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Abstract

Let 0 < α < 1/2. We show that that the mixing time of a continuous-time Markov chain on a finite
state space is about as large as the largest expected hitting time of a subset of the state space with
stationary measure ≥ α. Suitably modified results hold in discrete time and/or without the reversibility
assumption. The key technical tool in the proof is the construction of random set A such that the hitting
time of A is a light-tailed stationary time for the chain. We note that essentially the same results were
obtained independently by Peres and Sousi.

Keywords: Markov chains; mixing times; hitting times.
AMS MSC 2010: 60J10.
Submitted to EJP on August 19, 2011, final version accepted on June 6, 2012.

Abstract

Let 0 < α < 1/2. We show that that the mixing time of a continuous-time Markov chain on a finite
state space is about as large as the largest expected hitting time of a subset of the state space with
stationary measure ≥ α. Suitably modified results hold in discrete time and/or without the reversibility
assumption. The key technical tool in the proof is the construction of random set A such that the hitting
time of A is a light-tailed stationary time for the chain. We note that essentially the same results were
obtained independently by Peres and Sousi.

1 Introduction

The present paper is a contribution to the general quantitative theory of finite-state Markov chains
that was started in [2] and further developed in [4]. The gist of those papers is that the so-called mixing
time of a Markov chain is fundamentally related, in a precise quantitative sense, to hitting times and
other quantities of interest. Our main achievement is to add a new equivalent quantity to this list by
showing that mixing times nearly coincide with maximum hitting times of large sets in the state space.

Remark 1.1 (Important remark). The results in this paper were proven (but not made public) around
May 2010. In July 2011 we learned that extremely similar results for discrete-time chains have been
proven independently by Peres and Sousi [8]. We then decided to submit our results, in the hope that
our ideas might also be found useful and interesting. We will discuss their results at several points in
our paper. Here we just mention that the main difference between the papers is the construction of
the stopping time in Lemma 2.1 (see Section 1.1).

∗IMPA, Rio de Janeiro, Brazil. E-mail: rimfo@impa.br

http://ejp.ejpecp.org/
http://dx.doi.org/10.1214/EJP.v17-2274
mailto:rimfo@impa.br


Mixing and hitting for Markov chains

We need to introduce some notions before we clarify what we mean; [3] and [5] are our main
references for the involved concepts. In this paper E will always denote the finite state space of a
continuous-time Markov chain with generator Q, with transition rates q(x, y) (x, y ∈ E, x 6= y). Most of
the time Q and E will be implicit in our notation. The trajectories of the chain are denoted by {Xt}t≥0,
and the law of {Xt}t≥0 started from x ∈ E or from a probability distribution µ over E are denoted by
Px or Pµ (respectively) . For t ≥ 0, we write:

pt(x, y) ≡ Px (Xt = y) (x, y ∈ E)

for the transition probability from x to y at time t. In what follows we will always assume that Q is
irreducible, which implies that it has a unique stationary distribution π and:

∀(x, y) ∈ E2 : lim
t→+∞

pt(x, y) = π(y).

We can measure the rate of this convergence after we introduce a metric over probability distributions.
We choose the total variation metric:

dTV(µ, ν) = max
A⊂E

|µ(A)− ν(A)| = 1

2

∑
a∈E

|µ(a)− ν(a)| (µ, ν prob. measures over E)

and define the mixing time of Q as:

TQmix(δ) = inf{t ≥ 0 : ∀x ∈ E, dTV(pt(x, ·), π(·)) ≤ δ}.

Finally, given ∅ 6= A ⊂ E, we may define the hitting time of A as:

HA ≡ inf{t ≥ 0 : Xt ∈ A}.

Results for reversible chains. Recall that Q is reversible if π(x)q(x, y) = π(y)q(y, x) for all distinct
x, y ∈ E. In this setting, Aldous proved:

Theorem 1.2 (Aldous, [2]). There exist universal (ie. chain independent) constants c−, c+ > 0 such
that for any irreducible, reversible, finite-state-space Markov chain in continuous time with generator
Q:

c− TQhit ≤ TQmix(1/4) ≤ c+ TQhit

where TQhit ≡ sup{π(A)Ex [HA] : x ∈ E, ∅ 6= A ⊂ E}.

Notice that TQhit = 1 if Q consists of iid jumps at rate 1 between states in E, so TQhit can be viewed
as a measure of how “non-iid" the chain is. Informally, the mixing time is another measure of “non-
iid-ness", and the Theorem shows that these two measures are quantitatively related in a very strong
sense. We emphasize that Theorem 1.2 is part of a much larger family of universal inequalities for
reversible Markov chains; see [2] for details.

