
E l e c t r o n i
c

J
o

u
r n a l

o
f

P
r

o b a b i l i t y

Electron. J. Probab. 17 (2012), no. 40, 1–27.
ISSN: 1083-6489 DOI: 10.1214/EJP.v17-2062

Stochastic representation of entropy solutions of
semilinear elliptic obstacle problems with measure

data∗

Andrzej Rozkosz† Leszek Słomiński†

Abstract

We consider semilinear obstacle problem with measure data associated with uni-
formly elliptic divergence form operator. We prove existence and uniqueness of en-
tropy solution of the problem and provide stochastic representation of the solution in
terms of some generalized reflected backward stochastic differential equations with
random terminal time.
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1 Introduction

Let D ⊂ Rd (d ≥ 2) be a bounded domain with regular boundary. In this paper we
investigate obstacle problem with measure data associated with semilinear operator of
the form

Au = Au+ fu,

where

Au =
1

2

d∑
i,j=1

Di(aijDju), fu = f(·, u) (1.1)

and a : D → Rd ⊗Rd is a measurable symmetric matrix-valued function such that

(1/Λ)|ξ|2 ≤
d∑

i,j=1

aij(x)ξiξj ≤ Λ|ξ|2, ξ ∈ Rd a.e. on D (1.2)

for some Λ ≥ 1, f : D×R→ R is a measurable function satisfying some assumptions to
be specified later on.
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Elliptic obstacle problems with measure data

Let Mb(D) denote the set of all bounded signed measures on D and let M2
b(D)

denote the subset of Mb(D) consisting of all smooth measures, i.e. measures that
charge no set of zero capacity (see Section 2 for details). Suppose we are given a quasi-
continuous obstacle ψ : D → R and µ ∈ M2

b(D). Roughly speaking, we consider the
problem of finding the smallest quasi-continuous function u : D → R such that

Au ≥ −µ, u|∂D = 0, u ≥ ψ q.e.. (1.3)

If µ ∈M2
b(D) ∩H−1(D) and the set

Kψ = {v ∈ H1
0 (D) : v is quasi-continuous, v ≥ ψ q.e. in D}

is nonempty, then the problem reduces to the following elliptic variational inequality
problem (denoted by EVI(f, µ, ψ)): find u ∈ Kψ(D) such that

− 〈Au, v − u〉 ≥ 〈µ, v − u〉 ∀v ∈ Kψ(D). (1.4)

From (1.4) it follows that

−〈Au+ µ, v〉 ≥ 0 ∀v ∈ H1
0 (D), v ≥ 0.

Hence, by the Riesz-Schwartz theorem, there exists a positive Radon measure γ on D

such that Au = −µ− γ, i.e.

1

2
(a∇u,∇v)2 − (fu, v)2 =

∫
D

v dµ+

∫
D

v dγ, v ∈ L∞(D) ∩H1
0 (D). (1.5)

The measure γ is uniquely determined by (1.5), and is called the obstacle reaction
associated with u. In the general case where µ ∈M2

b(D) we consider entropy solutions
of (1.3) in the sense defined in [13], i.e. we call u : D → R a solution of (1.3) if there
exists a positive measure γ ∈M2

b(D) such that u is a quasi-continuous entropy solution
of the problem

Au = −µ− γ, u|∂D = 0, u ≥ ψ q.e. (1.6)

and u is minimal in the sense that for any positive measure γ̄ ∈ M2
b(D), if v is a quasi-

continuous entropy solution of (1.6) with γ replaced by γ̄, then v ≥ u q.e..
We will make the following assumptions:

(H1) f : D×R→ R is a Carathéodory function (f(x, y) is continuous in y for a.e. x ∈ D
and measurable in x for every y ∈ R) such that

(a) f(x, 0) = 0, f(x, ·) is nonincreasing for a.e. x ∈ D (it follows in particular that
f(x, y)y ≤ 0 for y ∈ R and a.e. x ∈ D),

(b) Fc ∈ L1(D) for every c > 0, where Fc(x) = sup|y|≤c |f(x, y)|, x ∈ D,

(H2) µ ∈M2
b(D),

(H3) ψ : D → R is quasi-continuous and there is µ∗ ∈ H−1(D) ∩ M+
b (D) such that

ψ ≤ ψ∗ q.e. on D, where ψ∗ ∈ H1
0 (D) is a variational solution of Aψ∗ = −µ∗.

In the analytical part of the paper we show that under (H1)–(H3) the obstacle prob-
lem (1.3) has a unique entropy solution. In the proof of that part we combine ideas from
[13], where the obstacle problem with f = 0 but more general than A nonlinear elliptic
operator of monotone type Ā mapping W 1,p(D), p > 1, into its dual is considered, and
from [1, 2], where problems Āu + fu = −µ, u|∂D = 0 (i.e. ψ = −∞) with f satisfying
(H1) are considered.
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Elliptic obstacle problems with measure data

It is known that if µ ∈ Lp(D) with p > d and f satisfies the Lipschitz and the linear
growth condition in u then the Dirichlet problem (1.6) with ψ = −∞ has a unique contin-
uous weak solution which can be represented by solutions of some backward stochastic
differential equation (BSDE) with random terminal time (see [16, 17]). It is also known
that viscosity solutions of some problems of the form (1.6) with nondivergence form op-
erator in place of A may be represented by solutions of some reflected BSDEs (RBSDEs)
with random terminal time (see [15]). Therefore it is natural to try to relate solutions
of (1.6) to some reflected BSDE with forward driving process associated with A. In
the paper we show that this is indeed possible and leads to investigation of interesting
generalized RBSDEs involving additive functionals associated with measures µ and γ.

