy’s interlacing property,
we have

|sp(z)− (1− 1

p
)s(1)
p (z)| = O(

1

p

∫
R

1

|x− z|2
dx) = O(

1

pη
).

Consequently one has

1

n

p−1∑
α=1

λ
(1)
α

λ
(1)
α − z

=
p− 1

n
+ z

p

n
sp(z) + o(δ2). (3.10)

Now we provide the following lemma on the second term of (3.9).

Lemma 3.9. For all z = E + iη with E ∈ [a/2− ε, 2b+ ε] and η ≥ K2 log6 n
nδ8 ,

1

n

p−1∑
α=1

λ
(1)
α (ξα − 1)

λ
(1)
α − z

= o(δ2)

uniformly in z with overwhelming probability.

Proof. We set Rj = (ξj − 1). By (3.3) and the fact that

n

||x1||2
= 1 +O(

K2 log2 n√
n

) (3.11)

holds with overwhelming probability, we have for any T ⊂ {1, · · · , p− 1}∑
j∈T

Rj =
n

||x1||2
∑
j∈T
|x1 · νj |2 − |T |. (3.12)

By using Lemma 2.5, we have∑
j∈T
|x1 · νj |2 = T +O

(√
TK log n ∨K2 log2 n

)
, (3.13)

where a ∨ b = max(a, b). By inserting (3.11) and (3.13) into (3.12), we have

∑
j∈T

Rj =
∑
j∈T
|x1 · νj |2 − |T |+O

(
TK4 log4 n√

n

)
.
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If we choose T = logO(1) n, we always have∑
j∈T

Rj =
∑
j∈T
|x1 · νj |2 − |T |+ o(δ2).

Then the following part of the proof is the same as that in the sample covariance matrix
case. One can refer to the proof of Proposition 4.6 of [20] for details.

Now we proceed to the proof of Theorem 3.1. By (3.9), (3.10) and Lemma 3.9 we
can get the following equation

sp(z) +
1

p
n + z − 1 + z pnsp(z) + o(δ2)

= 0. (3.14)

Now we claim that there exists a sufficiently large constant L > 0 such that

|zsp(z)| ≤ L (3.15)

if sp(z) satisfies the relation (3.14). Note that z = E + iη, where E ∈ [a/2− ε, 2b+ ε] and

1/10 ≥ η ≥ K2 log6 n
nδ8 . Thus we have

max{|z|, | p
n

+ z − 1 + o(δ2)|} ≤ C (3.16)

for some constant C > 0. From (3.14), we have

|sp(z)||
p

n
zsp(z) +

p

n
+ z − 1 + o(δ2)| = 1.

Thus by (3.16) one has

|zsp(z)|(|
p

n
zsp(z) +

p

n
+ z − 1 + o(δ2)|) ≤ C,

which implies

|zsp(z)||
p

n
|zsp(z)| − |

p

n
+ z − 1 + o(δ2)|| ≤ C.

By assumption, for p large enough we have p/n > c for some positive constant c, thus
it is elementary to see that there exists some positive constant L such that |zsp(z)| ≤ L

by using (3.16) again. With the aid of (3.15) and the fact that |p/n− y| = o(1), we have

sp(z) +
1

y + z − 1 + yzsp(z) + o(δ2)
= 0 (3.17)

when p is sufficiently large such that |p/n− y| = o(δ2). Then by a standard comparison
of (3.17) and (2.6) (see [20] for example), we have (3.8). Thus by Proposition 3.7 we
conclude the proof of Theorem 3.1.

Now we turn to the proof of Theorem 3.4. At first, we introduce the matrix Ŵ(n) :=

Ŷ(n)Ŷ
T
(n) with

Ŷ(n) =


x11

||x̂1||
x12

||x̂1|| · · ·
x1,n−1

||x̂1||
x21

||x̂2||
x22

||x̂2|| · · ·
x2,n−1

||x̂2||
· · · · · · · · · · · ·
xp1
||x̂p||

xp2
||x̂p|| · · ·

xp,n−1

||x̂p||

 ,

where

x̂j = (xj1, xj2, · · · , xj,n−1)T .

We will need the following lemma on eigenvalue collision.
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Lemma 3.10. If we assume the random variables x′ijs are continuous, we have the
following events hold with probability one.
i): W has simple eigenvalues, i.e. λ1 < λ2 < · · · < λp.
ii): W and W (p) have no eigenvalue in common.
iii): W and Ŵ(n) have no eigenvalue in common.

The proof of Lemma 3.10 will be postponed to Appendix A.

Proof of Theorem 3.4. The proof for the left singular vectors is nearly the same as the
sample covariance matrix case shown in [20] by using Lemma 2.3, ii) of Lemma 3.10
and Theorem 3.1. Moreover, as we have mentioned in the Remark 3.5, a slightly weaker
delocalization property for the left singular vectors has been provided in [14]. So we
will only present the proof for the right singular vectors below.

Below we denote the k-th column of Y by hk, and the remaining p×(n−1) matrix after
deleting hk by Y(k). Note that Y(n) is not independent of the last column hn. However,
for the sample covariance matrix case, the independence between the column and the
corresponding submatrix is essential for one to use the concentration results such as
Lemma 2.5. To overcome the inconvenience caused by the dependence, we will use the
modified matrix Ŷ(n) defined above. Notice that the matrix Ŷ(n) is independent of the
random vector (x1n, x2n · · · , xpn)T .

Now we define

∆1 = Y T(n)Y(n) − Ŷ T(n)Ŷ(n),

and
∆2 = Y T(n) − Ŷ

T
(n). (3.18)

The following lemma handles the operator norms of ∆1 and ∆2.

Lemma 3.11. Under the assumption of Theorem 3.4, we have

||∆1||op, ||∆2||op = O(
K2

n
)

with overwhelming probability.

Proof. Observe that

∆1 = (Y T(n) − Ŷ
T
(n))Y(n) + Ŷ T(n)(Y(n) − Ŷ(n)) = ∆2Y(n) + Ŷ T(n)∆

T
2 .

We only discuss the second term since the first one is analogous. It is easy to see the
entries of ∆T

2 satisfy

xij
||xi||

− xij
||x̂i||

=
xij(||x̂i||2 − ||xi||2)

||xi||||x̂i||(||xi||+ ||x̂i||)
= − x2

in

||xi||(||xi||+ ||x̂i||)
· xij
||x̂i||

.

It follows that

Ŷ T(n)∆
T
2 := −Ŷ T(n)∆3Ŷ(n),

where ∆3 is a p× p diagonal matrix with (i, i)-th entry to be

x2
in

||xi||(||xi||+ ||x̂i||)
.

