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Abstract

We consider an ensemble of N discrete nonintersecting paths starting from equidis-
tant points and ending at consecutive integers. Our first result is an explicit formula
for the correlation kernel that allows us to analyze the process as N → ∞. In that
limit we obtain a new general class of kernels describing the local correlations close
to the equidistant starting points. As the distance between the starting points goes
to infinity, the correlation kernel converges to that of a single random walker. As the
distance to the starting line increases, however, the local correlations converge to the
sine kernel. Thus, this class interpolates between the sine kernel and an ensemble of
independent particles. We also compute the scaled simultaneous limit, with both the
distance between particles and the distance to the starting line going to infinity, and
obtain a process with number variance saturation, previously studied by Johansson.
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1 Introduction

Nonintersecting path ensembles are a natural arena for generating and studying a
variety of mathematical and physical phenomena. At the same time, they often have a
nice integrable structure that allows for explicit computations. As such they constitute
an important source of integrable systems in random matrix theory. In the discrete
context, for example, nonintersecting paths serve as an important link between repre-
sentation theory, random matrix theory and combinatorics (see, e.g., [1, 8, 13, 15] and
the references therein for excellent discussions on the topic).

Typically, an ensemble of nonintersecting paths consists of a number of random
walkers with prescribed initial and final positions that do not collide while performing
the walk. The interaction between the walkers depends strongly on the initial and final
positions of the walkers. For example, if these positions are close to each other (e.g.,
they start and end at the same point in the continuous case or consecutive points on a
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Nonintersecting paths with a staircase initial condition

grid in the discrete case) the condition that they can never collide results in a strong
repulsive interaction. However, if the initial and final positions are far apart, the effect
of the forbidden intersection is much weaker, as the probability of colliding is small.

In the present paper, we discuss a discrete model of nonintersecting paths that
interpolates between these two situations. We give a precise definition later on (see
also Figure 1). Here we content ourselves with describing the central features. The
most important feature is that the initial positions are equally spaced with gap k ∈ N
(instead of densely packed). The final positions are densely packed. If k is large, the
interaction between the walkers right after the initial positions is small. On the other
hand, if k is small the nonintersecting condition leads to repulsion that is substantially
felt from the start.

We shall show that eventually, as we move away from the starting points, the local
correlations converge to the usual sine kernel limit. However, this takes some time,
and our main interest is in describing the process before universality is reached. In this
regime, we obtain a new family of processes that depends on the parameter k (and also
on the parameters from the underlying random walks). Each member of the new family
is a discrete determinantal point process. As we shall see, this family admits several
interesting limits. In one limit we move away from the initial positions, arriving in the
bulk regime, and obtain the discrete sine kernel in the limit (i.e., the universality limit).
In fact, we are able to generate a subclass (not all) of the extensions of the discrete
sine kernel as introduced in [2]. In a different limit, k → ∞, we show that the process
turns into a single random walker. In this sense, the family interpolates between two
fundamental objects: the single random walk and the sine process.

For k = 1 the model was discussed by Johansson in [13] to give a nonintersect-
ing path interpretation for the Schur measure introduced in [18]. Thus, the family of
processes we consider can be seen as a natural generalization of the Schur measure.
Moreover, Johansson’s model served as important inspiration for the definition of the
Schur process by Okounkov and Reshetikhin [20]. In [11], the authors introduced a
generalization of the Schur process by allowing the particles to have arbitrary initial
positions. Along the way, we will also prove a result (see Theorem 2.1) on the determi-
nantal structure for the case of more general final and initial locations.

A particular specialization of the Schur process (interpreting the time parameter as
an extra spatial dimension) is the qvolume weight for boxed plane partitions. We will
show that this picture generalizes to general k (in fact, to general initial spacings {kj}),
in the sense that a specialization of the process leads to a qvolume weight on certain
three dimensional box configurations. However, whereas boxed plane partitions may
be viewed as boxes placed in a corner, a similar interpretation for our model leads to
boxes placed on a staircase. This is the reason for the name of the model.

It is interesting to note that Johansson’s original model was described as a growth
model [13]. Such an interpretation exists for the model described here as well, where
in the general case k > 1, the growth model obtained may be seen as a growth model
with a certain random “staircase shaped” initial condition. While it is not our intention
to pursue this line of reasoning further in this paper, we will further explore these
connections in a subsequent publication.

It is also interesting to consider the continuum limit which places our model in the
framework of Dyson Brownian motion [6, 9] or GUE with external source [5]. This
continuous analogue played an important role in Johansson’s proof of universality for
the local correlation for GUE divisible Wigner matrices [12]. A central question in
this context regards the time it takes for the local correlations to ‘relax’ to the usual
universality class (see [7] and references therein). For the discrete model analyzed in
this paper, we consider a significantly shorter time scale. Namely, we consider the local
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correlations at the very first steps after the starting points.

Finally, motivated by the study of the zeros of the Riemann zeta function, Johansson,
[14], used a continuous model to construct a family of determinantal point processes
with number variance saturation. We will show that the process introduced in [14] can
be obtained as a special limit of our family. Moreover, we shall present a soft argument
to show that number variance saturation holds in our setting as well.

The rest of this paper is structured as follows. The model is described in Sections
2.1 and 2.2. Our results are described in Sections 2.3–2.6. The proofs are given in
Section 3.

Acknowledgments. We thank Alexei Borodin for many useful discussions. M.D. ac-
knowledges the hospitality of the Einstein Institute of Mathematics at the Hebrew Uni-
versity of Jerusalem, where some of this work was done.

2 Statement of the results

2.1 Nonintersecting paths

Let us now introduce the model. See also Figure 1. Fix N ∈ N and let |αj | < 1,
|βj | < 1, (j = 1, . . . , N ) be fixed parameters. Let, further, k1 < k2 < k3 < . . . < kN and
l1 < l2 < l3 < . . . < lN be finite increasing sequences of integers. By shifting the model
we may assume that k1 = 0 and we do so from now on. ConsiderN particles (=‘walkers’)
initially positioned on the vertical line s = −N at heights xj = kj , j = 1 . . . N . The
particles perform walks with 2N steps each (plus a ‘semistep’ at the end), ending on
the line s = N at the heights xj = lj . The individual walks are described as follows:
each step involves a horizontal jump and a random vertical jump. All horizontal jumps,
except for the first step and final semistep, are jumps of size 1 to the right. The first and
last horizontal jumps are jumps of size 1/2 to the right. The vertical jumps occur on the
lines s ∈ Z + 1/2. To the left of the middle line, s = 0, all vertical jumps are upwards,
and to the right of it, all vertical jumps are downwards.

The first horizontal jump is of size 1/2, to the line s = −N + 1/2. The first verti-
cal jump takes place on the line s = −N + 1/2 and is an upwards jump of a random
magnitude, where a jump of size m is assigned the weight αm1 (geometric distribution).
The next horizontal jump is of size 1 (to the line s = −N + 3/2) where the particle now
performs a vertical jump upwards of size m with weight αm2 . This continues up to the
middle line, s = 0. As noted earlier, the vertical jumps for each of the first N steps are
all upwards and the weight of a jump of size m at the n’th step (1 ≤ n ≤ N ) is given
by αmn . Thus, when all the particles have intersected the middle line, s = 0, they have
all traced random ‘up-right’ paths. After jumping horizontally from the line s = −1/2 to
the line s = 1/2, the vertical jumps become downward jumps and the weight of a jump
of size m at the n’th step (N + 1 ≤ n ≤ 2N ) is βm2N−n+1. The last (2N ’th) vertical jump
occurs on the line s = N − 1/2. The last semistep is simply a horizontal jump of size 1/2

from s = N−1/2 to the line s = N . Finally, we condition on the paths never to intersect.