Let X = {(X,Px);x ∈ Rd} be a Markov process associated with the operator A (see
Section 2) and let XD be the part of X on D, i.e. XD = {(XD, Px);x ∈ D ∪ {∂}}, where
∂ is an extra point adjoint to D,

XD
t =

{
Xt on {t < τ},
∂ on {t ≥ τ} (1.7)

and
τ = inf{t ≥ 0 : Xt 6∈ D}.

It is known that to every µ ∈ M2
b(D) corresponds a unique continuous additive func-

tional (CAF) R of XD whose Revuz measure is µ. The main result of the paper says that
if (H1)–(H3) are satisfied then there exists a unique solution to (1.6) which has a quasi-
continuous and quasi-everywhere (q.e. for short) finite version u. Secondly, for q.e.
x ∈ D the triple (Y,Z,K), where K is a positive CAF of XD in Revuz correspondence
with γ and

Yt = u(XD
t ), Zt = σ∇u(XD

t ), t ≥ 0, (1.8)

where σ is a symmetric square root of a, is a unique solution to the generalized reflected
BSDE of the form

Yt =
∫ τ
t∧τ f(Xs, Ys) ds+Rτ −Rt∧τ +Kτ −Kt∧τ −

∫ τ
t∧τ Zs dBs, t ≥ 0, Px-a.s.,

Yt ≥ ψ(XD
t ), Px-a.s. for t ≥ 0,

K is a continuous increasing, K0 = 0,
∫ τ

0
(Ys − ψ(Xs)) dKs = 0, Px-a.s.,

where B is a Wiener process. It follows immediately that for q.e. x ∈ D,

u(x) = Y0, Px-a.s.. (1.9)

Thus, the above RBSDE provides stochastic representation of quasi-continuous solu-
tions of (1.6). With this representation in hand the minimality of u in the sense de-
fined in [13] is a consequence of comparison results for solutions of generalized BSDEs
proved in Section 3. From (1.8) and the fact that K increases only when Y = ψ(XD) we
also deduce that ∫

D

(u− ψ) dγ = 0,

i.e. the obstacle reaction γ associated with u is minimal in the sense that it acts only
when u = ψ. Finally, let us mention that the representation (1.9) makes it posssible to
give simple probabilistic definition of a solution of the problem (1.6).

Notation. As usual, for p ∈ [1,∞] we denote by Lp(D) and W 1,p(D) the standard
Lebesgue and Sobolev spaces, W 1,p

0 (D) is the closure of C∞0 (D) in W 1,p(D). If p = 2 we
write H1

0 (D) instead of W 1,2
0 (D). H−1(D) is the dual space to H1

0 (D). By ‖ · ‖2 and (· , ·)2

we denote the usual norm and scalar product in L2(D).
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Elliptic obstacle problems with measure data

2 Additive functionals of symmetric diffusions and smooth mea-
sures

In this section we are concerned with additive functionals of killed symmetric diffu-
sions associated with A which are in the Revuz correspondence with smooth measures
on D.

2.1 Symmetric diffusions

Let Ω = C([0,∞),Rd) denote the space of continuous Rd-valued functions on [0,∞)

equipped with the topology of uniform convergence on compact intervals and let X be
the canonical process on Ω. It is known that given operator A defined by (1.1) with
a satisfying (1.2) one can construct a weak fundamental solution p for A and then a
time-homogeneous Markov process X = {(X,Px);x ∈ Rd} for which p is the transition
density function, i.e.

Px(X0 = x) = 1, Px(Xt ∈ B) =

∫
B

p(t, x, y) dy, t > 0

for any Borel B ⊂ Rd (see, e.g., [20]). Alternatively, one can define X as the Markov
process associated with the Dirichlet form

E(u, v) =

∫
Rd

(a∇u,∇v) dx, u, v ∈ D[E ] = H1(Rd)

(see [8, Example 4.5.2]).
Set F0

∞ = σ(Xs, s < ∞), F0
t = σ(Xs, s ≤ t) and for fixed T > 0 set FT,0t = σ(X̄T

s , s ∈
[0, t]), where X̄T

t = XT−t, t ∈ [0, t]. Let P denote the set of all probability measures on
Rd and let Pµ(Γ) =

∫
Rd
Px(Γ)µ(dx), µ ∈ P, Γ ∈ F0

∞. Let Fµ∞ denote the completion of

F0
∞ with respect to Pµ and let Fµt (resp. F̄T,µt ) denote the completion of F0

t (resp. F̄T,0t )
in Fµ∞ with respect to Pµ. Finally, let F∞ =

⋂
µ∈P Fµ∞, Ft =

⋂
µ∈P F

µ
t , F̄Tt =

⋂
µ∈P F

T,µ
t .

Let XD denote the process X killed outside D, i.e. XD is defined by (1.7), where ∂
is an isolated point regarded as the point at infinity of D, and let XD denote the part of
X on D, i.e. XD = {(X,Px), x ∈ D ∪ {∂}}, where P∂(Xt = ∂) = 1, t ≥ 0. By [8, Theorem
4.4.2], the Dirichlet form of XD is

E(u, v) = (a∇u,∇v)2, u, v ∈ D[E ] = H1
0 (D).

Let X = Rd or X = D. Recall that a set N ⊂ X is called exceptional if there is a
Borel set B ⊃ N such that Pm(σB < ∞) = 0, where σB = inf{t > 0 : Xt ∈ B} and m is
the Lebesgue measure on X .

