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Abstract

We study the asymptotic behaviour of a class of self-attracting motions on Rd. We
prove the decrease of the free energy related to the system and mix it together with
stochastic approximation methods. We finally obtain the (limit-quotient) ergodicity of
the self-attracting diffusion with a speed of convergence.
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1 Introduction

1.1 Statement of the problem

This text is devoted to study the asymptotic behaviour of a Brownian motion, inter-
acting with its own passed trajectory, so-called “self-interacting motion”. Namely, we fix
an interaction potential function W : Rd → R, and consider the stochastic differential
equation

dXt =
√

2 dBt −
(

1

t

∫ t

0

∇W (Xt −Xs) ds

)
dt, (1.1)

where (Bt, t ≥ 0) is a standard Brownian motion, with an initial condition of given X0

(with the condition of continuity at t = 0). This equation can be rewritten using the
normalized occupation measure µt:

µt =
1

t

∫ t

0

δXs ds,

where δx is the Dirac measure concentrated at the point x. Using this convention, the
equation (1.1) becomes

dXt =
√

2 dBt −∇W ∗ µt(Xt) dt, (1.2)

where ∗ stands for the convolution.
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Ergodicity of self-attracting motion

Similar problems have already been studied since the 90’s, for instance by Durrett
and Rogers [8], or Benaïm, Ledoux and Raimond [2], initially to modelize the evolution
of polymers. The first time-continuous self-interacting processes have been introduced
by Durrett and Rogers [8] under the name of “Brownian polymers". They are solutions
to SDEs of the form

dXt = dBt +

(∫ t

0

f(Xt −Xs) ds

)
dt (1.3)

where (Bt, t ≥ 0) is a standard Brownian motion and f a given function. We remark
that, in the latter equation, the drift term is given by the non-normalized measure tµt
and not by µt as for the process we will study here. As the process (Xt, t ≥ 0) evolves
in an environment changing with its past trajectory, this SDE defines a self-interacting
diffusion, which can be either self-repelling or self-attracting, depending on the function
f . In any dimension, Durrett & Rogers obtained that the upper limit of |Xt|/t does not
exceed a deterministic constant whenever f has a compact support. Nevertheless, very
few results are known as soon as the interaction is not self-attracting.

Self-interacting diffusions, with dependence on the (convoled) empirical measure
(µt, t ≥ 0), were first considered by Benaïm, Ledoux & Raimond [2]. A great difference
between these diffusions and Brownian polymers is that the drift term is divided by
t. This implies that the far away (in time) interaction is less important than the close
interaction (the interaction is not “uniform in time” anymore). Benaïm et al. have
shown in [2, 3] that, in a compact manifold, the asymptotic behaviour of µt can be
related to the analysis of some deterministic dynamical flow defined on the space of
the Borel probability measures. Afterwards, one can go further in this study and give
sufficient conditions for the a.s. convergence of the empirical measure. It happens
that, when the interaction is symmetric, µt converges a.s. to a local minimum of a
nonlinear free energy functional (each local minimum having a positive probability to
be chosen), this free energy being a Lyapunov function for the deterministic flow. Part
of these results have recently been generalized to Rd (see [9]) assuming a confinement
potential satisfying some conditions — these hypotheses being required since in general
the process can be transient, and is thus very difficult to analyze. In these works, no
rate of convergence is obtained. Most of the results on the topic are summarized in a
recent survey of Pemantle [12], which also includes self-interacting random walks.

Coming back to the process introduced by Durrett & Rogers, most of the results
obtained have in common that the drift may overcome the noise, so that the randomness
of the process is “controlled". To illustrate that, let us mention, for the same model of
Durrett & Rogers, the case of a repulsive and compactly supported function f , that was
conjectured in [8] and has been solved very recently by Tarrès, Tóth and Valkó [16]:

Conjecture 1.1 (Durrett & Rogers [8]). Suppose that f : R → R is an odd function of
compact support, such that xf(x) ≥ 0. Then, for the process X defined by (1.3), the
quotient Xt/t converges a.s. to 0.

In (1.1), the drift term is divided by t, and so it is bounded for a compactly supported
interaction W . As for the process of the conjecture, the interaction potential is in
general not strong enough for the process (1.1) to converge or to be positive recurrent,
and the behaviour is then very difficult to analyze. In particular, it is hard to predict the
relative importance of the drift term (in competition with the Brownian motion) in the
evolution.

On the other hand, in our case of uniformly convex W , the interaction potential is
attractive enough to compare the diffusion (a bit modified) to an Ornstein-Uhlenbeck
process, which gives an access to its ergodic behaviour.
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Ergodicity of self-attracting motion

Another problem, related to the one considered in this paper, is the diffusion corre-
sponding to MacKean and Vlasov’s PDE. Namely, consider the Markov process defined
by the SDE

dYt =
√

2 dBt −∇W ∗ νt(Yt) dt, (1.4)

where νt stands for the law of Yt, and W is a smooth strictly uniformly convex function.
The asymptotic behaviour of Y has been intensively studied these last years, by

Carrillo, MacCann & Villani [5], Bolley, Guillin & Villani [4], or Cattiaux, Guillin &
Malrieu [7] for instance. It turns out that, under some assumptions, the laws νt con-
verge to the limit measure ν∗. This measure is characterized as a fixed point of a map
Π : ν 7→ Π(ν) associating to a measure ν the probability measure

Π(ν)(dx) :=
1

Z
e−W∗ν(x)dx,

which is the stationary measure of the process, with νt in the right-hand side of (1.4)
replaced by ν and Z = Z(ν) is the normalization constant.

In particular, Carrillo, MacCann & Villani [5] have shown, using some mass trans-
port tools, that the relative free energy corresponding to νt with respect to the limit
measure ν∗ decreases exponentially fast to 0. Then Talagrand’s inequality allows to
compare the relative free energy to the Wasserstein distance in case of uniform convex-
ity of the interaction potential W , and so they have obtained the decrease to 0 of the
quadratic Wasserstein distance between νt and ν∗.

We remark that a huge difference between the preceding Markov process and the
(non-Markov) self-interacting diffusion is that the asymptotic σ-algebra is in general not
trivial for the non-Markov process. Nevertheless, we will use a similar mass transport
method to show the convergence of the empirical measure µt.

1.2 Main results

Our results are analogous to those of Carrillo et al. [5]: under some assumptions
imposed on the interaction potential W , we show that the empirical measure µt almost
surely converges to an equilibrium state, which is unique up to translation:

Theorem 1.2 (Main result). Suppose that W ∈ C2(Rd) and:

1. spherical symmetry: W (x) = W (|x|);
2. uniform convexity: denoting by Sd−1 the (d− 1)−dimensional sphere,

∃CW > 0 : ∀x ∈ Rd,∀v ∈ Sd−1,
∂2W

∂v2

∣∣∣∣
x

≥ CW ; (1.5)

3. W has at most a polynomial growth: there exists some polynomial P such that

∀x ∈ Rd |W (x)|+ |∇W (x)|+ ‖∇2W (x)‖ ≤ P (|x|); (1.6)

Then, there exists a unique (deterministic) symmetric density ρ∞ : Rd → R+, such that
almost surely, there exists a random c∞ such that

µt :=
1

t

∫ t

0

δXsds
∗−weakly−−−−−−→
t→+∞

ρ∞(x− c∞) dx.

Moreover, there exists a > 0 such that the speed of convergence of µt toward ρ∞(·+c∞)

for the Wasserstein distance is at least exp{−a k+1
√

log t}, where k is the degree of P .
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Ergodicity of self-attracting motion

Remark 1.3. The assumption (1) corresponds to the physical assumption of the inter-
action force between two particles being directed along the line joining them, and to
the third Newton’s law (that is the equality between the action and the reaction forces).
The symmetry assumption cannot be omitted, as shows an example in the appendix.

Remark 1.4. We will suppose in the following, without any loss of generality (it suffices
to add a positive constant to P ), that P ≥ 1 is of degree k ≥ 2 and such that for all
x, y ∈ Rd, we have P (|x − y|) ≤ P (|x|)P (|y|). Indeed, we choose P (|x|) = A1 + A2|x|k,
where A1, A2 are two positive constants large enough. This will be used in §2.2 and §2.3.

The origin of the following remark will be clear after the discussion in §2.4.

Remark 1.5. The density ρ∞ is the same limit density as in the result of [5], uniquely
defined (among the centered densities) by the following property: ρ∞ is a positive func-
tion, proportional to e−W∗ρ∞ .

We can also consider the same drifted motion in presence of an external potential
V . For this, the following result is a generalization of Theorem 1.2 (where we replace
CW by C in the notation):

Theorem 1.6. Let X be the solution to the equation

dXt =
√

2dBt −
(
∇V (Xt) +

1

t

∫ t

0

∇W (Xt −Xs)ds

)
dt. (1.7)

Suppose, that V ∈ C2(Rd) and W ∈ C2(Rd), and:

1. spherical symmetry: W (x) = W (|x|);
2. V and W are convex, lim|x|→+∞ V (x) = +∞, and either V or W is uniformly

convex:

∃C > 0 : ∀x ∈ Rd,∀v ∈ Sd−1,
∂2V

∂v2

∣∣∣∣
x

≥ C or ∀x ∈ Rd,∀v ∈ Sd−1,
∂2W

∂v2

∣∣∣∣
x

≥ C;

3. V and W have at most a polynomial growth: for some polynomial P , we have
∀x ∈ Rd

|V (x)|+ |W (x)|+ |∇V (x)|+ |∇W (x)|+ ‖∇2V (x)‖+ ‖∇2W (x)‖ ≤ P (|x|). (1.8)

Then there exists a unique density ρ∞ : Rd → R+, such that almost surely

µt =
1

t

∫ t

0

δXsds
∗−weakly−−−−−−→
t→+∞

ρ∞(x) dx.

As the proof of the latter Theorem coincides with the proof of Theorem 1.2 almost
identically, we do not present it here. It suffices to add V in the arguments below. More-
over, if V is symmetric with respect to some point q, then the corresponding density ρ∞
is also symmetric with respect to the same point q.

The proof of Theorem 1.2 is split into two parts. We start by introducing a natural
“reference point” for a measure µ:

Definition 1.7. Consider a measure µ on Rd, decreasing fast enough for W ∗ µ to be
defined. The center of µ is the point cµ = c(µ) such that ∇W ∗µ(cµ) = 0, or equivalently,
the point where the convolution W ∗ µ (the potential generated by µ) takes its minimal
value. Also, we define the centered measure µc as the translation of the measure µ,
bringing cµ to the origin:

µc(A) = µ(A+ cµ). (1.9)
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Ergodicity of self-attracting motion

Remark 1.8. This notion of center had been previously introduced by Raimond in [13],
as it has been pointed out to us. Indeed, to study the linear attracting d-dimensional
case of Brownian polymers, Raimond has defined the center and proved that the process
remains close to ct = c(µt) (and that ct converges a.s.). The role of ct will be slightly
different here.
A sufficient condition for the existence of the center is that W is convex, and it is unique
as soon as W is strictly convex.

Remark 1.9. The assumption (2) in Theorem 1.2 and the definition of the center imply
that

|(∇W ∗ µt(Xt), Xt − ct)| ≥ CW |Xt − ct|2. (1.10)

The first part of the proof of Theorem 1.2 consists in proving the convergence of the
centered occupation measures:

Theorem 1.10. Under the assumptions of Theorem 1.2, for some symmetric density
function ρ∞ : Rd → R+, we have almost surely

µct
∗−weakly−−−−−−→
t→+∞

ρ∞(x) dx.

The second is the convergence of centers:

Theorem 1.11. Under the assumptions of Theorem 1.2, almost surely the centers ct :=

c(µt) converge to some (random) limit c∞.

It is clear that the two latter theorems imply the main result. Let us sketch their
proofs.

1.3 Physical interpretation

In this part, we will explain non-rigorously the different steps needed to prove The-
orem 1.2 (and so this will give a brief outline of the paper). Our main tools are the
following:

• comparison of |Xt− ct| with the absolute value of an Ornstein-Uhlenbeck process,

• discretization of the process and of the dynamical system,

• decrease of the free energy.

We also give a physical interpretation, leading to the result.

1.3.1 Existence and uniqueness of X

First, a standard remark is Markovianization: the behaviour of the pair (Xt, µt) is
Markovian. The reader will find it, together with some other standard remarks, in
§2.1.1. Unfortunately, the Markov process (Xt, µt) is infinite-dimensional and, in gen-
eral (except for the case of a polynomial interaction W ), we do not manage to reduce
to a finite-dimensional process. This is why we do not use this information directly in
order to obtain interesting properties on µt, as the state space is then too large.

After these remarks, we discuss the global existence and uniqueness for the solu-
tions of (1.2) in §2.1.4.
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Ergodicity of self-attracting motion

1.3.2 Discretization

A next step is discretization: we choose a deterministic sequence of times Tn → +∞,
with Tn � Tn+1 − Tn � 1, and consider the behaviour of the measures µTn . As Tn �
Tn+1 − Tn, it is natural to expect (and we will give the corresponding statement) that
the empirical measures µt on the interval [Tn, Tn+1] almost do not change and thus stay
close to µTn . So we can approximate, on this interval, the solution Xt of (1.2) by the
solution of the same equation with µt ≡ µTn :

dYt =
√

2 dBt −∇W ∗ µTn(Yt) dt, t ∈ [Tn, Tn+1],

in other words, by a Brownian motion in a potential W ∗ µTn that does not depend on
time.

On the other hand, the series of general term Tn+1−Tn increases. So, using Birkhoff
Ergodic Theorem1, we see that the (normalized) distribution µ[Tn,Tn+1] of values of Xt

on these intervals becomes (as n increases) close to the equilibrium measures Π(µTn)

for a Brownian motion in the potential W ∗ µTn , where (see §3.1)

Π(µ)(dx) :=
1

Z(µ)
e−W∗µ(x) dx, Z(µ) :=

∫
Rd
e−W∗µ(x) dx.

As

µTn+1
=

Tn
Tn+1

µTn +
Tn+1 − Tn
Tn+1

µ[Tn,Tn+1],

we then have

µTn+1
≈ Tn
Tn+1

µTn +
Tn+1 − Tn
Tn+1

Π(µTn) = µTn +
Tn+1 − Tn
Tn+1

(Π(µTn)− µTn),

and
µTn+1

− µTn
Tn+1 − Tn

≈ 1

Tn+1
(Π(µTn)− µTn).