We want to describe the point configuration obtained by considering the intersec-
tions of the paths with the vertical lines s = −(N − 1),−(N − 2), . . . , 0. We shall use
the theory of determinantal point processes in Section 2.3 to do this, and we shall be
mainly interested in the equally spaced situation:

kj = k(j − 1) for some k ∈ N and lj = j − 1.

First, however, we present a different way of viewing this model.
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Figure 1: The model of nonintersecting paths. We will be mainly interested in the
equally spaced situation kj = k(j − 1) for j = 1, . . . , N and some k ∈ N and lj = j − 1 for
j = 1, . . . , N .

2.2 An equivalent tiling model

Our model of nonintersecting paths is equivalent to lozenge tilings of a particular
domain. As mentioned in the Introduction, for kj = lj = j − 1 this equivalence can
already be found in [20] in connection to a particular instance of the Schur process.
Here we discuss the natural generalization to general {kj}Nj=1 (keeping lj = j − 1).

The domains that we are tiling are defined in the following way (see also Figure 2
for an illustration). We start with the semi-infinite rectangle [−N,N ]×

(
− 1

2 ,∞
)
. On the

left vertical line we cut out N right triangles with legs of unit length that are parallel
to the axes and such that the points (−N, kj) are at the centers of the vertical legs. We
now consider all possible tilings of this domain with the lozenges

, and

The vertices of the lozenges are placed on the grid {−N,−N + 1, . . . , N} ×
(
N− 1

2

)
.

Given {kj}Nj=1, we claim that there is a one-to-one correspondence between lozenge
tiling of such domains and the nonintersecting path model introduced above. To see
this, draw a collection of nonintersecting paths as in Figure 3. In the right half plane
we perform a shear transformation (s, x) 7→ (s, x− s). Note that in Figure 3 the parts of
the paths that end up in the lower half plane are slanted straight lines. In fact, by the
nonintersecting condition and by the fact that the final points are consecutive integers,
this holds for any possible configuration of paths. Hence these parts can be discarded.

Draw the paths (minus the trivial parts) and the domain together in one picture
as shown in Figure 5. Starting from this configuration of paths, we tile the domain
according to the rules in Figure 4. We have different rules in the left half plane and in
the right half plane. In the left half plane the horizontal parts of the paths are associated

with , the vertical parts with and the third type is associated with the blank spaces.
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Figure 2: The left picture shows the domain that we tile for the special case N = 3 and
kj = 2j. The right picture shows a particular tiling of this domain.

Figure 3: The left picture shows a particular path configuration for N = 3 and kj = 2j.
In the right picture we show the result of the shear transformation (s, x) 7→ (s, x− s) in
the right half.

In the right half plane the slanted parts of the paths are associated with , the vertical
parts with and the third type is associated with the blank spaces. In order to get a
consistent tiling we need an extra rule on the middle line s = 0.

It is not difficult to see that this indeed always induces a lozenge tiling. Moreover,
given any lozenge tiling we can construct a unique path configuration that leads to this
tiling according to the rules in Figure 4. This means that we have established a one-to-
one correspondence between our model of nonintersecting paths and lozenge tiling of
domains as in Figure 2. Note that in the special case kj = j − 1 (the densely packed
case), the tiling in the lower left corner of the domain is uniquely determined by the
boundary and so the boundary there can be modified to a line segment. In fact, in that
case the problem is reduced to tiling a hexagon for which the vertical sides have infinite
length.

Lozenge tilings can also be viewed as a model in three dimensions. Indeed, a tiling
is a two-dimensional depiction of a stack of boxes (see Figure 2). For kj = j − 1 each
tiling is a boxed plane partition. In that case, the boxes are placed in a corner of a room
with flat walls and floor. The weight that we put on paths leads to a natural weight on
the lozenge tilings and hence on boxed plane partitions. Without proof we claim that
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(a) Tiling rules in the left
half

(b) Tiling rules in the
right half

(c) Tiling rule
on the middle
line

Figure 4: The different tiling rules.

Figure 5: The left picture shows the domain and a particular configuration of paths. The
right picture shows the corresponding lozenge tiling according to the rules in Figure 4.

the weight of the tiling T is proportional to

w(T ) =
∏

w ( ) , (2.1)

where

w ( ) =


(

αN+i

αN+i+1

)j
, i = −N + 1, . . . ,−1

(αNβN )
j
, i = 0(

βN−i
βN−i+1

)j
, i = 1, . . . , N − 1.

(2.2)

and (i, j) are the coordinates of the centers of tiles in T . Note that if we set αi =

βi = q
1
2 +N−i for some q ∈ (0, 1) then the resulting weight falls in the class of qvolume

models. See [20] for the case kj = j − 1. For a construction of q-distribution on lozenge
tilings and an extensive list of references see [4].

Note that for the special kj = j − 1, the room in which we place boxes, (the ‘ini-
tial condition’), can be constructed by drawing the tiling for the trivial configuration of
paths, namely that of straight lines. In the general situation, a configuration of straight
lines is not allowed. Nevertheless, there is a natural substitute for the trivial configu-
ration. Consider the configuration for which the paths in the left half are straight lines,
but after passing the vertical line s = 0, at each step the walkers jump as much as
the nonintersecting condition allows them. This leads to the staircase shaped paths as
shown in Figure 6. In fact, if we draw the corresponding tiling (also shown in Figure
6) then the tiling corresponds to part of a staircase in three dimensions. Note that this
configuration of paths or tiling is indeed the most basic one, in the sense that any other
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Figure 6: The ‘simplest’configuration of paths and the corresponding tiling. Viewed in
three dimension the left picture is part of a staircase.

configuration can be constructed by placing boxes on top of this staircase. Again, by
the discussion around (2.1), for an appropriate choice of parameters our model falls in
the class of qvolume models, but now everything takes place on a staircase.

2.3 The process for finite N

Returning to the path ensemble picture, we want to describe the resulting point
process. We shall do this using the language and machinery of determinantal point
processes.

A determinantal point process on a discrete set X is a probability measure on 2X

such that

Prob(x1, . . . , xn) = det (K(xi, xj))
n
i,j=1 . (2.3)

for some kernel K : X × X → R. A determinantal point process is completely deter-
mined by the kernel K (which is however not unique). For more details and background
on determinantal point processes we refer to [3, 10, 15, 16, 17, 21, 22].

We define a point process on N×N by the locations of the intersections of the paths
with the lines s = −N,−N + 1, . . . , N − 1, N . More precisely, we define the process by

Prob((s1, x1), . . . , (sn, xn))

= Prob (paths pass through points (sj −N, xj)) .
(2.4)

The shift sj −N in the right-hand side is introduced to simplify the upcoming formulas.

By a well known result of Lindström-Gessel-Viennot [15, 23] the process is determi-
nantal. Moreover, a formula for the kernel of this process is given by the Eynard-Mehta
Theorem (see, e.g., [3]). However, the expression obtained is, in general, not useful
for asymptotic analysis. In large part, this is due to the fact that this formula involves
the inverse of a large Gram matrix. Our first task is therefore to give a more explicit
expression for the kernel.

We will need some notation. For anyN -tuple of complex numbers, γ = (γ1, γ2, . . . γN ),
let

hk1,k2,...,kN (γ) = det
(
γkij

)N
i,j=1

(2.5)
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be the alternating polynomial of degree k1, k2, . . . , kN in γ1, γ2, . . . γN . Let further (β;βj 7→
z) = (β1, β2, . . . , β̂j z, . . . , βN ) be the N -tuple of β’s with βj replaced by z, and let

hk1,k2,...,kN (β;βj 7→ z) (2.6)

be the alternating polynomial in the β’s with βj replaced by z. Similarly, we define

hl1,l2,...,lN (1/β; 1/βj 7→ 1/z), (2.7)

where we used the notation 1/β = (1/β1, . . . , 1/βN ). We will also define

F`(z) =

{
(1− α`z)−1 1 ≤ ` ≤ N(

1− β2N−`+1

z

)−1

N + 1 ≤ ` ≤ 2N
. (2.8)

which are the generating functions for the transition probabilities.
Our first result is an explicit expression for the kernel.

