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Abstract

Let Fn be an n by n symmetric matrix whose entries are bounded by nγ for some
γ > 0. Consider a randomly perturbed matrix Mn = Fn +Xn, where Xn is a random
symmetric matrix whose upper diagonal entries xij , 1 ≤ i ≤ j, are iid copies of a
random variable ξ. Under a very general assumption on ξ, we show that for any
B > 0 there exists A > 0 such that P(σn(Mn) ≤ n−A) ≤ n−B .
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1 Introduction

Let Fn be an n by n matrix whose entries are bounded by nO(1). Consider a randomly
perturbed matrix Mn = Fn + Xn, where Xn is a random matrix whose entries are iid
copies of a random variable. It has been shown, under a very general assumption on ξ,
that the singular value of Mn cannot be too small.

Theorem 1.1. [21, Theorem 2.1] Assume that Mn = Fn + Xn, where the entries of Fn
are bounded by nγ , and the entries of Xn are iid copies of a random variable of zero
mean and unit variance. Then for any B > 0, there exists A > 0 such that

P(σn(Mn) ≤ n−A) ≤ n−B .

Here σn(Mn) is the smallest singular value of Mn, defined as

σn(Mn) := inf
‖x‖=1

‖Mnx‖.

The dependence among the parameters in Theorem 1.1 was made explicitly in [24].
Under the stronger assumption that ξ has sub-Gaussian distribution, Rudelson and Ver-
shynin [16] obtained an almost best possible estimate on the tail bound of σn(Mn). For
more results regarding this random matrix ensemble we refer the reader to [16, 21, 24].

One important application of Theorem 1.1 is a polynomial bound for the condition
number of Mn.
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On the least singular value of random symmetric matrices

Corollary 1.2. [21, Corollary 2.10] With the same assumption as in Theorem 1.1, for
any B > 0, there exists A > 0 such that

P(σ1(Mn)/σn(Mn) ≤ nA) ≥ 1− n−B .

The condition number κ(M) = σ1(M)/σn(M) of a matrix M plays a crucial role in
numerical linear algebra. The above corollary implies that if one perturbs a fixed matrix
F of small spectral norm by a (very general) random matrix Xn, the condition number
of the resulting matrix will be relatively small with high probability. This fact has some
nice applications in theoretical computer science. (See for instance [17, 18] for further
discussions on these applications).

Another popular model of random matrices is that of random symmetric matrices;
this is one of the simplest models that has non-trivial correlations between the matrix
entries. A significant new difficulty in the study of the singularity of Xn (or of Mn in
general) is that the symmetry ensures that det(Xn) is a quadratic function of each row,
as opposed to the regular random ensembles in which det(Xn) is a linear function of
each row.

A recent result of Costello, Tao and Vu [2] shows that if the upper diagonal entries
xij of Xn are iid Bernoulli random variables, then Xn is non-singular with probability
1− n−1/8+o(1). In [12], the current author improved the bound to any polynomial order.

The goal of this note is to study the smallest singular value of randomly perturbed
matrices Mn, under a general assumption on ξ.

Condition 1.3 (Anti-concentration). Assume that ξ has zero mean, unit variance, and
there exist positive constants c1 and cs such that

P(c1 ≤ |ξ − ξ′|) ≥ c2,

where ξ′ is an independent copy of ξ.

Theorem 1.4 (Main theorem). Assume that the upper diagonal entries xij of Xn are
iid copies of a random variable ξ satisfying Condition 1.3. Assume also that the entries
fij of the symmetric matrix Fn satisfy |fij | ≤ nγ for some γ > 0. Then for any B > 0,
there exists A > 0 depending on c1, c2, γ and B such that for all sufficiently large n,

P(σn(Mn) ≤ n−A) ≤ n−B .

Our result immediately implies a polynomial bound for the condition number of Mn

as follows.

Corollary 1.5. With the same assumptions as of Theorem 1.4, for any B > 0, there
exists A > 0 depending in c1, c2, γ and B such that for all sufficiently large n,

P(κ(Mn) ≥ nA) ≤ n−B .

As another application, we provide a relatively fine lower bound for the determinant
of random symmetric matrices. This result refines an important case of [25, Theorem
34] obtained by Tao and Vu.

Corollary 1.6. Assume that the upper diagonal entries xij of Xn are iid copies of a
random variable ξ of zero mean, unit variance, and there is a constant C > 0 such that
P(|ξ| ≤ C) = 1. Assume furthermore that the entries fij of the symmetric matrix Fn
also satisfy |fij | ≤ C. Then for any positive constant B there exists a positive constant
D depending on B and C such that the following holds with probability 1−O(n−B),
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On the least singular value of random symmetric matrices

|det(Mn)| ≥ exp(−Dn1/3 log n)E(|det(Mn)|),

and

det(Mn)2 ≥ exp(−Dn1/3 log n)E(det(Mn)2).

This corollary complements previously known results on the concentration of the
determinant of non-symmetric random matrices (cf. [1, 3, 7, 19]).

Remark. When a preliminary version of this paper was submitted to the arxiv,
Vershynin also published a similar result with stronger bounds (see [27]). However,
our result is different from Vershynin’s in three ways. Firstly, our Condition 1.3 on ξ is
weaker, as we do not require it to have bounded fourth-moment. Secondly, our bound
for the least singular value works for perturbed matrices of the form Mn = Fn+Xn with
‖Fn‖ = nO(1). Lastly, the techniques we use are very different. Our proof relies on an
almost complete inverse-type result concerning the concentration of quadratic forms,
which is of interest of its own.

Notation. For a matrix M we use the notations ri(M) and cj(M) to denote its i-th
row vector and its j-th column vector respectively; we use the notation (M)ij to denote
its ij entry.

We use η to denote random Bernoulli variables (thus η takes values ±1 with proba-
bility 1/2).

Here and later, asymptotic notations such as O,Ω,Θ, ω, and so for, are used under
the assumption that n → ∞. A notation such as OC(.) emphasizes that the hidden
constant in O depends on C. If a = Ω(b), we write b � a or a � b. If a = Ω(b) and
b = Ω(a), we write a � b.