Thus it is easy to see

||∆3||op = O(
K2

n
),

with overwhelming probability. Together with the fact that ||Ŷ(n)||op ≤ C holds with
overwhelming probability, we can conclude the proof of Lemma 3.11.
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Now we proceed to the proof of Theorem 3.4. If we denote

ui =

(
w

x

)
,

where x is the last component of ui. Without loss of generality, we can only prove the
theorem for x. Notice that ui is the eigenvector of W = Y TY corresponding to the
eigenvalue λi. From  Y T(n)Y(n) Y T(n)hn

hTnY(n) hTnhn

(w
x

)
= λi

(
w

x

)
,

we have

Y T(n)Y(n)w + xY T(n)hn = λiw, (3.19)

and

hTnY(n)w + xhTnhn = λix. (3.20)

(3.19) can be rewritten as

(Ŷ T(n)Ŷ(n) + ∆1)w + x(Ŷ T(n) + ∆2)hn = λiw.

It follows that

(Ŷ T(n)Ŷ(n) − λi)w = −xŶ T(n)hn − x∆2hn −∆1w. (3.21)

Note that Ŷ T(n)Ŷ(n) share the same nonzero eigenvalues with Ŵ(n), so by iii) of Lemma

3.10, we can always view that the matrix Ŷ T(n)Ŷ(n) − λi is invertible. Consequently,

||w||2 = [xŶ T(n)hn + x∆2hn + ∆1w]T (Ŷ T(n)Ŷ(n) − λi)−2[xŶ T(n)hn + x∆2hn + ∆1w]

If x = 0 then Theorem 3.4 is evidently true. Consider x 6= 0 below. Together with the
fact that x2 = 1− ||w||2, we have

x2 =
1

1 + [Ŷ T(n)hn + ∆2hn + x−1∆1w]T (Ŷ T(n)Ŷ(n) − λi)−2[Ŷ T(n)hn + ∆2hn + x−1∆1w]
.

Now if we use λ̂j to denote the ordered nonzero eigenvalue of Ŷ T(n)Ŷ(n) and ûj the
corresponding unit eigenvector. And set the projection

P̂ = I −
p∑
j=1

ûj û
T
j .

Then by the spectral decomposition one has

x2 =
1

1 +
∑p
j=1

1
(λ̂j−λi)2

|ûj · (Ŷ T(n)hn + ∆2hn + x−1∆1w)|2 + ∆
, (3.22)

where

∆ =
1

λ2
i

||P̂ (Ŷ T(n)hn + ∆2hn + x−1∆1w)||2.
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Therefore to show |x| ≤ n−1/2KC0/2 logO(1) n, it suffices to prove

p∑
j=1

1

(λ̂j − λi)2
|ûj · (Ŷ T(n)hn + ∆2hn + x−1∆1w)|2 ≥ nK−C0 log−O(1) n. (3.23)

To verify (3.23), we need to separate the issue into the bulk case and the edge case.
Before that, we shall provide the following lemma which will be used in both cases.

Lemma 3.12. If we denote the unit eigenvector of Ŵ(n) corresponding to λ̂j by v̂j ,
under the assumption of Theorem 3.4 we have for any J ⊆ {1, · · · , p} with |J | = d ≤
nK−3,

√
n[
∑
j∈J

(v̂j · hn)2]1/2 =
√
d+O(K log n)

with overwhelming probability.

We will postpone the proof of Lemma 3.12 to Appendix B. In fact, it can be viewed
as a minor modification of Lemma 2.5.

Now we decompose the proof of Theorem 3.4 into two parts: bulk case and edge
case.

• Bulk case: λi ∈ [a+ ε, b− ε] for some ε > 0

Note that the local MP law (Theorem 3.1) can also be applied to the matrix Ŷ T(n)Ŷ(n).

Thus we can find a set J ⊆ {1, · · · , p} with |J | ≥ K2 log20 n such that λ̂j = λi +

O(K2 log20 n/n) for any j ∈ J when λi is in the bulk region of the MP law. It follows that∑
j∈J

1

(λ̂j − λi)2
|ûj · (Ŷ T(n)hn + ∆2hn + x−1∆1w)|2

≥ C n2

K4 log40 n

∑
j∈J
|ûj · (Ŷ T(n)hn + ∆2hn + x−1∆1w)|2. (3.24)

By the singular value decomposition, we have

ûj · Ŷ T(n)hn = λ̂
1/2
j v̂j · hn. (3.25)

Now we compare ∑
j∈J
|ûj · Ŷ T(n)hn|

2 =
∑
j∈J

λ̂j |v̂j · hn|2 (3.26)

with ∑
j∈J
|ûj · (∆2hn + x−1∆1w)|2 (3.27)

for any J ⊂ {1, · · · , p} such that K2 log20 n ≤ |J | ≤ nK−3.
If |x| ≤ n−1/2KC0/2 logO(1) n, then we get the conclusion for the bulk case. So we

assume |x| ≥ n−1/2KC0/2 logO(1) n below to get (3.23). By Lemma 3.11, if we choose
C0 ≥ 20 (say), we have

(3.27) ≤ 2|J |(||∆2||op||hn||)2 + 2x−2|J |(||∆1||op||w||)2

≤ |J |n−1K−C0/2 log−O(1) n (3.28)
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with overwhelming probability. On the other side, Lemma 3.12 implies

(3.26) = Cn−1(|J |+O(K2 log2 n)) (3.29)

with overwhelming probability. So one has∑
j∈J
|ûj · Ŷ T(n)hn|

2 �
∑
j∈J
|ûj · (∆2hn + x−1∆1w)|2, (3.30)

where� means “much larger than", i.e.(∑
j∈J
|ûj · (∆2hn + x−1∆1w)|2

)
/
(∑
j∈J
|ûj · Ŷ T(n)hn|

2
)

= o(1).

Notice that for any real number sequence {S1, · · · , Sm} and {T1, · · · , Tm}with
∑m
i=1 S

2
i �∑m

i=1 T
2
i , there exists some c near 1 such that

∑m
i=1(Si + Ti)

2 ≥ c
∑m
i=1 S

2
i . Therefore by

(3.29),(3.30) and (3.24) we can obtain∑
j∈J

1

(λ̂j − λi)2
|ûj · (Ŷ T(n)hn + ∆2hn + x−1∆1w)|2 ≥ CnK−2 log−20 n,

which implies (3.23) directly. So we conclude the proof for the bulk case.

Next, we turn to the edge case.

• Edge case: a− o(1) ≤ λi ≤ a+ ε or b− ε ≤ λi ≤ b+ o(1) with some ε > 0.