Theorem 2.1. Assume βj 6= β` for j 6= `. Let 0 = k1 < k2 < . . . < kN , l1 < l2 < . . . < lN
with

lN − k1 = lN ≤ N − 1.

Then for any two points (s1, x1), (s2, x2) ∈ {0, . . . , 2N} ×N, the kernel K(s1, x1; s2, x2) is
given by

K(s1, x1; s2, x2) = −1s1>s2
1

2πi

∮
∂D

s1∏
j=s2+1

Fj(z)
dz

zx1−x2+1

+

N∑
j=1

∏N
r=1 (1− αrβj)

∏N
s=1,s 6=j(1− βs/βj)

hk1,k2,...,kN (β)hl1,l2,...,lN (1/β)

×

(
1

2πi

∮
∂D

hk1,k2,...,kN (β;βj 7→ z)

s1∏
`=1

F`(z)
dz

zx1+1

)

×

(
1

2πi

∮
∂D

hl1,l2,...,lN (1/β; 1/βj 7→ 1/z)

2N∏
`=s2+1

F`(z)
zx2dz

z

)
.

(2.9)

If we assume in addition that s1, s2 ≤ N , then the kernel K(s1, x1; s2, x2) takes the
simpler form

K(s1, x1; s2, x2) = −1s1>s2
1

2πi

∮
∂D

s1∏
j=s2+1

(1− αjz)−1 dz

zx1−x2+1

+

N∑
j=1

1

2πi

∮
∂D

hk1,k2,...,kN (β;βj 7→ z)

hk1,k2,...,kN (β)

s2∏
r=1

(1− αrβj)βx2
j

s1∏
`=1

(1− α`z)−1 dz

zx1+1
.

(2.10)

Remark 2.2. For the special case lj = j − 1 a different representation for the kernel
in (2.9) can be found in [11]. Their proof is based on a computation of the inverse of
the Gram matrix in the Eynard-Mehta Theorem. We follow a different approach that is
better suited for our purposes. We first perform a preliminary bi-orthogonalization so
that the corresponding Gram matrix becomes diagonal.

Remark 2.3. The condition lN − k1 ≤ N − 1 is necessary in our approach in order to be
able to get a diagonal Gram matrix (see the discussion before (3.15)). Though it seems
to be a technical condition, one way of looking at it is as follows: the two conditions
lN − k1 ≤ N − 1 and kN − l1 ≤ N − 1 together are equivalent to having both starting
and ending positions in a densely packed configuration. Thus, removing one of these
conditions and keeping the other is a natural extension of the densely packed situation.
One in which neither the starting nor the ending points need to be densely packed.
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Remark 2.4. It is remarkable that the kernel (2.10) for sj ≤ N does not depend on
the endpoints lj . Furthermore, the kernel only depends on the parameters αj with
j ≤ max{s1, s2}. These effects seem to be related to the memorylessness of geometric
random variables (recall that the height of the jumps at each step is geometrically
weighted).

As noted in the Introduction, we are interested in the special case, kj = k(j−1), lj =

j−1, and we want to study the process near the left boundary, namely, for s1, s2 ≤ N . In
fact, as remarked above, formula (2.10) shows us that in this case, as long as lN ≤ N−1,
the kernel is independent of the points on the right hand side. The following theorem
shows that the kernel has an even simpler formula in this case.

Theorem 2.5. In the case kj = k(j − 1) (for some k ∈ N, fixed), and any l1 < l2 < . . . <

lN ≤ N − 1, and for (s1, x1), (s2, x2) ∈ N2 with s1, s2 ≤ N ,

K(s1, x1; s2, x2) = −1s1>s2
1

2πi

∮
∂D

s1∏
j=s2+1

(1− αjz)−1 dz

zx1−x2+1

+
k

(2πi)2

∮
∂D

∮
Γβ

∏s2
r=1(1− αrw)

∏N
j=1(zk − βkj )∏s1

`=1(1− α`z)
∏N
t=1(wk − βkt )

wx2+k−1dwdz

zx1+1(zk − wk)
,

(2.11)

where the integration in w is carried out on Γβ , a contour around the βj ’s which avoids
the other zeros of wk − βkj . The integration in z is on ∂D.

In particular, in the case βr ≡ β for all r = 1, . . . , N and some β with |β| < 1, it follows
that

K(s1, x1; s2, x2) = −1s1>s2
1

2πi

∮
∂D

s1∏
j=s2+1

(1− αjz)−1 dz

zx1−x2+1

+
k

(2πi)2

∮
∂D

∮
Γβ

∏s2
r=1(1− αrw)(zk − βk)N∏s1
`=1(1− α`z)(wk − βk)N

wx2+k−1dwdz

zx1+1(zk − wk)
,

(2.12)

2.4 The limiting process

Our next task is to compute the limiting behavior of the process close to the starting
points as N → ∞. We will only consider the equally spaced situation kj = k(j − 1) and
take αj ∈ (0, 1) and βj = β for some constant β ∈ (0, 1). Hence we consider the process
with the kernel in (2.12). The region of interest to us is the following: take s ∈ N and
ξ ∈ (0, 1) and consider the process in the neighborhood of the point (s, ξkN) (note that
the starting points are in the line segment [0, kN ]).

As noted in the beginning of the previous subsection, a determinantal point process
is completely determined by the kernel. Hence, in order to find the limiting process it
suffices to derive the limiting behavior of the kernel K in (2.13). Before we state our
main result, we first define a family of relevant kernels.

Definition 2.6. For k ∈ N and a sequence of positive numbers, γ = {γj}∞j=1, let Kγk be
the kernel defined by

K
γ
k(s1, x1; s2, x2) = −1s1>s2

2πi

∮
Γ0

s1∏
r=s2+1

(1− γrz)−1 dz

zx1−x2+1

+

k−1∑
j=0

ω−jx1

k

2πi

∫ eπi/k

e−πi/k

∏s2
r=1 (1− γrz)∏s1
t=1 (1− ωjkγtz)

dz

zx1−x2+1
.

(2.13)

Here ωk = e2πi/k, Γ0 is a closed positively oriented contour around the pole z = 0 and
no other, and the integrals from e−iπ/k to eπi/k are over a path that intersects the real
axis only once in (0, infj=s2+1,...,s1(1/γj)).
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To the best of our best knowledge the kernel Kγk has not appeared in the literature
before. We will derive some properties later on, but first we state the main asymptotic
result of the paper.

Theorem 2.7. Let {x(N)}N ⊂ N be such that

x(N) = 0 mod k and lim
N→∞

x(N)

kN
= ξ ∈ (0, 1). (2.14)

Then, with K as in (2.12) and Kγk as in (2.13), we have that

lim
N→∞

((ξ/(1− ξ))1/kβ)
x1−x2

K(s1, x(N) + x1;s2, x(N) + x2)

= K
γ
k(s1, x1; s2, x2)

(2.15)

for (sj , xj) ∈ N×Z. Here γ = (γ1, γ2, . . .) with γj = (ξ/(1− ξ))1/kβαj .

Remark 2.8. In the limit on the right-hand side of (2.15) the kernel is conjugated with(
(ξ/(1− ξ))1/kβ

)x
. This however does not change the process. Indeed, from (2.3) one

readily checks that if K is the kernel of a determinantal point process and G is a non-
vanishing function, then KG(x, y) = G(x)/G(y)K(x, y) is a different kernel for the same
process.

Remark 2.9. Putting s1 = s2 = s and x1 = x2 = x we get the following expression for
the mean density for the process induced by Kγk .