This could motivate us to approximate the behaviour of the measures µt by trajecto-
ries of the flow (on the infinite-dimensional space of measures)

µ̇ =
1

t
(Π(µ)− µ), (1.11)

or after a logarithmic change of variable θ = log t,

µ′ = Π(µ)− µ. (1.12)

In fact, it is not a priori clear that the flow defined by (1.12) exists, as the space of
measures is infinite-dimensional. Though the flow can be shown to be well defined on a
subspace of exponentially decreasing measures, we prefer to avoid all these problems
by working directly with the discretization model in §3.1. Nevertheless, this flow serves
very well in motivating the considered functions and lemmas describing their behaviour,
as the Euler method applied to (1.12) corresponds to the previous discretization proce-
dure.

1.3.3 Physical interpretation: gas re-distribution

Before proceeding further, let us give a physical interpretation to the flow (1.12), pre-
dicting its asymptotic behaviour. Namely, note that a Brownian motion drifted by some
potential V ,

dXt =
√

2dBt −∇V (Xt)dt,

1see for instance [14], chap. X
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can be thought as movement of gas particles under this potential, and the stationary
probability measure, m = 1

Z(V )e
−V dx, is the density with which the gas becomes dis-

tributed after some time passes. So, in dimension one, a discrete approximation of the
flow (1.12) can be seen as follows. We take a tube, filled with W -interacting gas and
separated in a plenty of very small cells (see Fig. 1).

. . . . . .

Figure 1: Gas: phase “separation”

Each unit of time, small parts (of proportion ε) of gas in these cells are separated,
allowed to travel along the tube, and are proposed to equilibrate in the potential gen-
erated. This part of all the gas being small, its auto-interaction is negligible, thus their
new distribution is governed by the field V := W ∗ µ generated by the major part of the
particles staying fixed to their cells. The small part is then equilibrated to its weight ε
times Π(µ).

. . . . . .

Figure 2: Gas: phase “re-distribution”

Then, it is separated again by the cells, thus the distribution after such step becomes

(1− ε)µ+ εΠ(µ) = µ+ ε(Π(µ)− µ).

On the other hand, this procedure does not require any work (in the physical sense)
to be done: the only actions are opening and closing the doors. So, due to the general
principle, one can expect that the system will tend to its equilibrium. And a tool allowing
to show that it is the case is the free energy, that we recall in the next paragraph.

We conclude by noticing that the same physical interpretation can be considered
for the problem in any dimension d, by placing in Rd+1 two close parallel walls (corre-
sponding to the tube in dimension one), and placing the cells along them.

1.3.4 Free energy functional

A tool allowing to show the convergence of trajectories of (1.12) is the free energy that,
due to a general physical principle, should not increase along the trajectories as long
as we do not do any work.

Namely, consider an absolutely continuous probability measure µ = µ(x)dx (by an
abuse of notation, we denote the measure and its density by the same letter). Imagine
µ(x) as the density of a gas, particles of which implement the Brownian motion

√
2dBt,
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Ergodicity of self-attracting motion

as well as interact with the potential W (x − y). Then, one defines the free energy of µ
as the sum of its “entropy” H and “potential energy”:

F(µ) := H(µ) +
1

2

∫
Rd

∫
Rd
µ(x)W (x− y)µ(y) dxdy, (1.13)

where the entropy of the measure µ is

H(µ) :=

∫
Rd
µ(x) logµ(x)dx. (1.14)

Then, as we have already said, a general physical principle says that, as we are doing
no work on the system, the free energy should decrease, and the system should tend to
its minimum.

Indeed, the free energy F is a Lyapunov function for the flow (1.12) (when it is
defined, though it is defined only for measures that are absolutely continuous with
respect to the Lebesgue measure, and otherwise F(µ) = +∞). This can be seen by
joining two statements. First, the probability measure m = Z(V )−1e−V = Π(µ) is (what
corresponds to the same physical principle) the unique global minimum of the free
energy

FV (µ) := H(µ) +

∫
Rd
V (x)µ(x) dx,

of a non-interacting Brownian motion in the exterior potential V = W ∗ µ (see §1.3.3
and Lemma 2.14 in §2.4). The second one is the inequality

∂m−µF|µ ≤ FW∗µ(m)−FW∗µ(µ), (1.15)

where m = Π(µ). On one hand, it can be easily seen by an explicit computation, noticing
that the entropy part is convex. On the other hand, such a differentiation corresponds
to replacing some small parts of the gas distributed with respect to the measure µ by
the one distributed with respect to the measure m, and in the right-hand side we have
the corresponding free energies of these small parts in the potential, generated by the
main part of the gas.

Then, differentiating the function F along the trajectories of the flow (1.12), one
finds for the solution µ(θ)

d

dθ
F(µ(θ)) ≤ FW∗µ(θ)(ΠW∗µ(θ)(µ(θ)))−FW∗µ(θ)(µ(θ)) ≤ 0,

with the equality if and only if µ(θ) = Π(µ(θ)).
Finally (and we recall these arguments in §3.1), the fixed points of Π are exactly

the translation images of the density ρ∞, that is the centered global minimum of the
functional F . So, roughly speaking, the function F is the Lyapunov function of the
flow (1.12). The words “roughly speaking” here refer to that these arguments are non-
rigorous: we avoided showing that the flow is indeed well-defined, the free energy
functional is defined only for absolutely continuous measures, etc. Though all of this
serves well as a motivation to (rigorous) lemmas of free energy behaviour used in this
paper.

We conclude this paragraph by indicating that for the dynamics in presence of an ex-
terior potential V (the case of Theorem 1.6) one has to replace the free energy function
by

FV,W (µ) := H(µ) +

∫
Rd
V (x)µ(x) dx+

1

2

∫
Rd

∫
Rd
µ(x)W (x− y)µ(y) dxdy.

and, instead of FW∗µ, consider FV+W∗µ for the energy of “small parts”.
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1.3.5 Conclusion

We are now ready to conclude the sketches of the proofs of Theorems 1.10 and 1.11 (as
it was already mentioned, they immediately imply Theorem 1.2).

Namely, we consider the discretized Euler-like evolution of the flow (1.11), defined
by the rule

µ̃Tn+1
= µ̃Tn +

∆Tn
Tn+1

(Π(µ̃Tn)− µ̃Tn). (1.16)

For the measures µ̃Tn defined by this procedure, we obtain (using discrete rigorous
analogues of informal arguments of the previous paragraph) some estimates on the
speed with which their free energy decreases. This allows us to estimate distances
from these measures to the set of translates of ρ∞ (because they are the only minima
of F).

Now, for the true random trajectory µt, we estimate the distance from the centered
measures µct to the equilibrium point. To do this at some moment t, we choose an
earlier moment t′, replace the measure µt′ by a close smooth measure µ̃t′ , and consider
some deterministic discrete iterates by (1.16). On one hand, for this new trajectory,
the free energy is defined (as we have chosen a smooth approximation). So we control
the decrease of energy and hence the distance from the centered measure µ̃ct to ρ∞.
On the other hand, an accurate computation allows us to control the distance between
the random measure µt and the approximating deterministic image µ̃t of its smooth
perturbation. The sum of these distances then estimates (gives an upper bound) the
distance from µct to ρ∞, and the obtained estimate tends to 0 as t→ +∞. This concludes
the proof of Theorem 1.10.

Finally, to prove Theorem 1.11, one first computes the speed of drift of the center ct,
and then shows that the series of general term |cTn+1

− cTn | converges, and the oscilla-
tions osc[Tn,Tn+1]ct tend to zero. This implies the existence of the limit of ct as t→ +∞.

1.4 Outline

To conclude this introduction, we indicate how the rest of this paper is organized.

At the beginning of Section 2, we show the existence and uniqueness of solutions
to (1.2) starting at any positive moment r > 0. After that, the rest of Section 2 is de-
voted to the presentation of some crucial preliminary computations which are at the
basis of our proofs. Indeed, we will compare the centered process (|Xt − ct|, t ≥ 0)

with the absolute value of an Ornstein-Uhlenbeck process. Then, we will show that the
map Π, restricted to a well-chosen subset of probability measures, is Lipschitz. These
results are essential to prove our main theorem. We end Section 2 by introducing a
new transport metric, similar to the Wasserstein distance (so that the space of proba-
bility measures equipped with the weak* topology is complete), but allowing to control
the integration of W with respect to any probability measure. We also introduce the
free energy functional corresponding to our process. Most of the material there is not
new, except for the combination of stochastic approximation of the empirical measure
(see [2]) with free energy functionals (see [5]) and the achieving of a bound on the
convergence rate.

Section 3 consists in the proofs of our main results. Let us now describe the main
steps of the proof of Theorem 1.10, which is postponed to §3.1. Actually, instead of
proving this result, we will show the following stronger statement (which is actually
named Theorem 3.1 and located in Section 3.1):

Theorem 1.12. There exists a constant a > 0 such that almost surely, we have for t
large enoughW2(µct , ρ∞) = O(exp{−a k+1

√
log t}), where k is the degree of the polynomial
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P and W2 is the quadratic Wasserstein distance (defined in §2.3), that is the minimal
L2-distance taken over all the couplings between µct and ρ∞.

Note that this result gives in particular a minoration of the speed of convergence of
the centered empirical measure µct toward ρ∞. For a better understanding, we will de-
compose the proof of this statement into some intermediate propositions. Remark that
all the probability measures considered here are centered (with respect to the same
center). Let us now explain the strategy of the proof.
First, note that the empirical measure µt of Xt evolves very slowly, as it has been ex-
plained in §1.3.2. Indeed, let us choose an appropriate interval [Tn, Tn+1). On this inter-
val, fix the empirical measure µt at µTn . We then construct a new process Y , coupled
with X (the coupling is such that X and Y are driven by the same Brownian motion),
such that for all t ∈ [Tn, Tn+1), we have

dYt =
√

2dBt −∇W ∗ µTn(Yt)dt.

This new process has two advantages. First, it is Markovian (and its invariant probabil-
ity measure is Π(µTn)(dx) = 1

Z e
−W∗µTn (x)dx), and so is easier than X to study. Second,

its evolution is very close to the evolution of the desired X. Indeed, we will use Y

to prove Proposition 3.2, asserting that the transport distance between the empirical
measure on [Tn, Tn+1], denoted by µ[Tn,Tn+1], and the probability measure Π(µTn) (both

measures being centered in cTn) is controlled by T
− 1

3 min(8CW ,1/5d)
n and so, this distance

vanishes as n→ +∞. This will be done in §3.1.1.
After that, we also remark that if a.s. the empirical measure µt converges weakly* to
µ∞, then for t large enough, the process X shall be very close to Z, defined by

dZt =
√

2dBt −∇W ∗ µ∞(Zt)dt.

The process Z is obviously Markovian and the limit-quotient theorem applies (see [14]):

1

t

∫ t

0

δZsds −→
t→+∞

Π(µ∞) a.s.

for the weak* convergence of measures. So when the limit µ∞ exists, it satisfies
µ∞ = Π(µ∞). This explains, in a slightly different way of §1.3.2, the idea of introducing
the dynamical system µ̇ = Π(µ)− µ (after the time-shift t 7→ et in order to work with
a time-homogeneous system) defined on the set of probability measures that are inte-
grable for the polynomial P . As noticed previously, instead of considering the latter
dynamical system, we will work with its discretized version, with the knots chosen at
the moments Tn. We will then prove, in Proposition 3.5, that the transport distance
between the deterministic trajectory induced by the smoothened (discrete) dynamical
system and the (centered) random trajectory µTn is controlled and decreases to 0. This
will be done in §3.1.2.
Next, it remains to show that the free energy (defined in §2.4) between this (centered)
deterministic trajectory and the set of translates of ρ∞ goes to 0. As the free energy
is controlled by the quadratic Wasserstein distance W2, this implies that the transport
distance between the two previous quantities decreases, as asserted in Proposition 3.6.
The §3.1.3 is devoted to the proof of this result.
To conclude, we only have to put all the pieces together and use the triangle inequal-
ity: W2(µct , ρ∞) is upper bounded by the sum of three distances, involving the flow
Φn induced by the discretization of the dynamical system µ̇ = Π(µ) − µ on the in-
terval [Tn, Tn+1), for n large enough. The first term of the summation bound will be
W2(µct ,Π(µcTn)), the second oneW2(Π(µcTn),Φnn(µcTn)) and the third oneW2(Φnn(µcTn), ρ∞).
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Ergodicity of self-attracting motion

Next, Section 3.2 presents the proof of Theorem 1.11. Indeed, the previous decrease
estimates will allow us to show the convergence of the center, after having made the
appropriate choice Tn = n3/2.

Finally, we have gathered in two appendices:

1. a discussion of the existence and uniqueness of solution to (1.2) starting at r = 0,

2. a counter-example, showing the need of the symmetry for the (convex) potentialW
in order to obtain the convergence of the center. (Indeed, without this hypothesis
on W , the convergence of the centered empirical measure still holds true.)

2 Preliminaries

As usual, we denote byM(Rd) the space of signed (bounded) Borel measures on Rd

and by P(Rd) its subspace of probability measures. We will need the following measure
space:

M(Rd;P ) := {µ ∈M(Rd);

∫
Rd
P (|y|) |µ|(dy) < +∞}, (2.1)

where |µ| is the variation of µ (that is |µ| := µ+ + µ− with (µ+, µ−) the Hahn-Jordan
decomposition of µ: µ = µ+−µ−). Belonging to this space will enable us to always check
the integrability of P (and therefore of W and its derivatives thanks to the domination
condition (1.6)) with respect to the (random) measures to be considered. We endow
this space with the dual weighted supremum norm (or dual P -norm) defined for µ ∈
M(Rd;P ) by

||µ||P := sup
ϕ∈C(Rd);|ϕ|≤P

∣∣∣∣∫
Rd
ϕdµ

∣∣∣∣ =

∫
Rd
P (|y|) |µ|(dy), (2.2)

where C(Rd) is the set of continuous functions Rd → R. We recall that P (|x|) ≥ 1, so
that ‖µ‖P ≥ |µ(Rd)|. This norm naturally arises in the approach to ergodic results for
time-continuous Markov processes of Meyn & Tweedie [11]. It also makesM(Rd;P ) a
Banach space.
Next, we consider P(Rd;P ) = M(Rd;P ) ∩ P(Rd). We remark that both M(Rd;P ) and
P(Rd;P ) contain any probability measure with an exponential tail and, in particular,
any compactly supported measure. For any κ > 0, we also define

Pκ(Rd;P ) := {µ ∈ P(Rd;P ) ; ||µ||P =

∫
Rd
P (|x|)µ(dx) ≤ κ}. (2.3)

2.1 Existence and uniqueness of solutions

2.1.1 Markovian form; local existence and uniqueness

First step in studying the trajectories of (1.2) is to pass to the couple (Xt, µt). A stan-
dard remark is that the behaviour of this couple is infinite-dimensional Markovian (and
in general, except for W being polynomial, cannot be reduced to a finite-dimensional
Markov process). This reduction is easily implied by the identity

µt+s =
t

t+ s
µt +

1

t+ s

∫ t+s

t

δXu du. (2.4)

Note that the second term in the right-hand side of (2.4) can be written as s
t+sµ[t,t+s],

where µ[t,t+s] is the empirical measure during the time interval [t, t+ s]:

µ[t1,t2] :=
1

t2 − t1

∫ t2

t1

δXu du.
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Ergodicity of self-attracting motion

Now, passing µt to the left-hand side of (2.4), dividing by s and passing to the limit
as s→ 0, we obtain the following SDE for the couple (Xt, µt):{

dXt =
√

2 dBt −∇W ∗ µt(Xt) dt,

µ̇t = 1
t (−µt + δXt).