For the edge case we also begin with the representation (3.22). By (3.21), we have

w = −x(Ŷ T(n)Ŷ(n) − λi)−1(Ŷ T(n)hn + ∆2hn + x−1∆1w). (3.31)

Inserting (3.31) and (3.18) into (3.20) we find

(Ŷ T(n)hn + ∆2hn)T (Ŷ T(n)Ŷ(n) − λi)−1(Ŷ T(n)hn + ∆2hn + x−1∆1w) = hTnhn − λi.

Furthermore,

|x−1wT∆T
1 (Ŷ T(n)Ŷ(n) − λi)−1(Ŷ T(n)hn + ∆2hn + x−1∆1w)|

= |x−2wT∆T
1 w| ≤ |x|−2||∆1||op||w||2 = ||∆1||op

1− x2

x2
.

Thus one has

(Ŷ T(n)hn + ∆2hn + x−1∆1w)T (Ŷ T(n)Ŷ(n) − λi)−1(Ŷ T(n)hn + ∆2hn + x−1∆1w)

= hTnhn − λi +O

(
||∆1||op

1− x2

x2

)
. (3.32)

Similarly to the bulk case, we only need to get (3.23). Below we also assume |x| ≥
Cn−1/2KC0/2 logO(1) n to get (3.23). Similar to (3.28), by using Lemma 3.11 we have

|ûj · (∆2hn + x−1∆1w)|2 ≤ n−1K−C0/2 log−O(1) n. (3.33)

Moreover, by Lemma 3.12 and (3.25), we also have

|ûj · Ŷ T(n)hn|
2 = λ̂i|v̂j · hn| ≤ Cn−1K2 log2 n (3.34)
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with overwhelming probability. Thus to provide (3.23), it suffices to show

p∑
j=1

1

(λ̂j − λi)2
|ûj · (Ŷ T(n)hn + ∆2hn + x−1∆1w)|4 ≥ K−C0+2 log−O(1) n

instead. By the Cauchy-Schwarz inequality, we only need to prove∑
i−T−≤j≤i+T+

1

|λ̂j − λi|
|ûj · (Ŷ T(n)hn + ∆2hn + x−1∆1w)|2 ≥ log−O(1) n (3.35)

with overwhelming probability for some 1 ≤ T− < T+ ≤ K2 logO(1) n.
Notice that under the assumption |x| ≥ Cn−1/2KC0/2 logO(1) n, by Lemma 3.11 we

have

||∆1||op
1− x2

x2
= o(1).

Moreover, it is not difficult to see hTnhn = y + o(1) with overwhelming probability. Thus
by (3.32), we have with overwhelming probability

p∑
j=1

1

(λ̂j − λi)
|ûj · (Ŷ T(n)hn + ∆2hn + x−1∆1w)|2 − 1

λi
||P̂ (Ŷ T(n)hn + ∆2hn + x−1∆1w)||2

= hTnhn − λi +O(||∆1||op
1− x2

x2
) = y − λi + o(1).

Observing that

P̂ Ŷ T(n)hn = 0

and

||P̂ (∆2hn + x−1∆1w)||2 � n−1,

we also have

p∑
j=1

1

(λ̂j − λi)
|ûj · (Ŷ T(n)hn + ∆2hn + x−1∆1w)|2 = y − λi + o(1). (3.36)

So to prove (3.35) we only need to evaluate∑
j<i−T− or j>i+T+

1

(λ̂j − λi)
|ûj · (Ŷ T(n)hn + ∆2hn + x−1∆1w)|2. (3.37)

To do this, we let A > 100 be a constant large enough. For any interval I of length
|I| = K2 logA n/n, we set dI := dist(λi,I)

|I| , where

dist(λi, I) = min
x∈I
|λi − x|sgn(λi, I).

Here sgn(λi, I) = 1(resp. −1) when λi is on the left (resp. right) hand side of I.
By Theorem 3.1, the interval I with |dI | < log n contains at most K2 logO(1) n eigen-

values. So we can set T−, T+ accordingly so that such intervals don’t contain any λ̂j if
j < i− T− or j > i+ T+. In the following we only consider I such that |dI | ≥ log n in the
estimation of (3.37). Note that for λ̂j ∈ I,

1

λ̂j − λi
=

1

dI |I|
+O(

1

d2
I |I|

).
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Using (3.33) and (3.34) again one has

2|(ûj · Ŷ T(n)hn)(ûj · (∆2hn + x−1∆1w))|+ |ûj ·∆2hn + x−1ûj ·∆1w|2

≤ Cn−1K−O(1) log−O(1) n

when |x| ≥ n−1/2KC0/2 logO(1) n. Thus we can find∑
j∈I

1

|λ̂j − λi|
(2|(ûj · Ŷ T(n)hn)(ûj · (∆2hn + x−1∆1w))|+ |ûj ·∆2hn + x−1ûj ·∆1w|2)

≤ C NI
|dI ||I|n

K−O(1) log−O(1) n ≤ C 1

|dI |
K−O(1) log−O(1) n. (3.38)

Here we used Lemma 3.6 in the last inequality. Now we partition the real line into
intervals I of length K2 logA n/n, and sum (3.38) over all intervals I with |dI | ≥ log n.
Then ∑

I

1

dI
K−O(1) log−O(1) n = o(1).

So we can evaluate∑
j<i−T− or j>i+T+

1

(λ̂j − λi)
|ûj · Ŷ T(n)hn|

2 =
∑

j<i−T− or j>i+T+

λ̂j

(λ̂j − λi)
|v̂j · hn|2. (3.39)

instead of (3.37). The evaluation of (3.39) is really the same as the counterpart in the
sample covariance matrix case (see (4.5) in [20]) by inserting Lemma 3.12, so we omit
the details here. In fact, we can finally get∑

j<i−T− or j>i+T+

λ̂j

(λ̂j − λi)
|v̂j · hn|2 = p.v.

∫ b

a

y
x

x− λi
ρMP,y(x)dx+ o(1)

= y + λi p.v.

∫ b

a

ρMP,y(x)

x− λi
dx+ o(1)

where p.v. means the principal value.
Using the formula for the Stieltjes transform s(z), one can get from residue calculus

that for λi ∈ [a, b],

p.v.

∫ b

a

ρMP,y(x)

x− λi
dx =

1− y − λi
2yλi

,

and for λi 6∈ [a, b]

p.v.

∫ b

a

ρMP,y(x)

x− λi
dx =

1− y − λi +
√

(λi − 1− y)2 − 4y

2yλi
.

Consequently by the definition of a and b, if |λi − a| ≤ o(1), we have

(3.36) = −1 + 2
√
y + o(1), (3.39) =

√
y + o(1).

And if |λi − b| ≤ o(1), we have

(3.36) = −1− 2
√
y + o(1), (3.39) = −√y + o(1).