K
γ
k(s, x; s, x) =

1

k
+

k−1∑
j=1

ω−jxk

2πi

∫ eπi/k

e−πi/k

s∏
r=1

(
1− γrz

1− ωjkγrz

)
dz

z
. (2.16)

This expression is clearly k-periodic in x. Moreover, Theorem 2.7 tells us that the lead-
ing order term for the mean density K(s, x(N) + x; s, x(N) + x), as N → ∞, is given
by Kγk(s, x; s, x) in (2.16). In Figures 7 and 8 we used (2.16) to plot a local approxima-
tion to the mean density in some special cases. Namely, we write each integer on the
horizontal axis as jk + x, with 0 ≤ x < k, and compute the values of Kγk for ξ = j/N

(note that γ depends on ξ as indicated in Theorem 2.7). The local k-periodicity is clearly
visible in these graphs. In addition to this, the amplitude as a function of ξ shows an
interesting oscillatory behavior.

Remark 2.10. There is a continuous time analogue for the kernel in (2.13). Indeed, if
we set γj = 1/S, sj = σjS and take the limit S →∞ the kernel converges to the kernel

−1σ1>σ2

2πi

∮
Γ0

e(σ1−σ2)z dz

zx1−x2+1
+

k−1∑
j=0

ω−jx1

k

2πi

∫ eπi/k

e−πi/k

e(ωjkσ1−σ2)z dz

zx1−x2+1
. (2.17)

This kernel can be obtained by a limit similar to the one in Theorem 2.7 if we modify
the model in the following way. Take the same conditions on the starting points and
endpoints. Instead of geometric transition probabilities, we equip every walker with an
exponential clock and when the clock rings it jumps up by one and the clock resets. In
the left half the jump by one is upwards and in the right half it is downwards. Starting
from the nonintersecting path model, the equivalent of Theorem 2.7 is with the kernel
(2.17) instead of Kγk in (2.13).
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Nonintersecting paths with a staircase initial condition

(a) s = 1 (b) s = 3

(c) s = 5 (d) s = 7

Figure 7: The leading order term in the limiting mean density in case k = 2, αj = β =

2/3, N = 50 and four different values of s. For each point ξN + x, with 0 ≤ x < k,
on the horizontal axis the density is computed by using (2.16) locally for each value of
ξ = 0, 1/50, 2/50, . . . , 1.

2.5 Limits of the new kernel Kγk
We will now present three limits of our family of kernels (2.13).
In the first limit we take the process away from the initial starting points and enter

the bulk region. As it turns out, the kernel converges to the (discrete) sine kernel. In
fact, by tuning the parameters γj we obtain a certain family of extensions of the sine
kernel that we will describe now. Recall that the discrete sine kernel is given by

Kc
sine(x, y) =

sin c(x− y)

π(x− y)
=

1

2πi

∫ eic

e−ic

1

zx−y+1
dz, x, y ∈ Z, (2.18)

where c ∈ (0, π]. Given a sequence {γj}j ⊂ (0,∞) we can define an extension of the sine
process by

Kc,γ
sine,ext(s, x; t, y) =

{
1

2πi

∫
Γ+(e−ic,eic)

∏t
j=s+1(1− γjz) 1

zx−y+1 dz, s ≤ t
1

2πi

∫
Γ−(e−ic,eic)

∏s
j=t+1(1− γjz)−1 1

zx−y+1 dz, s > t
(2.19)

where Γ+(e−ic, eic) is a path from e−ic to eic that intersects the real axis once, at a
point to the right of zero, and Γ−(e−ic, eic) goes from e−ic to eic and intersects the real
axis to the left of zero. The extensions (2.19) are a subclass of a more general family of
extensions that are introduced in [2]. Also note that if γj ≡ γ, then this is the incomplete
beta kernel as discussed in [20].
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Nonintersecting paths with a staircase initial condition

(a) s = 1 (b) s = 5

Figure 8: The leading order term in the limiting mean density in case k = 5, αj = β =

2/3, N = 40 and two different values of s. Again, for each point ξN + x, with 0 ≤ x < k,
on the horizontal axis the density is computed by using (2.16) locally for each value of
ξ = 0, 1/40, 2/40, . . . , 1.

Proposition 2.11. Fix a sequence of positive numbers, γ = (γ1, γ2, . . .), and a number
0 < γ < 1. For any S ∈ N, let γS = (γ, . . . , γ︸ ︷︷ ︸

S times

, γ1, γ2, . . .). Then

lim
S→∞

K
γS
k (S + s1, x2;S + s2, x2) = K

π/k,γ
sine,ext(s1, x1; s2, x2), (2.20)

for (sj , xj) ∈ N × Z, where the right-hand side is the extension of the sine kernel as
given in (2.19).

Remark 2.12. We have a similar theorem for the continuous analogue (2.16). By set-
ting σj = σ + σ̃j and taking the limit σ →∞ we obtain a different extension of the sine
kernel that also falls into the class described in [2].

The second limit that we compute is for k → ∞. In this case the starting points for
the paths are far apart.

Proposition 2.13. Let Kγk be the kernel in (2.13), with γj ∈ (0, 1) for all j ∈ N. Then

lim
k→∞

∏s1
r=1 (1− γr)∏s2
r=1 (1− γr)

K
γ
k(s1, x1; s2, x2)

= −
1s1>s2

∏s1
j=s2+1(1− γj)
2πi

∮
∂D

s1∏
j=s2+1

(1− γjw)−1 dw

wx1−x2+1

+

∏s1
r=1(1− γr)

2πi

∫
∂D

s1∏
t=1

(1− γtw)−1 dw

wx1+1
.

(2.21)

Namely, as k → ∞, the process induced by the kernel Kγk converges to a random
walk of a single particle where the transition probabilities are given by the geometric
distribution, with parameters γj .

Remark 2.14. Without the restriction γj < 1, the limiting process makes no sense as
a probability measure. Note, in addition, that in Theorem 2.7 we have γj = (ξ/(1 −
ξ))1/kβαj which converges to αjβ < 1 as k → ∞. Thus, γj < 1 is also natural from
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Nonintersecting paths with a staircase initial condition

the viewpoint of the original process. Moreover, it is not hard to adapt the proof of
Proposition 2.13 for γj that vary with k in this way.

Remark 2.15. The conclusion that the process converges to a single random walk
follows by a simple manipulation (see (3.43)) on the determinant in the k-point correla-
tions (2.3). Note that if sj = s the kernel clearly only depends on x1 and not on x2. This
implies that K, viewed as an infinite matrix, has rank 1 and hence the limiting process
consists of a single particle only [21, Theorem 4].

The limits in Propositions 2.11 and 2.13 are rather straightforward. A more inter-
esting limit is k, S →∞ simultaneously. That is, we want to scale S with (a power of) k
and take the limit k →∞. We restrict the discussion to the single time situation s1 = s2

and take γj ≡ γ.

In order to determine the proper scaling for S, consider a single random walker with
geometrically distributed transition probabilities with parameter γ. The mean position
of the walker after S steps is Sγ/(1 − γ). The variance is Sγ2/(1 − γ)2. It follows that
two independent random walkers starting at a distance k will start noticing each other
after approximately k2 steps. Thus, the correct scaling is S = σk2, where the scaling
parameter σ does not depend on k.

In order to obtain a meaningful limit, we want to scale the space variable, xj , as
well. The up-right paths force a drift in the random walks. Hence, if we want to ‘follow’
the process as k →∞, we need to subtract the mean position of the walker. Moreover,
the variance implies we need to scale the space variables with k. Hence

xj = integer part of
(
σk2γ/(1− γ) + kηj

)
, j = 1, 2,

where ηj ∈ R. Finally, because of the scaling with k in the space variable, we also need
to multiply the kernel Kγk with k to get a meaningful answer.

Proposition 2.16. Consider Kγk in (2.13) with γj ≡ γ ∈ (0, 1) and

{
sj = s = σk2

xj = integer part of
(
σk2γ/(1− γ) + kηj

)
.