2 The approach to prove Theorem 1.4

For the sake of simplicity, we will prove our result under the following condition.

Condition 2.1. With probability one,

|xij | ≤ nB+1,

for all i, j.

In fact, because ξ has unit variance, we have

P(|xij | ≥ nB+1) = O(n−2B−2).

Thus, we can assume that |xij | ≤ nB+1 at the cost of an additional negligible term
o(n−B) in probability.

We next assume that σn(Mn) ≤ n−A. Thus

Mnx = y,

for some ‖x‖ = 1 and ‖y‖ ≤ n−A. There are two cases to consider.
Case 1. det(Mn) = 0. This is the case to consider when ξ has discrete distribution.
We first show that it is enough to consider the case of Mn having rank n− 1, thanks

to the following result.

Lemma 2.2. For any 1 ≤ k ≤ n− 2, we have

P(rank(Mn) = k ≤ n− 2) ≤ Oc1(1)P(rank(M2n−k−1) = 2n− k − 2).
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On the least singular value of random symmetric matrices

We deduce Lemma 2.2 from a useful observation by Odlyzko, whose simple proof is
presented in Appendix A.

Lemma 2.3 (Odlyzko’s lemma,[15]). Let H be a linear subspace in Rn of dimension at
most k ≤ n. Then

P(u ∈ H) ≤ (
√

1− c3)n−k,

where u = (f1 + x1, . . . , fn + xn), fi are fixed and xi are iid copies of ξ.

Proof. (of Lemma 2.2) View Mn+1 as the matrix obtained by adding the first row and
first column to Mn. Let H be the vector space of dimension k spanned by the row
vectors of Mn. Then the probability that the subvector formed by the last n components
of the first row of Mn+1 does not belong to H, by Lemma 2.3, is at least 1−(

√
1− c3)n−k.

Observe that if this is the case then the last n columns of Mn+1 span a vector space
of dimension k + 1. Additionally, by symmetry, as the subvector formed by the last n
components of the first column of Mn+1 does not belong to H, adding the first column
will increase the rank of Mn+1 to k + 2.

Hence,

P(rank(Mn+1) = k + 2|rank(Mn) = k) ≥ 1− (
√

1− c3)n−k.

In general, for 1 ≤ t ≤ n− k we have

P(rank(Mn+t) = k + 2t|rank(Mn+t−1) = k + 2(t− 1)) ≥ 1− (
√

1− c3)n−t−k+1.

Because the rows (and columns) added to Mn+t−1 at each step (to create Mn+t) are
independent, we have

P(rank(M2n−k−1) = 2n− k − 2|rank(Mn) = k) ≥

≥
n−k−1∏
t=1

P
(
rank(Mn+t) = k + 2t|rank(Mn+t−1) = k + 2(t− 1)

)
≥ (1− (

√
1− c3)n−k)(1− (

√
1− c3)n−k−1) · · · (1− (

√
1− c3)) = Ωc3(1).

Next we show that in the case of Mn having rank n − 1, it suffices to assume that
rank(Mn−1) ≥ n− 2, thanks to the following simple observation.

Lemma 2.4. Assume that Mn has rank n− 1. Then there exists 1 ≤ i ≤ n such that the
removal of the i-th row and the i-column of Mn results in a matrix Mn−1 of rank at least
n− 2.

Proof. (of Lemma 2.4)Without loss of generality, assume that the last n− 1 rows of Mn

span a subspace of dimension n − 1. Then the matrix obtained from Mn by removing
the first row and the first column has rank at least n− 2.

Without loss of generality, we assume that the matrix Mn−1 obtained from Mn by
removing its first row and first column has rank at least n− 2. We next express det(Mn)

as a quadratic function of its first row (m11, . . . ,m1n) as follows.

det(Mn) = c11(Mn)m11 +
∑

2≤i,j≤n

cij(Mn−1)m1im1j
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where c11(Mn) is the first cofactor of Mn, while cij(Mn−1) are the corresponding
cofactors of the matrix Mn−1.

It is crucial to note that, since Mn−1 has rank at least n − 2, at least one of the co-
factors cij(Mn−1) is nonzero. Set c := (

∑
2≤i,j≤n cij(Mn−1)2)1/2 and aij := cij(Mn−1)/c.

Roughly speaking, our approach consists of two main steps.

• Step 1. Assume that

Px11,...,x1n
((c11(Mn)/c)m11 +

∑
2≤i,j≤n

aijm1im1j = 0|Mn−1) ≥ n−B ,

Then there is a strong additive structure among the cofactors cij(Mn−1) of Mn−1.

• Step 2. The probability, with respect to Mn−1, that there is a strong additive
structure among the cij(Mn−1) is negligible.

Here we use the subscript Px11,...,x1n to emphasize that the probability under con-
sideration is taken with respect to the random variables x11, . . . , x1n.

We will execute Step 1 by proving Theorem 2.6 below (as a special case). Step 2 will
be carried out by proving Theorem 2.7.

Case 2. det(Mn) 6= 0. Let C(Mn) = (cij(Mn)), 1 ≤ i, j ≤ n, be the matrix of the
cofactors of Mn. We have

C(Mn)y = det(Mn) · x.

Thus

‖C(Mn)y‖ = |det(Mn)|.

By paying a factor of n in probability, without loss of generality we can assume that

|c11(Mn)y1 + . . . c1n(Mn)yn| ≥ | det(Mn)|/n1/2.

Note that ‖y‖ ≤ n−A, thus

n∑
j=1

|c1j(Mn)|2 ≥ n2A−1 det(Mn)2. (2.1)

For j ≥ 2, we write

c1j(Mn) =

n∑
i=2

mi1cij(Mn−1),

where Mn−1 is the matrix obtained from Mn by removing its first row and first col-
umn, and cij(Mn−1) are the corresponding cofactors of Mn−1.