Then it is easy to see when 0 < y < 1, (3.35) holds with overwhelming probability
for the case where |λi − a| = o(1) or |λi − b| = o(1). Moreover by continuity we can
adjust the value of ε to get the conclusion for the general case a − o(1) ≤ λi ≤ a + ε or
b− ε ≤ λi ≤ b+ o(1). Thus we complete the proof of the delocalization for ui.
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4 Green function comparison theorem

In this section, we provide a Green function comparison theorem for the sample
correlation matrices satisfying C1. The proof heavily relies on the recent results of
Pillai and Yin [14] on sample covariance matrices and the delocalization property for
the right singular vectors proved in the last section. At first, we will borrow some
results from [14] directly with only minor notation change. In fact, by Theorem 1.5 in
[14], it is not difficult to see Theorem 1.2 and Theorem 1.3 of [14] also hold for sample
correlation matrices under our basic condition C1.

To state the results in [14], we need to introduce some notation. Define the param-
eter

ϕ := (log p)log log p,

and

λ± := (1± (
p

n
)1/2)2.

Moreover we introduce the “nonasymptotic Marchenko-Pastur law ”

ρW (x) =
n

2πxp

√
(λ+ − x)(x− λ−)1[λ−,λ+](x)

and the corresponding distribution function FW (x) and Stieltjes transform

sW (z) =

∫
R

ρW (x)

x− z
dx.

For ζ ≥ 0, define the set

S(ζ) := {z ∈ C : 0 ≤ E ≤ 5λ+, ϕ
ζp−1 ≤ η ≤ 10(1 +

p

n
)}. (4.1)

And we say that an event Ω holds with ζ-high probability if there exists a constant C > 0

such that

P(Ωc) ≤ pC exp(−ϕζ) (4.2)

for large enough p. Note that (4.2) implies that the event Ω holds with overwhelming
probability if ζ > 0. We further denote

Λd := max
k
|Gkk − sW (z)|, Λo := max

k 6=l
|Gkl|, Λ := |sp(z)− sW (z)|.

Lemma 4.1 (Theorem 1.5, [14]). Under the condition C1, for any ζ > 0 there exists a
constant Cζ such that the following events hold with ζ-high probability.

(i) The Stieltjes transform of the ESD of W satisfies⋂
z∈S(Cζ)

{
Λ(z) ≤ ϕCζ 1

pη

}
.

(ii) The individual matrix elements of the Green function satisfy

⋂
z∈S(Cζ)

{
Λo(z) + Λd(z) ≤ ϕCζ

(√
=sW (z)

pη
+

1

pη

)}
.

(iii) Uniformly in E ∈ R,

|Fp(E)− FW (E)| ≤ ϕCζp−1.
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We also need the following lemma on sW (z).

Lemma 4.2 (Lemma 26, [14]). Set κ := min(|λ+ − E|, |E − λ−|). For z = E + iη ∈ S(0),
(see (4.1)) we have the following relations:

|sW (z)| ∼ 1, |1− s2
W (z)| ∼

√
κ+ η, (4.3)

=sW (z) ∼


η√
κ+η

if κ ≥ η and |E| 6∈ [λ−, λ+]

√
κ+ η if κ ≤ η and |E| ∈ [λ−, λ+]

(4.4)

where A ∼ B means C−1B ≤ A ≤ CB for some constant C. Furthermore

=sW (z)

pη
≥ O(

1

p
) and ∂η

=sW (z)

η
≤ 0.

Now we set Y v = (yv
ij) := (xvij/||xv

i ||)p,n, with elements xvij satisfying our basic con-
dition C1. Correspondingly we let Wv = Y vY vT , Gv(z) = (Wv − z)−1 and svp (z) =
1
pTrG

v(z). Define the matrix Ww, the Green function Gw(z) and the Stieltjes trans-
form swp (z) analogously for another random sequence {xwij} satisfying C1 which is in-
dependent of {xvij}. The aim in this section is to prove the following Green function
comparison theorem.

Below we only state the results and proofs for the largest eigenvalue. The smallest
one is just analogous.

Theorem 4.3 (Green function comparison theorem on the edge). . Let F : R→ R be a
function whose derivatives F (α) satisfy

max
x
|F (α)(x)|(|x|+ 1)−C1 ≤ C1, α = 1, 2, 3, 4

with some constant C1 > 0. Then there exists ε0 > 0 depending only on C1 such that for
any positive ε < ε0 and for any real numbers E,E1 and E2 satisfying

|E − λ+| ≤ p−2/3+ε, |E1 − λ+| ≤ p−2/3+ε, |E2 − λ+| ≤ p−2/3+ε,

and η = p−2/3−ε, we have∣∣EvF (pη=svp (z))− EwF (pη=swp (z))
∣∣ ≤ Cp−1/6+Cε, z = E + iη, (4.5)

and ∣∣∣∣∣EvF
(
p

∫ E2

E1

dx=svp (x+ iη)
)
− EwF

(
p

∫ E2

E1

dx=swp (x+ iη)
)∣∣∣∣∣ ≤ Cp−1/6+Cε (4.6)

for some positive constant C and large enough p.

Proof of Theorem 4.3. The proof is similar to that of Theorem 6.3 of [14]. Moreover, the
proof of (4.6) can be taken in a same manner as that of (4.5), so we will just present
the proof for (4.5) below. The basic strategy is to estimate the successive difference
of matrices which differ by a row. For 1 ≤ γ ≤ p, we denote by Yγ the random matrix
whose j-th row is the same as that of Y v if j ≤ γ and that of Y w otherwise; in particular
Y0 = Y v and Yp = Y w. And we set

Wγ = YγY
T
γ .

We shall compareWγ−1 withWγ by using the following lemma. For simplicity, we denote

s(i)
p (z) =

1

p
TrG(i)(z), s̃(i)

p (z) = s(i)
p (z)− 1

pz
.
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Lemma 4.4. For any sample correlation matrix W with elements satisfying the basic
assumption C1, if |E − λ+| ≤ p−2/3+ε and p−2/3 � η � p−2/3−ε for some small enough
ε > 0, then we have

EF (pη=sp(z))− EF (pη=s̃(i)
p (z)) = A(Y (i),m1,m2) +O(p−7/6+Cε)

where the functional A(Y (i),m1,m2) only depends on the distribution of Y (i) and the
first two moments m1,m2 of xij .

Remark 4.5. We always assume m1 = 0, m2 = 1 in our case.

Note that

W
(γ)
γ−1 = W (γ)

γ ,

thus Lemma 4.4 implies that

EF
(
η=Tr(Wγ−1 − z)−1

)
− EF

(
η=Tr(Wγ − z)−1

)
= O(p−7/6+Cε).

Then the proof of Theorem 4.3 can be completed by the telescoping argument.
Therefore it suffices to prove Lemma 4.4 in the sequel. To do this, we need to provide

some bounds about G(i). We only state the result for i = 1 as the following lemma since
the others are analogous.