(2.22)

We have

lim
k→∞

k Kγk(s, x1; s, x2) =
1

π

∞∑
j=−∞

e(−πdj(j−1)) Re

(
exp (πi((2j − 1)η1 + η2))

i(η2 − η1) + dj

)
, (2.23)

where d = 2πσγ/(1− γ)2.

The limiting kernel (2.23) appeared for the first time in [14, eq (2.20)].

Note that in case σ is large (for σ → ∞ we get the continuous sine kernel) then
this kernel can be approximated by a simpler kernel as indicated in [14]. Indeed, the
terms other than j = 0, 1 are exponentially small as σ (and hence d) is large. Hence the
right-hand side of (2.23) can be approximated by the two terms coming from j = 0, 1

which leads to

sinπ(η1 − η2)

π(η1 − η2)
+
d cosπ(η1 + η2) + (η2 − η1) sinπ(η1 + η2)

π(d2 + (η1 − η2)2)
. (2.24)
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2.6 Number variance

An interesting feature of the kernel (2.13) is the phenomenon of number variance
saturation. Let us fix s1 = s2 = s and consider the number variance

Var (number of points in [−L,L]) ,

that is, the variance of the random variable that counts the number of points in the
interval [−L,L] with respect to the process induced by the kernel Kγk in (2.12). The
number variance can be seen as a measure for the disorder of the system.

An important feature of the sine process is that the number variance for the interval
[−L,L] grows logarithmically with L (more precisely, it grows as 1

π2 logL as L→∞). In
fact, it can be shown that the sine kernel is the kernel with slowest growth rate for the
number variance among all translation invariant kernels [21].

In [14] Johansson showed that, in contrast with the sine process, the number vari-
ance for the kernel (2.23) ‘saturates’. Namely, it remains bounded as L→∞.

Due to the nonintersecting condition and the discreteness of the model, number
variance saturation occurs for Kγk as well. Rather than computing a formula for the
limiting behavior for the number variance, we give an easy upper bound for the finite
N case. As this upper bound does not depend on N , it remains valid when taking the
limit N →∞.

We first note that, by the nonintersecting property, each particle except for the top
one can jump a vertical jump of size at most k on the first step. Thus, an interval of size
L in the bulk on the line (−N + 1), will contain at most (L + k)/k = L/k + 1 particles
and at least (L− k)/k = L/k − 1 particles. It follows that the number variance for s = 1

is bounded by 4. Similarly, up to the line (−N + s), except for the s topmost particles,
all particles may increase their height by at most sk. Thus, the number variance for the
line −N + s is bounded by 4s2. Since the bounds are independent of N (for intervals
in the bulk), they persist as N → ∞ and we get number variance saturation for the
limiting process, for any fixed s.

3 Proofs

In this section we prove Theorems 2.1, 2.5, 2.7 and Propositions 2.11, 2.13 and 2.16.

3.1 Proof of Theorem 2.1

Proof of Theorem 2.1. Let

Φj(x) =
1

2πi

∮
∂D

zkj
dz

zx+1
j = 1, 2, . . . , N, (3.1)

Ψj(x) =
1

2πi

∮
∂D

zx
dz

zlj+1
j = 1, 2, . . . , N, (3.2)

and

T`−1,`(x1, x2) =
1

2πi

∮
∂D

F`(z)
dz

zx2−x1+1
` = 1, 2, . . . , 2N, (3.3)

where

F`(z) =

{
(1− α`z)−1 1 ≤ ` ≤ N(

1− β2N−`+1

z

)−1

N + 1 ≤ ` ≤ 2N
. (3.4)

Note that Φj(y) are delta functions at x = kj and Ψj(x) are delta functions at lj so
they encode the boundary conditions of the walk. Moreover, T`−1,`(x1, x2) is the weight
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Nonintersecting paths with a staircase initial condition

of the jump from x1 on the line s = `− 1 to x2 on the line s = `. Thus, by the Lindström-
Gessel-Viennot Theorem [15, 23], the joint probability (up to normalization) of the family
of paths intersecting the line s = ` at the points {x(`)

1 , x
(`)
2 , . . . , x

(`)
N } is given by

det
[
Φi

(
x

(0)
j

)]N
i,j=1

det
[
T0,1

(
x

(0)
i , x

(1)
j

)]N
i,j=1

. . .

× det
[
T2N−1,2N

(
x

(2N−1)
i , x

(2N)
j

)]N
i,j=1

det
[
Ψi

(
x

(2N)
j

)]N
i,j=1

.

(3.5)

Thus, by the Eynard-Mehta Theorem [3], the point process defined by the intersec-
tions of the paths with the lines s = 0, 1, 2, . . . 2N is a determinantal point process whose
kernel has the form

K(s1, x1; s2, x2) = −1s1>s2
1

2πi

∮
∂D

s1∏
j=s2+1

Fj(z)
dz

zx1−x2+1

+

N∑
i,j=1

[
G−ti,j

]( 1

2πi

∮
∂D

zki
s1∏
`=1

F`(z)
dz

zx1+1

)

×

(
1

2πi

∮
∂D

2N∏
`=s2+1

F`(z)
zx2dz

zlj+1

)
,

(3.6)

where the Gram matrix is given by

Gi,j =
1

2πi

∮
∂D

2N∏
`=1

F`(z)
zkidz

zlj+1
. (3.7)

Since the correlation functions are determinants of K, they are unchanged by re-
placing the Φi’s by functions with the same linear span and the same is true of the Ψj ’s.
Let

Φ̃j(x) =
1

2πi

∮
∂D

hk1,k2,...,kN (β;βj 7→ z)
dz

zx+1
, (3.8)

Ψ̃j(x) =
1

2πi

∮
∂D

hl1,l2,...,lN (1/β; 1/βj 7→ 1/z)
zxdz

z
. (3.9)

Since we are assuming the βj ’s are distinct, hk1,k2,...,kN (β;βj 7→ z) is a nontrivial linear
combination of zk` , namely a polynomial in z, which vanishes at β` (` 6= j). Similarly,
hl1,l2,...,lN (1/β, 1/βj 7→ 1/z) is a nontrivial linear combination of z−l` which vanishes at
β` (` 6= j). Moreover,

span
{
zkj
}N
j=1

= span {hk1,k2,...,kN (β;βj 7→ z)}Nj=1 . (3.10)

Thus,

span {Φj(x)}Nj=1 = span
{

Φ̃j(x)
}N
j=1

. (3.11)

Similarly

span

{
1

zlj

}N
j=1

= span {hl1,l2,...,lN (1/β; 1/βj 7→ 1/z)}Nj=1 . (3.12)

and so

span {Ψj(x)}Nj=1 = span
{

Ψ̃j(x)
}N
j=1

. (3.13)
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Thus, the kernel with Φ and Ψ replaced by Φ̃ and Ψ̃ describes the same process. Let
us compute the Gram matrix for this new kernel:

G̃i,j =
1

2πi

∮
∂D

hk1,k2,...,kN (β;βi 7→ z)hl1,l2,...,lN (1/β; 1/βj 7→ 1/z)

×
N∏
r=1

(1− αrz)−1

(
1− βr

z

)−1
dz

z

(3.14)

The integral is over the unit circle (with counterclockwise orientation) and the inte-
grand is meromorphic. Hence the integral can be computed by residue calculus. The
only possible poles that are inside the unit circle are at z = βj for j = 1, . . . , N and
at z = 0. However, because of the condition lN − k1 ≤ N − 1 there is no pole at
z = 0. Furthermore, due to the zeros of the functions hk1,k2,...,kN (β, βi 7→ z) and
hl1,l2,...,lN (1/β, 1/βj 7→ 1/z), all poles are cancelled in case i 6= j and the integral van-
ishes. Hence we obtain

G̃i,j =

{
0 i 6= j

hk1,k2,...,kN (β)hl1,l2,...,lN (1/β)∏N
r=1(1−αrβj)

∏N
s=1,s 6=j(1−βs/βj)

i = j
. (3.15)

So we see that the Gram matrix is diagonal in this case. Inserting in (3.6), we get

K(s1, x1; s2, x2) = −1s1>s2
1

2πi

∮
∂D

s1∏
j=s2+1

Fj(z)
dz

zx1−x2+1

+

N∑
j=1

∏N
r=1 (1− αrβj)

∏N
s=1,s 6=j(1− βs/βj)

hk1,k2,...,kN (β)hl1,l2,...,lN (1/β)

×

(
1

2πi

∮
∂D

hk1,k2,...,kN (β;βj 7→ z)

s1∏
`=1

F`(z)
dz

zx1+1

)

×

(
1

2πi

∮
∂D

hl1,l2,...,lN (1/β; 1/βj 7→ 1/z)

2N∏
`=s2+1

F`(z)
zx2dz

z

)
.