Hence, by the Cauchy-Schwarz inequality, by Condition 2.1, and by the bounds fij ≤
nγ for the entries of Fn, we have

c1j(Mn)2 ≤
∑n
i=2m

2
i1

∑n
i=2 c

2
ij(Mn−1)

≤ n2B+2γ+3
∑n
i=2 c

2
ij(Mn−1). (2.2)

Similarly, for j = 1 we write
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c11(Mn) =

n∑
i=2

mi2ci2(Mn−1).

Thus,

c11(Mn)2 ≤ n2B+2γ+3
n∑
i=2

c2i2(Mn−1). (2.3)

It follows from (2.1),(2.2) and (2.3) that∑
2≤i,j≤n

cij(Mn−1)2 ≥ n2A−2B−2γ−4 det(Mn)2.

Hence, for proving Theorem 1.4, it suffices to justify the following result.

Theorem 2.5. For any B > 0, there exists A > 0 such that

P
(
(
∑

2≤i,j≤n

cij(Mn−1)2)1/2 ≥ nA|det(Mn)|
)
≤ n−B .

To prove Theorem 2.5, we again express det(Mn) as a quadratic form of its first row.

det(Mn) = c11(Mn)m11 +
∑

2≤i,j≤n

cij(Mn−1)m1imj1.

In other words,

det(Mn)/c = m11c11/c+
∑

2≤i,j≤n

aijm1im1j ,

where c := (
∑

2≤i,j≤n cij(Mn−1)2)1/2 and aij := cij(Mn−1)/c.

Roughly speaking, our approach in this case also consists of two main steps.

• Step 1. Assume that

Px11,...,x1n(|(c11(Mn)/c)m11 +
∑

2≤i,j≤n

aijm1im1j | ≤ n−A|Mn−1) ≥ n−B .

Then there is a strong additive structure among the cofactors cij .

• Step 2. The probability, with respect to Mn−1, that there is a strong additive
structure among the cij is negligible.

We now state our main supporting lemmas.

Theorem 2.6 (Step 1). Let 0 < ε < 1 be given constant. Assume that

sup
a

Px2,...,xn(|
∑

2≤i,j≤n

aij(xi + fi)(xj + fj)− a| ≤ n−A) ≥ n−B

for some sufficiently large integer A, where Mn−1 is the matrix obtained from Mn

by removing its first row and first column, aij = cij(Mn−1)/c, xi are iid copies of ξ, and
fi are arbitrary fixed numbers. Then, there exists a vector u = (u1, . . . , un−1) satisfying
the following properties.

• ‖u‖ � 1 and |〈u, ri(Mn−1)〉| ≤ n−A/2+OB,ε(1) for n−OB,ε(1) rows of Mn−1.
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• There exists a generalized arithmetic progression Q of rank OB,ε(1) and size
nOB,ε(1) that contains at least n− 2nε components ui.

• All the components ui, and all the generators of the generalized arithmetic pro-
gression are rational numbers of the form p/q, where |p|, |q| ≤ nA/2+OB,ε(1).

We refer the reader to Section 3 for a definition of generalized arithmetic progres-
sion.

In the second step of the approach, we show that the probability for Mn−1 having
the above properties is negligible.

Theorem 2.7 (Step 2). With respect to Mn−1, the probability that there exists a vector
u as in Theorem 2.6 is exp(−Ω(n)).

The rest of the paper is organized as follows. After a short discussion of the main
lemmas, we prove Theorem 2.6 in Section 4 and conclude Theorem 2.7 in Section 5.
The proof of Corollary 1.6 will be presented in Section 6.

3 The Lemmas

A classical result of Erdős [6] and Littlewood-Offord [11] asserts that if ai are real
numbers of magnitude |ai| ≥ 1, then the probability that the random sum

∑n
i=1 aixi

concentrates on an interval of length one is of order O(n−1/2), where xi are iid copies of
a Bernoulli random variable. This remarkable inequality has generated an impressive
way of research, particularly from the early 1960s to the late 1980s. We refer the reader
to [9, 10] and the references therein.

Motivated by inverse theorems from additive combinatorics (see [26, Chapter 5]),
Tao and Vu brought a new view to the problem: find the underlying reason as to why
the concentration probability of

∑n
i=1 aixi on a short interval is large.

Typical examples of ai that have large concentration probability are generalized
arithmetic progressions (GAPs).

A set Q is a GAP of rank r if it can be expressed as in the form

Q = {g0 + k1g1 + · · ·+ krgr|ki ∈ Z,Ki ≤ ki ≤ K ′i for all 1 ≤ i ≤ r}

for some {g0, . . . , gr}, {K1, . . . ,Kr}, {K ′1, . . . ,K ′r}.

It is convenient to think of Q as the image of an integer box B := {(k1, . . . , kr) ∈
Zr|Ki ≤ ki ≤ K ′i} under the linear map

Φ : (k1, . . . , kr) 7→ g0 + k1g1 + · · ·+ krgr.

The numbers gi are the generators of P , the numbers K ′i and Ki are the dimensions of
P , and Vol(Q) := |B| is the size of B. We say that Q is proper if this map is one to one,
or equivalently if |Q| = Vol(Q). For non-proper GAPs, we of course have |Q| < Vol(Q).
If −Ki = K ′i for all i ≥ 1 and g0 = 0, we say that Q is symmetric.

A closer look at the definition of GAPs reveals that if ai are very close to the elements
of a GAP of rank O(1) and size nO(1), then the probability that

∑n
i=1 aixi concentrates

on a short interval is of order n−O(1), where xi are iid copies of a Bernoulli random
variable.

It was shown by Tao and Vu [22, 21, 24], in an implicit way, that these are essentially
the only examples that have high concentration probability. An explicit and optimal
version has been given in a recent paper by the current author and Vu.