(2.5)

For any t0 > 0, the local existence and uniqueness of solutions to (2.5), in a neigh-
bourhood of t0, is implied by well-known arguments: see Theorem 11.2 of [15].

However, in order to study the asymptotic behaviour of solutions to (1.2), we should
first show the global existence of these solutions, in other words, that they do not ex-
plode in a finite time. This will be done in §2.1.2.

Note also that the equation (2.5) clearly has a singularity at t = 0. To avoid this
singularity, sometimes the equation (2.5) is considered with an initial condition (Xr, µr)

at some positive time r > 0 (and thus for t ∈ [r,+∞)). The case r = 0 is studied in the
appendix. After the time-shift s = t− r, the system (2.5) transforms to{

dXs =
√

2 dBs −∇W ∗ µs(Xs) ds,

µ̇s = 1
s+r (−µs + δXs).

(2.6)

In fact, we can restrict our consideration to such situations only (as, anyway, we are
investigating the asymptotic behaviour of solutions at infinity), but it is interesting to
show that the equation (1.2) has indeed existence and uniqueness of solutions for any
initial value problem X0 = x0. It is done in the appendix.

2.1.2 Center-drift estimates

A natural “reference point” that one can associate to a measure µ is the equilibrium
point cµ = c(µ) of the potential it generates with W , defined by the equation ∇W ∗
µ(cµ) = 0 (see Definition 1.7, §1.2), that we refer to as the center of the measure µ.
Also, it will be convenient to consider the centered measure µc, obtained from µ by the
translation that shifts the center to the origin.

Note that the implicit function theorem allows to estimate (on an interval of exis-
tence of solution (Xt, µt) to (2.5)) the derivative ċt of ct := cµt . In particular, we will see
that ct is a function of class C1 on this interval. Indeed, the function (x, t) 7→ ∇W ∗µt(x)

is C1-smooth:

d(∇W ∗ µt)(x) = ∇2W ∗ µt(x) dx+∇W ∗ µ̇t(x) dt

= ∇2W ∗ µt(x) dx+
1

t
∇W ∗ (−µt + δXt)(x) dt,

and for any (x, t) we have ∇2W ∗ µt(x) ≥ CW I > 0. The implicit function theorem thus
implies that ct is a function of t of class C1 (on the interval of existence of solution), and
that

ċt = −
(
∂

∂x
∇W ∗ µt(x) |x=ct

)−1
∂

∂t
(∇W ∗ µt)(ct) = −1

t

(
∇2W ∗ µt(ct)

)−1∇W ∗ δXt(ct)

=
1

t

(
∇2W ∗ µt(ct)

)−1∇W (Xt − ct).

This implies that the projection of the center drift velocity on the line from ct to Xt

is directed towards Xt, as ∇W (Xt − ct) is positively proportional to Xt − ct and((
∇2W ∗ µt(ct)

)−1∇W (Xt − ct), Xt − ct
)
> 0.

This also immediately gives an upper bound on the drift speed:

|ċt| ≤
1

t
· P (|Xt − ct|)

CW
. (2.7)
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Ergodicity of self-attracting motion

2.1.3 Law of X-center distances: Ornstein-Uhlenbeck estimate

To continue our study, first we would like to obtain an estimate on the behaviour of
the distance |Xt − ct|. Namely, we are going to compare it with (the absolute value
of) the Ornstein-Uhlenbeck process, and to obtain exponential-decrease bounds on its
occupation measure in §2.2.1.

Proposition 2.1. The process (Xt) can be considered as the first element of the pair
(Xt, Zt) of processes such that

i) |Xt − ct| ≤ 2 + Zt,

ii) Zt is the absolute value of a 3d-dimensional Ornstein-Uhlenbeck process.

Proof. From {
dXt =

√
2dBt −∇W ∗ µt(Xt) dt

ċt = 1
t

(
∇2W ∗ µt(ct)

)−1∇W (Xt − ct)

one obtains that the difference |Xt − ct|, while it is positive, satisfies the SDE

d|Xt − ct| =
√

2

(
Xt − ct
|Xt − ct|

,dBt

)
+

d− 1

|Xt − ct|
dt

−
(
Xt − ct
|Xt − ct|

,∇W ∗ µt(Xt) +
1

t
(∇2W ∗ µt(ct))−1∇W (Xt − ct)

)
dt.

In the same way, we define the desired Zt, which shall satisfy the equation

dZt =
√

2dγt −
(
CW

2
Zt −

3d− 1

Zt

)
dt, (2.8)

where γ is also a Brownian motion. Take a one-dimensional standard Brownian motion
β independent of the Brownian motion B and let γ be defined as

dγt = α(|Xt − ct|)
(
Xt − ct
|Xt − ct|

,dBt

)
+
√

1− α2(|Xt − ct|)dβt, (2.9)

where α : [0,+∞)→ [0, 1] is a C∞-function which is identically zero in some neighbour-
hood of 0 and α(r) = 1 for any r ≥ 1. The process Z is then defined by (2.8).

We point out that, asB and β are independent, B is a d-dimensional Brownian motion
while β is 1-dimensional. It follows (by Itô’s formula) that Z defined by (2.8) is the
absolute value of a 3d-dimensional Ornstein-Uhlenbeck process.

On the other hand, for any t, either |Xt − ct| ≤ 2 + Zt (and there is nothing else to
do), or |Xt− ct| > 2 +Zt and then both |Xt− ct| and Zt share exactly the same Brownian
component (as α ≡ 1), with the inequality between the drift terms of 2+Zt and |Xt−ct|:

− CW
2
Zt +

3d− 1

Zt
≥ −CW |Xt − ct|+

d− 1

|Xt − ct|
≥

≥ −
(
∇W ∗ µt |Xt ,

Xt − ct
|Xt − ct|

)
+

d− 1

|Xt − ct|
−

−
(

1

t
(∇2W ∗ µt(ct))−1∇W (Xt − ct),

Xt − ct
|Xt − ct|

)
, (2.10)

because |Xt − ct| ≥ d−1
3d−1Zt. A comparison theorem concludes the proof.
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2.1.4 Global existence

Proposition 2.2. For any r > 0 and for any initial condition (Xr, µr), the solution
to (2.5) exists (and is unique) on the whole interval [r,+∞).

Proof. As we already have the local existence and uniqueness, it suffices to check that
the solution Xt cannot explode in a finite time (this impossibility will imply that the
measures µt, as the normalized occupation measures of Xt, also stay in a compact
domain –for the P -norm– for any bounded interval of time).

Let us introduce the increasing sequence of stopping times τ0 = 0 and

τn := inf {t ≥ τn−1 : |Xt| > n} .

We use the comparison of Xt − ct with the Ornstein-Uhlenbeck process Zt (see §2.1.3):

|Xmin(t,τn) − cmin(t,τn)| ≤ 2 + Zmin(t,τn).

As Z is globally defined for any bounded interval of time, letting n go to infinity, we
deduce that Xt− ct does not explode in a finite time. To conclude, we use the inequality
(2.7) to show the global existence of ct. We have:

|ċt| ≤
1

t

P (|Xt − ct|)
CW

≤ 1

t

P (2 + Zt)

CW
≤ 1

t

P (2)

CW
P (Zt).

Any trajectory of Z being bounded on any finite interval of time, the integral
∫ t
r
P (Zs)
s ds

is finite for any t ≥ r. So, there exists a global strong solution (Xt, t ≥ 0).

2.2 Exponential tails estimates

2.2.1 Estimates for the centered empirical measure

We shall now estimate the behaviour of the centered measures µct . Namely, we are
going to prove that these measures are exponentially decreasing. For shortness and
simplicity, we introduce the following sets

Definition 2.3. Let α,C > 0 be given. Define

K0
α,C := {µ ∈ P(Rd); ∀r > 0, µ({y; |y| > r}) < Ce−αr}, (2.11)

Kα,C := {µ ∈ P(Rd); µc ∈ K0
α,C}. (2.12)

Also, for general positive measures, we denote the spaces defined by the same relations
by K̃0

α,C and K̃α,C .

For the following, we need one easy lemma, that will be useful to show the exponen-
tial decrease of µt.

Lemma 2.4. Let Z be the absolute value of the 3d-dimensional Ornstein-Uhlenbeck
process with Gaussian stationary measure dγOU (x) = e−CW |x|

2/2dx. Then, there exists
C1 > 0, such that for almost any trajectory Zt, one has almost surely

∃T : ∀t ≥ T, ∀r > 0
1

t
|{s ≤ t : Zs > r}| < C1e

−r.

Proof. Note that the function f(x) = e|x| is γOU -integrable. Hence, by the limit quotient
(ergodic) theorem, we have almost surely when t→∞:

1

t

∫ t

0

f(Zs)ds→
∫
f(x)dγOU (x) =: I.
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Thus for all t large enough, 1
t

∫ t
0
e|Zs|ds ≤ I + 1. Applying Chebychev’s inequality, we

see that for all r > 0,
1

t
|{s ≤ t : Zs > r}| < (I + 1)e−r.

The main result of this subsection is the following, showing that the measure µt
belongs to the set Kα,C .

Proposition 2.5. There exist two constants α,C > 0 such that a.s. at any sufficiently
large time t, we have µt ∈ Kα,C .

To prove this proposition, we need two intermediate lemmas, whose proofs are post-
poned.

Lemma 2.6. There exist α0, C0 > 0 such that a.s. for any sufficiently large time t, we
have µ[t/2,t](·+ ct/2) ∈ K0

α0,C0
.

Lemma 2.7. Let α0, C0 > 0 be fixed. Then there exist α,C > 0 such that the following
holds. For any given coefficients 0 < λ ≤ 1/2 and µ ∈ P(Rd;P ), let η and ν be two
probability measures such that η(· + cµ) ∈ K0

α,C and ν(· + cµ) ∈ K0
α0,C0

. Letting µ̃ =

(1− λ)µ+ λν, we have

((1− λ)η + λν) (·+ cµ̃) ∈ K0
α,C .

In other words, this lemma provides an “induction step" for showing that “a big
part of the centered measure has exponentially small tails" for a procedure of repetitive
mixing with measure having exponential tails (this is not obvious, as the center is shifted
by such a procedure).

Proof of Proposition 2.5. First, let us estimate the drift of the center. Namely, taking
together (2.7) and Proposition 2.1, we have

|ċt| ≤
1

tCW
P (|Xt − ct|) ≤

1

tCW
P (2 + Zt) ≤

P (2)

tCW
P (Zt),

for the corresponding Ornstein-Uhlenbeck trajectory Zt.
On the other hand, Z is a Harris recurrent process and P (Z) is integrable with

respect to the Gaussian measure, thus due to the limit-quotient (or Birkhoff) theorem,
almost surely there exists a limit

lim
t→+∞

1

t

∫ t

0

P (Zs) ds =

∫
Rd
P (|z|) dγOU (z) =: I.

So, almost surely from some time t1 we have

∀t > t1,
1

t

∫ t

0

P (Zs) ds ≤ I + 1.

Therefore, after this time we can estimate the displacement of the center between the
moments t/2 and t: ∀t > t1

|ct/2 − ct| ≤
∫ t

t/2

|ċs|ds ≤
∫ t

t/2

C

s
P (Zs) ds ≤ C

t/2

∫ t

0

P (Zs) ds ≤ 2C(I + 1) =: C3.

In fact, the same estimate holds for any t′ between t/2 and t:

|ct′ − ct| ≤ C3.
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This immediately implies that for any t > t1 and n ∈ N such that 2−n+1t > t1, one has

|ct − ct/2n | ≤ C3n.

Let us now apply Lemma 2.7. First let us decompose, for any t ∈ [t1, 2t1], the measure
µ2t as 1

2µt+
1
2µ[t,2t], then the measure µ4t as 1

4µt+
(

1
4µ[t,2t] + 1

2µ[2t,4t]

)
, . . ., and finally the

measure µ2nt as 1
2nµt +

(
1

2nµ[t,2t] + · · ·+ 1
2µ[2n−1t,2nt]

)
. An induction argument, together

with Lemma 2.6, immediately shows that in each such decomposition, the second term
shifted by the corresponding c(µ2jt) belongs to K̃0

α,C . The only part left to handle is
1

2nµt. But the distance between ct and c2nt does not exceed C3n, and the centered
measure µct is compactly supported. So it is contained in a ball of some (random) radius
R that can be chosen uniform over t ∈ (t1, 2t1). Now the measure 1

2nµt is of total weight
2−n and it vanishes outside a ball of radius R. If α is small enough so that eαC3 < 2,
then for any r > C3n+R, we have

1

2n
µt(|y − c2nt| > r) ≤ 1

2n
µct(|y| > r − C3n) = 0,

and for r ≤ C3n+R and n big enough,

1

2n
µt(|y − c2nt| > r) ≤ 2−n < e−nαC3e−αR ≤ e−αr.

The middle inequality comes, for n large enough, from a comparison between exponent
bases, eαC3 < 2, with respect to which a multiplication constant e−αR is minor. Finally,
joining the obtained 1

2nµt(· + c2nt) ∈ K̃0
α,1 and

(
1

2nµ[t,2t] + · · ·+ 1
2µ[2n−1t,2nt]

)
(· + c2nt) ∈

K̃0
α,C , we obtain µ2nt ∈ Kα,C+1.

Proof of Lemma 2.6. This lemma immediately follows from Lemma 2.4, once we notice
that

µ[t/2,t](|y − ct/2| > r) =
2

t

∣∣{s : t/2 < s < t, |Xs − ct/2| > r}
∣∣

≤ 2

t

∣∣{s : t/2 < s < t, |Xs − cs| > r − |ct/2 − cs|}
∣∣

≤ 2

t
|{s : s < t, Zs > r − C3}| ≤ C0e

α0C3 · e−α0r.