Lemma 4.6. Under the assumptions in Lemma 4.4, we have for ε > 0 small enough,

|yT1 (G(1))2y1| ≤ p1/3+Cε (4.7)

and

|(G(1))ij | ≤ pCε, |((G(1))2)ij | ≤ p1/3+Cε (4.8)

hold with overwhelming probability.

The proof of Lemma 4.6 will be postponed to the end of this section. Now we begin
to prove Lemma 4.4 assuming Lemma 4.6.

Proof of Lemma 4.4. The proof is in a similar manner to that of Lemma 6.5 in [14]. At
first we rewrite (2.7) as

G11 =
1

−z − zyT1 G(1)(z)y1
(4.9)

by using the facts that

W(1)G(1)(z) = I + zG(1)(z), yT1 y1 = 1.

Moreover, by Schur’s complement, we also have

TrG− TrG(1) = G11 +
yT1 Y

(1)T (G(1))2Y (1)y1

−z − zyT1 G(1)(z)y1
, (4.10)

Inserting (4.9) and the identity

Y (1)T (G(1))2Y (1) =W(1)(G(1))2 = G(1) + z(G(1))2

into (4.10) we can get

TrG− TrG(1) + z−1 = zG11(yT1 (G(1))2(z)y1). (4.11)
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Now we define the quantity B as

B = −zsW (z)

[
yT1 G(1)(z)y1 −

(
−1

zsW (z)
− 1

)]
.

Thus by (4.9) we have

B = −zsW (z)

[(
−1

zG11(z)
− 1

)
−
(
−1

zsW (z)
− 1

)]
=
sW (z)−G11

G11
.

By (ii) of Lemma 4.1 and (4.4) we can get

|B| ≤ p−1/3+2ε � 1

with overwhelming probability. Thus we have the expansion

G11 =
sW (z)

B + 1
= sW (z)

∑
k≥0

(−B)k. (4.12)

Now we set

φ := η(TrG− TrG(1) + z−1).

It follows from (4.11) and (4.12) that

φ = ηzG11y
T
1 (G(1))2y1 =

∞∑
k=1

φk,

where

φk := ηzsW (z)(−B)k−1yT1 (G(1))2y1.

Since z and sW (z) are O(1) by (4.3), by definitions and Lemma 4.6, we have

|φk| ≤ O(p−k/3+Cε) and |φ| ≤ O(p−1/3+Cε) (4.13)

with overwhelming probability. Thus we have

F (pη=sp(z))− F (pη=s̃(1)
p (z))

=

3∑
k=1

1

k!
F (k)(pη=s̃(1)

p (z))(=φ)k +O(p−4/3+Cε)

with overwhelming probability.

Similarly to the counterpart proof of Lemma 6.5 in [14], we only need to show

EF (k)(pη=s̃(1)
p (z))(=φ)k = Ak(Y (1),m1,m2) +O(p−4/3+Cε), k = 1, 2, 3 (4.14)

with some functional Ak only depending on the distribution of Y (1), m1 and m2.

Since the proof of (4.14) is similar to the counterpart in [14], we will only state the
proof for k = 3 below. We use E1 to denote the expectation with respect to y1 in the
sequel. By using (4.13) we obtain

F (3)(pη=s̃(1)
p (z))(=φ)3 = F (3)(pη=s̃(1)

p (z))(=φ1)3 +O(p−4/3+Cε) (4.15)
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with overwhelming probability. If we write r1 = <(ηzsW (z)), r2 = =(ηzsW (z)), then we
have

E1(=φ1)3 = E1r
3
1(=(yT1 (G(1))2y1))3 + E1r

3
2(<(yT1 (G(1))2y1))3

+3E1r
2
1r2(=(yT1 (G(1))2y1))2(<(yT1 (G(1))2y1))

+3E1r1r
2
2(=(yT1 (G(1))2y1))(<(yT1 (G(1))2y1))2

= r3
1

∑
k1,··· ,k6

E1(

6∏
i=1

x1ki

||x1||
)

3∏
i=1

=
(
(G(1))2

)
k2i−1,k2i

+r3
2

∑
k1,··· ,k6

E1(

6∏
i=1

x1ki

||x1||
)

3∏
i=1

<
(
(G(1))2

)
k2i−1,k2i

+3r1r
2
2

∑
k1,··· ,k6

E1(

6∏
i=1

x1ki

||x1||
)

2∏
i=1

<
(
(G(1))2

)
k2i−1,k2i

=
(
(G(1))2

)
k5,k6

+3r2
1r2

∑
k1,··· ,k6

E1(

6∏
i=1

x1ki

||x1||
)

2∏
i=1

=
(
(G(1))2

)
k2i−1,k2i

<
(
(G(1))2

)
k5,k6

.(4.16)

Notice that if there exists a ki which appears only once in the above product, then
by the assumption that xij is symmetric, we have

E1(

6∏
i=1

x1ki

||x1||
) = 0 = m1. (4.17)

So we first consider the case where ki appears exactly twice. Note that

||x1||6 =
∑

k1,k2,k3

x2
1k1x

2
1k2x

2
1k3 :=

∑
(1)

x2
1k1x

2
1k2x

2
1k3 +

∑
(2)

x2
1k1x

2
1k2x

2
1k3 ,

where the first summation goes through the indices k1, k2, k3 such that they are not
equal to each other, and the second summation goes through the left part of the indices.
Then it is not difficult to see the number of the terms in the second summation is of the
order O(n2). By the exponential tail assumption and the Hoeffding inequality, we can
see

E1

∑
(2)

x2
1k1
x2

1k2
x2

1k3

||x1||6
= O(

logO(1) n

n
).

Furthermore, since x11, · · · , x1n are i.i.d., we have for k1, k2, k3 not equal to each other

E1

x2
1k1
x2

1k2
x2

1k3

||x1||6
=

1

n(n− 1)(n− 2)
(1−O(

logO(1) n

n
)) =

m3
2

n3
+O(

logO(1) n

n4
). (4.18)

Therefore by (4.16), (4.17), (4.18) and the fact that G(1) only depends on Y (1), we have

|E1(=φ1)3 − Ã3(Y (1),m1,m2)|

≤ logO(1) n

n4
|ηzsW (z)|3

∑
(3)

|[(G(1))2]k1,k2 [(G(1))2]k3,k4 [(G(1))2]k5,k6 |

+C|ηzsW (z)|3
∑

(4),(5)

E1

∣∣∣∣ 6∏
i=1

x1ki

||x1||

∣∣∣∣ · |[(G(1))2]k1,k2 [(G(1))2]k3,k4 [(G(1))2]k5,k6 |(4.19)
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with some functional Ã3 only depending on the distribution of Y (1), m1 and m2. Here
the first summation

∑
(3) in (4.19) goes through the terms such that each ki, i = 1, · · · , 6

appears exactly twice. It is easy to see that there are O(n3) such terms totally. And the
second summation goes through the terms such that (4) no ki appears only once and
(5) at least one ki appears three times. Thus we have the total number of the terms in
the second summation is of the order O(n2). Then by using Lemma 4.6 and the fact

E1

∣∣∣∣ 6∏
i=1

x1ki

||x1||

∣∣∣∣ = O(
logO(1) n

n3
),

we have

E1(=φ1)3 = Ã3(Y (1),m1,m2) +O(p−2+Cε) (4.20)

By inserting (4.20) into (4.15), we can get (4.14) for k = 3. The cases of k = 1 and k = 2

can be proved similarly by inserting Lemma 4.6. So we conclude the proof.