We say that a is δ-close to a set Q if there exists q ∈ Q such that |a− q| ≤ δ.
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Theorem 3.1 (Inverse Littlewood-Offord theorem for linear forms, [14]). Let 0 < ε < 1

and B > 0. Let β > 0 be an arbitrary real number that may depend on n. Suppose that∑n
i=1 a

2
i = 1, and

sup
a

Px(|
n∑
i=1

ai(xi + fi)− a| ≤ β) = ρ ≥ n−B ,

where x = (x1, . . . , xn), and xi are iid copies of a random variable ξ satisfying Con-
dition 1.3. Then, for any number n′ between nε and n, there exists a proper symmetric
GAP Q = {

∑r
i=1 kigi : ki ∈ Z, |ki| ≤ Li} such that

• At least n− n′ elements of ai are β-close to Q.

• Q has small rank, r = OB,ε(1), and small cardinality

|Q| ≤ max

(
OB,ε(

ρ−1√
n′

), 1

)
.

• There is a non-zero integer p = OB,ε(
√
n′) such that all steps gi of Q have the form

gi = β pip , with pi ∈ Z and pi = OB,ε(β
−1
√
n′).

In this and all subsequent theorems, the hidden constants could also depend on
c1, c2, c3 of Condition 1.3. We could have written Oc1,c2,c3(.) everywhere, but these no-
tations are somewhat cumbersome, and this dependence is not our focus, so we omit
them.

Theorem 3.1 was proven in [14] with c1 = 1, c2 = 2 and c3 = 1/2, but the proof there
automatically extends to any constants 0 < c1 < c2 and 0 < c3.

To prove Theorem 2.6, we need a similar inverse-type result for the quadratic form∑
i aij(xi + fi)(xj + fj). We will invoke the following theorem from [13].

Theorem 3.2 (Inverse Littlewood-Offord theorem for quadratic forms, [13]). Let 0 <

ε < 1 and B > 0. Let β > 0 be an arbitrary real number that may depend on n. Assume
that aij = aji, where

∑
i,j a

2
ij = 1, and

sup
a

Px(|
∑
i,j≤n

aij(xi + fi)(xj + fj)− a| ≤ β) = ρ ≥ n−B .

Then, there exist an integer k 6= 0, |k| = nOB,ε(1), a set of r = O(1) rows ri1, . . . , rir of
An = (aij), and set I of size at least n− 2nε such that for each i ∈ I, there exist integers
kii1 , . . . , kiir , all bounded by nOB,ε(1), such that the following holds.

Pz(|〈z, kri(An) +

r∑
j=1

kiijrij (An)〉| ≤ βnOB,ε(1)) ≥ n−OB,ε(1), (3.1)

where z = (z1, . . . , zn) and zi are iid copies of η(1/2)(ξ−ξ′), where η(1/2) is a Bernoulli
random variable of parameter 1/2 independent of ξ and ξ′.

4 proof of Theorem 2.6

We first apply Theorem 3.2 to aij to obtain

Pz(|〈z, kri(An) +
∑
j

kiijrij (An)〉| ≤ n−A+OB,ε(1)) ≥ n−OB,ε(1).

For short, we denote by r′i the vector kri(An) +
∑
j kiijrij (An). Thus, for any i ∈ I,
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Pz(|〈z, r′i〉| ≤ n−A+OB,ε(1)) ≥ n−OB,ε(1). (4.1)

Ideally, our next step is to apply Theorem 3.1 to the r′i. However, the application is
meaningful only when ‖r′i‖ is relatively large. Investigating the degenerate case is our
next goal.

Set

K = n−A/2.

We consider two cases.

Case 1.(degenerate case) ‖r′i‖ ≤ K for all i ∈ I. Hence, with I0 := {i1, . . . , ir}

‖kri(An) +
∑
j∈I0

kijrj(An)‖ = ‖r′i‖ ≤ K. (4.2)

Next, because
∑
j ‖cj(An)‖2 = 1, there exists an index j0 such that ‖cj0(An)‖ ≥

n−1/2. Consider this column vector.

It follows from (4.2) that for any i ∈ I,

|kcj0(i) +
∑
j∈I0

kijcj0(j)| ≤ K.

The above inequality means that the components cj0(i) of cj0(An) belong to a GAP
generated by cj0(j)/k, j ∈ I0, up to an error K. This suggests us the following approxi-
mation.

For each j /∈ I, we approximate cj0(j) by a number vj of the form (1/b2K−1c) ·Z such
that |vj − cj0(j)| ≤ K. We next set

vi :=
∑
j∈I0

kijvj/k

for any i ∈ I.
Thus, vi belongs to a GAP of rank OB,ε(1) and size nOB,ε(1) for all i ∈ I.
With v = (v1, . . . , vn−1), we have

‖v − cj0(An)‖ ≤ KnOB,ε(1).

Furthermore, by Condition 2.1, and because 〈cj0(An), ri(Mn−1)〉 = 0 for i 6= j0, we
infer that

|〈v, ri(Mn−1)〉| ≤ KnOB,ε(1).

Note that ‖v‖ � n−1/2. Set u := b1/‖v‖c · v, we then obtain

• |〈u, ri(Mn−1)〉| ≤ n−A/2+OB,ε(1) for n− 2 rows of Mn−1.

• There exists a GAP of rank OB,ε(1) and size nOB,ε(1) that contains at least n − 2nε

components ui.

• All the components ui, and all the generators of the GAP are rational numbers of
the form p/q, where |p|, |q| ≤ nA/2+OB,ε(1).
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Case 2.(non-degenerate case). There exists i0 ∈ I such that ‖r′i0‖ ≥ K. Because
r′i0 = kri0(An) +

∑
j∈I0 ki0jrj(An), r′i0 is orthogonal to n− |I0| − 1 = n−OB,ε(1) column

vectors of Mn−1. Consequently, because Mn−1 is symmetric, r′i0 is orthogonal to n −
OB,ε(1) row vectors of Mn−1.

Set

v := r′i0/‖r
′
i0‖.