Proof of Lemma 2.7. First, let us estimate the position of the center of µ̃ in a way that
is linear in λ and does not depend on α and C. Indeed, we recall that cµ̃ is the minimum
of the function W ∗ µ̃. So there exists a constant C ′ > 0 such that, at the point cµ, the
gradient of this function can be bounded as∣∣∇W ∗ µ̃|cµ∣∣ =

∣∣(1− λ)∇W ∗ µ|cµ + λ∇W ∗ ν|cµ
∣∣ ≤ λ‖ν(·+ cµ)‖P ≤ C ′λ,

because the norm ‖ν(· + cµ)‖P is uniformly bounded due to the condition ν(· + cµ) ∈
K0
α0,C0

.
Now, restricting the function W ∗ µ̃ to the line joining cµ and cµ̃, that is considering

f(s) = W ∗ µ̃
(
cµ + s

cµ̃ − cµ
|cµ̃ − cµ|

)
,

one sees that |f ′(0)| ≤ C ′λ, f ′(|cµ̃−cµ|) = 0 and f ′′ ≥ CW , which implies |cµ̃−cµ| ≤ C′

CW
λ.

Let us now estimate the measure ((1− λ)η + λν) (|y−cµ̃| ≥ r). Indeed, first note that
{y : |y − cµ̃| ≥ r} ⊂ {y : |y − cµ| ≥ r − C ′′λ}, where C ′′ = C ′/CW . Thus, we have by
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definition of µ̃

µ̃(|y − c(µ̃)| ≥ r) ≤ µ̃(|y − c(µ)| ≥ r − C ′′λ)

≤ (1− λ)η(|y − c(µ)| ≥ r − C ′′λ) + λν(|y| ≥ r − C ′′λ)

≤ (1− λ)Ce−α(r−C′′λ) + λC0e
−α0(r−C′′λ)

≤
(

1− λ

2

)
CeC

′′αλ−αr − λ
(
C

2
e−αr − C0e

α0C
′′λ−α0r

)
≤ eλ(C′′α−1/2)Ce−αr − λ

(
C

2
e(α0−α)r − C0e

α0C
′′λ

)
e−α0r.(2.13)

Once α is small enough so that C ′′α < 1/2, α < α0 and once C is greater than 2C0e
α0C

′′
,

the right-hand side of (2.13) is not greater than Ce−αr. This concludes the proof.

2.2.2 Estimates for the centered measure Π

Lemma 2.8. For any κ > 1, the map Π restricted to Pκ(Rd;P ) is bounded and Lipschitz.

Proof. First, we need to show that Z(µ) is bounded from below on Pκ(Rd;P ). For µ ∈
Pκ(Rd;P ), the domination condition (1.6) implies that W ∗µ(x) ≤ ||µ||PP (|x|) ≤ κP (|x|).
So we have:

Z(µ) =

∫
Rd
e−W∗µ(x)dx ≥

∫
Rd
e−κP (|x|)dx.

Now, assuming without any loss of generality that W (0) = 0 and ∇W (0) = 0 because of
the assumption (1), and using that

W ∗ µ(x) =

∫
Rd
W (x− y)µ(dy) ≥ CW

2

∫
Rd
|x− y|2µ(dy)

≥ CW
2

∫
Rd

(
|x|2

4
− |y|2

)
µ(dy) ≥ CW

2

(
|x|2

4
− κ
)
,

we hence have the following bound for Π(µ):

||Π(µ)||P ≤
(∫

Rd
e−κP (|x|)dx

)−1

·
∫
Rd
P (|x|)e−

CW
2 (|x|2/4−κ)dx =: Cκ. (2.14)

Note that Π is of class C1 on P(Rd;P ) endowed with the strong topology. Denote by
M0(Rd;P ) the set {µ ∈M(Rd;P ) :

∫
Rd
x dµ(x) = 0}. As the set of probability measures

has no interior point, we have to specify the meaning of C1: there exists a continuous
linear operator DΠ(µ) : M0(Rd;P ) → M0(Rd;P ), continuously depending on µ, such
that ‖Π(µ′)−Π(µ)−DΠ(µ)(µ− µ′)‖P = o(‖µ− µ′‖P ) provided that µ′ ∈ P(Rd;P ) and µ′

converges toward µ. Indeed, we naturally choose

DΠ(µ) · ν := −(W ∗ ν)Π(µ)− DZ(µ) · ν
Z(µ)2

e−W∗µ

= −(W ∗ ν)Π(µ) +

∫
Rd
W ∗ ν(y)

e−W∗µ(y)

Z(µ)
dy

e−W∗µ

Z(µ)

= −
(
W ∗ ν −

∫
Rd
W ∗ ν(y)Π(µ)(dy)

)
Π(µ). (2.15)

Now, note that the norms ‖DΠ‖ are uniformly bounded for µ ∈ Pκ(Rd;P ) (for any given
κ). Indeed, fix ν ∈M0(Rd;P ). Since |W ∗ ν(x)| ≤ ||ν||PP (|x|), we find that

‖DΠ(µ) · ν‖P ≤ (1 + Cκ)‖ν‖P
∫
Rd
P 2(|x|)Π(µ)(dx).
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Ergodicity of self-attracting motion

For µ ∈ Pκ(Rd;P ), the same computation used for the bound (2.14) on the norm of Π(µ)

enables to control the last integral. Hence, we deduce a bound (call it C ′κ) on the norm
of the differential. Thus, Π is Lipschitz as stated.

We prove now the exponential decrease for the centered measure Π(µ).

Proposition 2.9. There exist CW , CΠ > 0 such that for all µ ∈ P(R;P ), we have Π(µ)(·+
cµ) ∈ K0

CW ,CΠ
.

Proof. Note first that, imposing a condition CΠ ≥ e2CW , we can restrict ourselves only
to R ≥ 2: for R < 2, the estimate is obvious.

The measure Π(µ) has the density 1
Z(µ)e

−W∗µ(x). To avoid working with the normal-

ization constant Z(µ), we will prove a stronger inequality, that is

Π(µ)(|x− cµ| ≥ R) ≤ CΠe
−CWR ·Π(µ)(|x− cµ| ≤ 2), (2.16)

which is equivalent to∫
|x−cµ|≥R

e−W∗µ(x)dx ≤ CΠe
−CWR

∫
|x−cµ|≤2

e−W∗µ(x)dx.

We use the polar coordinates, centered at the center cµ, and so we want to prove that∫
Sd−1

∫ +∞

R

e−W∗µ(cµ+λv)λd−1dλdv ≤ CΠe
−CWR

∫
Sd−1

∫ 2

0

e−W∗µ(cµ+λv)λd−1dλdv.

It suffices to prove such an inequality “directionwise”: for all v ∈ Sd−1, for all R ≥ 2∫ +∞

R

e−W∗µ(cµ+λv)λd−1dλ ≤ CΠe
−CWR

∫ 2

0

e−W∗µ(cµ+λv)λd−1dλ.

But from the uniform convexity ofW and the definition of the center, the function f(λ) =

W ∗ µ(cµ + λv) satisfies f ′(0) = 0 and ∀r > 0, f ′′(r) ≥ CW . Hence, f is monotone
increasing on [0,+∞), and in particular,∫ 2

0

e−f(λ)λd−1dλ ≥ e−f(2)

∫ 2

0

λd−1dλ =: C1e
−f(2). (2.17)

On the other hand, for all λ ≥ 2, f ′(λ) ≥ f ′(2) ≥ 2CW , and thus f(λ) ≥ 2CW (λ−2)+f(2).
Hence, ∫ +∞

R

e−f(λ)λd−1dλ ≤ e−f(2)

∫ +∞

R

λd−1e−2CW (λ−2)dλ

≤ C2R
d−1e−2CWR · e−f(2) ≤ C3e

−CWR · e−f(2). (2.18)

Comparing (2.17) and (2.18), we obtain the desired exponential decrease.

2.3 A new transport metric: the TP -metric

Usually, to estimate the distance between two probability measures, one introduces
the quadratic Wasserstein distance. Namely, for µ1, µ2 ∈ P(Rd;P ), the quadratic Wasser-
stein distance is defined as

W2(µ1, µ2) :=
(
inf{E(|ξ1 − ξ2|2)}

)1/2
,

where the infimum is taken over all the random variables such that {law of ξ1} = µ1

and {law of ξ2} = µ2. In our setting, for a measure µ, the corresponding probability
measure Π(µ) is defined using the convolution W ∗ µ. So, it would be rather natural
to use a distance, looking like the one for the weak* topology, but allowing to control
W ∗ µ for our unbounded function W . Indeed, we are looking for a distance similar to
the Wasserstein distance, such that
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• we can evaluate expectations as EW (ξ1 − ξ2) or E|∇W (ξ1 − ξ2)|,
• the set P(Rd;P ) equipped with that distance is complete.

As we control W and its derivatives with P , this motivates to introduce the following
new metric looking like the Wasserstein distance:

Definition 2.10. For µ1, µ2 ∈ P(Rd;P ), we define the P -translation distance between
them as

TP (µ1, µ2) := inf

{∫∫ 1

0

P (|f(s, ω)|)|f ′s(s, ω)|dsdP
}
, (2.19)

where the infimum is taken over the maps f : [0, 1] × Ω → R, where Ω is a probability
space, such that {law of f(0, ·)} = µ1, and {law of f(1, ·)} = µ2.

We also denote the TP -distance between two s-shifted measures (shifting s to the
origin) by

T (s)
P (µ1, µ2) = TP (µ1(·+ s), µ2(·+ s)). (2.20)

Remark 2.11. In dimension one, we have the equivalent definition:

TP (µ1, µ2) :=

∫
R

P (|x|)|µ1((−∞, x])− µ2((−∞, x])|dx.

The equivalence comes from a coupling by increasing rearrangement.

We wish to emphasize that T (s)
P corresponds to the TP distance between two prob-

ability measures shifted by the same shift s (and this shift does not coincide with the
center of the measure in general).

The following lemma will be useful to show the convergence of the empirical mea-
sure in the W2-meaning, as Theorem 3.1 shows.

Lemma 2.12. There exists a constant C > 0 such that for any µ1, µ2 ∈ P(Rd;P ), we
have

W 2
2 (µ1, µ2) ≤ CTP (µ1, µ2).

If moreover µ1 and µ2 belong to the set Kα,C0 , then there exists C ′ > 0 such that

TP (µ1, µ2) ≤ C ′W 2
2 (µ1, µ2).

Proof. Suppose that µ1, µ2 ∈ Kα,C0
. Choose ξ1, ξ2 realizing the optimal W2-transport

between them, and let us estimate the TP -cost of the same transport. Indeed,

TP (µ1, µ2) ≤
∫
|ξ1 − ξ2|P (max(|ξ1|, |ξ2|))dP ≤W2(µ1, µ2)

(∫
P 2(max(|ξ1|, |ξ2|))dP

)1/2

,

where the second inequality is Cauchy-Schwarz. As µ1, µ2 ∈ Kα,C0
, we conclude that∫

P 2(max(|ξ1|, |ξ2|))dP ≤
∫
P 2(r) d max(0, 1− 2C0e

−αr) =: C ′ < +∞.

Let now ξ1, ξ2 be two random variables corresponding to the TP -optimal transport of µ1

to µ2. We then have (due to the assumptions on P , see Remark 1.4)

W 2
2 (µ1, µ2) ≤

∫
|ξ1 − ξ2|2dP ≤

∫
|ξ1 − ξ2| · 2 max(ξ1, ξ2)dP ≤

≤
∫
|ξ1 − ξ2| ·

P (max(ξ1, ξ2)/2)

4
dP ≤ CTP (µ1, µ2). (2.21)

Indeed, the inequality (2.21) is due to the fact that the path between ξ1 and ξ2 either
stays outside the ball of radius 1

2 max(|ξ1|, |ξ2|) centered in 0, in which case we estimate
its length from below as |ξ1 − ξ2|, or this path has a part joining the maximum norm
vector to this ball, which is of length greater than 1

2 max(|ξ1|, |ξ2|) ≥ 1
4 |ξ1 − ξ2|.
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It is clear from the definition that TP is a distance; and also taking into account that
for all x > 0, |P ′(x)| ≤ P (x) (see Remark 1.4, it suffices to increase the constant A1 if
necessary), one easily has

‖µ2‖P ≤ ‖µ1‖P + TP (µ1, µ2). (2.22)

Thus, the set P(Rd;P ) is TP -complete. Indeed, a TP -Cauchy sequence (µn) will have a
weak limit µ and it is easy to check that ‖µ‖P = lim

n→+∞
‖µn‖P < +∞. So, µ ∈ P(Rd;P ).

Now, we are going to estimate the deviation of trajectories in terms of TP -metric, a
result that will be useful in §3.1.

Lemma 2.13. For µ, ν ∈ P(Rd;P ), the following statements hold:

1. The map c is locally Lipschitz in the sense of TP -metric:

|c(µ)− c(ν)| ≤ 1

CW
min(P (|c(µ)|), P (|c(ν)|)) · TP (µ, ν);

2. For all v ∈ Rd, we have TP (µ, µ(·+ v)) ≤ |v|P (|v|)‖µ‖P ;

3. There exists CP > 0 such that for v = c(µ)− c(ν), we have

T (c)
P (µ, ν) ≤ sup

x≥0

P (x+ |v|)
P (x)

TP (µ, ν) ≤

{
(1 + CP |v|) · TP (µ, ν), |v| ≤ 1

P (|v|)TP (µ, ν), ∀|v|;

4. For all κ > 0, the application µc : Pκ(Rd;P )→ P(Rd;P ) is TP -Lipschitz.

Proof. (1) Denoting by cµ (resp. cν) the center of µ (resp. ν), we recall that

∇W ∗ ν(cµ) = ∇W ∗ µ(cµ) +∇W ∗ (ν − µ)(cµ).

Choose any transport f(ω, s) between µ and ν. We then have

|∇W ∗ ν(cµ)| =
∣∣∣∣∇W ∗ µ(cµ) +

∫ 1

0

E
(
∇W|cµ−f(ω,s)

)′
s

ds

∣∣∣∣ ≤
≤
∫ 1

0

E

∣∣∣(∇2W|cµ−f(ω,s)
, f ′s(ω, s)

)∣∣∣ ds ≤
∫ 1

0

E [P (|cµ|+ |f(ω, s)|)|f ′s(ω, s)|] ds ≤

≤
∫ 1

0

E [P (|cµ|)P (|f(ω, s)|)|f ′s(ω, s)|] ds = P (|cµ|)
∫ 1

0

E [P (|f(ω, s)|)|f ′s(ω, s)|] ds.

Passing to the infimum over the transports f(ω, s), we then have

|∇W ∗ ν|cµ | ≤ P (|cµ|)TP (µ, ν).