(3.16)

and this is (2.9).
To prove (2.10), we note that since s2 ≤ N and lN ≤ N −1 (recall we assume k1 = 0),

we have

1

2πi

∮
∂D

hl1,l2,...,lN (1/β; 1/βj 7→ 1/z)

2N∏
`=s2+1

F`(z)
zx2dz

z

=
1

2πi

∮
∂D

hl1,l2,...,lN (1/β; 1/βj 7→ 1/z)∏N
`=s2+1 (1− α`z)

∏N
r=1(1− βr/z)

zx2−1dz

=
βx2
j hl1,l2,...,lN (1/β)∏N

r=1 (1− αrβj)
∏N
s=1,s 6=j(1− βs/βj)

.

(3.17)

Noting that
∏N
r=1(1−αrβj)∏N

`=s2+1(1−α`βj)
=
∏s2
r=1(1 − αrβj), (2.10) follows from inserting (3.17) into

(3.16).

3.2 Proof of Theorem 2.5

Proof of Theorem 2.5. We first assume the βj ’s are distinct. We may then apply Theo-

rem 2.1. By noting that h0,k,2k,...,(N−1)k(β;βj 7→ z) = C
∏N
`=1, 6̀=j(z

k − βk` ) for a constant
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C that is independent of z, we see that

h0,k,2k,...,(N−1)k(β;βj 7→ z)

h0,k,2k,...,(N−1)k(β)
=

∏N
`=1, 6̀=j

(
zk − βk`

)∏N
`=1, 6̀=j

(
βkj − βk`

) ,
and so

K(s1, x1; s2, x2) = −1s1>s2
1

2πi

∮
∂D

s1∏
j=s2+1

Fj(z)
dz

zx1−x2+1

+

N∑
j=1

1

2πi

∮
∂D

∏N
`=1, 6̀=j

(
zk − βk`

)∏N
`=1, 6̀=j

(
βkj − βk`

) s2∏
r=1

(1− αrβj)βx2
j

s1∏
`=1

F`(z)
dz

zx1+1

= −1s1>s2
1

2πi

∮
∂D

s1∏
j=s2+1

Fj(z)
dz

zx1−x2+1

+

N∑
j=1

1

2πi

∮
∂D

N∏
`=1

(
zk − βk`

) s1∏
`=1

F`(z)

∏s2
r=1(1− αrβj)βx2

j∏N
`=1, 6̀=j

(
βkj − βk`

) (
zk − βkj

) dz

zx1+1
.

(3.18)

Now, if Γβj is a small circle around βj which does not contain the other zeros of

wk − βkj , then, (recall wk − βkj = (w − βj)(wk−1 + βjw
k−2 + . . . βk−1

j w + βk−1
j )),

k

2πi

∮
Γβj

∏s2
r=1(1− αrw)wx2wk−1∏N
`=1

(
wk − βk`

)
(zk − wk)

dw

=
1

2πi

∮
Γβj

∏s2
r=1(1− αrw)wx2∏N

`=1, 6̀=j
(
wk − βk`

)
(zk − wk)

kwk−1dw

wk − βkj

=

∏s2
r=1(1− αrβj)βx2

j∏N
`=1, 6̀=j

(
βkj − βk`

) (
zk − βkj

) kβk−1
j

βk−1
j + βjβ

k−2
j + . . .+ βk−1

j

=

∏s2
r=1(1− αrβj)βx2

j∏N
`=1, 6̀=j

(
βkj − βk`

) (
zk − βkj

) .

(3.19)

It follows that

N∑
j=1

1

2πi

∮
∂D

N∏
`=1

(
zk − βk`

) s1∏
`=1

F`(z)

∏s2
r=1(1− αrβj)βx2

j∏N
`=1, 6̀=j

(
βkj − βk`

) (
zk − βkj

) dz

zx1+1

=
k

(2πi)2

∮
∂D

∮
Γβ

∏N
j=1(zk − βkj )∏s1
`=1(1− α`z)

∏s2
r=1(1− αrw)∏N
t=1(wk − βkt )

wx2+k−1dwdz

zx1+1(zk − wk)
,

(3.20)

which, together with (3.18), is (2.11).

In the case that the βj ’s are not distinct the same formula holds by continuity. For-
mula (2.12) is immediate from (2.11).

3.3 Proof of Theorem 2.7

Proof of Theorem 2.7. The proof is based on a steepest descent argument (see [19] for
a discussion of this technique for kernels with double integral representations). Note
that in the double integral representation (2.11) we have an interaction term 1/(zk−wk)

instead of the more common 1/(z − w). This gives rise to extra complications in the
analysis.
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Nonintersecting paths with a staircase initial condition

We start with the kernel K,

K(s1, x1; s2, x2) = −1s1>s2
1

2πi

∮
∂D

s1∏
j=s2+1

(1− αjz)−1 dz

zx1−x2+1

+
k

(2πi)2

∮
∂D

∮
Γβ

∏s2
r=1(1− αrw)(zk − βk)N∏s1
`=1(1− α`z)(wk − βk)N

wx2+k−1dwdz

zx1+1(zk − wk)
.

(3.21)

(This is just (2.12) repeated for the reader’s convenience). By substituting

kwk−1

zk − wk
=

k−1∑
j=0

1

ω−jk z − w
, ωk = e2πi/k, (3.22)

in (3.21), the change of variable ω−jk z 7→ z and the rotational invariance of ∂D we obtain

K(s1, x1; s2, x2) = −1s1>s2
1

2πi

∮
∂D

s1∏
j=s2+1

(1− αjz)−1 dz

zx1−x2+1

+

k−1∑
j=0

ω−jx1

k

(2πi)2

∮
∂D

∮
Γβ

∏s2
r=1(1− αrw)(zk − βk)N∏s1
`=1(1− ωjkα`z)(wk − βk)N

wx2dwdz

zx1+1(z − w)
.

(3.23)

Replacing xj with x(N) + xj gives

K(s1, x(N) + x1; s2, x(N) + x2) = −1s1>s2
1

2πi

∮
∂D

s1∏
j=s2+1

(1− αjz)−1 dz

zx1−x2+1

+

k−1∑
j=0

ω−jx1

k

(2πi)2

∮
∂D

∮
Γβ

∏s2
r=1(1− αrw)∏s1
`=1(1− ωjkα`z)

wx2

zx1+1(z − w)

(wk − βk)−Nwx(N)

(zk − βk)−Nzx(N)
dwdz.