We call an {Ft}-adapted process A = {At, t ≥ 0} a continuous additive functional
(CAF) of X (resp. XD) if there is a set Λ ∈ F∞ (called defining set for A) and an
exceptional set N ⊂ Rd (resp. N ⊂ D) such that Px(Λ) = 1 for x ∈ N c, θsΛ ⊂ Λ for
s ≥ 0, where θs : Ω → Ω, (θsω)t = ωs+t, and for ω ∈ Λ, A0(ω) = 0, A·(ω) is continuous
and As+t(ω) = As(ω) + At(θsω), s, t ≥ 0. If N = ∅, A is called AF in the strict sense. An
[0,∞)-valued CAF is called positive CAF (PCAF). Two AF’s A1, A2 of X (XD) are said to
be equivalent if there is an exceptional set N ⊂ Rd (N ⊂ D) such that for every t > 0,
Px(A1

t = A2
t ) = 1 for x ∈ N c.

Given a CAF A of X we define its energy by

e(A) = lim
t↓0

1

2t

∫
Rd
Ex|At|2 dx

whenever the limit exists. A CAF A of X such that e(A) = 0 and for t > 0, Ex|At| < ∞
for x ∈ N c is called a CAF of zero energy with exceptional set N ⊂ Rd. We call M a
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Elliptic obstacle problems with measure data

martingale AF (MAF) of X with exceptional set N ⊂ Rd if for every t > 0, Ex|Mt|2 <∞,
ExMt = 0 for x ∈ N c. Recall that if M is a MAF of X with exceptional set N then M

is an ({Ft}, Px)-square-integrable martingale for each x ∈ N c. If N = ∅, M is a MAF in
the strict sense.

We say that a CAF A of X in the strict sense is of zero quadratic variation if for each
x ∈ Rd,

QmT (A) ≡
m∑
k=0

|Atmk+1
−Atmk |

2 → 0 in probability Px as m→∞

for any T > 0 and any sequence {Πm = {0 = tm0 < tm1 < · · · < tmm = T}} of partitions of
[0, T ] such that ‖Πm‖ = max0≤k≤m−1 |tmk+1 − tmk | → 0 as m→∞.

Let us recall that from [16, Theorem 3.4] it follows that there exist a continuous
MAF M of X in the strict sense and a CAF A of X in the strict sense of zero quadratic
variation such that

Xt −X0 = Mt +At, t ≥ 0, Px-a.s.. (2.1)

Thus, for each x ∈ Rd the canonical process X is an ({Ft}, Px)-Dirichlet process in the
sense of Föllmer. Note also that the decomposition (2.1) coincides with the Fukushima
strict decomposition of X into a MAF of X of locally zero energy and a CAF of X of zero
energy (see [8, Theorem 5.5.1]).

From [16, Theorem 3.4] one can conclude that for every T > 0 there exists a unique
continuous {F̄Tt } - adapted process NT such that NT is a square-integrable martingale
on [0, T ] under Px for each x ∈ Rd and

At =
1

2
(−Mt +NT

T−t −NT
T − Vt), t ∈ [0, T ], Px-a.s., (2.2)

where

V it =

d∑
j=1

∫ t

0

aij(Xs)
Djp

p
(s,X0, Xs) ds, t ≥ 0 (2.3)

(here Djp stands for the generalized derivative of yj 7→ p(t, x, y)). Moreover, the co-
variation processes of M = (M1, . . . ,Md) and NT = (NT,1, . . . , NT,d) are given by

〈M i,M j〉t =

∫ t

0

aij(Xs) ds, 〈NT,i, NT,j〉t =

∫ t

0

aij(X̄T
s ) ds, t ∈ [0, T ]. (2.4)

Decomposition (2.1)–(2.3) may be called the strict Lyons-Zheng decomposition of X.

2.2 Capacity, smooth measures

Let F be a compact subset of D. Recall that the capacity of F with respect to D is
defined as

cap(F ) = inf{
∫
D

|∇u(x)|2 dx : u ∈ C∞0 (D), u ≥ 1F }

(we use the convention that inf ∅ =∞). The capacity of an open subset U ⊂ D is defined
as

cap(U) = sup{cap(F ) : F is compact, F ⊂ U}.

Finally, the capacity of any B ⊂ D is defined as

cap(B) = inf{cap(U) : U is open, B ⊂ U}.

By [8, Theorem 4.2.1(ii)], N ⊂ D is exceptional iff cap(N) = 0. Hence, in particular, for
any Borel B ⊂ D,

cap(B) = 0 iff Pm(∃t > 0, XD
t ∈ B) = 0. (2.5)
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Elliptic obstacle problems with measure data

Let B ⊂ D. In what follows a statement depending on x ∈ B is said to hold quasi-
everywhere on B (q.e. for short) if there is a set N ⊂ B of zero capacity such that the
statement holds for every B \N .

A function u : D → R̄ is quasi-continuous if for every ε > 0 there is an open set E
such that cap(E) < ε and u|D\E is continuous in D \ E.

It is known that every u ∈ H1
0 (D) has a quasi-continuous representative that will

always be identified with u.
LetM(D) denote the set of all signed Radon measures on D and letMb(D) denote

the subset of M(D) consisting of all measures whose total variation |µ| on D is finite.
As usual, we identify Mb(D) with the dual of the Banach space C0(D) of continuous
functions on D which vanish on the boundary of D, so that the duality is given by
〈µ, u〉 =

∫
D
u dµ, u ∈ C0(D), and ‖µ‖Mb(D) = |µ|(D). ByM2

b(D) we denote the space of
all measures µ inMb(D) such that µ(B) = 0 for every set B ⊂ D such that cap(B) = 0.
ByM2,+

b (D) we denote the subset ofM2
b(D) consisting of all positive measures.