Now we begin to prove Lemma 4.6.

Proof of Lemma 4.6. The proof of (4.7) is the same as the counterpart in [14], (see
(6.36) of [14]). So we only state the proof of (4.8) below. For the ease of the presenta-
tion, we prove (4.8) for G = (W − z)−1 := (Y TY − z)−1 instead of G(1). By the spectral
decomposition, we have

Gα =

p∑
k=1

1

(λk − z)α
uku

T
k +

1

(−z)α
P, α = 1, 2,

where the projection P = I −
∑p
k=1 uku

T
k . Consequently, we have

(Gα)ij =

p∑
k=1

1

(λk − z)α
ukiukj +

1

(−z)α
Pij .

Note that |Pij | ≤ 1, |z| ≥ λ+/2. By the delocalization property of uk in Theorem 3.4 one
has

|(Gα)ij | ≤
logO(1) p

p

p∑
k=1

1

|λk − z|α
+ C

with overwhelming probability. For α = 2, by using i) of Lemma 4.1 and (4.4) we have

p∑
k=1

1

|λk − z|2
= pη−1=sp(z) ≤ pεpη−1 1

pη
≤ p4/3+Cε,

which implies

|(G2)ij | ≤ p1/3+Cε.

For α = 1, we have

p∑
k=1

1

|λk − z|
= p

∫
1

|x− z|
dFp(x).

Observe that

|p
∫

1

|x− z|
dFp(x)− p

∫
1

|x− z|
dFW (x)| ≤ Cp

∫
|Fp(x)− FW (x)|
|x− z|2

dx ≤ η−1pCε
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with overwhelming probability. Here we used (iii) of Lemma 4.1 in the last inequality.
Consequently, we have

|Gij | ≤ (logO(1) p)

∫
1

|x− z|
dFW (x) + C.

It remains to estimate
∫

1
|x−z|dFW (x). For E < λ+ such that λ+ − E ≤ p−2/3+ε

∫
1

|x− z|
dFW (x) =

(∫ 2E−λ+

λ−

+

∫ λ+

2E−λ+

)
1√

(x− E)2 + η2
dFW (x).

By the formula for the MP law, one has∫ 2E−λ+

λ−

1√
(x− E)2 + η2

dFW (x) ≤ C

∫ 2E−λ+

λ−

√
λ+ − x
E − x

dx

≤ C

∫ 2E−λ+

λ−

1√
E − x

dx = O(1), (4.21)

and ∫ λ+

2E−λ+

1√
(x− E)2 + η2

dFW (x) ≤ η−1

∫ λ+

2E−λ+

dFW (x) = o(1).

When E ≥ λ+, we still have (4.21). Therefore, we have

|Gij | ≤ pCε

with overwhelming probability. Thus we complete the proof.

Theorem 4.3 is proved.

5 Proofs of main theorems

In this section, we provide the proofs of Theorem 1.4 and Theorem 1.6.

Proof of Theorem 1.4. The proof of Theorem 1.4 is totally based on Theorem 1.5 of [14]
and our Theorem 4.3. Let Wv and Ww be two independent sample correlation matrix
satisfying C1. We claim that there is an ε > 0 and δ > 0 such that for any real number s
(which may depend on p) one has

Pv(p2/3(λp − λ+) ≤ s− p−ε)− p−δ ≤ Pw(p2/3(λp − λ+) ≤ s)
≤ Pv(p2/3(λp − λ+) ≤ s+ p−ε) + p−δ (5.1)

for p ≥ p0 sufficiently large, where p0 is independent of s. The proof of (5.1) is inde-
pendent of the matrix model and totally based on Theorem 1.5 of [14] and our Theorem
4.3, we refer to the proof of Theorem 1.7 of [14] for details.

Now if we choose Wv to be the Bernoulli case, it is not difficult to get Theorem 1.4
by combining (5.1) and Theorem 1.3.

Proof of Theorem 1.6. Set the matrix

A =



1√
n

1√
n

1√
n

· · · 1√
n

1√
2

− 1√
2

0 · · · 0
1√
3·2

1√
3·2 − 2√

3·2 · · · 0

· · · · · · · · · · · · · · ·
1√

n(n−1)

1√
n(n−1)

1√
n(n−1)

· · · − n−1√
n(n−1)

 .
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It is easy to see A is an orthogonal matrix. Moreover, it is elementary that

A(xi1 − x̄i, · · · , xin − x̄i)T = (0, zi1, · · · , zi,n−1)T ,

where zi1, · · · , zin−1 is a sequence of i.i.d N(0, 1) variables. Further, if we denote the
vector zi = (zi1, · · · , zin−1)T , we also have

||xi − x̄i||2 =

n−1∑
k=1

z2
ik = ||zi||2.

Thus one has

R = RRT = RATART =: Z.

Here

Z = ZZT

with

Z =


z11
||z1||

z12
||z1|| · · ·

z1,n−1

||z1||
...

...
...

...
zp1
||zp||

zp2
||zp|| · · ·

zp,n−1

||zp||

 .

Consequently, in the Gaussian case, R is also a W -type sample correlation matrix de-
fined in (1.1) with parameters p, n− 1. Thus by Theorem 1.4, we have

(n− 1)λp(R)− (p1/2 + (n− 1)1/2)2

((n− 1)1/2 + p1/2)(p−1/2 + (n− 1)−1/2)1/3

d−→ TW1 (5.2)

and

(n− 1)λ1(R)− (p1/2 − (n− 1)1/2)2

((n− 1)1/2 − p1/2)(p−1/2 − (n− 1)−1/2)1/3

d−→ TW1. (5.3)

as p→∞. Replacing n−1 by n in (5.2) and (5.3), we can complete the proof of Theorem
1.6.