Join now the points cµ and cν by a line, and recall that W is uniformly convex. The
second derivative of W ∗ ν along this line is then at least CW ν(Rd) and noticing that
∇W ∗ ν(cν) = 0, we obtain

|cν − cµ| ≤
P (|cµ|)
CW

TP (µ, ν). (2.23)

Interverting the roles of µ and ν, we conclude.
(2) We have by definition of TP that

TP (µ, µ(·+ v)) ≤
∫
Rd
|v|P (|x|+ |v|) µ(dx) ≤ |v|P (|v|)

∫
Rd
P (|x|) µ(dx).
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(3) For any transport f(s, ω) between µ = {law of f(0, ω)} and ν = {law of f(1, ω)},
the map f(s, ω)− v is a transport between µc and νc of price∫

Ω

∫ 1

0

P (|f(s, ω)−v|)|f ′s(s, ω)| dsdP(ω) ≤ sup
x≥0

P (x+ |v|)
P (x)

∫
Ω

∫ 1

0

P (|f(s, ω)|)|f ′s(s, ω)| dsdP(ω).

The left-hand side is an upper bound for T (c)
P (µ, ν) and passing in the right-hand side to

the infimum over all the possible transports f , we obtain the desired sup
x≥0

P (x+|v|)
P (x) TP (µ, ν).

(4) Suppose that µ, ν ∈ Pκ(Rd;P ). Then, by the preceding points, we have

TP (µ(·+ cµ), ν(·+ cν)) ≤ TP (µ(·+ cµ), ν(·+ cµ)) + TP (ν(·+ cµ), ν(·+ cν))

≤ P (|cµ|)TP (µ, ν) + |cµ − cν |P (|cµ − cν |)||ν(·+ cν)||P
≤ P (|cµ|)TP (µ, ν)

+ P (|cµ − cν |)
1

CW
min(P (|cµ|), P (|cν |))‖ν‖PTP (µ, ν).

Remark that, as µ, ν ∈ Pκ(Rd;P ), the norms |cµ| and |cν | are uniformly bounded, as well
as ‖ν‖P , thus

TP (µ(·+ cµ), ν(·+ cν)) ≤
(
P (|cµ|) + P (|cµ − cν |)

1

CW
min(P (|cµ|), P (|cν |))‖ν‖P

)
TP (µ, ν),

where P (|cµ|) + P (|cµ − cν |) 1
CW

min(P (|cµ|), P (|cν |))‖ν‖P is uniformly bounded by some
constant Cκ, which is the Lipschitz constant.

2.4 Free energy functional

In this paragraph, we will establish and prove the rigorous statements correspond-
ing to the non-rigorous physical interpretation of §1.3.4.

First, we recall that the free energy of a measure is defined as the sum of its entropy
H and its potential energy:

F(µ) = H(µ) +
1

2

∫∫
µ(x)W (x− y)µ(y) dxdy, where H(µ) =

∫
µ(x) logµ(x) dx.

The free energy of a non-self-interacting gas in an exterior potential V is defined as

FV (µ) = H(µ) +

∫
µ(x)V (x)dx

and the map Π associates to a measure µ the probability measure 1
Z e
−W∗µ(x)dx (as soon

as W ∗ µ is well-defined).
The first auxiliary statement implies that, as we mentioned it in §1.3.4, Π(µ) is the

unique global minimum of FW∗µ.

Lemma 2.14. For any potential V such that e−V is integrable, the probability measure
Z−1e−V is the unique global minimum of FV on P(Rd).

Proof. Let µ = Z−1e−V . Then, for any arbitrary absolutely continuous probability mea-
sure ν, letting ρ(x) = ZeV (x)ν(x) be its density with respect to µ, we see that

FV (ν) =

∫
Rd

(V (x) + log ν(x)) ν(dx) =

∫
Rd

(log ρ(x)− logZ) ν(dx)

=

∫
Rd
ρ(x) log ρ(x) µ(dx)− logZ.

Thus Jensen’s inequality, applied to the convex function ρ log ρ, leads immediately to the
conclusion.
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Now, we will compare the transport distance, from a centered measure to the global
minimum of F , to its free energy functional. Actually, McCann [10] proved the following
for the free energy functional:

Proposition 2.15 (McCann). There exists a centered symmetric density ρ∞, which is
the unique, up to translation, global minimum of F . Moreover, F is a displacement con-
vex functional, that is for two probability measures µ0, µ1 and the Wasserstein-optimal
transport between them

ξs = (1− s)ξ0 + sξ1,

where µ0 = {law of ξ0}, µ1 = {law of ξ1}, E|ξ0 − ξ1|2 = W 2
2 (µ0, µ1), one has

F({law of ξs}) ≥ (1− s)F(µ0) + sF(µ1).

Finally, the transport distance from a centered measure µ to ρ∞ can be estimated as

W 2
2 (µ, ρ∞) ≤ 2

CW
F(µ|ρ∞), (2.24)

where F(µ|ρ∞) = F(µ)−F(ρ∞).

Remark 2.16. i) The uniqueness of the minimum comes from the strict displacement
convexity of the restriction to the space of centered measures.

ii) The functional F is not convex in the usual sense, due to the self-interacting part.
iii) Inequality (1.15) together with Lemma 2.14 immediately imply that the minimum

of F is also a fixed point of Π.

3 Proofs

3.1 Proof of Theorem 1.10

In fact, instead of showing that the centered empirical measure of the process con-
verges toward a (deterministic) density function, we will prove a stronger statement,
controlling the speed of convergence in the sense of the transport distance:

Theorem 3.1. There exists a > 0 such that almost surely, as t→ +∞,

TP (µct , ρ∞) = O
(

exp{−a k+1
√

log t}
)
,

where k is the degree of the polynomial P , as well as

W2(µct , ρ∞) = O
(

exp{−a k+1
√

log t}
)
.

The proof of this statement will be decomposed into several propositions. We first
present them all, postponing their proofs to the end of this paragraph. Then we deduce
from them Theorem 3.1. Finally, we prove these propositions.

Let us explain our strategy to prove this statement. As it was announced in §1.3, we
will discretize the random process. Namely, we define the sequence Tn of moments of
time as Tn := n3/2 and then, ∆Tn := Tn+1 − Tn is of order n1/2 = T

1/3
n . Also, for what

follows, we will associate to a random trajectory (Xt, t ≥ 0) the sequence (Ln) defined
by

Ln := max
0≤t≤Tn+1

|Xt − cTn | ≤ C log Tn. (3.1)

An easy conclusion from the Ornstein-Uhlenbeck comparison §2.1.3 and logarithmic
drift of the center is that almost surely Ln ≤ C ′ log n for any n large enough.

Now, let us state the first of the propositions mentioned above. This result allows
to estimate the “Euler-method” one-step error in the description of the behaviour of
measures µt:
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Proposition 3.2. Almost surely there exists n0 such that for any n ≥ n0, we have

T (cTn )
P (µ[Tn,Tn+1],Π(µTn)) ≤ (∆Tn)−β ,

where β = min
(
8CW ,

1
5d

)
.

Associated to the moments of time Tn, consider the following, roughly speaking,
Euler-approximation maps for the flow ṁ = 1

t (Π(m)−m), with the knots chosen at the
moments Tn:

Definition 3.3. For any i ≤ j, define Φji : P(Rd, P )→ P(Rd, P ) as

Φii = id, Φi+1
i (µ) = µ+

∆Ti
Ti+1

(Π(µ)− µ), Φji = Φjj−1 ◦ · · · ◦ Φi+1
i .

Let us first exhibit an invariant set for Φ.

Lemma 3.4. For any α,C as in Lemma 2.7, corresponding to α0 = CW and C0 = CΠ

(from Proposition 2.9), if µ ∈ Kα,C and i ≤ j, then Φji (µ) ∈ Kα,C .

Proof. This is a direct corollary of Lemma 2.7.

Denote, for a probability measure µ and for a number h > 0, by µ(h) the “smoothing
convolution”

µ(h) := µ ∗
(

1

vol(Uh(0))
· 1lUh(0) dx

)
,

where Uh(0) is the ball of radius h in Rd, centered at the origin.

The following proposition allows to compare the deterministic Euler-like behaviour
of the smoothened, at some moment Ti, measure with the true random trajectory:

Proposition 3.5. There exist some constants A,C1, C
′
1, C2, C3 > 0 such that for any

δ > 0 small enough, almost surely there exists n0 for which, for any j > i ≥ n0, i ≥ [j1−δ]

for j large enough and any h > 0, we have

T
(cTj )

P (Φji (µ
(h)
Ti

), µTj ) ≤ C ′1 · n(1+ 3
2A+ β

2 )δ− β2 + C1h

(
Tj
Ti

)A
, (3.2)

provided that the right-hand side of (3.2) does not exceed C3. Also, under the same
condition,

|c(Φji (µ
(h)
Ti

))− cTj )| ≤ C2.

Next, we have to show that the deterministic trajectory of an absolutely continuous
measure becomes sufficiently close to the set of translates of ρ∞. To do this, due to the
estimate (2.24), it suffices to estimate the free energy:

Proposition 3.6. Let µ ∈ Kα,C . Then, there exist a1, C4, C5 > 0 such that there exists
n0 for which the following statements hold for any j ≥ i ≥ n0:

i) F(Φji (µ)|ρ∞) ≤ C4 + Ti
Tj

(F(µ|ρ∞)− C4),

ii) F(Φji (µ)|ρ∞) ≤ C5e
−a1

k+1
√

log(Tj/Ti) if F(µ|ρ∞) ≤ 2C4.

Now, modulo these propositions, we are ready to prove Theorem 3.1.

EJP 17 (2012), paper 50.
Page 23/37

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v17-2121
http://ejp.ejpecp.org/


Ergodicity of self-attracting motion

Proof of Theorem 3.1. Recall from Proposition 3.2 that β = min(8CW , (5d)−1). Note

first that the distances T (cTn )
P (µt, µTn) for t ∈ [Tn, Tn+1] are uniformly bounded for n

sufficiently big by
Lk+1
n ∆Tn
Tn+1

≤ C (log n)k+1

n
� e−

k+1
√

logn;

where Ln is defined by (3.1). Hence, it suffices to check the estimate for the sequence
of moments Tn:

TP (µcTn , ρ∞) ≤ e−a
k+1
√

logn.

Now, for any sufficiently large n, choose i := [n1−δ], where a small δ > 0 will be chosen
and fixed (in a way that does not depend on n) later. Then, considering for some h > 0 a
smoothened convolution µ(h)

Ti
and its Euler-image Φni (µ

(h)
Ti

), we have by Proposition 3.5

T (cTn )
P (Φni (µ

(h)
Ti

), µTn) ≤ C ′1 · n(1+ 3
2A+ β

2 )δ− β2 + C1h

(
Tn
Ti

)A
, (3.3)

provided that the right-hand side does not exceed C3. So, for any fixed choice of δ <
β/2

1+(3A+β)/2 , the first term in the right-hand side of (3.3) will decrease as a negative

power of n and thus faster than e−a
k+1
√

log Tn .

Take now h = C3

C1

(
Ti
Tn

)A+1

. For such a choice of h, the second term in the right-hand

side of (3.3) is not greater than Ti
Tn
∼ n−δ. So it also decreases quicker than e−a

k+1
√

log Tn

and thus T (cTn )
P (µTn ,Φ

n
i (µ

(h)
Ti

)) ≤ e−a k+1
√

log Tn .

Finally, we have to estimate T (cTn )
P (Φni (µ

(h)
Ti

), ρ∞(· + cTn)). To do this, it suffices to

estimate the free energy F(Φni (µ
(h)
Ti

)), as

TP
(

(Φni (µ
(h)
Ti

))c, ρ∞

)
≤ C ′1 ·W 2

2

(
(Φni (µ

(h)
Ti

))c, ρ∞

)
≤ C ′1 · F(Φni (µ

(h)
Ti

)).

Indeed, remember that

F(µ
(h)
Ti

) = H(µ
(h)
Ti

) +
1

2

∫∫
µ

(h)
Ti

(dx)W (x− y)µ
(h)
Ti

(dy).

The first term here does not exceed − log vol(Uh(0)) ≤ d·| log(h/d)| (as the density of µ(h)
Ti

does not exceed (h/d)−d), while the second term is bounded. Thus F(µ
(h)
Ti

) ≤ C6 log n for

some constant C6. Hence, from the first part of Proposition 3.6, for j =

[(
C6

C4
log n

)2/3

i

]
,

we have

F(Φji (µ
(h)
Ti

)|ρ∞) ≤ C4 +
Ti
Tj

(
F(µ

(h)
Ti
|ρ∞)− C4

)
≤ 2C4.

Applying the second part, with Φji (µ
(h)
Ti

) as a starting measure, we obtain

F(Φni (µ
(h)
Ti

)) = F(Φnj ◦ Φji (µ
(h)
Ti

)) ≤ C5e
−a1

k+1
√

log(Tn/Tj) ≤ e−a
k+1
√

log Tn .

Thus, F(Φni (µ
(h)
Ti

)) ≤ e−a k+1
√

log Ti and hence

TP
(

(Φni (µ
(h)
Ti

))c, ρ∞

)
≤ C ′1 ·W 2

2

(
(Φni (µ

(h)
Ti

))c, ρ∞

)
≤ C ′1 · e−a

k+1
√

log Tn .

Let us now prove Propositions 3.2–3.6. Each proposition will be proved in a different
paragraph.
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3.1.1 One-step error estimate

This section is devoted to the proof of Proposition 3.2.
To estimate the difference between the normalized occupation measure of Xt on

[Tn, Tn+1], and the measure Π(µt), we will first introduce another process, for which
Π(µTn) is the stationary measure: the process with “frozen” measure µTn . More pre-
cisely, on [Tn, Tn+1) we consider a process Y with some choice of YTn , satisfying

dYt =
√

2 dBt −∇W ∗ µTn(Yt) dt, (3.4)

generated by the same Brownian motion Bt as Xt. In other words, the couple (Xt, Yt)

satisfies {
dXt =

√
2 dBt −∇W ∗ µt(Xt) dt

dYt =
√

2 dBt −∇W ∗ µTn(Yt) dt.
(3.5)

The following lemma allows to control the difference between them:

Lemma 3.7. For all t ∈ [Tn, Tn+1], we have

|Xt − Yt| ≤ e−CW (t−Tn)|XTn − YTn |+
∆Tn
TnCW

P (2Ln). (3.6)

Proof. The process Xt − Yt is of class C1. We compute

d

dt
(Xt − Yt) = −(∇W ∗ µt(Xt)−∇W ∗ µTn(Yt)).

Adding and substracting ∇W ∗ µTn(Xt), we see that

d(Xt − Yt) = − [∇W ∗ (µt − µTn)(Xt)− (∇W ∗ µTn(Yt)−∇W ∗ µTn(Xt))] dt.