It is known that if µ ∈ H−1(D) ∩Mb(D) then µ ∈M2
b(D), every u ∈ H1

0 (D) ∩ L∞(D)

is summable with respect to µ and

〈µ, u〉 =

∫
D

u dµ,

where now 〈·, ·〉 denotes the duality pairing between H−1(D) and H1
0 (D) and u on the

right hand-side is a quasi-continuous representative of u on the left hand-side.
Finally, let us recall that in [3] the following important result is proved: if µ ∈Mb(D)

then µ ∈M2
b(D) iff µ admits decomposition of the form

µ = g +G (2.6)

with g ∈ L1(D), G ∈ H−1(D).

2.3 Additive functionals of killed diffusions and smooth measures

In this subsection we use decomposition (2.6) to investigate structure of additive
functionals of XD corresponding to measures of the classM2

b(D).
Let S+

0 (D) denote the family of positive Radon measures on D of finite energy inte-
grals, i.e. such that∫

D

|v(x)| dµ(x) ≤ C‖v‖H1
0 (D), v ∈ H1

0 (D) ∩ C0(D)

for some C ≥ 0 (C0(D) is the space of all continuous functions on D having compact
support). It is known (see [8, Section 2.2]) that µ ∈ S+

0 (D) iff for each α > 0 there exists
a unique function Uαµ ∈ H1

0 (D), called α-potential of µ, such that

1

2
(a∇Uαµ,∇v)2 + α(Uαµ, v)2 =

∫
D

v(x)µ(dx), v ∈ H1
0 (D) ∩ C0(D).

Notice that by [8, Lemma 2.2.3], if µ ∈ S+
0 (D) and µ is bounded then µ ∈M2,+

b (D). Let

S+
00(D) = {µ ∈ S+

0 (D) : µ(D) <∞, ‖U1µ‖∞ <∞}, S00(D) = S+
00(D)− S+

00(D).

By [8, Theorem 2.2.3], for any Borel set B ⊂ D,

cap(B) = 0 iff µ(B) = 0 for every µ ∈ S+
00(D). (2.7)

By [8, Theorem A.2.10] the part process XD is a Markov process on D (with respect
to the filtration {Ft}) with the transition function

pD(t, x,B) = Px(Xt ∈ B, t < τ), t > 0, x ∈ D, B ∈ B(D).
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Elliptic obstacle problems with measure data

Therefore the semigroup {PDt } of operators associated with XD is given by

PDt f(x) = Ex1t<τf(Xt), t > 0, x ∈ D, f ∈ B+(D),

where Ex denotes the expectation with respect to Px and B+(D) is the space of positive
measurable functions onD. By [5, Theorem 2.4], pD(t, x, ·) admits the transition density
pD(t, x, y), which is symmetric and continuous on D ×D.

From now on we will use the following useful convention: any numerical function f
on D will automatically be extended to D̄ ∪ {∂} by setting f(x) = 0, x ∈ ∂D, f(∂) = 0.
With this convention,

f(XD
t ) = f(Xt∧τ ), t ≥ 0.

Let {Rα, α > 0} denote the resolvent of XD, i.e.

Rαf(x) =

∫ ∞
0

e−αtPDt f(x) dt = Ex

∫ τ

0

e−αtf(Xt) dt, f ∈ B+(D),

and let

UαAf(x) = Ex

∫ ∞
0

e−αtf(XD
t ) dAt, f ∈ B+(D).

Definition. We say that a PCAF A of XD and µ ∈ M2,+
b (D) are in the Revuz correspon-

dence if for any α > 0 and f, g ∈ B+(D),

(g, UαAf)2 =

∫
D

f(x)Rαg(x) dµ(x). (2.8)

In that case we call µ the Revuz measure of A and we write µ ∼ A or A ∼ µ.
It is known (see [8, Theorem 5.1.3]) that (2.8) is equivalent to the following condi-

tion: for any t > 0, g, f ∈ B+(D),

Eg·m

∫ t

0

f(XD
s ) dAs =

∫ t

0

〈PDs g, f · µ〉 ds. (2.9)

By Lemma 5.1.8 and Theorem 5.1.3 in [8], any µ ∈ M2,+
b (D) admits a PCAF A of XD

whose Revuz measure is µ and that the PCAF A related to given µ ∈M2,+
b (D) is unique

up to the equivalence. In particular, if µ(dx) = f(x) dx for some positive f ∈ L1(D) then
the unique PCAF A of XD associated with µ is given by

At =

∫ t

0

f(XD
s ) ds =

∫ t∧τ

0

f(Xs) ds, t ≥ 0. (2.10)

Notice that µ ∈ M2
b(D) iff µ = µ1 − µ2 for some µ1, µ2 ∈ M2,+

b (D) (for instance one
can apply the Jordan decomposition). Similarly, µ ∈ S0(D) iff µ = µ1 − µ2 for some
µ1, µ2 ∈ S+

0 (D). Given a signed measure µ ∈ S0 we decompose it as µ = µ1 − µ2 in the
above way and set

A = A1 −A2,

where A1 ∼ µ1, A2 ∼ µ2. Clearly A is a finite CAF of bounded variation and does not
depend on the choice of µ1, µ2.

Lemma 2.1. Let A be a CAF of XD of finite variation associated with µ ∈ M2,+
b (D).