Hence, 〈v, ri(Mn−1)〉 = 0 for at least n−OB,ε(1) row vectors of Mn−1.
Also, it follows from (4.1) that

Pz(|〈z,v〉| ≤ n−A/2+OB,ε(1)) ≥ n−OB,ε(1). (4.3)

Next, because the zi satisfy Condition 1.3, Theorem 3.1 applying to (4.3) implies that
v can be approximated by a vector u as follows.

• |ui − vi| ≤ n−A/2+OB,ε(1) for all i.

• There exists a GAP of rank OB,ε(1) and size nOB,ε(1) that contains at least n − nε
components ui.

• All the components ui, and all the generators of the GAP are rational numbers of
the form p/q, where |p|, |q| ≤ nA/2+OB,ε(1).

Note that, by the approximation above, we have ‖u‖ � 1 and |〈u, ri(Mn−1)〉| ≤
n−A/2+OB,ε(1) for at least n−OB,ε(1) row vectors of Mn−1.

5 Proof of Theorem 2.7

We first bound the number N of vectors u satisfying the conclusion of Theorem 2.7.
Because each GAP is determined by its generators and dimensions, the number of

Qs is bounded by (nA+OB,ε(1))OB,ε(1)(nOB,ε(1))OB,ε(1) = nOA,B,ε(1).
Next, for a given Q of rank OB,ε(1) and size nOB,ε(1) obtained from Theorem 2.6,

there are at most nn−2n
ε |Q|n−2nε = nOB,ε(n) ways to choose the n − 2nε components ui

that Q contains.
The remaining components belong to the set {p/q, |p|, |q| ≤ nA/2+OB,ε(1)}, so there

are at most (nA+OB,ε(1))2n
ε

= nOA,B,ε(n
ε) ways to choose them.

Hence, we obtain the key bound

N ≤ nOA,B,ε(1)nOB,ε(n)nOA,B,ε(n
ε) = nOB,ε(n). (5.1)

Set β0 := n−A/2+OB,ε(1), the bound obtained from the conclusion of Theorem 2.6. For
a vector u, we define Pβ0(u) as follows

Pβ0
(u) := P(|〈u, ri(Mn−1)〉| ≤ β0 for n−OB,ε(1) rows of Mn−1).

From (5.1), for our task of proving Theorem 2.7, it would be ideal if we can show
that the probability Pβ0(u) is smaller than exp(−Ω(n))/N for each u.

Roughly speaking, our strategy is to classify u into two classes: one contains of u
of very small Pβ0

(u), and thus their contribution is negligible; the other contains of u
of relatively large Pβ0

(u). To deal with those u of the second type, we will not control∑
Pβ0

(u) directly but pass to a class of new vectors u′ that are also almost orthogonal to
many rows of Mn−1, while the probability

∑
Pβ0

(u′) is relatively smaller than
∑

Pβ0
(u).

More details follow.
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5.1 Technical reductions and key observations

By paying a factor of nOB,ε(1) in probability and without loss of generality we may
assume that |〈u, ri(Mn−1)〉| ≤ β0 for the first n−OB,ε(1) rows of Mn−1. Also, by paying
another factor of nn

ε

in probability, we may assume that the first n0 components ui of u
belong to a GAP Q, and un0 ≥ 1/2

√
n− 1, where n0 := n− 2nε. We refer to remaining ui

as exceptional components. Note that these extra factors do not affect our final bound
exp(−Ω(n)).

For given β > 0 and i ≤ n0, we define

ρ
(i)
β (u) := sup

a
Pxi,...,xn0

(|xiui + · · ·+ xn0
un0
− a| ≤ β),

where xi, . . . , xn0
are iid copies of ξ.

A crucial observation is that, by exposing the rows of Mn−1 one by one, and due to
symmetry, the probability Pβ(u) that |〈u, ri(Mn−1)〉| ≤ β for all i ≤ n − OB,ε(1) can be
bounded by

Pβ(u) ≤
∏

1≤i≤n−OB,ε(1)

sup
a

Pxi,...,xn−1
(|xiui + · · ·+ xn−1un−1 − a| ≤ β)

≤
∏

1≤i≤n0

sup
a

Pxi,...,xn0
(|xiui + · · ·+ xn0un0 − a| ≤ β)

=
∏

1≤i≤n0

ρ
(i)
β (u). (5.2)

Also, because of Condition 1.3 and un0
≥ 1/2

√
n− 1, for any β < c1/2

√
n− 1 we have

ρ
(k)
β (u) ≤ sup

a
Pxn0

(|xn0
un0
− a| ≤ β)

≤ 1− c3, (5.3)

and thus,

Pβ(u) ≤ (1− c3)n0 = (1− c3)(1−o(1))n.

Next, let C be a sufficiently large constant depending on B and ε. We classify u into
two classes B and B′, depending on whether Pβ0(u) ≥ n−Cn or not.

Because of (5.1), and as C is large enough,∑
u∈B′

Pβ0
(u) ≤ nOB,ε(n)/nCn ≤ n−n/2. (5.4)

For the rest of the section, we focus on u ∈ B.

5.2 Approximation for degenerate vectors

Let B1 be the collection of u ∈ B satisfying the following property: for any n′ = n1−ε

components ui1 , . . . , uin′ among the u1, . . . , un0
, we have

sup
a

Pxi1 ,...,xin′
(|ui1xi1 + · · ·+ uin′xin′ − a| ≤ n

−B−4) ≥ (n′)−1/2+o(1). (5.5)

For consision we set β = n−B−4. It follows from Theorem 3.1 that, among any
ui1 , . . . , uin′ , there are, say, at least n′/2 + 1 components that belong to an interval of
length 2β. This is because our GAP Q now has only one element as in the size estimate
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the upper bound O(ρ−1/
√
n′/2) is now o(1). (One may also deduce this fact from the

original Littlewood-Offord theorem.)
A simple argument then implies that there is an interval of length 2β that contains

all but n′ − 1 components ui. (To prove this, arrange the components in increasing
order, then all but perhaps the first n′/2 and the last n′/2 components will belong to an
interval of length 2β).