A Appendix A

In this appendix we prove Lemma 3.10

Proof of Lemma 3.10. At first we prove i). Note that W = DSD. For W and SD2 share
the same eigenvalues, it is equivalent to prove that the eigenvalues of SD2 are simple.
We further introduce the polynomial P1(X) of {xij , 1 ≤ i ≤ p, 1 ≤ j ≤ n} as

P1(X) =

p∏
k=1

||xk||2.

It is easy to see P1(X) vanishes with zero Lebesgue measure, so we can always assume
P1(X) 6= 0. As a consequence, we can reduce our problem to prove the matrix

Q := SD2P1(X)

has no multiple eigenvalue. Now we denote the discriminant of the characteristic poly-
nomial of Q by PQ(X). Observe that all the entries of Q are polynomials of {xij , 1 ≤ i ≤
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p, 1 ≤ j ≤ n}, so PQ(X) is also a polynomial of {xij , 1 ≤ i ≤ p, 1 ≤ j ≤ n}. For the set
of zeros of any non null polynomial in real variables only has zero Lebesgue measure, it
suffices to prove that PQ(X) is not a null polynomial. In other words, it suffices to find
a family {xij , 1 ≤ i ≤ p, 1 ≤ j ≤ n} such that PQ(X) 6= 0. It is equivalent to show that W
has no multiple eigenvalue for one sample of the collection {xij , 1 ≤ i ≤ p, 1 ≤ j ≤ n}
such that P1(X) 6= 0.

Now we choose the sample as

xij =

{
1, j = i or i+ 1

0, others

with 1 ≤ i ≤ p, 1 ≤ j ≤ n. Then it is not difficult to see

W =


1 1

2
1
2 1 1

2
. . .

. . .
. . .

1
2 1 1

2
1
2 1

 ,

which is a Jacobi matrix with positive subdiagonal entries. Such a Jacobi matrix has
simple eigenvalues, for example, see Proposition 2.40 of [5].

Next we turn to the proof of ii). We use X(p) to denote the submatrix of X with
p-th row deleted, and use D(p) to denote the p − 1 × p − 1 upper left corner of D. And
we set S(p) = X(p)X(p)T , thus one has W (p) = D(p)S(p)D(p). Similar to the proof of
i), we can prove that SD2P1(X) and S(p)(D(p))2P1(X) have no eigenvalue in common
instead. It is easy to see the resultant of the characteristic polynomials of SD2P1(X)

and S(p)(D(p))2P1(X) is a polynomial of {xij , 1 ≤ i ≤ p, 1 ≤ j ≤ n}. Therefore, it suffices
to show the resultant is a non null polynomial. Equivalently, we shall provide a sample
of {xij , 1 ≤ i ≤ p, 1 ≤ j ≤ n} such that W and W (p) have no eigenvalue in common.

Using i) to W (p) we can denote the ordered eigenvalues of W (p) by λ
(p)
1 < λ

(p)
2 <

· · · < λ
(p)
p−1. By Cauchy’s interlacing property, one has

0 ≤ λ1 ≤ λ(p)
1 ≤ λ2 ≤ · · · ≤ λ(n)

p−1 ≤ λp. (A.1)

Moreover, we know that W(p) shares the same nonzero eigenvalues with W (p). So we
can provide an example such that W and W(p) have no nonzero eigenvalue in common
instead. Note

W =W(p) + ypy
T
p . (A.2)

Taking trace on both side of (A.2), we obtain

λ1 + · · ·+ λp = λ
(n)
1 + · · ·+ λ

(n)
p−1 + 1. (A.3)

Now if we fix {xij , 1 ≤ i ≤ p − 1, 1 ≤ j ≤ n} such that λ(p)
1 < λ

(p)
2 < · · · < λ

(p)
p−1 and

let {xpj , 1 ≤ j ≤ n} vary. When {xpj , 1 ≤ j ≤ n} runs through the set Rn, the ordered
nonzero eigenvalues ofW describe the set of families λ1, · · · , λp of real numbers obeying
(A.1) and (A.3), see the proof of Lemma 11.2 of [3] for example. Thus it is easy to find a
family λ1, · · · , λp such that

{λ1, · · · , λp} ∩ {λ(p)
1 , λ

(p)
2 , λ

(p)
p−1} = ∅
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Now we prove iii). We setX(n) to be the submatrix ofX with the n-th column deleted
and set

D̂(n) =


√
n

||x̂1||
. . .

√
n

||x̂p||

 .

Let S(n) = X(n)X
T
(n). It is obvious that S(n)D̂

2
(n) shares the same eigenvalues with Ŵ(n)

Now we introduce the polynomials

P2(X) =

p∏
k=1

||xk||2 · ||x̂k||2.

To prove that W and Ŵ(n) have no eigenvalue in common, we only need to show SD2

and S(n)D̂
2
(n) have no eigenvalue in common. Moreover, if P2(X) does not vanish, it is

equivalent to prove that the matrices T := SD2P2(X) and T̂(n) := S(n)D̂
2
(n)P2(X) have

no eigenvalue in common. Note that the event P2(X) = 0 has zero Lebesgue measure.
What’s more, it is not difficult to see the entries of T and T̂(n) are all polynomials of the
elements of X, thus the resultant R(X) of the characteristic polynomials of T and T(n)

is also a polynomial of the elements of X. Therefore, we only need to show R(X) is a
non null polynomial, it suffices to give only one example of X such that W and Ŵ(n) do
not have eigenvalue in common. For example, we can choose

xij =

{
1, j = i or j = n,

0, others

Then we have Ŵ(n) = Ip and

W =


1 1

2 · · · 1
2

1
2 1 · · · 1

2
...

...
. . .

...
1
2

1
2 · · · 1

 .

Thus it is easy to see Ŵ(n) and W have no eigenvalue in common for det(W − I) 6= 0,
which implies that R(X) is not a null polynomial, so we conclude the proof.

B Appendix B

In this appendix, we prove Lemma 3.12. If we denote

ĥn = (
x1n

||x̂1||
,
x2n

||x̂2||
, · · · , xpn

||x̂p||
)T .

Set

ci =
1

||xi|| · ||x̂i|| · (||xi||+ ||x̂i||)
.

By the Hoeffding inequality, we have

ci =
1

n3/2
+
KO(1) logO(1) n

n2
. (B.1)

holds with overwhelming probability. It is not difficult to see

v̂j · hn = v̂j · ĥn − v̂j · (c1x3
1n, · · · , cpx3

pn)T := v̂j · ĥn + dj . (B.2)
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By (B.1), we can write dj

dj :=
1

n3/2
v̂j · (x3

1n, · · · , x3
pn)T + fj . (B.3)

Observe that ∑
j∈J

(v̂j · hn)2 =
∑
j∈J

(v̂j · ĥn)2 + 2
∑
j∈J

dj(v̂j · ĥn) +
∑
j∈J

d2
j .