Then for any ν ∈ S+
00(D),

Eν |A|t = Eν(A1
t +A2

t ) ≤ (1 + t)‖U1ν‖∞ · ‖µ‖Mb(D), t > 0. (2.11)

Proof. Follows from [8, Lemma 5.1.9].
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Lemma 2.2. If A is a CAF of XD of finite variation associated with some measure
µ ∈M2,+

b (D) then EνAτ <∞ for every ν ∈ S00(D).

Proof. By (2.11), for any ν ∈ S00(D) and N > 0 we have

Pν(Aτ =∞) = Pν(Aτ =∞, τ ≤ N) + Pν(Aτ =∞, τ > N) ≤ Pν(τ > N) ≤ N−1Eντ.

But Exτ = Ex
∫ τ

0
1 dt ≡ u(x), so u is a solution to the problem Au = −1, u|∂D = 0. Since

1 ∈ L2(D), u ∈ H1
0 (D). Hence Eντ <∞ since ν ∈ S0(D).

Lemma 2.3. Let µ, µn ∈ M2
b(D), A ∼ µ, An ∼ µn. If µn → µ in Mb(D) then for any

ν ∈ S+
00(D) and T ∈ [0,∞], |An −A|T∧τ → 0 in measure Pν .

Proof. We only consider the case T = ∞. The proof of the lemma in case T ∈ [0,∞) is
similar and therefore we omit it. For any ε > 0 i N > 0 we have

Pν(|An −A|τ > ε) ≤ Pν(|An −A|τ > ε) + Pν(τ > N)

≤ ε−1Eν |An −A|N∧τ +N−1Eντ

≤ ε−1(1 +N)‖U1ν‖∞ · ‖µn − µ‖Mb(D) +N−1Eντ,

from which the result follows.

Following [18] given T > 0 and h = (h1, . . . , hd) ∈ Lp(D)d with p > d we set

HT
t (h) = −

d∑
i=1

∫ t∧τ

0

hi(Xs) d(M i
s + V is )−

d∑
i=1

∫ T

T−t∧τ
hi(X̄T

s ) dNT,i
s , t ∈ [0, T ],

where M,V,NT are processes of the decomposition (2.2). One can show (see [18]) that
HT
t (h) = HT+1

t (h), t ∈ [0, T ], Px-a.s. for every x ∈ D. Therefore we may define H(h) on
[0,∞) by putting Ht(h) = HT

t (h), t ∈ [0, T ]. In the sequel we will use the notation

Ht(h) =

∫ t∧τ

0

h(Xs) ∗ dXs, t ≥ 0.

It is known (see [18, Lemma 1]) that if h ∈W 1,p(D)d with p > d then for every x ∈ D,∫ t∧τ

0

divh(Xs) ds =

∫ t∧τ

0

(a−1h)(Xs) ∗ dXs = Ht(a
−1h), t ≥ 0, Px-a.s.,

where a−1 denotes the inverse of a. From the above and (2.10) it follows that if h ∈
W 1,p(D)d for some p > d then H(a−1h) is a CAF of XD in the strict sense. Applying
approximation arguments one can show that in fact it is a CAF of XD in the strict sense
for any h ∈ Lp(D)d with p > d.

The following proposition is a variant of [10, Proposition 3.5].

Proposition 2.4. Let h ∈ L2(D)d and let {hn} ⊂ L∞(D)d be a sequence such that
hn → g in L2(D)d. Then

(i) There is a subsequence (still denoted by n) and a CAF A of XD such that for every
T > 0,

Ex sup
t≤T
|
∫ t∧τ

0

(a−1hn)(Xs) ∗ dXs −At| → 0

for q.e. x ∈ D. In fact,

At =

∫ t∧τ

0

(a−1h)(Xs) ∗ dXs, t ≥ 0, Px-a.s.

for a.e. x ∈ D.
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(ii) If, in addition, divh ≡ µ ∈Mb(D) then A ∼ µ.

Proof. (i) Let

Ant =

∫ t∧τ

0

(a−1hn)(Xs) ∗ dXs, t ≥ 0. (2.12)

First we are going to show that for every T > 0,

lim
n,k→∞

∫
D

ExY
n,k
T dx = 0, (2.13)

where
Y n,kt = sup

s≤t∧T
|Ans −Aks |.

By the definition of An,

ExY
n,k
T = Ex sup

t≤T
|
∫ t∧τ

0

div(hn − hk)(Xs) ds|

= Ex sup
t≤T
|
∫ t∧τ

0

a−1(hn − hk)(Xs) d(Ms + Vs) +

∫ T

T−t∧τ
a−1(hn − hk)(X̄T

s ) dNT
s |.

By Doob’s L2-inequality and symmetry of the transition density pD(t, ·, ·),

Em sup
t≤T
|
∫ t∧τ

0

a−1(hn − hk)(Xs) dMs +

∫ T

T−t∧τ
a−1(hn − hk)(X̄T

s ) dNT
s |

≤ C‖hn − hk‖22. (2.14)

Furthermore,

Em sup
t≤T
|
∫ t∧τ

0

a−1(hn − hk)(Xs) dVs|

≤ C
(∫

D

(Ex

∫ t

0

s−1/2|(hn − hk)(Xs)|2 ds) dx
)1/2

×
(∫

D

(Ex

∫ t

0

s1/2 |∇p|2

p2
(s, x,Xs) ds) dx

)1/2

≤ C
(∫ t

0

s−1/2(

∫
D

∫
D

|(hn − hk)(y)|2p(s, x, y) dx dy)ds

)1/2

×
(∫

D

(

∫ t

0

s1/2

∫
D

|∇p|2

p
(s, x, y) ds dy) dx

)1/2

≤ C‖hn − hk‖2(m(D))1/2, (2.15)

the last inequality being a consequence of symmetry of p(t, ·, ·) and [17, Lemma 5.2].
From (2.14), (2.15) we get (2.13). Now, set B = {x ∈ D : Ex supt≤T |Ant − Akt |9 0}. Let
F be a compact subset in B and let σ = inf{t ≥ 0 : Xt ∈ F}. By the definition of σ and
the strong Markov property,

Px(σ ≤ T ) ≤ Px(EXDσ Y
n,k
t 9 0) = Px(Ex(θσY

n,k
t |Gσ) 9 0) = Px(Ex(Y n,kt+σ|Gσ) 9 0)

= Px(Ex( sup
s≤(t+σ)∧T

|Ans −Aks ||Gσ 9 0) ≤ Px(Ex(Y n,kT |Gσ) 9 0).