In this paper we prove a stronger form of Theorem 1.2. Given α > 0, let:

TQhit(α) ≡ sup{Ex [HA] : x ∈ E, ∅ 6= A ⊂ E, π(A) ≥ α}.

Unlike TQhit, only “large enough" sets are considered in this definition. We prove in Section 4 that:

Theorem 1.3. For any 0 < α < 1/2 there exist constants C+(α), C−(α) > 0 depending only on α such
that, for any irreducible continuous-time Markov chain as above:

C−(α) TQhit(α) ≤ TQmix(1/4) ≤ C+(α) TQhit(α).

Although similar to Theorem 1.2, the intuitive content of Theorem 1.3 seems different: instead of
measures of non-iid-ness, we have a statement that says that mixing times are about as large as the
expected time necessary to hit any large set, which is quite reasonable. Theorem 1.3 should also be
easier to use in applications. The condition α < 1/2 is discussed in Section 1.1.

Remark 1.4. Theorem 1.3 also holds in discrete time if p1(x, x) ≥ 1/2 for all x ∈ E (use [5, Theorem
20.3]). Peres and Sousi [8] have shown that p1(x, x) ≥ β > 0 for any fixed β > 0 also suffices. Some
lower bound on p1(x, x) is necessary; otherwise there are counterexamples such as large complete
bipartite graphs with an edge added to one of the parts.
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Mixing and hitting for Markov chains

Results for non-reversible chains. Theorem 1.3 and the main results of [2] only apply to reversible
chains; counterexamples can be found in that paper. Aldous, Lóvasz and Winkler [4] developed a
quantitative theory in the general case using a different notion of mixing time. Let M1([0, t]) be the set
of all probability measures over [0, t] and define:

TQrmix(δ) ≡ inf

{
t ≥ 0 :

∃µ ∈M1([0, t]), ∀x ∈ E,
dTV

(∫
[0,t]

ps(x, ·)µ(ds), π
)
≤ δ

}
.

In discrete time, one replaces M1([0, t]) with the set M1({0, . . . , t}) of all probability measures over
{0, . . . , t}. Aldous, Lóvasz and Winkler [4] proved an analogue to Theorem 1.2 for arbitrary Markov
chains in discrete time, where Trmix replaces Tmix (their method can also be applied in continuous
time). We prove an analogue of Theorem 1.3 in this setting:

Theorem 1.5. For any α ∈ (0, 1/2) there exist C′−(α) > 0, C′+(α) such that for any irreducible finite-
state Markov chain Q in continuous time:

C′−(α) TQhit(α) ≤ TQrmix(1/4) ≤ C′+(α) TQhit(α).

Remark 1.6. Our proof can be easily adapted to discrete time. Peres and Sousi [8] have proved a
variant of Theorem 1.5 where TQrmix(1/4) is replaced by another notion of time-averaged mixing, with
µ a geometric distribution with success probability 1/t.

1.1 Discussion of the results

Outside of potential applications to bounding mixing, Theorems 1.3 and 1.5 seem conceptually
interesting. They show that mixing times are natural in that they are strongly related to hitting times,
a quantity of intrinsic interest. For instance, we have the following immediate corollary of Theorem 1.5.

Corollary 1.7. There exists some universal C > 0 such that for any irreducible Markov chain in
discrete or continuous time,

∀x ∈ E, ∀∅ 6= A ⊂ V : Ex [HA] ≤
C supB⊂V, π(B)≥1/3 supy∈E Ey [HB ]

π(A)
.

We omit the proof, which follows from TQhit ≤ cTrmix(1/4) ≤ c′ TQhit(1/3) (with c, c′ > 0 universal).
This result says that one may control the hitting times of small sets via those of large sets.sOther
applications of (slight variants of) our theorems are considered in [8].

The limitation α < 1/2 is not clearly necessary for the Theorems to hold. However, Peres [7] noted
that one cannot allow α > 1/2. In that case one may contradict the two theorems by connecting two
complete graphs Kn by a single edge. In this case Thit(α) = O (n) whenever α > 1/2, since any set A
with π(A) ≥ α occupies a constant proportion of the mass of each clique. However, mixing requires
crossing the connecting edge, so Tmix(1/4) = Ω (Trmix(1/4)) = Ω

(
n2
)
. The intersting question is then:

Question 1. What happens when α = 1/2?