Since (x3
1n, · · · , x3

pn)T is also a random vector with mean zero and finite variance entries,
Lemma 2.5 can be used to the first part of the right hand side of (B.3). Thus if we set
the projection

PJ =
∑
j∈J

v̂j v̂
T
j , (B.4)

then we have∑
j∈J

d2
j ≤ C

1

n3
|PJ · (x3

1n, · · · , x3
pn)T |2 + C

∑
j∈J

f2
j = O(

|J |
n3

) +O(
KO(1) logO(1) n

n3
).

with overwhelming probability. Here we have used the fact that for any J∑
j∈J

f2
j ≤ C

KO(1) logO(1) n

n4

p∑
i=1

x6
in = O(

KO(1) logO(1) n

n3
)

with overwhelming probability. Since∑
j∈J

dj(v̂j · ĥn) ≤
(∑
j∈J

d2
j

)1/2(∑
j∈J

(v̂j · ĥn)2

)1/2

,

it suffices to prove the following lemma instead.

Lemma B.1. Using the notation in Lemma 3.12, we have for any J ∈ {1, · · · , p} with
|J | = d ≤ nK−3,

√
n[
∑
j∈J

(v̂j · ĥn)2]1/2 =
√
d+O(K log n)

with overwhelming probability.

Proof. Observe that

v̂j · ĥn = (
v̂j1
||x̂1||

,
v̂j2
||x̂2||

, · · · , v̂jp
||x̂p||

)T · (x1n, · · · , xpn)T .

Now we set

ṽj =
√
n(

v̂j1
||x̂1||

,
v̂j2
||x̂2||

, · · · , v̂jp
||x̂p||

)T

and

h̃n = (x1n, · · · , xpn)T .

It follows that

v̂j · ĥn =
1√
n
ṽj · h̃n.

We use the following concentration theorem, which is a consequence of Talagrand’s
inequality, (see Theorem 69 of [16]).
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Theorem B.2 (Talagrand’s inequality). . Let D be the disk {z ∈ C, |z| ≤ K}. For every
product probability µ on Dp, every convex 1-Lipschitz function F : Cp → R, and every
r ≥ 0,

µ(|F −M(F )| ≥ r) ≤ 4 exp(−r2/16K2),

where M(F ) denotes the median of F .

Remark B.3. In fact, here we only need the real case of the theorem.

It is easy to see
√
n[
∑
j∈J

(v̂j · ĥn)2]1/2 = [
∑
j∈J

(ṽj · h̃n)2]1/2 =: F (h̃n)

is a convex function of the vector h̃n. Note

|F (h̃′n)− F (h̃n)|
||h̃′n − h̃n||

=
|F (h̃′n)− F (h̃n)|
||
√
nĥ′n −

√
nĥn||

· ||
√
nĥ′n −

√
nĥn||

||h̃′n − h̃n||
,

where

ĥ′n = (
x′1n
||x̂1||

, · · · ,
x′pn
||x̂p||

)T , h̃′n = (x′1n, · · · , x′pn)T .

Since F (h̃n) is the norm of a projection of the vector
√
nĥn, it is always 1-Lipschitz with

respect to
√
nĥn. And by the Hoeffding inequality, we also have

||
√
nĥ′n −

√
nĥn||

||h̃′n − h̃n||
≤ 2

with overwhelming probability. So F (h̃n) is a 2-Lipschitz function with overwhelming
probability. Thus we can always consider F (h̃n) as a 2-Lipschitz function below. By
Theorem B.2, we have

P(|F (h̃n)−M(F (h̃n))| ≥ r) ≤ 4 exp(−r2/64K2).

So to conclude the proof of Lemma B.1, we only need to show that

|M(F (h̃n))−
√
d| ≤ 2K.

Note that

√
nĥn =


√
n

||x̂1||
. . .

√
n

||x̂p||

 h̃n := D̂h̃n

So we have F 2(h̃n) = n
∑
j∈J |v̂j · ĥn|2 =

∑
j∈J h̃

T
n D̂v̂j v̂

T
j D̂h̃n := h̃Tn D̂PJD̂h̃n, where PJ is

the projection defined in (B.4). Let D̂PJD̂ =: (mkl)1≤k,l≤p, then we have

F 2(h̃n) =
∑

1≤k,l≤p

mklxknxln =

p∑
k=1

mkkx
2
kn +

∑
1≤k 6=l≤p

mklxknxln.

We fix all the variables except x1n, · · · , xpn, so the probabilities and expectations are all
taken with respect to h̃n below. Consider the event E+ that F (h̃n) ≥

√
d + 2K, which

implies F 2(h̃n) ≥ d+ 4
√
dK +K2. It follows that

P(E+) ≤ P(

p∑
k=1

mkkx
2
kn ≥ d+ 2

√
dK) + P(|

∑
1≤k 6=l≤p

mklxknxln| ≥ 2
√
dK).
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Observe that

E{
p∑
k=1

mkkx
2
kn} =

p∑
k=1

mkk = d(1 +O(
K2+ε

√
n

))

holds with overwhelming probability for any small ε > 0. Here we have used the fact
that

λ2
min(D̂)TrPJ ≤ TrD̂PJD̂ ≤ λ2

max(D̂)TrPJ

and TrPJ = d. By the condition that d ≤ nK−3, we have

E{
p∑
k=1

mkkx
2
kn} = d+ o(

√
dK).

Let S1 :=
∑p
k=1mkk(x2

kn − 1). We have

P(

p∑
k=1

mkkx
2
kn ≥ d+ 2

√
dK) ≤ P(|S1| ≥

√
dK) ≤ E(|S1|2)

dK2
.

And by the assumption on K we also have

E|S1|2 =

p∑
k=1

m2
kkE(x2

kn − 1)2 =

p∑
k=1

m2
kk(Ex4

kn − 1) ≤ dK.

Thus,

P(|S1| ≥
√
dK) ≤ E(|S1|2)

dK2
≤ 1

K
≤ 1/10.

Set S2 := |
∑
k 6=lmklxknxln|. Then we have

ES2
2 = 2

∑
k 6=l

m2
kl ≤ 2TrD̂PJD̂

2PJD̂ ≤ ||D̂||4opTrPJ = 2d(1 +O(
K2+ε

√
n

)).

By Chebyshev’s inequality one has

P(S2 ≥ 2
√
dK) ≤ 1/10.

Similarly, we can define E− as the event F (h̃n) ≤
√
d− 2K and use

P(E−) ≤ P(S1 ≤ d−
√
dK) + P(S2 ≥

√
dK).

Both terms on the right hand side can be bounded by 1/5 by the same argument as
above. So we conclude the proof.
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