From (2.13) it follows that there is a subsequence such that if n, k → ∞ along this
subsequence then Ex(Y n,kT |Gσ) → 0, Px-a.s. for a.e. x ∈ D. Hence Px(σ < ∞) = 0 for
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a.e. x ∈ D, and so Pm(σ <∞) = 0. From (2.5) we conclude now that cap(F ) = 0, hence
that cap(B) = 0. Thus,

lim
n,k→∞

Ex sup
t≤T
|Ant −Akt | = 0

for q.e. x ∈ D. Hence for q.e. x ∈ D there exists a continuous process Ax such that

lim
n→∞

Ex sup
t≤T
|Ant −Axt | = 0. (2.16)

To complete the proof of (i) we use arguments from the proof of [8, Lemma A.3.2]. Set
n0(x) = 0,

nk(x) = inf{m > nk−1(x) : sup
p,q≥m

Px(sup
t≤T
|Apt −A

q
t | > 2−k) ≤ 2−k}, k ≥ 1,

and Zx,k = Ank(x), Zk = ZX0,k, Λ = {ω ∈ Ω : {Zk(ω)} converges uniformly on [0, T ]}.
Since

Px(sup
t≤T
|Zk+1
t − Zkt | > 2−k) ≤ 2−k, k ≥ 1

for q.e. x ∈ D, applying the Borel-Cantelli lemma shows that Px(Λ) = 1 for q.e. x ∈ D.
Set now At(ω) = lim infk→∞ Zkt (ω) for ω ∈ Λ and At(ω) = 0 for ω /∈ Λ. Then A is a CAF
of XD with defining set Λ and Px(At = Axt , t ∈ [0, T ]} = 1 for q.e. x ∈ D. From this and
(2.16),

lim
n→∞

Ex sup
t≤T
|Ant −At| = 0

for q.e. x ∈ D, which proves (i).
(ii) Without loss of generality we may and will assume that µ ≥ 0. Let jn be a mollifier

and let µn = µ ∗ jn. Then µn = divgn, where gn = g ∗ jn. Since ‖µn‖1 ≤ ‖µ‖Mb(D), {µn}
is relatively compact in the weak∗ topology inMb(D) by Alaoglu’s theorem. Therefore
choosing a subsequence if necessary we may assume that µn ⇀ µ weakly∗ in Mb(D).
Let An be the AF defined by (2.12). Since An ∼ µn, for every f, g ∈ B(D) and α > 0,

(g, UαAnf)2 = 〈f · µn, Rαg〉.

Suppose now that f ∈ Cb(D) and g ∈ Bb(D). Then Rαg is a continuous solution of the
problem (−α+A)u = −g, u|∂D = 0. In particular, Rαg ∈ C0(D), and hence

〈f · µn, Rαg〉 → 〈f · µ,Rαg〉.

On the other hand, by part (i),

(g, UαAnf)2 → (g, UαAf)2 .

Thus,
(g, UαAf)2 = 〈f · µ,Rαg〉 (2.17)

for α > 0, f ∈ Cb(D). By [8, Lemma 5.1.7] there exists a smooth measure µA ∈M2,+(D)

such that µA ∼ A. Since (2.17) is satisfied with µ replaced by µA, repeating arguments
from the proof of [8, Theorem 5.1.3] shows that 〈f ·µA, g〉 = 〈f ·µ, g〉 for any 0-excessive
function h. Since for every x ∈ ∂D, PDt 1(x) = Px(τ > t) ↑ 1 as t ↓ 0, g ≡ 1 is 0-excessive.
Hence 〈f · µA, 1〉 = 〈f · µ, 1〉 for f ∈ Cb(D) which implies that µ = µA. Thus, µ ∼ A, and
the proof is complete.

Lemma 2.5. If Gn → G w H−1(D) then there exist g0, g0
n ∈ L2(D) and g, gn ∈ L2(D)d

such that G = g0 − divg, Gn = g0
n − divgn and ‖g0

n − g0‖2 + ‖gn − g‖2 → 0.
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Proof. By Riesz’s theorem there exist u, un ∈ H1
0 (D) such that

〈G, v〉 = (u, v)H1
0 (D), 〈Gn, v〉 = (un, v)H1

0 (D)

for v ∈ H1
0 (D). Set g0 = u, g0

n = un and gi = ∂u
∂xi

, gin = ∂un
∂xi

, i = 1, . . . , d. Then
G = g0 − divg, Gn = g0

n − divgn and

‖Gn −G‖H−1(D) ≤ (

∫
D

d∑
i=0

|gin − gi|2 dx)1/2 ≡ cn.

On the other hand, putting vn = (un − u)/‖un − u‖H1
0 (D) we see that

〈Gn −G, vn〉 = ‖un − u‖H1
0 (D) = cn ,

which shows that ‖Gn −G‖H−1(D) = cn. Thus cn → 0, which proves the lemma.