In 2009 Peres conjectured that TQhit(1/2) is also “equivalent up to universal constant factors" to
TQmix(1/4) (for lazy and reversible Q) [1]. We prove this result in an upcoming paper with Griffiths,
Kang and Patel.

1.2 Steps of the proof

The main step in the proof is Lemma 2.1, proven in Section 2. We construct there a randomized
stopping time T , which depends on the initial distribution, such thatXT has the stationary distribution.
This stopping rule is the hitting time of a randomly chosen subset A ⊂ E, where the possible values
of A form a chain A1 ⊃ A2 ⊃ · · · ⊃ An. We will see that this property property implies that we can
control the tail of HA via TQhit(α). We note that this stopping time was outlined in eg. [6, Theorem
4.9], but it is not explicit anywhere. Moreover, T is minimal in some sense (cf. Remark 2.3). Peres and
Sousi [8] prove similar results via another minimal stopping rule, the so-called filling rule that was also
employed in [2, 4]). We believe that our construction provides an interesting alternative point of view.

Ater the construction of T , our paper continues with the proof of Theorem 1.5, proven in Section 3.
The elegant argument we use employs Lemma 2.1 together with a simple coupling devised in the
survey [6]. The proof of Theorem 1.3 in Section 4 follows a convoluted computation in [2], which we
reproduce in order to get the sharp form we need. An Appendix presents a simple lower bound of
TQrmix(α/2) in terms of TQhit(α).
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Mixing and hitting for Markov chains

1.3 Acknowledgements

We thank Yuval Peres for the counterexample in Section 1.1 [7] and both him and Perla Sousi for
presenting [8] to us.

2 A special stationary stopping time

We use the notation in Section 1. Recall that a randomized stopping time for this chain is a [0,+∞)-
valued random variable T such that for all t ≥ 0 the event {T ≤ t} is measurable relative to the σ-field
generated by {Xs}s≤t and an independent random variable U .

Lemma 2.1. Suppose µ0 is a probability measure over E. Then there exists a randomized stopping
time T with

Pµ0 (XT = ·) = π(·) and Pµ0 (T > t) ≤ ε+
TQhit(ε)

t
for all ε ∈ (0, 1). (2.1)

Remark 2.2. The same result works (with a slightly different proof) if π is replaced by another target
distribution µ1 over E and π substitutes µ1 in the definition of TQhit(ε).

Remark 2.3. Although we do not use this, one can show that Eµ0 [T ] is minimal among all randomized
stopping times with Pµ (XT = ·) = π(·). This is because our T has a halting state [6, Theorem 4.5].

Remark 2.4. We note from the definitions that TQhit(ε) ≤ TQhit/ε. We may plug this into Lemma 2.1 and
optimize over ε to deduce:

Pµ0 (T > t) ≤

√
TQhit

t
.

Aldous [2] proves a similar bound for a different stopping time, which he uses to prove Theorem 1.2.
The same proof would go through with our own T . Another proof of Theorem 1.2 is presented in [8]

Proof. Let n ≡ |E| denote the cardinality of E. The idea in the proof is to find a chain of subsets
E = A1 ⊃ A2 ⊃ · · · ⊃ An 6= ∅ and numbers p1, . . . , pn ≥ 0 with

∑
i pi = 1. We then define a random A

that equals Ai with probability pi and define T = HA. We will then show that if {Xt}t≥0 is a realization
Pµ0 that is independent from A, then Law(XT ) = π. The tail behavior of T = HA will follow automati-
cally from the construction.

Notation. For any set ∅ 6= S ⊂ E, let ρS(·) = Pµ0 (XHS = ·) denote the harmonic measure on S for the
chain started from µ0. The irreducibility of the chain implies that HS < +∞ Pµ0 -a.s. and therefore ρS
is a probability measure over E with support in S.

Inductive construction of (Ai, pi): Set A1 = E and choose a1 ∈ A1 so that ρA1(a1)/π(a1) is the maximum
of ρA1(a)/π(a) over all a ∈ A1. Since the π-weighted average of such ratios satisfies:

∑
a∈A1

π(a)

(
ρA1(a)

π(a)

)
=
∑
a∈A1

ρA1(a) = 1,

the maximal value must satisfy ρA1(a1)/π(a1) ≥ 1. We then choose p1 = π(a1)/ρA1(a1) and note that
p1 ∈ [0, 1], p1ρA1(a1) = π(a1) and p1ρA1(a)/π(a) ≤ 1 for all other a ∈ E\{a1}.