Thus there exists a vector u′ ∈ (2β) · Z satisfying the following conditions.

• |ui − u′i| ≤ 2β for all i.

• u′i = u for at least n0 − n′ indices i.

Because of the approximation and of Condition 2.1 that |xij | ≤ nB+1, whenever
|〈u, ri(Mn−1)〉| ≤ β0, we have

|〈u′, ri(Mn−1)〉| ≤ nB+2(2β) + β0 := β′.

It is clear, from the bound on β and β0, that β′ ≤ c1/2
√
n− 1, and thus by (5.3),

Pβ′(u
′) ≤ (1− c3)(1−o(1))n.

Now we bound the number of u′ obtained from the approximation. First, there are
O(nn−n0+n

′
) = O(n2n

1−ε
) ways to choose those u′i that take the same value u, and there

are justO(β−1) ways to choose u. The remaining components belong to the set (2β)−1·Z,
and thus there are at most O((β−1)n−n0+n

′
) = O(nOA,B,ε(n

1−ε)) ways to choose them.
Hence we obtain the total bound

∑
u∈B1

Pβ0
(u) ≤

∑
u′

Pβ′(u
′) ≤ O(n2n

1−ε
)O(nOA,B,ε(n

1−ε))(1− c3)(1−o(1))n

≤ (1− c3)(1−o(1))n.

5.3 Approximation for non-degenerate vectors

Assume that u ∈ B2 := B\B1. By exposing the rows of Mn−1 accordingly, and by pay-
ing an extra factor

(
n0

n′

)
= O(nn

1−ε
) in probability, we may assume that the components

un0−n′+1, . . . , un0
satisfy the property

sup
a

Pxn0−n′+1,...,xn0
(|un0−n′+1xn0−n′+1 + · · ·+ un0xn0 − a| ≤ n−B−4) ≤ (n′)−1/2+o(1)

≤ n−1/2+ε/2+o(1). (5.6)

Next, define the following sequence βk, k ≥ 0. β0 = n−A/2+OB,ε(1) is the bound
obtained from the conclusion of Theorem 2.6, and

βk+1 := (2nB+2 + 1)βk.

Recall from (5.2) that

Pβk(u) ≤
∏

1≤i≤n0−n′
ρ
(i)
βk

(u) =: πβk(u).

Roughly speaking, the reason we truncated the product here is that whenever i ≤
n0−n1−ε, and βk is small enough, the terms ρ(i)βk (u) are smaller than (n′)−1/2+o(1), owing
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to (5.6). This fact will allow us to gain some significant factors when applying Theorem
3.1.

Note that πβk(u) increases with k, and recall that πβ0(u) ≥ n−Cn. Thus, by the
pigeonhole principle, there exists k0 := k0(u) ≤ Cε−1 such that

πβk0+1
(u) ≤ nεnπβk0 (u). (5.7)

It is crucial to note that, since A was chosen to be sufficiently large compared to
OB,ε(1) and C, we have

βk0+1 ≤ n−B−4.

Having mentioned the upper bound of ρ(i)βi (u), we now turn to its lower bound. Be-
cause of Condition 2.1 and ui ≤ 1 for all i, the following trivial bound holds for any
β ≥ β0 and i ≤ n0 − n′ by pigeonhole principle,

ρ
(i)
β (u) ≥ βn−B−2 ≥ β0n−B−2 = n−A/2+OB,ε(1).

We next divide the interval I = [n−A/2+OB,ε(1), n−1/2+ε/2+o(1)] into K = (A/2 +

OB,ε(1))ε−1 sub-intervals Ik = [n−A/2+OB,ε(1)+kε, n−A/2+OB,ε(1)+(k+1)ε]. For short, we
denote by ρk the left endpoint of each Ik. Thus ρk = n−A/2+OB,ε(1)+kε.

With all the necessary settings above, we now classify u basing on the distributions
of the ρ(i)βk0

(u), 1 ≤ i ≤ n0 − n1−ε .

For each 0 ≤ k0 ≤ Cε−1 and each tuple (m0, . . . ,mK) satisfying m0 + · · · + mK =

n0 − n1−ε, we let B(m0,...,mK)
k0

denote the collection of those u from B2 that satisfy the
following conditions.

• k0(u) = k0.

• There are exactly mk terms of the sequence (ρ
(i)
βk0

(u)) belonging to the interval Ik.

In other words, if m0 + · · ·+mk−1 + 1 ≤ i ≤ m0 + · · ·+mk then ρ(i)βk0
(u) ∈ Ik.

Now we will use Theorem 3.1 to approximate u ∈ B(m0,...,mK)
k0

as follows.

• First step. Consider each index i in the range 1 ≤ i ≤ m0. Because ρ
(1)
βk0
∈ I0,

we apply Theorem 3.1 to approximate ui by u′i such that |ui − u′i| ≤ βk0 and the
u′i belong to a GAP Q0 of rank OB,ε(1) and size O(ρ−10 /n1/2−ε) for all but n1−2ε

indices i. Furthermore, all u′i have the form βk0 · p/q, where |p|, |q| = O(nβ−1k0 ) =

O(nA/2+OB,ε(1)).

• k-th step, 1 ≤ k ≤ K. We focus on i from the range n0 + · · · + nk−1 + 1 ≤ i ≤
n0 + · · ·+nk. Because ρ

(n0+.···+nk−1+1)
βk0

∈ Ik, we apply Theorem 3.1 to approximate

ui by u′i such that |ui − u′i| ≤ βk0 and ui belongs to a GAP Qk of rank OB,ε(1) and
size O(ρ−1k /n1/2−ε) for all but n1−2ε indices i. Furthermore, all u′i have the form
βk0 · p/q, where |p|, |q| = O(nβ−1k0 ) = O(nA/2+OB,ε(1)).

• For the remaining components ui, we just simply approximate them by the closest
point in βi0 · Z.

We have thus provided an approximation of u by u′ satisfying the following proper-
ties.
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1. |ui − u′i| ≤ βk0 for all i.