(3.24)

Note that the terms in the integrand that vary with N can be written as

zx(N)

(zk − βk)N
= exp

(
−N log(zk − βk) + x(N) log z

)
, (3.25)

and similarly for w. Since x(N) = ξkN(1 + O(1/N)) as N → ∞, in order to derive
the leading terms in the asymptotics of (3.24), we need to find the saddle points of the
function F defined by

F (z) = G(zk), G(z) = − log(z − βk) + ξ log z. (3.26)

Clearly, the saddle points of F are k-th roots of the saddle points of G. A straightfor-
ward calculation shows that G has only one saddle point βkξ/(ξ − 1), which is simple.
Hence there are four paths of steepest descent/ascent for ReG leaving from the saddle
point. The paths of steepest descent together form the negative real axis. The paths of
steepest ascent start in the saddle point and end in z = βk which is a singular point of
G. The saddle points and corresponding points of F can now easily be found by taking
the k-th roots. In Figure 9 the saddle points and paths of steepest descent/ascent are
illustrated in the case k = 4.

We now deform the contours ∂D and Γβ in the following way. The contour Γβ is
deformed to two rays

Γβ = R+e
πi/k ∪R+e

−πi/k, (3.27)

which consist of the paths of steepest descent for ReF , with F as in (3.26), leaving from
the saddle points z∗ = β(ξ/(1− ξ))1/keπi/k and z∗.
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We deform ∂D to a contour Γ0 that consists of the paths of steepest ascent for ReF

leaving from all the saddle points of F , (see also Figure 9). Note that every such path
starts at a saddle point and ends at one of the critical point ωjkβ of F . Together they form
a closed contour around the origin. It is important to note that the other singularities
1/αj are not encircled by Γ0.

Note that the contours Γ0 and Γβ intersect. Hence by deforming the contours we
pick up residues due to the term 1/(z − w). As result we obtain an extra single integral
in the representation for the kernel

K(s1, x(N) + x1; s2, x(N) + x2)

= −1s1>s2
1

2πi

∮
∂D

s1∏
j=s2+1

(1− αjz)−1 dz

zx1−x2+1

+

k−1∑
j=0

ω−jx1

k

2πi

∫ z∗

z∗

∏s2
r=1(1− αrz)∏s1
`=1(1− ωjkα`z)

dz

zx1−x2+1

+

k−1∑
j=0

ω−jx1

k

(2πi)2

∮
Γ0

∮
Γβ

∏s2
r=1(1− αrw)∏s1
`=1(1− ωjkα`z)

wx2

zx1+1(z − w)

(wk − βk)−Nwx(N)

(zk − βk)−Nzx(N)
dwdz.

(3.28)

Here the integrals from z∗ to z∗ are over the part of Γ0 that is contained in Γβ or any
homotopic deformation of that path in C \ {0, α−1

j }.
We claim that the double integral is of order O(N−1/2) as N → ∞ (in fact, it can

be shown to be O(N−1)). This follows by standard steepest descent arguments, so we
restrict ourselves to a brief discussion that justifies the claim. The leading term in the
asymptotic expansion for the double integral in (3.28) comes from small neighborhoods
around the saddle points z∗ and z∗. The other parts give only exponentially small con-
tributions. In each of these neighborhoods one then introduces new local variables. For
example, in the parts of the integrals that are both near z∗ we introduce the variables
w = z∗ + sN−1/2 and z = z∗ + tN−1/2. In these new variables the integrand converges
to a Gaussian as N → ∞. Because of the scaling coming from the change of variables,
the double integral then behaves like a (double) Gaussian integral multiplied by N−1/2.
Hence we arrive at the claim.

It follows that

lim
N→∞

K(s1, x(N) + x1; s2, x(N) + x2)

= −1s1>s2
1

2πi

∮
∂D

s1∏
j=s2+1

(1− αjz)−1 dz

zx1−x2+1

+

k−1∑
j=0

ω−jx1

k

2πi

∫ z∗

z∗

∏s2
r=1(1− αrz)∏s1
`=1(1− ωjkα`z)

dz

zx1−x2+1
.

(3.29)

By changing the integration variable to w = z/|z∗| we obtain

lim
N→∞

|z∗|x1−x2K(s1, x(N) + x1; s2, x(N) + x2)

= −1s1>s2
1

2πi

∮
∂D

s1∏
j=s2+1

(1− γjw)−1 dw

wx1−x2+1

+

k−1∑
j=0

ω−jx1

k

2πi

∫ eπi/k

e−πi/k

∏s2
r=1(1− γrw)∏s1
`=1(1− ωjkγ`w)

dw

wx1−x2+1

(3.30)

which is the statement.
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Γβ

Γ0

z∗

z∗

Figure 9: The left picture shows the paths of steepest descent and ascent for ReF

leaving from the saddle points of F . The right picture shows the deformed contours Γ0

and Γβ which consist of paths of steepest descent and ascent leaving from the saddle
points z∗ = β(ξ/(1− ξ))1/keπi/k and z∗

3.4 Proof of Proposition 2.11

We need a simple lemma.

Lemma 3.1. Fix k ≥ 3 and 0 < γ < 1 and let ωk = e2πi/k. Then there exists a constant
C = C(γ, k) > 0 such that∣∣∣∣∣ 1− γeit/k

1− ωjkγeit/k

∣∣∣∣∣ ≤ 1

1 + Cπj(πj+t)
k2

, t ∈ [−π, π], |j| ≤ k/2. (3.31)

Proof. First, note that there exists a constant C̃ such that as long as θ ∈ [− 5π
6 ,

5π
6 ]

| sin(θ)| ≥ C̃|θ|. (3.32)

Now,

|1−γeit/k| = 1 + γ2 − 2γ cos

(
t

k

)
,

|1−ωjkγe
it/k| = 1 + γ2 − 2γ cos

(
t+ 2πj

k

)
,

(3.33)

so ∣∣∣∣∣ 1− γeit/k

1− ωjkγeit/k

∣∣∣∣∣ =
1

1 +
2γ(cos tk−cos t+2πj

k )

1+γ2−2γ cos tk

≤ 1

1 + 2γ
(1+γ)2 | cos t

k − cos t+2πj
k |

. (3.34)

Since k ≥ 3 and |j| ≤ k/2, it follows that t+πj
k , πjk ∈ [− 5π

6 ,
5π
6 ] so, writing | cos t

k −
cos t+2πj

k | = 2| sin(πjk ) sin( t+πjk )|, we see we may apply (3.32) to (3.34) to get (3.31).

Proof of Proposition 2.11. First, note that the term j = 0 and the integral over Γ0, in
(2.13), together form K

π/k,γ
sine,ext. In particular, Kγ1 = K

π,γ
sine,ext. Thus, we need to show

that the other terms in the sum go to zero as S →∞.
First, write∣∣∣Kγk(S + s1, x1;S + s2, x2)−Kπ/k,γsine,ext(s1, x1; s2, x2)

∣∣∣
≤ C(s1, s2)

k−1∑
j=1

1

2π

∫ π

−π

∣∣∣∣∣ 1− γeit/k

1− ωjkγeit/k

∣∣∣∣∣
S

dt ≡ C(s1, s2)F (k, S)
(3.35)
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where C(s1, s2) > 0 is a constant.
For k = 2 we get

F (2, S) =

∫ π

−π

∣∣∣∣1− γeit/21 + γeit/2

∣∣∣∣S dt

≤
∫ π

−π

dt(
1 + 2γ

(1+γ)2

∣∣2 cos t2
∣∣)S → 0

as S →∞.
For k > 2 we write

F (k, S) =

k1∑
j=1

1

2π

∫ π

−π

∣∣∣∣∣ 1− γeit/k

1− ωjkγeit/k

∣∣∣∣∣
S

dt+

−1∑
j=−k2

1

2π

∫ π

−π

∣∣∣∣∣ 1− γeit/k

1− ωjkγeit/k

∣∣∣∣∣
S

dt
(3.36)

where k1 is the integer part of (k − 1)/2 and k2 = k − 1 − k1, so both k1 ≤ k/2 and
k2 ≤ k/2. By (3.31) we have

1

2π

∫ π

−π

∣∣∣∣∣ 1− γeit/k

1− ωjkγeit/k

∣∣∣∣∣
S

dt ≤ 1

2π

∫ π

−π

∣∣∣∣∣ 1

1 + Cπj(πj+t)
k2

∣∣∣∣∣
S

dt. (3.37)

For j 6= ±1 the right-hand side converges exponentially fast to zero. The terms with
j = ±1 are O(S−1) as S → ∞. In particular, the right-hand side of (3.35) tends to zero
as S →∞ and the statement follows.