Assume inductively that we have chosen distinct elements a1, . . . , ak ∈ E and numbers 0 ≤ p1, . . . , pk ≤
1 such that if Ai = E\{aj : 1 ≤ j < i} (1 ≤ i ≤ k), we have the following properties:

1. for all 1 ≤ j ≤ k,
∑k
i=1 piρAi(aj) = π(aj);

2. moreover, for a ∈ E\{a1, . . . , ak},
∑k
i=1 piρAi(a) ≤ π(a).

Assume also that k < n, so that Ak+1 = E\{a1, . . . , ak} is non-empty. We will prove that one may
choose (pk+1, ak+1) so as to preserve these properties for one further step. The following claim is the
key:

Claim 2.5. The set Pk+1 ⊂ [0, 1]×Ak+1 of all (p, a) with
∑k
i=1 piρAi(a)+p ρAk+1(a) = π(a) is non-empty.
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Mixing and hitting for Markov chains

Given the claim, we choose a pair (pk+1, ak+1) ∈ Pk+1 with minimum value of the first coordinate.
Let us show that condition 2. above remains valid for a ∈ E\{a1, . . . , ak+1}. Any a violating 2 would
have to satisfy:

k∑
i=1

piρAi(a) ≤ π(a) < pk+1ρAk+1(a) +

k∑
i=1

piρAi(a),

and this would imply that there is some 0 ≤ p < pk+1 with:

p ρAk+1(a) +

k∑
i=1

piρAi(a) = π(a) (ie. (p, a) ∈ Pk+1),

which would contradict the minimality of pk+1.

To prove that condition 1. also remains valid, we simply observe that it certainly holds for ak+1 and
that it also holds for ai, i < k+1, because ai 6∈ Ak+1 and therefore ρAk+1(ai) = 0 . Hence such a choice
of pk+1, ak+1 preserves the induction hypothesis for one more step.

We now prove the Claim. Notice that:

∑
a∈Ak+1

π(a)

(
ρAk+1

(a)

π(a)

)
∑
a∈Ak+1

π(a)
≥

∑
a∈Ak+1

π(a)

(
ρAk+1

(a)

π(a)

)
∑
a∈E π(a)

=
∑

a∈Ak+1

ρAk+1(a) = 1.

Since the first term in the LHS is an average, there must exist some a ∈ Ak+1 with ρAk+1(a) ≥ π(a),
whence:

k∑
i=1

piρAi(a) + ρAk+1(a) ≥ π(a).

Moreover, the inductive assumption 2. implies that
∑k
i=1 piρAi(a) ≤ π(a), so there exists some p ∈ [0, 1]

with
k∑
i=1

piρAi(a) + pρAk+1(a) = π(a),

which proves the claim.

Analysis of the construction. Carrying the induction to its end at k = n implies that there exist
p1, . . . , pn ∈ [0, 1] and an ordering a1, . . . , an of the elements of E such that, if Ai ≡ E\{aj : 1 ≤ j < i},
then:

∀1 ≤ i ≤ n, π(ai) =

n∑
j=1

pjρAj (ai) =

i∑
j=1

pjρAj (ai)

(the last identity in the RHS follows from ai 6∈ Aj for j > i).

These are the only facts about the construction we will use in the remainder of the analysis. We
now prove some consequences of these facts. First notice that:

n∑
j=1

pj =

n∑
j=1

pj

n∑
i=1

ρAj (ai) =

n∑
i=1

n∑
j=1

pjρAj (ai) =

n∑
i=1

π(ai) = 1,

which implies that the pi form a probability distribution over {1, . . . , n}. Moreover, the same line of
reasoning implies that for all k ∈ {1, . . . , n}:

k∑
j=1

pj ≥
k∑
j=1

pj

(
k∑
i=1

ρAj (ai)

)
=

k∑
i=1

k∑
j=1

pjρAj (ai) =
k∑
i=1

π(ai) = 1− π(Ak+1), (2.2)

where An+1 = ∅ by definition.

We now define our randomized stopping time as T = HA, where the choice of A is independent of
the realization of the chain and P (A = Ai) = pi, 1 ≤ i ≤ n. Notice that A 6= ∅, hence T < +∞ almost
surely. Moreover, it is easy to check that Pµ0 (XT = ·) = π(·), as desired.
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Mixing and hitting for Markov chains

To finish, we bound the upper tail of T . Given ε ∈ (0, 1), let j(ε) be the largest j ∈ [n + 1] with
π(Aj) ≥ ε (recall our convention An+1 = ∅). Since the Ai’s form a decreasing chain, (2.2) implies:

Pµ0 (π(A) ≥ ε) =

j(ε)∑
i=1

P (A = Ai) =

j(ε)∑
i=1

pi ≥ 1− π(Aj(ε)+1) ≥ 1− ε.