Lemma 2.6. Let µ, µn ∈ H−1(D)∩Mb(D) and let A ∼ µ, An ∼ µn. If µn → µ in H−1(D)

then there is a subsequence (still denoted by n) such that for any ν ∈ S+
00(D) and T > 0,

sup
t≤T
|Ant∧τ −At∧τ | → 0 in measure Pν .

Proof. In view of Lemmas 2.3 and 2.5 it suffices to prove the proposition in the case
µ = divg, µn = divgn for some g, gn ∈ L2(D)d such that gn → g in L2(D)d. But then, by
Proposition 2.4,

At =

∫ t∧τ

0

(a−1g)(Xs) ∗ dXs, Ant =

∫ t∧τ

0

(a−1gn)(Xs) ∗ dXs, t ≥ 0, Px-a.s.

for a.e. x ∈ D, and therefore in much the same way as in the proof of (2.13) one can
show that for any T > 0, Em supt≤T |Ant − At| → 0. To prove the lemma it suffices
now to repeat arguments from the proof of (2.16) to show that up to a subsequence,
supt≤T |Ant∧τ − At∧τ | → 0 in measure Px for q.e. x ∈ D, and hence, by (2.7), in measure
Pν for any ν ∈ S+

00(D).

3 RBSDEs and the obstacle problem - uniqueness of solutions

Let σ denote the symmetric square-root of a. Set

Bt =

∫ t

0

σ−1(Xs) dMs, t ≥ 0 (3.1)

and observe that from (2.4) it follows that B is an ({Ft}, Px)-standard Brownian motion
for each x ∈ Rd.

Definition We say that a triple (Y x, Zx,Kx) of {Ft}-adapted processes is a solution of
RBSDEx(f, µ, ψ) if

(i) Y xt =
∫ τ
t∧τ f(Xs, Y

x
s ) ds+Rτ −Rt∧τ +Kx

τ −Kx
t∧τ −

∫ τ
t∧τ Z

x
s dBs, t ≥ 0, Px-a.s., where

R ∼ µ,

(ii) Y x is Px-a.s. continuous, {Y xt , t ≤ T} ∈ D(Px) for T > 0, i.e. for every T > 0 the
family of random variables {Y xσ , σ is an {Ft}-stopping time, σ ≤ T} is uniformly
integrable under Px, limT→∞Ex|Y xT∧τ | = 0,

(iii)
∫ τ

0
|Zxt |2 dt <∞, Px-a.s.,

(iv) Y xt ≥ ψ(XD
t ), t ≥ 0, Px-a.s.,
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(v) Kx is a continuous increasing process such that Kx
0 = 0,

∫ τ
0

(Y xs −ψ(Xs)) dK
x
s = 0,

Px-a.s.

A pair (Y x, Zx) of {Ft}-adapted processes is a solution of BSDEx(f, µ) if Y x, Zx satisfy
(ii), (iii) and condition (i) is satisfied with Kx ≡ 0.

For a given constant k > 0 we define the truncature operator Tk : R→ R as

Tk(y) =

{
y if |y| ≤ k,
k sign(y) if |y| > k,

and for a function u : R → R we define the truncated function Tku pointwise, i.e.
(Tku)(x) = Tk(u(x)).

Definition Let µ ∈ M2
b(D). We say that a measurable and almost everywhere finite

function u : D → R is an entropy solution of the problem

Au = −µ, u|∂D = 0 (3.2)

if
∀k > 0, Tku ∈ H1

0 (D) (3.3)

and
1

2
(a∇u,∇Tk(u− v))2 − (fu, Tk(u− v))2 ≤ 2

∫
D

Tk(u− v) dµ (3.4)

for every v ∈ H1
0 (D) ∩ L∞(D) and k > 0.

Following [13] we adopt the following definition.

Definition We say that u : D → R is an entropy solution of OP(f, µ, ψ) if

(i) there exists γ ∈M2,+
b (D) such that u is an entropy solution of the problem

Au = −µ− γ, u|∂D = 0 (3.5)

such that u ≥ ψ q.e. in D,

(ii) for any γ̄ ∈M2,+
b (D), if v is an entropy solution of the problem

Av = −µ− γ̄, v|∂D = 0 (3.6)

such that v ≥ ψ q.e. in D, then v ≥ u q.e. in D.

Let us remark that by the definition, if there exists a solution to OP(f, µ, ψ) then it
is unique, and if u denotes the solution then the measure γ satisfying (i), (ii) is uniquely
determined. We call γ the obstacle reaction associated with u.

Since entropy solution u to OP(f, µ, ψ) satisfies (3.3), it has a quasi-continuous rep-
resentative. Therefore we will always assume that u denotes the quasi-continuous rep-
resentative of a given entropy solution. If, in addition, ‖∇Tku‖2 ≤ C(1 + k) for some
C > 0 then the quasi-continuous representative is q.e. finite, i.e. cap{|u| =∞} = 0 (see
[7, Remark 2.11]).

We know that solution of OP(f, µ, ψ) if exists is unique by the definition. Uniqueness
of solutions of associated RBSDEs with data f, µ, ψ under monotonicity condition on f

follows from the following comparison result.