2. u′i ∈ Qk for all but n1−2ε indices i in the rangem0+· · ·+mk−1+1 ≤ i ≤ m0+· · ·+mk.

3. All the u′i, including the generators of Qk, belong to the set βk0 · {p/q, |p|, |q| ≤
nA/2+OB,ε(1)}.

4. Qk has rank OB,ε(1) and size |Qk| = O(ρ−1k /n1/2−ε).

Let B′(m1,...,mK)
k0

be the collection of all u′ obtained from u ∈ B(m1,...,mK)
k0

as above.
Observe that, as |〈u, ri(Mn−1)〉| ≤ βk0 for all i ≤ n−OB,ε(1), we have

|〈u′, ri(Mn−1)〉| ≤ (nB+2 + 1)βk0 . (5.8)

Hence, in order to justify Theorem 2.7 in the case u ∈ B2, it suffices to show that the
probability that (5.8) holds for all i ≤ n−OB,ε(1), for some u′ ∈ B′(m1,...,mK)

k0
, is small.

Consider a u′ ∈ B′(m1,...,mK)
k0

and the probability P(nB+2+1)βk0
(u′) that (5.8) holds for

all i ≤ n−OB,ε(1). We have

P(nB+2+1)βk0
(u′) ≤

∏
1≤i≤n0−n1−ε

sup
a

Pxi,...,xn0
(|u′ixi + · · ·+ u′n−1xn0 − a| ≤ (nB+2 + 1)βk0)

≤
∏

1≤i≤n0−n1−ε

sup
a

Pxi,...,xn0
(|uixi + · · ·+ un−1xn0 − a| ≤ (2nB+2 + 1)βk0)

= πβk0+1
(u) ≤ nεnπβk0 (u),

where in the last inequality we used (5.7).
We recall from the definition of B(m1,...,mK)

k0
that

πβk0 (u) ≤
K∏
k=1

ρmkk+1 = nε(m1+···+mk)
K∏
k=1

ρmkk

≤ nεn
K∏
k=1

ρmkk .

Hence,

P(nB+2+1)βk0
(u′) ≤ n2εn

K∏
k=1

ρmkk . (5.9)

In the next step we bound the size of B′(m1,...,mK)
k0

.
Because eachQk is determined by itsOB,ε(1) generators from the set βk0 ·{p/q, |p|, |q| ≤

nA/2+OB,ε(1)}, and its dimensions from the integers bounded by nOB,ε(1), there are
nOA,B,ε(1) ways to choose each Qk. So the total number of ways to choose Q1, . . . , QK is
bounded by

(nOA,B,ε(1))K = nOA,B,ε(1).

Next, after locating Qk, the number N1 of ways to choose u′i from each Qk is
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N1 ≤
K∏
k=1

(
mk

n1−2ε

)
|Qk|mk−n

1−2ε

≤ 2m1+···+mK
K∏
k=1

|Qk|mk

≤ (O(1))n
K∏
k=1

ρ−mkk /n(1/2−ε)(m1+···+mk)

≤
K∏
k=1

ρ−mkk /n(1/2−ε−o(1))n,

where we used the bound |Qk| = O(ρ−1k /n1/2−ε).
The remaining components u′i can take any value from the set βk0 · {p/q, |p|, |q| ≤

nA/2+OB,ε(1)}, so the number N2 of ways to choose them is bounded by

N2 ≤ (nA+OB,ε(1))2n
ε+Kn1−2ε

= nOA,B,ε(n
1−2ε).

Putting the bound for N1 and N2 together, we obtain a bound N for |B′(m1,...,mK)
k0

|,

N ≤
K∏
k=1

ρ−mkk /n(1/2−ε−o(1))n. (5.10)

It follows from (5.9) and (5.10) that

∑
u′∈B′(m1,...,mK )

k0

P(nB+2+1)βk0
(u′) ≤ n2εn

K∏
k=1

ρmkk

K∏
k=1

ρ−mkk /n(1/2−ε−o(1))n ≤ n−(1/2−3ε−o(1))n.

(5.11)
Summing over the choices of k0 and (m1, . . . ,mK) we obtain the bound∑

k0,m1,...,mK

∑
u′∈B′(m1,...,mK )

k0

P(nB+2+1)βk0
(u′) ≤ n−(1/2−3ε−o(1))n,

completing the proof of Theorem 2.7.

6 Proof of Corollary 1.6

Assume that the upper diagonal entries of Mn satisfy the conditions of Corollary 1.6.
We denote by λ1 ≤ λ2 ≤ · · · ≤ λn the real eigenvalues of Mn.

Our first ingredient is the following special form of the spectral concentration result
of Guionnet and Zeitouni.

Lemma 6.1. [8, Theorem 1.1] Assume that f is a convex Lipschitz function. Then for
any δ ≥ δ0 := 16C

√
π|f |L/n,

P

(
|
n∑
i=1

f(λi)−E(

n∑
i=1

f(λi))| ≥ δn

)
≤ 4 exp(−n

2(δ − δ0)2

16C2|f |2L
).

Following [3] and [7], we will apply the above theorem to the cut-off functions
f+ε (x) := log(max(ε, x)) and f−ε (x) = log(max(ε,−x)), for some ε > 0 to be determined.
The main reason we have to truncate the log function is because it is not Lipschitz. Note
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that f+ and f−1 both have Lipschitz constant ε−1. Although they are not convex, it is
easy to write them as difference of convex functions of Lipschitz constant O(ε−1), and
so Lemma 6.1 applies. Thus the following estimates hold for δ � (εn)−1

P

| ∑
λi∈S+

ε

log λi −E(
∑
λi∈S+

ε

log λi)| ≥ δn

 ≤ exp(−Θ(n2δ2ε2))

and

P

| ∑
λi∈S−ε

log |λi| −E(
∑
λi∈S−ε

log |λi|)| ≥ δn

 ≤ exp(−Θ(n2δ2ε2)),

where S+
ε := {λi, λi ≥ ε} and S−ε := {λi, λi ≤ −ε}.