Moreover, j ≤ j(ε) imples Aj ⊃ Aj(ε). We deduce:

Pµ0 (T > t) ≤ Pµ0 (π(A) < ε) +Pµ0 (HA > t | π(A) ≥ ε)

≤ ε+Pµ0

(
HAj(ε) > t

)
≤ ε+

Eµ0

[
HAj(ε)

]
t

≤ ε+
TQhit(ε)

t
.

3 Mixing of non-reversible chains

In this section we prove Theorem 1.5.

Proof of Theorem 1.5. The lower bound on TQrmix(α) follows easily from the ideas in [4]. We give a
proof in the Appendix for completeness. For the upper bound, we proceed as follows. Define:

dr(t) = inf
µ∈M1([0,t])

sup
x,z∈E

dTV

(∫ t

0

ps(x, ·)µ(ds),

∫ t

0

ps(z, ·)µ(ds)

)
.

Claim 3.1. For all t ≥ 0,
dr(kt) ≤ dr(t)k.

Proof of the Claim. A standard compactness argument shows that there exists a measure µ which
achieves the infimum in the definition of dr(t). Let M be the discrete time Markov chain whose transi-
tion probabilities are given by:

m(x, y) ≡
∫ t

0

ps(x, y)µ(ds), (x, y) ∈ E2. (3.1)

Define:
dM (k) ≡ sup

(x,y)∈E2

dTV(mk(x, ·),mk(y, ·))

where mt is the transition probability for t steps of m. Notice that dM (1) = dr(t) by the choice of µ.
Moreover, dr(kt) ≤ dM (k) because k steps of M correspond to replacing t and µ and t in (3.1) with kt
and µ∗k (respectively; µ∗k is the k-fold convolution of µ with itself). Lemma 4.12 in [5] implies that

dr(kt) ≤ dM (k) ≤ dM (1)k = dr(t)
k.

Notice that dr(t) ≤ 1/4 implies TQrmix(1/4) ≤ t. We will spend most of the rest of the proof proving
that for all irreducible Markov chains Q,

Goal: dr
(
c(α) TQhit(α)

)
≤ 1− δ(α), (3.2)

where c(α), δ(α) > 0 depend only on α ∈ (0, 1/2). Applying the Claim with t = c(α) TQhit(α) and k = k(α)

such that (1− δ(α))k ≤ 1/4 we may then deduce that

TQrmix(α) ≤ C+(α) TQhit(α) where C+(α) = k(α) c(α) depends only on α,

which is the desired result.
Given x, z ∈ E, we let {Xt}t≥0 and {Zt}t≥0 denote trajectories of Q started from x and z (respec-

tively). Let Tx, Tz be obtained from Lemma 2.1 for µ0 = δx and δz (resp.). Clearly,

Law(XTx) = Law(ZTz ) = π.
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Mixing and hitting for Markov chains

Sample U uniformly from [0, t] and independently from the two chains. The Markov property and the
stationarity of π imply:

Law(XTx+U ) = Law(ZTz+U ) = π.

Now fix some t ≥ 0 and define

Ux ≡ (Tx + U) mod t and Uz = (Tz + U) mod t.

Notice that Ux is uniform over [0, t], independently from {Xt}t≥0, and similarly for Uz. Hence:

Law(XUx) =

∫ t

0

ps(x, ·)µ(ds) and Law(ZUz ) =

∫ t

0

ps(z, ·)µ(ds),

where µ is uniform over [0, t]. Therefore,

dTV

(∫ t

0

ps(x, ·)µ(ds),

∫ t

0

ps(z, ·)µ(ds)

)
= dTV(Law(XUx),Law(ZUz ))

≤ dTV(Law(XUx),Law(XTx+U )) (3.3)

+dTV(Law(ZUz ),Law(ZTz+U ))

by the triangle inequality and the previous remarks. We now show that:

dTV(Law(XUx),Law(XTx+U )) ≤ α+ 2

√
TQhit(α)

t
. (3.4)

This is of course trivial if t < TQhit(α), so we assume the opposite is true. The coupling characterization
of total variation distance implies that for any λ ∈ (0, 1):

dTV(Law(XUx),Law(XTx+U )) ≤ Px (XUx 6= XTx+U )

≤ Px (U > t− Tx)

≤ Px (Tx > λ t) +P ((1− λ)t ≤ U ≤ t)

(use Lemma 2.1) = α+
TQhit(α)

λt
+ λ

Choosing λ =
√

TQhit(α)/t gives (3.4). We plug this and the corresponding statement for ZTx+U into
(3.3) to deduce:

dTV

(∫ t

0

ps(x, ·)µ(ds),

∫ t

0

ps(z, ·)µ(ds)

)
≤ 2α+ 4

√
TQhit(α)

t
.