3.5 Proof of Proposition 2.13

Proof of Proposition 2.13. First note that by the mean value theorem we have∫ eπi/k

e−πi/k

∏s2
r=1 (1− γrz)∏s1
t=1 (1− ωjkγtz)

dz

zx1−x2+1
=

2πi

k

∏s2
r=1 (1− γreiθj )∏s1
t=1 (1− ωjkγteiθj )

e−iθj(x1−x2) (3.38)

for some θj ∈ [−π/k, π/k]. Note that θj → 0 as k →∞ uniformly in j, hence

lim
k→∞

k−1∑
j=0

ω−jx1

k

∫ eπi/k

e−πi/k

∏s2
r=1 (1− γrz)∏s1
t=1 (1− ωjkγtz)

dz

zx1−x2+1

= lim
k→∞

2πi

k

k−1∑
j=0

ω−jx1

k

∏s2
r=1 (1− γr)∏s1
t=1 (1− ωjkγt)

.

(3.39)

The sum on the right-hand side is a Riemann sum and hence

lim
k→∞

k−1∑
j=0

ω−jx1

k

2πi

∫ eπi/k

e−πi/k

∏s2
r=1 (1− γrz)∏s1
t=1 (1− ωjkγtz)

dz

zx1−x2+1

=
1

2πi

∫
∂D

∏s2
r=1 (1− γr)∏s1
t=1 (1− γtw)

dw

wx1+1
.

(3.40)

But then by conjugating the kernel we can rewrite this as

lim
k→∞

∏s1
r=1 (1− γr)∏s2
r=1 (1− γr)

K
γ
k(s1, x1; s2, x2)

= −1s1>s2
s1∏

j=s2+1

(1− γj)
1

2πi

∮
∂D

s1∏
j=s2+1

(1− γjw)−1 dw

wx1−x2+1

+

s1∏
r=1

(1− γr)
1

2πi

∮
∂D

s1∏
t=1

(1− γtw)−1 dw

wx1+1
.

(3.41)
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Which means that

lim
k→∞

∏s1
r=1 (1− γr)∏s2
r=1 (1− γr)

K
γ
k(s1, x1; s2, x2)

= −1s1>s2Prob(W (s1) = x1 | W (s2) = x2) + Prob(W (s1) = x1).

(3.42)

where W (s) is a random walk starting from 0 and having geometrically distributed
transition probabilities.

Note that if we view the right-hand side of (3.42) as the entries of the matrix, we
have the sum of a lower triangular matrix with zeros on the diagonal and a rank 1

matrix for which all columns are the same. Determinants of such matrices are easily
computed. Indeed, by subtracting the last column from all the others the determinant
does not change. The result is a matrix that is the sum of a lower triangular matrix
with trivial main diagonal and a matrix for which only the last column is non-trivial. The
determinant is then simply the product of the top right entry and the terms on the first
subdiagonal under the main diagonal. This leads to

lim
k→∞

det (Kγk(sj , xj ; sl, xl))
n

j,l=1

= Prob(W (s1) = x1)

n−1∏
j=1

Prob(W (sj) = xj |W (sj−1 = xj−1)).
(3.43)

Hence, the process converges to a single discrete random walk starting from 0 and
having geometrically distributed transition probabilities.

3.6 Proof of Proposition 2.16

Proof of Proposition 2.16. First note that, as in (3.36), we can rewrite (2.13) as

K
γ
k(s, x1; s, x2) =

k2∑
j=−k1

ω−jx1

k

2πi

∫ eπi/k

e−πi/k

(
1− γrz

1− ωjkγrz

)s
dz

zx1−x2+1
. (3.44)

where k1 is the integer part of (k− 1)/2 and k2 = k− 1− k1. By writing z = eit/k we can
further rewrite the kernel as

K
γ
k(s, x1; s, x2) =

k2∑
j=−k1

ω−jx1

k

k2π

∫ π

−π

(
1− γeit/k

1− ωjkγeit/k

)s
eit(x2−x1)/kdt. (3.45)

Now set s = σk2 for large k. In case |j| ≥ k1/4, the estimate (3.37) from the proof of
Proposition 2.11 shows that the terms are exponentially small in k as k →∞.

If |j| ≤ k1/4, we write

log

(
1− γeit/k

1− γei(t+2πj)i/k

)
= log

(
1−

γ
(
eit/k − 1

)
1− γ

)
− log

(
1−

γ
(
ei(t+2πj)/k − 1

)
1− γ

)
.

Noting

1−
γ
(
eit/k − 1

)
1− γ

= 1−
γ
(
it
k + (it)2

k2 +O(k−3)
)

1− γ

and similarly for 1− γ(ei(t+2πj)/k−1)
1−γ , and expanding the log as well, we get

(
1− γeit/k

1− γei(t+2πj)/k

)σk2
= exp

(
2πiγσk

1− γ
j − πdj2 − djt

)(
1 +O(k−1/4)

)
, (3.46)
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with d = 2πγσ
(1−γ)2 , as k → ∞. This approximation is uniform for |j| ≤ k1/4 and for t ∈

[−π, π].
Substituting (3.46) in the integral gives

∫ π

−π

(
1− γeit/k

1− ωjkγeit/k

)σk2
eit(x2−x1)/kdt = − exp

(
2πiγσk

1− γ
j − πdj2

)
× e−djπe−πi(x1−x2)/k − edjπeπi(x1−x2)/k

dj + i(x1 − x2)/k

(
1 +O(k−1/4)

)
, k →∞.

(3.47)

Now, in (3.45) replace the terms with |j| ≤ k1/4 by (3.47) and use the fact that the

other terms are exponentially small in k to obtain (recall xj = integer part of
(
σk2γ/(1−

γ) + kηj
)
)

lim
k→∞

kKγk(s1, x1; s2, x2) = − 1

2π

∞∑
j=−∞

exp(−2πiη1j − πdj2)

×
(

exp (−π(dj + i(η1 − η2)))− exp (π(dj + i(η1 − η2)))

dj + i(η1 − η2)

)
.

(3.48)

In order to show that this is (2.23) we first split the sum into two separate sums

lim
k→∞

kKγk(s1, x1; s2, x2) =

− 1

2π

∞∑
j=−∞

exp(−πdj(j + 1))

(
exp(−2πiη1j) exp (−πi(η1 − η2))

dj + i(η1 − η2)

)

+
1

2π

∞∑
j=−∞

exp(−πdj(j − 1))

(
exp(−2πiη1j) exp (πi(η1 − η2))

dj + i(η1 − η2)

)
.

(3.49)

By changing j 7→ −j in the first sum we obtain

lim
k→∞

kKγk(s1, x1; s2, x2) =

1

2π

∞∑
j=−∞

exp(−πdj(j − 1))

(
exp(2πiη1j) exp (−πi(η1 − η2))

dj − i(η1 − η2)

)

+
1

2π

∞∑
j=−∞

exp(−πdj(j − 1))

(
exp(−2πiη1j) exp (πi(η1 − η2))

dj + i(η1 − η2)

) (3.50)

and this may be written as

lim
k→∞

kKγk(s1, x1; s2, x2)

=
1

π

∞∑
j=−∞

exp(−πdj(j − 1)) Re

(
exp (πi((2j − 1)η1 + η2))

i(η2 − η1) + dj

)
,

(3.51)

which is the statement.
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