Hence,

P

| ∑
λi∈S−ε ∪S+

ε

log |λi| −E(
∑

λi∈S−ε ∪S+
ε

log |λi|)| ≥ 2δn

 ≤ exp(−Θ(n2δ2ε2)). (6.1)

Roughly speaking, (6.1) implies that
∏
λi∈S−ε ∪S+

ε
|λi| is well concentrated around its

mean. It thus remains to control the factor R :=
∏
|λi|≤ε |λi|. We will bound R away from

zero, relying on Theorem 1.4 and Lemma 6.2 below.

Lemma 6.2. [25, Proposition 66], [5, Theorem 5.1] Assume that Mn is a random sym-
metric matrix of entries satisfying the conditions of Corollary 1.6. Then for all I ⊂ R

with |I| ≥ K2 log2 n/n1/2, one has

NI � n1/2|I|

with probability 1− exp(−ω(log n)), where NI is the number of λi belonging to I.

We refer the readers to [4] for a survey of recent results on the distribution of the
eigenvalues of Mn.

By Lemma 6.2, we have |{i, |λi| ≤ ε}| � n1/2ε. Also, Theorem 1.4 implies that
mini{|λi|} ≥ n−A with probability 1−O(n−B). Thus

R =
∏
|λi|≤ε

|λi| ≥ (min
i
{|λi|})n

1/2ε = n−O(n1/2ε). (6.2)

Our next goal is the following result.

Proposition 6.3. With probability 1− n−ω(1) we have

∏
λi∈S−ε ∪S+

ε

|λi| = exp(−O(ε−1 log n+ ε−2))E(
∏

λi∈S−ε ∪S+
ε

|λi|)− exp(
2 log n

ε
) (6.3)

and

∏
λi∈S−ε ∪S+

ε

λ2i = exp(−O(ε−1 log n+ ε−2))E(
∏

λi∈S−ε ∪S+
ε

λ2i )− exp(
2 log n

ε
). (6.4)

EJP 17 (2012), paper 53.
Page 16/19

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v17-2165
http://ejp.ejpecp.org/


On the least singular value of random symmetric matrices

Let us complete the proof of the first half of Corollary 1.6 assuming Proposition 6.3.
The second half follows by the same reasoning.

Firstly, because
∏
λi∈S−ε ∪S+

ε
|λi| ≥

∏n
i=1 |λi|/εn−|S

−
ε ∪S

+
ε | ≥

∏n
i=1 |λi| = |det(Mn)|, it

follows from Proposition 6.3 that with probability 1− n−ω(1),∏
λi∈S−ε ∪S+

ε

|λi| = exp(−O(ε−1 log n+ ε−2))E(|det(Mn)|)− exp(
2 log n

ε
). (6.5)

Secondly, by (6.2), the following holds with probability 1−O(n−B)

|det(Mn)| =
∏

λi /∈S−ε ∪S+
ε

|λi|
∏

λi∈S−ε ∪S+
ε

|λi| ≥ n−O(n1/2ε)
∏

λi∈S−ε ∪S+
ε

|λi|.

Combining with (6.5), we have

|det(Mn)| = exp(−O(ε−1 log n+ ε−2 + εn1/2 log n))E(|det(Mn|)− n−O(n1/2ε) exp(
2 log n

ε
).

By choosing ε = n−1/6, we obtain the conclusion of Corollary 1.6, noting that E(|det(Mn)|)�
exp(n).

It remains to prove Proposition 6.3.

Proof. (of Proposition 6.3) Set

U :=
∑

λi∈S−ε ∪S+
ε

log |λi| −E(
∑

λi∈S−ε ∪S+
ε

log |λi|).

By (6.1) we have

P(|U | ≥ 2δn) ≤ exp(−Θ(n2δ2ε2)), (6.6)

for δ � (nε)−1.
Also, note that E(U) = 0. Thus, by Jensen inequality and by (6.6),

1 ≤ E(exp(U)) ≤ E(exp(|U |))

≤ 1 +

∫ ∞
0

exp(t)P(|U | ≥ t)dt

≤ 1 +

∫ logn/ε

0

exp(t)dt+

∫ ∞
logn/ε

exp(t) exp(−Θ(t2ε2))dt

= exp(O(ε−1 log n+ ε−2)). (6.7)

Observe that

E(exp(U)) = E(
∏

λi∈S−ε ∪Sε+

|λi|)/ exp(E(
∑

λi∈S−ε ∪S+
ε

log |λi|)).

It thus follows from (6.7) that

exp(E(
∑

λi∈S−ε ∪S+
ε

log |λi|)) = exp(−O(ε−1 log n+ ε−2))E(
∏

λi∈S−ε ∪Sε+

|λi|).

This relation, together with (6.6), imply that with probability 1− n−ω(1),
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∏
λi∈S−ε ∪S+

ε

|λi| = exp(−O(ε−1 log n+ ε−2))E(
∏

λi∈S−ε ∪S+
ε

|λi|)− exp(
2 log n

ε
).

The second half of Proposition 6.3 follows from the identical calculation applied to
exp(2U).

A Proof of Lemma 2.3

Assume that v1, . . . ,vk ∈ Rn are independent vectors that span H. Also, without loss
of generality, we assume that the subvectors (v11, . . . , v1k), . . . , (vk1, . . . , vkk) generate a
full space of dimension k.

Consider a random vector u = (f1 + x1, . . . , fn + xn), where x1, . . . , xn are iid copies
of ξ. If u ∈ H, then there exist α1, . . . , αk such that

u =

k∑
i=1

αivi.

Note that α1, . . . , αk are uniquely determined once the first k components of u are
exposed. Thus we have

P(u ∈ H) ≤
∏

k+1≤j

Pxj (xj + fj =

k∑
i=1

αivij) ≤ (
√

1− c3)n−k,

where in the last estimate we use the fact (which follows from Condition 1.3) that
supaP(ξ = a) ≤

√
1− c3.
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