Now recall that α < 1/2 and take

t = t(α) ≡
64 TQhit(α)

(1− 2α)2
.

For this value of t, we have:

dTV

(∫ t

0

ps(x, ·)µ(ds),

∫ t

0

ps(z, ·)µ(ds)

)
≤ 1 + 2α

2
.

Since x, z are arbitrary, we deduce (3.2) with c(α) = 64/(1− 2α)2 and δ(α) = (1− 2α)/2.

4 Mixing of reversible chains

We now prove Theorem 1.3.

Proof of Theorem 1.3. Notice that TQmix(α) ≥ TQrmix(α), so the lower bound in the Appendix also applies
here. For the upper bound, we first define:

d(t) ≡ sup
x,z∈E

dTV(pt(x, ·), pt(z, ·)).
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Mixing and hitting for Markov chains

It is well-known that d is submultiplicative [3, Chapter 2] and that d(t) ≤ 1/4 implies TQmix(1/4) ≤ t. In
light of this, we need to show that:

Goal: d
(
c(α) TQhit(α)

)
≤ 1− δ(α), (4.1)

where c(α), δ(α) > 0 depend only on α ∈ (0, 1/2).

Basic definitions for the proof. Let U > L > 0 (we will choose their values later). Fix a pair x, z ∈ E
and let {Xt}t≥0 and {Zt}t≥0 denote trajectories of Q started from x and z (respectively). Also let
Tx, Tz be the randomized stopping times given by Lemma 2.1 for the X and Z processes, and define
ηx, ηz to be the probability distributions of (XTx , Tx) and (ZTz , Tz) over E × [0,+∞). Finally, we let
fx(a) ≡ Px (XTx = a, Tx ≤ L) and fz(a) = Pz (ZTz = a, Tz ≤ L) (a ∈ E).

Estimating total variation distance. Recall:

dTV(pt(x, ·), pt(z, ·)) =
1

2

∑
a∈E

|pt(x, a)− pt(z, a)|

Notice that:
pt(x, a) = Px (Xt = a, Tx ≤ L) +Px (Xt = a, Tx > L) ,

and similarly for pt(z, a). Therefore,

dTV(pt(x, ·), pt(z, ·)) ≤ 1

2

∑
a∈E

|Px (Xt = a, Tx ≤ L)−Pz (Zt = a, Tz ≤ L) |

+
1

2

∑
a∈E

|Px (Xt = a, Tx > L)−Pz (Zt = a, Tz > L) |

≤ 1

2

√√√√∑
a∈E

(Px (Xt = a, Tx ≤ L)−Pz (Zt = a, Tz ≤ L))2

π(a)

+
1

2

∑
a∈E

|Px (Xt = a, Tx > L)−Pz (Zt = a, Tz > L) |. (4.2)

where the last line uses the Cauchy Schwartz inequality. We may further bound:∑
a∈E

|Px (Xt = a, Tx > L)−Pz (Zt = a, Tz > L) | ≤
∑
a∈E

Px (Xt = a, Tx > L)

+
∑
a∈E

Pz (Zt = a, Tz > L)

≤ Px (Tx > L) +Pz (Tz > L) ,

and plugging this into (4.2) gives the inequality:

dTV(pt(x, ·), pt(z, ·)) ≤ 1

2

√√√√∑
a∈E

(Px (Xt = a, Tx ≤ L)−Pz (Zt = a, Tz ≤ L))2

π(a)

+
Px (Tx > L) +Pz (Tz > L)

2
. (4.3)

Averaging. Our next step is to average the LHS and RHS of (4.3) over t ∈ [L,U ]. Since dTV(pt(x, ·), pt(z, ·))
is decreasing in t [5], the distance at time t = U is at most this average. We use concavity to move the
averaging inside the square root and deduce:

dTV(pU (x, ·), pU (z, ·)) ≤ 1

U − L

∫ U

L

dTV(pt(x, ·), pt(z, ·)) dt

≤ 1

2

√√√√ 1

U − L

∫ U

L

∑
a∈E

(Px (Xt = a, Tx ≤ L)−Pz (Zt = a, Tz ≤ L))2

π(a)

+
Px (Tx > L) +Pz (Tz > L)

2
. (4.4)
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The term inside the square root. Define EL ≡ E × [0, L]. By the strong Markov property:

Px (Xt = a, Tx ≤ L)2 =

(∫
EL

pt−s(u, a) dηx(u, s)

)2

=

∫
EL

∫
EL

pt−s(u, a)pt−s′(u
′, a) dηx(u, s)dηx(u′, s′).