The last term can be rewritten as

−(∇W ∗ µTn(Yt)−∇W ∗ µTn(Xt)) =
1

Tn

∫ Tn

0

∫ 1

0

∇2W |uYt+(1−u)Xt−Xs · (Xt − Yt)duds.

Noting the first term as Dt, and putting a scalar product with Xt − Yt, we see

1

2

d

dt
|Xt − Yt|2 = (Dt, Xt − Yt)

− 1

Tn

∫ Tn

0

(∫ 1

0

∇2W |(uYt+(1−u)Xt)−Xsdu · (Xt − Yt), Xt − Yt
)

ds

≤ (Dt, Xt − Yt)− CW |Xt − Yt|2.

Thus, d
dt |Xt−Yt|2 ≤ −2CW |Xt−Yt|2 + 2|Dt||Xt−Yt|. Redividing by 2|Xt−Yt|, we obtain

d

dt
|Xt − Yt| ≤ |Dt| − CW |Xt − Yt|. (3.7)

Finally, notice that |Dt| ≤ P (2Ln)∆Tn
Tn

, as it is the difference between the forces gener-

ated atXt by µTn and by µt = µTn+ t−Tn
t

(
µ[Tn,t] − µTn

)
. Solving u̇t = P (2Ln)∆Tn

Tn
−CWut,

we obtain the desired estimate for the difference |Xt − Yt| on the interval [Tn, Tn+1].

For the following (see Proposition 3.9 and Lemma 3.10 below), we assume that the
initial distribution of YTn is absolutely continuous with respect to Π(µTn), and we use
an estimate on its density. So finally, we define the process Yt for all t in the following
way: for every interval [Tn, Tn+1) the initial value YTn is chosen randomly with respect
to the restriction of Π(µTn) to U2(cTn), the ball of radius 2. On each new interval, the
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choice is independent of X and of all the past. Then, inside the interval (Tn, Tn+1), the
couple (Xn, Yn) satisfies (3.5).

Let us compare the occupation measures of the processesX and Y on these intervals
of time. Denote by µY[Tn,Tn+1] the occupation measure of Y on the interval [Tn, Tn+1].
Then, we have the following:

Lemma 3.8. For any family of choices YTn ∈ U2(cTn), we have

T (cTn )
P (µ[Tn,Tn+1], µ

Y
[Tn,Tn+1]) = o(T−1/5

n ), as n→ +∞,

provided that for n large enough Ln ≤ C ′3 log n.

Proof. The measures µ[Tn,Tn+1] and µY[Tn,Tn+1] are both images of the normalized Lebesgue

measure 1
∆Tn

Leb[Tn,Tn+1] under the maps X• and Y• respectively. So, consider the trans-
port ξs(t) = (1− s)Xt + sYt between them.

Using this transport, we have an estimate

T (cTn )
P (µ[Tn,Tn+1], µ

Y
[Tn,Tn+1]) ≤

1

∆Tn

∫ Tn+1

Tn

∫ 1

0

P ((1− s)Xt + sYt − cTn)|Xt − Yt|dsdt

≤ 1

∆Tn

∫ Tn+1

Tn

P (max(|Xt − cTn |, |Yt − cTn |))|Xt − Yt|dt.(3.8)

By definition of Ln, we have for all t ∈ [Tn, Tn+1], |Xt− cTn | ≤ Ln and due to Lemma 3.7,

|Yt −Xt| ≤ e−CW (t−Tn)|XTn − YTn |+
∆Tn
TnCW

P (2Ln)

≤ Ln + 1 +
∆Tn
TnCW

P (2Ln) ≤ Ln + 2,

provided that Ln ≤ C ′ log n and n is sufficiently big. This implies that

|Yt − cTn | ≤ |Yt −Xt|+ |Xt − cTn | ≤ 2Ln + 2.

Now, substituting the obtained estimates to the right-hand side of (3.6), we see that

T (cTn )
P (µ[Tn,Tn+1], µ

Y
[Tn,Tn+1]) ≤

≤ 1

∆Tn

∫ Tn+1

Tn

P (2Ln + 2) ·
(
e−CW (t−Tn)(Ln + 1) +

∆Tn
TnCW

P (2Ln)

)
dt ≤

≤ P (2Ln + 2)P (2Ln)∆Tn
CWTn

+
P (2Ln + 2)(Ln + 1)

CW∆Tn
= o(T−1/5

n )

(we have used that ∆Tn ∼ T 1/3
n , and once again the logarithmic growth of Ln).

Now, we will compare the occupation measure µY[Tn,Tn+1] with Π(µTn). To do this,
we use Proposition 1.2 of Cattiaux & Guillin [6] (see also Wu [18]), stating that the
trajectory mean of a function ψ is, with a probability close to 1 that can be exponentially
controlled, close to its stationary mean. Namely, this proposition says the following:

Proposition 3.9 (Cattiaux & Guillin [6]). Given a process ξ with stationary measure m
and Poincaré constant CP , an initial measure ν and a function ψ satisfying |ψ| ≤ 1, one
has for any 0 < ρ < 1 and t > 0

Pν

(
1

t

∫ t

0

ψ(ξs) ds−
∫
ψ dm ≥ ρ

)
≤
∥∥∥∥ dν

dm

∥∥∥∥
L2(m)

exp

(
− tρ2

8CPV arm(ψ)

)
.
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We will use this proposition with ψ being the indicator function ψ = 1lM of various
sets M : it then allows to compare the occupation measure of the set M to its Π(µTn)-
measure.

We know that m = Π(µTn) is the unique stationary measure of the drifted Brownian
motion (3.4). Also, the Poincaré constant for this process is 2CW (see [1]).

To proceed, we have to declare the initial measure ν = νn for YTn , and we choose it
to be the measure Π(µTn) restricted to the ball U2(cTn) and then normalized accordingly.
Then, ∥∥∥∥ dνn

dΠ(µTn)

∥∥∥∥
L2(Π(µTn ))

=
1

Π(µTn)(U2(cTn))
≤ cE = C ′1,

the latter inequality is due to the exponential tails of Π(µTn), see (2.16). Having made
these choices, we are going to prove the following

Lemma 3.10. For n large enough, we have almost surely

T (cTn )
P (µY[Tn,Tn+1],Π(µTn)) = O((∆Tn)−min(8CW ,

1
5d )).

Proof. The previous estimates imply that the process Yt on [Tn, Tn+1] almost surely for
all n sufficiently big stays inside the ball URn(cTn), where Rn := 3Ln. Now, take this
ball and cut it into some number Nn parts M1, . . . ,MNn of diameter less than εn := 2dRn

d
√
Nn

(by cubic the grid with the step 2Rn/
d
√
Nn, that is decomposing each of the coordinate

segments of length 2Rn into d
√
Nn parts). We will choose and fix the number Nn later.

For each of these parts, choose

ρj := max

(
1

N2
n

,
Π(µTn)(Mj)

Nn

)
.

Let ψj = 1lMj . Then, the probability that all the empirical measures µY[Tn,Tn+1](Mj) are
ρj-close to their “theoretical” values Π(µTn)(Mj) is at least

1− 2cE

Nn∑
j=1

exp

(
−

ρ2
j∆Tn

16CWV arΠ(µTn )(ψj)

)
.

As the variance V arΠ(µTn )(ψj) does not exceed Π(µTn)(ψj), we have a lower bound for
the previous probability by

1− 2cE

Nn∑
j=1

exp

(
−ρj∆Tn

16CW
· ρj

Π(µTn)(ψj)

)
≥ 1− 2NncE exp

(
− ∆Tn

16CWN3
n

)
,

as ρj
Π(µTn )(ψj)

≥ 1
Nn

and ρj ≥ 1
N2
n

. So, taking Nn = 10
√
Tn ∼ (∆Tn)3/10, we see that the

series ∑
n

Nn exp

(
− ∆Tn

16CWN3
n

)
�
∑
n

(∆Tn)3/10 exp
(
−(∆Tn)1/10

)
converges, so almost surely for all n sufficiently big, all the closeness conditions on
the occupation measures are satisfied: the measures µY[Tn,Tn+1](Mj) are a.s. ρj-close to
Π(µTn)(Mj).

Now, let us estimate the cTn -centered distance T (cTn )
P (µY[Tn,Tn+1],Π(µTn)), provided

that these conditions are fulfilled. Indeed, first transport inside each Mj the part

min(µY[Tn,Tn+1],Π(µTn)): we pay at most P (3Ln)εn = O
(

(∆Tn)−
1
5d

)
. Next, bring the
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exterior part of Π(µTn) to the ball URn(cTn): due to the exponential decrease estimates,
we pay at most∫ +∞

Rn

P (r)d(1− Ce−CW r) ∼ Rk+1
n e−CWRn = O

(
(∆Tn)−8CW

)
as Rn = 3 log Tn. Finally, let us re-distribute the parts left: we pay at most

Nn∑
j=1

ρjRnP (Rn) = RnP (Rn)

Nn∑
j=1

max

(
1

N2
n

,
Π(µTn)(Mj)

Nn

)

≤ RnP (Rn)

Nn∑
j=1

(
1

N2
n

+
Π(µTn)(Mj)

Nn

)
≤ 2RnP (Rn)

1

Nn
= O

(
(∆Tn)−1/5

)
.

Adding these three estimates, we obtain the desired T cTnP (µY[Tn,Tn+1],Π(µTn)) = O
(
(∆Tn)−β

)
with β = min(8CW , (5d)−1).

Putting Lemmas 3.8 and 3.10 together, and recalling that ∆Tn ∼ T
1
3
n , we conclude

that almost surely, for all n sufficiently big,

T (cTn )
P (µ[Tn,Tn+1],Π(µTn)) ≤ T−min( 8

3CW ,
1

15d )
n .

Proposition 3.2 is thus proven.

3.1.2 Euler method error control

Let us prove Proposition 3.5 by induction on j. Roughly speaking, the scheme of the
proof is the following. The error of the Euler method approximation at any moment Tj+1

comes from two parts: on one hand, from the (eventually growing) error at the moment
Tj , and on the other hand, from the difference between µ[Tj ,Tj+1] and Π(µTj ). The first
part of the error can be controlled due to the Lipschitz property of the map Π (on the
compact set Kα,C to which belong all the measures µ of interest here). Indeed, usually
under the Lipschitz flow the error grows exponentially with time, but as we have a
factor 1

t in the right hand side, the error grows exponentially in log t (the fraction (
Tj
Ti

)A

in the right hand side comes from there). Finally, the second part is estimated using an
explicit ergodic theorem – a statement by Cattiaux & Guillin, giving an upper bound for
the probability that the distribution of a random trajectory is too far from the stationary
measure.

The case j = i is obvious: the only term in the right-hand side is C1h, being an
estimate for the distance to the smoothened convolution:

T (cTi )

P (µ
(h)
Ti
, µTi) ≤

∫
Rd

∫
Uh(0)

|v| · P (max(|x− cTi |, |x+ v − cTi |))
dv

vol(Uh(0))
dµ(x)

≤
∫
Rd
P (|x− cTi |+ h) · hdµ(x) ≤ P (h)‖µ(·+ cTi)‖P · h = C1h,

provided that h ≤ 1 (because the norm ‖µcTi‖P is bounded due to the exponential tails
of µc).

Let us now check the step of induction. Namely, assume that the conclusion holds
for some j ≥ i:

T
(cTj )

P (Φji (µ
(h)
Ti

), µTj ) ≤
j−1∑
k=i

∆Tk
Tk+1

(∆Tk)−β
(
Tj
Tk

)A
+ C1h

(
Tj
Ti

)A
,
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and check it for j + 1. To do this, first shift the center of the translation distance from
cTj+1

to cTj : from Proposition 2.5, we have

T
(cTj+1

)

P (·, ·) ≤ (1 + C ′1 · |cTj+1 − cTj |)T
(cTj )

P (·, ·),

provided that |cTj+1
− cTj | ≤ 1. On the other hand, we have by Lemma 2.13

|cTj+1 − cTj | ≤ LipKα,C (c) · T
(cTj )

P (µTj+1 , µTj ) ≤ c′1 ·
∆Tj
Tj+1

,

so finally

T
(cTj+1

)

P (·, ·) ≤
(

1 + C ′1 ·
∆Tj
Tj+1

)
T

(cTj )

P (·, ·) ≤
(
Tj+1

Tj

)A1

T
(cTj )

P (·, ·). (3.9)

Now, the map Π is Lipschitz on Kα,C by Proposition 2.9, so for any two measures
ν1, ν2, one has

TP (Φj+1
j (ν1),Φj+1

j (ν2)) ≤
(

1 +
∆Tj
Tj+1

(LipKα,C (Π) + 1)

)
TP (ν1, ν2) ≤

(
Tj+1

Tj

)A2

TP (ν1, ν2).

Substituting for ν1 and ν2 respectively the translated by cTj images of measures

Φji (µ
(h)
Ti

) and µTj respectively, we see that

T
(cTj )

P (Φj+1
i (µ

(h)
Ti

),Φj+1
j (µTj )) ≤

(
Tj+1

Tj

)A2

T
(cTj )

P (Φji (µ
(h)
Ti

), µTj ). (3.10)

Now, using this estimate and Proposition 3.2 asserting that

T
(cTj )

P (Φj+1
j (µTj ), µTj+1

) ≤
(

∆Tj
Tj+1

)
(∆Tj)

−β ,

with β = min(8CW , (5d)−1), we obtain

T
(cTj+1

)

P (Φj+1
i (µ

(h)
Ti

), µTj+1) ≤
(
Tj+1

Tj

)A1

T
(cTj )

P (Φj+1
i (µ

(h)
Ti

), µTj+1) ≤

≤
(
Tj+1

Tj

)A1 (
T

(cTj )

P (Φj+1
i (µ

(h)
Ti

),Φj+1
j (µTj )) + T

(cTj )

P (Φj+1
j (µTj ), µTj+1

)
)
≤

≤
(
Tj+1

Tj

)A1
((

Tj+1

Tj

)A2

T
(cTj )

P (Φji (µ
(h)
Ti

), µTj ) +
∆Tj
Tj+1

(∆Tj)
−β

)
=

=

(
Tj+1

Tj

)A1+A2

T
(cTj )

P (Φji (µ
(h)
Ti

), µTj ) +

(
Tj+1

Tj

)A1 ∆Tj
Tj+1

(∆Tj)
−β . (3.11)

Finally, we fix the choice of A := A1 + A2, and, using the induction assumption, the
right-hand side of (3.11) is not greater than

(
Tj+1

Tj

)A(j−1∑
k=i

∆Tk
Tk+1

(∆Tk)−β
(
Tj
Tk

)A
+ C1h

(
Tj
Ti

)A)
+

(
Tj+1

Tj

)A1 ∆Tj
Tj+1

(∆Tj)
−β ≤

≤
j−1∑
k=i

∆Tk
Tk+1

(∆Tk)−β
(
Tj+1

Tk

)A
+ C1h

(
Tj+1

Ti

)A
+

(
Tj+1

Tj

)A
∆Tj
Tj+1

(∆Tj)
−β =

=

j∑
k=i

∆Tk
Tk+1

(∆Tk)−β
(
Tj+1

Tk

)A
+ C1h

(
Tj+1

Ti

)A
.
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The induction step is proved.

Now, for j large enough, we choose i = [j1−δ]. Then, we have by the preceding
inequalities

T
(cTj )

P (µTj ,Φ
j
i (µ

(h)
Ti

)) ≤
j−1∑
k=i

(∆Tk)1−β

Tk+1

(
Tj
Tk

)A
+ C1h

(
Tj
Ti

)A
, (3.12)

provided that the right-hand side does not exceed C3.

Denote by C ′1 a generic constant. Let us estimate the first term in the right-hand
side:

j−1∑
k=i

∆Tk
Tk+1

(∆Tk)−β
(
Tj
Tk

)A
≤

j−1∑
k=i

2

k
(∆Tk)−β

(
Tj
Tk

)A
≤

≤
j−1∑
k=i

2

i
(∆Ti)

−β
(
Tj
Ti

)A
≤ C ′1 · j

(i1/2)−β

i

(
j3/2

i3/2

)A
≤ C ′1 · j(1+ 3

2A+ β
2 )δ− β2 . (3.13)

3.1.3 Decrease of energy

This section is devoted to the proof of Proposition 3.6. Actually, it will be a corollary of
a result showing that the relative free energy F(Φji (µ)|ρ∞) decreases with a speed that
can be explicitly controlled.

The decrease of energy can be estimated in the following way. First, we note that
the only way for µ ∈ Kα,C to have big free energy is to have big entropy. Hence, if
this energy is sufficiently big, the free energy of the images Φji (µ) decreases, up to an

additive constant, as TiF(µ)
Tj

. Indeed, the self-interaction part stays uniformly bounded,

as the set Kα,C is a no-exit set for the discretized dynamics. Now, the measure Φji (µ) is
a mixture of µ taken with the proportion Ti

Tj
, and of various Π(Φi

′

i (µ)). The latter ones
are “nice” measures (having uniformly bounded densities). Hence, their entropies are
uniformly bounded, and hence the entropy H(Φji (µ)) is bounded by TiF(µ)

Tj
+ const.

The above arguments allow to show that the energy of Φji (µ) becomes less than a
uniform constant at the time Tj = Ti ·F(µ). A finer technique is required to estimate the
decrease speed once the free energy is sufficiently small. Namely: let ϕµ(·) := FW∗µ(·)
be the free energy in the µ-generated potential. Then, one can easily see that the energy
of a linear combination (1 − ε)µ + εΠ(µ) differs from the energy of µ by the difference
ϕµ(Π(µ)) − ϕµ(µ) plus the second-order terms coming from the self-interaction of the
replaced part. Now, the measure Π(µ) is the measure with the least free energy in the
potential W ∗ µ. Hence, to estimate the decrease speed of F(Φji (µ)), we have to find a
lower bound for ϕµ(µ)− ϕµ(Π(µ)).

This is done with help of the displacement convexity of the functional F . Namely,
considering the optimal transport νs from µ to ρ∞(·+cµ), we notice that the free energy
F(νs|ρ∞) decreases at least linearly. On the other hand, for small values of s, up to the
second order terms, this energy can be once again estimated as the energy of µ minus
the difference ϕµ(µ) − ϕµ(νs). With a well-chosen moment s, we obtain a measure νs
with a good lower bound for this difference, and hence immediately (as Π(µ) is the
global minimum for ϕµ(·)) obtain a lower bound for ϕµ(µ)−ϕµ(Π(µ)). This lower bound
will be obtained in terms of F(µ|ρ∞) only, and thus the free energy of Φji (µ) will be
shown to decrease at least as quickly as a solution of some differential equation (see
Lemma 3.12 below).

Formalizing the above arguments, we will first state the following lemma:
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Lemma 3.11. For any µ ∈ Kα,C , we have ϕµ(µ)− ϕµ(Π(µ)) ≥ g(F(µ|ρ∞)), where

g(E) =


C7

E
| logE|k , 0 ≤ E ≤ ε0 < 1

E
ε0
g(ε0), ε0 < E ≤ ε1

E + (g(ε1)− ε1), E > ε1

is an increasing continuous function, and the constants C7, ε0, ε1 depend only on α and
C.

We postpone its proof, but we use it as a motivation for the next result, which imme-
diately implies Proposition 3.6:

Lemma 3.12. There exists n0 such that for any µ ∈ Kα,C and for any j ≥ i ≥ n0, we
have

F(Φji (µ)|ρ∞) ≤ y(Tj),

where y is the unique solution to

ẏ = −1

t

g(y)

2
, (3.14)

with the initial condition y(Ti) = max(F(µTi), 1).

Proposition 3.6 is its immediate corollary, as the solution of (3.14) decreases expo-

nentially for big energies y and has the form y(t) = exp

{
− k+1

√
C7

2 (k + 1) log
(
t
T0

)}
for

y ≤ ε0 (this situation happens for t large enough).
Finally, we need two easy auxiliary statements for the free energy:

Lemma 3.13. For any absolutely continuous probability measures µ, ν ∈ P(Rd;P ),
such that their repective free energies are finite, and for all λ ∈ [0, 1], we have

F((1− λ)µ+ λν|ρ∞) ≤ F(µ|ρ∞)− λ(ϕµ(µ)− ϕµ(ν))+

+
λ2

2

∫∫
(µ− ν)(x)W (x− y)(µ− ν)(y) dxdy. (3.15)

Moreover, for all absolutely continuous probability measure µ ∈ P(Rd;P ), we have

ϕµ(µ)− ϕµ(ν) = F(µ)−F(ν) +
1

2

∫∫
(µ− ν)(x)W (x− y)(µ− ν)(y) dxdy. (3.16)

Proof. Note that H((1− λ)µ+ λν) ≤ (1− λ)H(µ) + λH(ν) = H(µ)− λ (H(µ)−H(ν)). So,
it suffices to prove (3.15) with entropy terms removed from both sides (from both F and
ϕµ in the right-hand side). After this removing, the formula becomes a Taylor expansion
for a degree two polynomial. The same holds for (3.16), with a remark that the entropy
terms are exactly the same in both sides.

Corollary 3.14. For any fixed α,C, there exists C ′′ such that for all µ ∈ Kα,C , for all
0 < λ < 1, we have

F((1− λ)µ+ λΠ(µ)|ρ∞) ≤ F(µ|ρ∞)− λ (ϕµ(µ)− ϕµ(Π(µ))) + C ′′λ2.

Proof. For µ ∈ Kα,C , the integral that is the coefficient before λ2 in (3.15) is uniformly
bounded.

Let us now prove the previous lemmas.
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Proof of Lemma 3.12. Recall that, due to Corollary 3.14, we have for µ ∈ Kα,C ,

F((1− λ)µ+ λΠ(µ)|ρ∞) ≤ F(µ|ρ∞)− λ (ϕµ(µ)− ϕµ(Π(µ))) + C ′′λ2.

Now note that, if n0 is chosen sufficiently big, we have for any j:

C ′′
∆Tj
Tj+1

≤ g(y(Tj))

3
. (3.17)

Indeed, the left-hand side of (3.17) decreases as 1
j , while its right-hand side decreases

as exp{− k+1

√
C7

2 (k + 1) log Tj} ≥ 1
j . Now, for every µ̌j := Φji (µ), we have µ̌j ∈ Kα,C due

to Lemma 3.4 and hence due to Lemma 3.11:

ϕµ̌j (µ̌j)− ϕµ̌j (Π(µ̌j)) ≥ g(F(µ̌j |ρ∞)).

Hence, proving the statement of the lemma by induction on j, we have to deduce from
F(µ̌j |ρ∞) ≤ y(Tj) the analogous statement for µ̌j+1, given that

F(µ̌j+1|ρ∞) ≤ y(Tj)− g(y(Tj))
∆Tj
Tj+1

+ C ′′
(

∆Tj
Tj+1

)2

≤ y(Tj)−
2

3
g(y(Tj))

∆Tj
Tj+1

.

Let θj = log Tj . Then, ∆θj := θj+1 − θj ≤ 4
3

∆Tj
Tj+1

for all j large enough. So, once again
asking n0 to be chosen sufficiently big, we have

F(µ̌j+1|ρ∞) ≤ y(Tj)−
2

3
· 3

4
g(y(Tj))∆θj = ỹ(θj)−

g(ỹ(θj))

2
∆θj ,

where ỹ(θ) = y(eθ). We conclude by noticing that g(y) is an increasing function of y. So,
as ỹ(θ) is the solution to the equation ỹ(θ)′ = − g(ỹ(θ))

2 , we have

ỹ(θj)−
g(ỹ(θj))

2
∆θj ≤ ỹ(θj+1),

hence F(µ̌j+1|ρ∞) ≤ ỹ(θj+1) = y(Tj+1), thus proving the induction step.

Proof of Lemma 3.11. Note first that, for µ ∈ Kα,C , the integral∫∫
(µ−Π(µ))(dx)W (x− y)(µ−Π(µ))(dy)

is bounded by a uniform constant. Thus, due to Lemma 3.13, ϕµ(µ) − ϕµ(Π(µ)) admits
a lower bound

ϕµ(µ)− ϕµ(Π(µ)) ≥ F(µ|ρ∞)− C∆ (3.18)

where the constant C∆ is uniform over all µ ∈ Kα,C .
Now, let us give another way to estimate the difference ϕµ(µ) − ϕµ(Π(µ)). Indeed,

Π(µ) is the global minimiser of F , hence for any probability measure ρ, we have

ϕµ(µ)− ϕµ(Π(µ)) ≥ ϕµ(µ)− ϕµ(ρ). (3.19)

Recall that the free energy functional F is displacement convex. Denote by ξs = (1 −
s)ξ0 + sξ1, for 0 ≤ s ≤ 1, the quadratic Wasserstein optimal transport between µ = {law
of ξ0} and ρ∞(·+ cµ) = {law of ξ1}. Let νs = {law of ξs}. Then,

F(νs|ρ∞) ≥ (1− s)F(µ|ρ∞).
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Thus, we have due to Lemma 3.13,

ϕµ(µ)− ϕµ(νs) = F(µ|ρ∞)−F(νs|ρ∞) +
1

2

∫∫
(νs − µ)(dx)W (x− y)(νs − µ)(dy)

≥ sF(µ|ρ∞) +
1

2

∫∫
(νs − µ)(dx)W (x− y)(νs − µ)(dy).

Let us now estimate the second term in the right-hand side of this inequality. Indeed,
let (η0, η1) be an independent copy of (ξ0, ξ1). Then∫∫

W (x− y)(νs − µ)(dx)(νs − µ)(dy) =

= E [W (ξ0 − η0)−W (ξs − η0)−W (ξ0 − ηs) +W (ξs − ηs)] .

For any fixed L, we can divide this expectation into two parts: the one corresponding
to max

i,j∈{0,1}
(|ξi|, |ηj |) > L and the one with |ξi| ≤ L and |ηi| ≤ L for i = 0, 1. We also

remind that νi ∈ Kα,C2 for i = 0, 1 and that P controls W as well as its first and second
derivatives. So, there exists a positive constant C̃ such that

|E [W (ξ0 − η0)−W (ξs − η0)−W (ξ0 − ηs) +W (ξs − ηs)]|

≤

∣∣∣∣∣E [W (ξ0 − η0)−W (ξs − η0)−W (ξ0 − ηs) +W (ξs − ηs)] 1l{
max

i,j∈{0,1}
(|ξi|,|ηj |)≤L

}
∣∣∣∣∣

+

∫ +∞

L

W (2l) dPmax(ξ0,ξ1,η0,η1)(l)

≤ E

[
max
|x|≤4L

P (|x|)|ξ0 − ξs||η0 − ηs|1l{
max

i,j∈{0,1}
(|ξi|,|ηj |)≤L

}
]

+ 4

∫ ∞
L

P (2l) d(1− C2e
−αl)4

≤ s2P (4L)W 2
2 (ν0, ν1) + C̃P (2L)e−αL.

So, using the already mentioned comparison W 2
2 (µ, ρ∞) ≤ 2

CW
F(µ|ρ∞), we have

ϕµ(µ)− ϕµ(νs) ≥ sF(µ|ρ∞)− s2P (4L)W 2
2 (µ, ρ∞)− C̃P (2L)e−αL

≥ sF(µ|ρ∞)− 2

CW
s2P (4L)F(µ|ρ∞)− C̃P (2L)e−αL.

We decide from now on to fix s = CW
4P (4L) , with the choice of L to be fixed later. Then,

s− 2
CW

s2P (4L) = s
2 and

ϕµ(µ)− ϕµ(νs) ≥
CW

8P (4L)
F(µ|ρ∞)− C̃P (2L)e−αL. (3.20)

For F(µ|ρ∞) sufficiently small, fixing L = 2
α | logF(µ|ρ∞)|, we have

CW
16P (4L)

F(µ|ρ∞) ≥ C̃P (2L)e−αL (3.21)

and hence the right-hand side of (3.20) is estimated from below by

CW
16P (4L)

F(µ|ρ∞) ≥ C7

| logF(µ|ρ∞)|k
F(µ|ρ∞).

So taking g(E) := C7

| logE|kE for such values of E = F(µ|ρ∞), the conclusion of the
lemma is satisfied for such E’s. Next, fixing ε0 to be such that (3.21) is satisfied for
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F(µ|ρ∞) ≤ ε0, and for any F(µ|ρ∞) ≥ ε0, choosing the same L as for F(µ|ρ∞) = ε0, we
have

CW
8P (4L)

F(µ|ρ∞)− C̃P (2L)e−αL ≥ F(µ|ρ∞)

ε0
g(ε0),

what allows to deduce

ϕµ(µ)− ϕµ(Π(µ)) ≥

{
g(F(µ|ρ∞)) if F(µ|ρ∞) ≤ ε0,
F(µ|ρ∞)

ε0
g(ε0) if F(µ|ρ∞) > ε0.

(3.22)

Finally, taking the maximum between the right-hand side of (3.18) and (3.22), we obtain
the desired conclusion.

3.2 Proof of Theorem 1.11

To prove that the center of the measure converges a.s., we will show that the se-
quence (cTn) converges a.s. (with a well-chosen time-step Tn) as a Cauchy sequence.
Our strategy will consist in using some of the latter estimates of §3.1 to show that the
series of general term |cTn+1 − cTn | converges a.s. and that the oscillations osc

t∈[Tn,Tn+1]
ct

go to zero. This will imply the existence of the limit of ct.
As it has been already shown in (2.7), we have for any t ∈ [Tn, Tn+1]

|ct − cTn | ≤
∫ t

Tn

P (|Xu − cu|)
CWu

du ≤
∫ t

Tn

P (Ln + |cu − cTn |)
CWu

du ≤ P (Ln + C3)
∆Tn
Tn

.