By reversibility, we may rewrite the integrand in the RHS as

pt−s(u, a)π(a)pt−s′(a, u
′)/π(u′),

which implies that:

∑
a∈E

Px (Xt = a, Tx ≤ L)2

π(a)

=

∫
EL

∫
EL

(∑
a∈E

pt−s(u, a)pt−s′(a, u
′)

π(u′)

)
dηx(u, s)dηx(u′, s′)

=

∫
EL

∫
EL

p2t−s′−s′(u, u
′)

π(u′)
dηx(u, s)dηx(u′, s′).

Integrating over t (with the change of variables t′ = 2t− s− s′), we find that:

1

U − L

∫ U

L

∑
a∈E

Px (Xt = a, Tx ≤ L)2

π(a)
dt

=

∫
EL

∫
EL

(
1

2U − 2L

∫ 2U−s−s′

2L−s−s′

pt′(u, u
′)

π(u′)
dt′
)
dηx(u, s)dηx(u′, s′)

≤
∫
EL

∫
EL

(
1

2U − 2L

∫ 2U

0

pt′(u, u
′)

π(u′)
dt′
)
dηx(u, s)dηx(u′, s′) (4.5)

where the last inequality follows from the fact that [2L− s− s′, 2U − s− s′] ⊂ [0, 2U ], which holds for
all s, s′ in the range considered. With this the bracketed term becomes independent of s, which may
be integrated out. Since: ∫

{u}×[0,L]

dηx(u, s) = fx(u) ≤ π(u),

we obtain:

1

U − L

∫ U

L

∑
a∈E

Px (Xt = a, Tx ≤ L)2

π(a)
dt

≤
∑

u,u′∈E

fx(u)fx(u′)

π(u′)

(
1

2U − 2L

∫ 2U

0

pt′(u, u
′) dt′

)

≤
∑

u,u′∈E

fx(u)fx(u′)

π(u′)

(
1

2U − 2L

∫ 2U

2L

pw(u, u′) dw

)

+
∑

u,u′∈E

π(u)

2U − 2L

∫ 2L

0

pw(u, u′) dw

≤
∑

u,u′∈E

fx(u)fx(u′)

π(u′)

(
1

2U − 2L

∫ 2U

2L

pw(u, u′) dw

)
+

L

U − L, (4.6)

as well as a similar bound for z. On the other hand, starting from the formula:

Px (Xt = a, Tx ≤ L) Pz (Zt = a, Tz ≤ L)

=

∫
EL

∫
EL

pt−s(u, z)pt−s′(u
′, z) dηx(u, s)dηz(u

′, s′)
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averaging over t ∈ [L,U ] and using [2L− s− s′, 2L+ 2U − s− s′] ⊃ [2L, 2U ], we may obtain:

1

U − L

∫ U

L

∑
a∈E

Px (Xt = a, Tx ≤ L)Pz (Zt = a, Tz ≤ L)

π(z)
dt

≥
∑

u,u′∈E

fx(u)fz(u
′)

π(u′)

(
1

2U − 2L

∫ 2U

2L

pw(u, u′) dw

)
.

Combining these bounds we obtain

∑
z∈E

1

U − L

∫ U

L

(Px (Xt = z, Tx ≤ L)−Px (Zt = z, Tz ≤ L))2

π(z)

≤
∑

u,u′∈E

(fx(u)− fz(u))

(
fx(u′)− fz(u′)

π(u′)

)(
1

2U

∫ 2U

2L

pw(u, u′) dw

)
+

2L

U − L.

To bound the sum in the RHS, we notice again that fx(·), fz(·) ≤ π(·), and also that for all u ∈ E,∑
u′ pw(u, u′) = 1. Hence

∑
u,u′∈E

(fx(u)− fz(u))

(
fx(u′)− fz(u′)

π(u′)

)(
1

2U − 2L

∫ 2U

2L

pw(u, u′) dw

)
≤
∑
u∈E

|fx(u)− fz(u)|.

Now recall that
fx(u) = Px (XTx = u, Tx ≤ L) = π(u)−Px (XTx = u, Tx > L)

and similarly for z, so that∑
u∈E

|fx(u)− fz(u)| =
∑
a∈E

|Px (XTx = a, Tx > L)−Pz (ZTz = a, Tz > L) |.