Thus, almost surely one has osc
t∈[Tn,Tn+1]

ct → 0 as n→ +∞. So, to prove Theorem 1.11, it

suffices to show that the sequence (cTn) converges almost surely.
Now, let us estimate the distance |cTn+1

− cTn |. Indeed, we have

µTn+1 = µTn +
∆Tn
Tn+1

(µ[Tn,Tn+1] − µTn).

Translating cTn to the origin, using the decrease estimates of §3.1 and recalling that
c(·) : K0

α,C → Rd is a TP -Lipschitz function, we see that

|cTn+1
− cTn | ≤ LipK0

α,C
(c) · ∆Tn

Tn+1
· T (cTn )
P (µ[Tn,Tn+1], µTn).

As in §3.1.2, the distance in the right-hand side can be estimated as the sum of two
distances:

T (cTn )
P (µ[Tn,Tn+1], µTn) ≤ T (cTn )

P (µ[Tn,Tn+1],Π(µTn)) + T (cTn )
P (Π(µTn), µTn). (3.23)

We already have an estimation of the first term in this sum:

T (cTn )
P (µ[Tn,Tn+1],Π(µ)) ≤ T−min( 8

3CW ,
1

15d )
n .

On the other hand, the limit density ρ∞ is a fixed point of the map Π. And the map Π

being Lipschitz on K0
α,C , the second summand in (3.23) can be estimated as

T (cTn )
P (Π(µTn), µTn) ≤ (LipK0

α,C
(Π) + 1) · TP (µcTn , ρ∞).

The latter distance is already estimated in the proof of Theorem 1.10: almost surely for
n large enough, we have

TP (µcTn , ρ∞) ≤ exp{−a k+1
√

log Tn}.
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Finally, adding the estimates for the first and the second terms in (3.23), we obtain that
for all n sufficiently big,

T (cTn )
P (µ[Tn,Tn+1], µTn) ≤ T−min( 8

3CW ,
1

15d )
n + (LipK0

α,C
(Π) + 1) exp{−a k+1

√
log Tn}

and hence

|cTn+1
−cTn | ≤ LipK0

α,C
(c)·∆Tn

Tn+1

(
T
−min( 8

3CW ,
1

15d )
n + (LipK0

α,C
(Π) + 1) exp{−a k+1

√
log Tn}

)
.

We choose Tn = n3/2 and so ∆Tn
Tn
� n−1. Hence

∑
n

|cTn+1 − cTn | ≤ const ·
∑
n

1

n1+min(4CW ,1/(10d))
+ C ′1 ·

∑
n

exp{−a k+1

√
3
2 log n}

n
.

Both series in the right-hand side converge, and thus the series of general term |cTn+1
−

cTn | converges almost surely. This concludes the proof.

Appendix 1: Singularity at t = 0

Let us now prove that a solution to the equation (1.1) with any initial condition at
t = 0 (where the equation has a singularity) exists and is unique.

Proposition 3.15. For any x0 and almost every trajectory Bt of the Brownian motion, a
(continuous at t = 0) solution Xt to the equation (1.1) with the initial condition X0 = x0

exists on all the interval [0,+∞) and is unique.

Proof. As Proposition 2.2 provides us global existence and uniqueness of solutions,
starting from any arbitrary positive time r > 0, it suffices to check the existence and
uniqueness on some interval [0, δ). For the sake of simplicity of notation, suppose that
x0 = 0.

Let δ1 > 0 be such that for all 0 ≤ t ≤ δ1, |Bt| ≤ 1
2 and δ1 sup|x|≤2 |∇W (x)| ≤ 1

3 . We
work on the trajectories which are staying inside U1(0), the unit ball centered in x0 = 0.
So, we consider X• : [0, δ1) → U1(0), t 7→ Xt. Denote by µX the empirical measure of
the process X. Then, the application χ : X 7→ X̃ such that

X̃t = Bt +

∫ t

0

∇W ∗ µXs (X̃s)ds,

is well-defined on this space, and X̃t also remains stuck in U1(0). Indeed, for any time
t ≤ δ1, such that the solution X̃ is defined on [0, t] and stays in U1(0), we have∣∣∣∣∫ t

0

∇W ∗ µXs (X̃s) ds

∣∣∣∣ =

∣∣∣∣∫ t

0

1

s

∫ s

0

∇W (X̃s −Xu) duds

∣∣∣∣
≤

∫ t

0

1

s

∫ s

0

sup
|x|≤2

|∇W (x)|duds ≤ δ1 sup
|x|≤2

|∇W (x)| ≤ 1

3
.

Thus, if there existed a time t0 ≤ δ1 such that |X̃t0 | ≥ 7/8 for the first time, then we
would have |X̃t0 | ≤ 1/2 + 1/3, which would contradict the bound |X̃t0 | ≥ 7/8. So, X̃
stays in U1(0) for any 0 ≤ t ≤ δ1.

Let us now show that for δ < δ1 sufficiently small, the map χ is a contraction on the
space of continuous maps X• from [0, δ] to U1(0) with X0 = 0. Indeed, consider now two
trajectories X(1) and X(2), realizing a coupling with the same Brownian motion, and
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their respective images (by χ) X̃(1) and X̃(2). Then, denoting by Lip(W ) the Lipschitz
constant of ∇W on the ball of radius 2, Lip(W ) := sup{||∇2W (x)|| : |x| ≤ 2}, we have

|X̃(1)
t − X̃

(2)
t | =

∣∣∣∣∫ t

0

∇W ∗ µX
(1)

s (X̃(1)
s ) ds−

∫ t

0

∇W ∗ µX
(2)

s (X̃(2)
s ) ds

∣∣∣∣
=

∣∣∣∣∫ t

0

1

s

∫ s

0

∇W (X̃(1)
s −X(1)

u )−∇W (X̃(2)
s −X(2)

u ) duds

∣∣∣∣
≤

∫ t

0

1

s

∫ s

0

|∇W (X̃(1)
s −X(1)

u )−∇W (X̃(2)
s −X(2)

u )|duds

≤
∫ t

0

1

s

∫ s

0

Lip(W )(|X̃(1)
s − X̃(2)

s |+ |X(1)
u −X(2)

u |) duds

≤ tLip(W )(||X̃(1) − X̃(2)||C([0,δ]) + ||X(1) −X(2)||C([0,δ])),

where ||X||C([0,δ]) is the norm of X on the space C([0, δ]). As t ≤ δ, we conclude that

||X̃(1) − X̃(2)||C([0,δ]) ≤ δ Lip(W )(||X̃(1) − X̃(2)||C([0,δ]) + ||X(1) −X(2)||C([0,δ])). As soon as
δ Lip(W ) < 1, we have

||X̃(1) − X̃(2)||C([0,δ]) ≤
δ Lip(W )

1− δ Lip(W )
||X(1) −X(2)||C([0,δ]).

We choose δ such that δ Lip(W ) < 1/3 and then χ is a contraction, as stated, with
Lip(χ) ≤ 1/2. So, we have obtained existence and uniqueness of the solution on [0, δ].

Appendix 2: Non-symmetric counter-example

We end this paper with an example showing that for a non-symmetric interaction
potential W , the conclusion of Theorem 1.2 does not hold.

Consider a non-symmetric quadratic interaction potential W (x) = 1
2 (x − 1)2. Then,

the averages of the process (Xt)t defined by (1.1), that is 1
t

∫ t
0
Xsds = ct − 1 tends to

+∞.
To motivate this behaviour, heuristically, we first note that, for any finite-variance

measure ν, the convolution W ∗ ν equals

W ∗ ν(x) =
1

2
(x− 1)2 − (x− 1)E(ν) +

1

2
E(ν2) =

x2

2
− (E(ν) + 1)x+ C ′1.

Hence Π(ν) is the Gaussian law N (1 + E(ν), 1). Thus, if we consider a trajectory of the
approximating flow ν̇t = 1

t (Π(νt)− νt), we have for its mean value

d

dt
Eνt =

1

t
(Eνt + 1− Eνt) =

1

t
,

and so Eνt ∼ log t.
For a formal proof, note that (as the interaction potential is a polynomial of degree

2) the evolution of the couple (Xt, ct), where ct = c(µt) = Eµt + 1 is Markovian:{
dXt = dBt − (Xt − ct)dt,
ċt = 1

t (Xt − ct + 1).

Changing Xt to Yt = Xt − ct, we obtain{
dYt = dBt −

(
Yt + 1

t (Yt + 1)
)

dt,

ċt = 1
t (Yt + 1).

The equation on Y does not contain ct. So, explicit solution of this system and rigorous
justification of the desired properties become an exercise.

EJP 17 (2012), paper 50.
Page 36/37

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v17-2121
http://ejp.ejpecp.org/


Ergodicity of self-attracting motion

References

[1] Ané, C., Blachère, S., Chafaï, D., Fougères, P., Gentil, Y., Malrieux, F., Roberto, C. and
Scheffer, G.: Sur les inégalités de Sobolev logarithmiques, Panoramas et Synthèses 10,
SMF, 2001. xvi+217 pp. MR-1845806

[2] Benaïm, M., Ledoux, M. and Raimond, O.: Self-interacting diffusions, Prob. Th. Rel. Fields
122, (2002), 1–41. MR-1883716

[3] Benaïm, M. and Raimond, O.: Self-interacting diffusions III: symmetric interactions, Ann.
Prob. 33(5), (2005), 1716–1759. MR-2165577

[4] Bolley, F., Guillin, A. and Villani, C.: Quantitative concentration inequalities for empirical
measures on non compact spaces, Prob. Th. Rel. Fields 137(3-4), (2007), 541–593. MR-
2280433

[5] Carrillo, J.A., McCann, R.J. and Villani, C.: Kinetic equilibration rates for granular media
and related equations: entropy dissipation and mass transportation estimates, Rev. math.
Iberoam. 19(3), (2003), 971–1018. MR-2053570

[6] Cattiaux, P. and Guillin, A.: Deviation bounds for additive functionals of Markov processes,
ESAIM PS 12, (2008), 12–29. MR-2367991

[7] Cattiaux, P., Guillin, A. and Malrieu, F.: Probabilistic approach for granular media equa-
tions in the non uniformly convex case , Prob. Th. Rel. Fields 140(1-2), (2008), 19–40.
MR-2357669

[8] Durrett, R.T. and Rogers, L.C.G.: Asymptotic behaviour of Brownian polymers, Prob. Th. Rel.
Fields 92(3), (1992), 337–349. MR-1165516

[9] Kurtzmann, A.: The ODE method for some self-interacting diffusions on Rd, Ann. Inst. Henri
Poincaré, Prob. Stat., 46(3), (2010), 618–643. MR-2682260

[10] McCann, R.: A convexity principle for interacting gases, Adv. Math. 128, (1997), 153–179.
MR-1451422

[11] Meyn, S.P. and Tweedie, R.L.: Markov Chains and Stochastic Stability. Second edition. With
a prologue by Peter W. Glynn. Cambridge University Press, Cambridge, 2009. xxviii+594 pp.
MR-2509253

[12] Pemantle, R.: A survey of random processes with reinforcement, Prob. Surveys 4, (2007),
1–79. MR-2282181

[13] Raimond, O.: Self-attracting diffusions: case of constant interaction, Prob. Th. Rel. Fields
107, (1997), 177–196. MR-1431218

[14] Revuz, D. and Yor, M.: Continuous Martingales and Brownian Motion, 3rd edition, Springer,
1999. xiv+602 pp. MR-1725357

[15] Rogers, L.C.G. and Williams, D: Diffusions, Markov processes and Martingales, 2nd edition,
Vol. 2 “Itô Calculus", Cambridge Univ. Press, 2000. xiv+480 pp. MR-1780932

[16] Tarrès, P., Tóth, B. and Valkó, B.: Diffusivity bounds for 1d Brownian polymers, Ann. of
Probab. 40(2), (2012), 695–713.

[17] Villani, C.: Optimal Transport, Old and new, Grundlehren der Math. Wissenschaften , Vol.
338, Springer, 2009. xxii+973 pp. MR-2459454

[18] Wu, L.: A deviation inequality for non-reversible Markov process, Ann. Inst. Henri Poincaré,
Prob. Stat. 36(4), (2000), 435–445. MR-1785390

Acknowledgments. The authors are very grateful to two anonymous referees, who
helped us to improve the presentation of the paper.

EJP 17 (2012), paper 50.
Page 37/37

ejp.ejpecp.org

http://www.ams.org/mathscinet-getitem?mr=1845806
http://www.ams.org/mathscinet-getitem?mr=1883716
http://www.ams.org/mathscinet-getitem?mr=2165577
http://www.ams.org/mathscinet-getitem?mr=2280433
http://www.ams.org/mathscinet-getitem?mr=2280433
http://www.ams.org/mathscinet-getitem?mr=2053570
http://www.ams.org/mathscinet-getitem?mr=2367991
http://www.ams.org/mathscinet-getitem?mr=2357669
http://www.ams.org/mathscinet-getitem?mr=1165516
http://www.ams.org/mathscinet-getitem?mr=2682260
http://www.ams.org/mathscinet-getitem?mr=1451422
http://www.ams.org/mathscinet-getitem?mr=2509253
http://www.ams.org/mathscinet-getitem?mr=2282181
http://www.ams.org/mathscinet-getitem?mr=1431218
http://www.ams.org/mathscinet-getitem?mr=1725357
http://www.ams.org/mathscinet-getitem?mr=1780932
http://www.ams.org/mathscinet-getitem?mr=2459454
http://www.ams.org/mathscinet-getitem?mr=1785390
http://dx.doi.org/10.1214/EJP.v17-2121
http://ejp.ejpecp.org/

	Introduction
	Statement of the problem
	Main results
	Physical interpretation
	Existence and uniqueness of X 
	Discretization
	Physical interpretation: gas re-distribution
	Free energy functional
	Conclusion

	Outline

	Preliminaries
	Existence and uniqueness of solutions
	Markovian form; local existence and uniqueness
	Center-drift estimates
	Law of X-center distances: Ornstein-Uhlenbeck estimate
	Global existence

	Exponential tails estimates
	Estimates for the centered empirical measure
	Estimates for the centered measure 

	A new transport metric: the TP-metric
	Free energy functional

	Proofs
	Proof of Theorem 1.10
	One-step error estimate
	Euler method error control
	Decrease of energy

	Proof of Theorem 1.11

	References