We deduce that the term inside the square root in (4.4) is bounded by:

1

U − L

∫ U

L

∑
a∈E

(Px (Xt = a, Tx ≤ L)−Pz (Zt = a, Tz ≤ L))2

π(z)
dt

≤
∑
a∈E

|Px (XTx = a, Tx > L)−Pz (ZTz = a, Tz > L) |+ 2L

U − L

≤
∑
a∈E

Px (XTx = a, Tx > L) +
∑
a∈E

Pz (ZTz = a, Tz > L) +
2L

U − L

≤ Px (Tx > L) +Pz (Tz > L) +
2L

U − L.

Wrapping up. We now plug this previous inequality into (4.4) to deduce:

dTV(pU (x, ·), pU (z, ·))

≤ 1

2

√
Px (Tx > L) +Pz (Tz > L) +

2L

U − L

+
Px (Tx > L) +Pz (Tz > L)

2
.

If the quantity inside the square root is < 1, we get another upper bound:

dTV(pU (x, ·), pU (z, ·)) ≤
√
Px (Tx > L) +Pz (Tz > L) +

2L

U − L (4.7)

Now by Lemma 2.1

Px (Tx > L) +Pz (Tz > L) ≤ 2α+ 2
TQhit(α)

L
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so choosing

L =
8TQhit(α)

1− 2α
and U =

[
8

1− 2α
+

(
8

1− 2α

)2
]

TQhit(α)

we obtain:

Px (Tx > L) +Pz (Tz > L) +
2L

U − L ≤
1 + 2α

2
< 1.

Thus the condition for (4.7) is satisfied, and we have the bound:

dTV(pU (x, ·), pU (z, ·)) ≤
√

1 + 2α

2
.

Since x, z ∈ E are arbitrary, we deduce:

d

([
8

1− 2α
+

(
8

1− 2α

)2
]

TQhit(α)

)
≤ 1−

(
1−

√
1 + 2α

2

)
,

which has the form requested in (4.1).

A Appendix: the lower bound

In this section we prove the lower bound part of the main theorems. As above, Q is a irreducible
continuous-time Markov chain with state space E and stationary distribution π. The trajectories of the
chain are denoted by {Xt}t≥0

Proposition A.1. For any α ∈ (0, 1), TQhit(α) ≤ c(α)TQrmix(1/4) where c(α) > 0 depends only on α.

Proof. It follows from Claim 3.1 that:

TQrmix(1/2k) ≤ kTQrmix(1/4).

In particular,
TQrmix(α) ≤ (log2(1/α) + 1) TQrmix(1/4).

Thus it suffices to show that TQhit(α) ≤ (2/α) TQrmix(α/2).
Fix A ⊂ V with measure π(A) ≥ α and x ∈ V . By the definition of TQrmix(α/2) and a simple

compactness argument, there exists a distribution supported on [0,TQrmix(α/2)] such that if U has this
distribution and is independent from {Xt}t,

dTV(Law(XU ), π) ≤ α/2.

As a result,
Px (XU 6∈ A) ≤ 1− π(A) + dTV(Law(XU ), π) ≤ 1− α

2
.

Since U is supported in [0,TQrmix(α/2)],

{HA ≥ TQrmix(α/2)} ⊂ {XU 6∈ A},

and we deduce:

∀x ∈ V, ∀A ⊂ V with π(A) ≥ α : Px
(
HA ≥ TQrmix(α/2)

)
≤ 1− α

2
. (A.1)

Let us use this to show that Ex [HA] ≤ (2/α) TQrmix(α/2) for all x and A as above. Let k ∈ N\{0} and
denote by Λk the law of X

(k−1)T
Q
rmix(α/2)

conditioned on {HA ≥ (k − 1)TQrmix(α/2)}. By (A.1),

PΛk

(
HA ≥ TQrmix(α/2)

)
≤ 1− α

2
,

whereas by the Markov property,

Px

(
HA ≥ kTQrmix(α/2)

)
≤ Px

(
HA ≥ (k − 1)TQrmix(α/2)

)
PΛk

(
HA ≥ TQrmix(α/2)

)
≤

(
1− α

2

)
Px

(
HA ≥ (k − 1)TQrmix(α/2)

)
(...induction...) ≤

(
1− α

2

)k
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We deduce:
Ex [HA]

TQrmix(α/2)
≤
∑
k≥0

(
1− α

2

)k
=

2

α

Since x ∈ V and A ⊂ V with π(A) ≥ α were arbitrary, this finishes the proof.
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