Theorem 3.1. Let f, f ′ : D×R→ R, ψ : D → R be measurable functions, µ, µ′ ∈M2
b(D)

and x ∈ D. Suppose that (Y, Z,K) is a solution of RBSDEx(f, µ, ψ) and (Y ′, Z ′) is a
solution of BSDEx(f ′, µ′) such that Y ′t ≥ ψ(Xt), t ≥ 0, Px-a.s. If f(z, ·) is nonincreasing
and f(z, ·) ≤ f ′(z, ·) for a.e. z ∈ D, µ ≤ µ′ and ψ(X) is continuous under Px then Y ′t ≥ Yt,
t ≥ 0, Px-a.s.
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Proof. Fix T > 0. Let τn = inf{t ≥ 0 :
∫ t

0
|Zs−Z ′s|2 ds > n}∧T and let R ∼ µ, R′ ∼ µ′. By

the Itô-Tanaka formula, for t ≤ T we have

(Yt∧τn − Y ′t∧τn)+ +
1

2
(L0

τ∧τn(Y − Y ′)− L0
t∧τ∧τn(Y − y′))

= (Yτ∧τn − Y ′τ∧τn)+ +

∫ τ∧τn

t∧τn∧τ
1{Ys>Y ′s}(f(Xs, Ys)− f ′(Xs, Y

′
s )) ds

+

∫ τ∧τn

t∧τn∧τ
1{Ys>Y ′s} d(Rs −R′s +Ks)−

∫ τ∧τn

t∧τn∧τ
1{Ys>Y ′s}(Zs − Z

′
s) dBs,

where L0(Y − Y ′) denote the local time at 0 of the semimartingale Y − Y ′. By the
assumptions on f, f ′,∫ τ∧τn

t∧τ∧τn
1{Ys>Y ′s}(f(Xs, Ys)− f ′(Xs, Y

′
s )) ds

≤
∫ τ∧τn

t∧τ∧τn
1{Ys>Y ′s}(f(Xs, Ys)− f(Xs, Y

′
s )) ds ≤ 0.

Moreover, since {Yt > Y ′t } ⊂ {Yt > ψ(XD
t )} and R′ − R ∼ µ′ − µ ≥ 0 is an increasing

process, ∫ τ∧τn

t∧τ∧τn
1{Ys>Y ′s} dKs = 0,

∫ τ∧τn

t∧τ∧τn
1{Ys>Y ′s} d(Rs −R′s) ≤ 0.

Hence
Ex(Yt∧τn − Y ′t∧τn)+ ≤ Ex(Yτ∧τn − Y ′τ∧τn)+.

Since {Yt, t ≤ T}, {Y ′t , t ≤ T} ∈ D(Px) and τn ↑ T , Px-a.s., letting n → ∞ in the above
inequality gives

Ex(Yt − Y ′t )+ ≤ Ex(YT∧τ − Y ′T∧τ )+ = Ex(YT − Y ′T )+.

Since limT→∞Ex(YT −Y ′T )+ = 0, it follows that Ex(Yt−Y ′t )+ = 0 for t ≤ T , which proves
the theorem.

Corollary 3.2. Assume that f : D × R → R, ψ : D → R are measurable functions and
µ ∈M2

b(D). If f(z, ·) is nonincreasing for a.e. z ∈ D and the process ψ(X) is continuous
under Px for some x ∈ D then the solution of RBSDEx(f, µ, ψ) is unique.

Remark 3.3. Assume that f, f ′, µ, µ′ satisfy the assumptions of Theorem 3.1. From its
proof (with K ≡ 0) it follows that if (Y,Z) is a solution of BSDEx(f, µ) and (Y ′, Z ′) is a
solution of BSDEx(f ′, µ′) for some x ∈ D then Y ′t ≥ Yt, t ≥ 0, Px-a.s.

4 Existence and stochastic representation of solutions of the ob-
stacle problem

Our main goal is to prove existence and stochastic representation of solutions of the
obstacle problem with data f, µ, ψ satisfying (H1)–(H3). Since the proof of this result
is rather lengthy, we first assume additionally that µ ∈ H−1(D) and f is bounded, and
then we consider the general case.

4.1 The case µ ∈ H−1(D)

Assume that µ ∈ H1
0 (D)∩Mb(D) and that f is bounded and satisfies (H1a). Since the

set Kψ is nonempty by (H3), convex and closed (see, e.g., [8, Theorem 2.1.4]), and the
operator −A : Kψ → H−1(D) is strongly monotone, coercive and weakly continuous,
there exists a unique solution of the elliptic variational inequality (1.4) (see, e.g., [9,
Corollary III.1.8]).
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Proposition 4.1. Assume that f is bounded and satisfies (H1a), µ ∈ H−1(D) ∩M2
b(D)

and ψ satisfies (H3). Let u ∈ H1
0 (D) be a solution of EVI(f, µ, ψ) and let γ be the obstacle

reaction associated with u. Then for q.e. x ∈ D the triple (Y,Z,K) defined by

Yt = u(XD
t ), Zt = σ∇u(XD

t ), t ≥ 0, K ∼ γ (4.1)

is a solution of RBSDEx(f, µ, ψ).

Proof. Step 1. We first assume additionally that µ ∈ L∞(D). Let un ∈ H1
0 (D) be a

unique weak solution of the problem

Aun = −µ− fun − n(un − ψ)−, un|∂D = 0.

Then

1

2
(a∇(un − ψ∗),∇(un − ψ∗))2 = (fun − fψ∗ , un − ψ∗)2 + (µ− µ∗, un − ψ∗)2

+ n((un − ψ)−, un − ψ∗)2

≤ (µ− µ∗, un − ψ∗)2,

the last inequality being a consequence of (H1a) and the fact that ψ∗ ≥ ψ a.e.. From the
above and Poincaré’s inequality it follows that {un} is bounded in H1

0 (D). Therefore,
taking a subsequence if necessary we may and will assume that there is w ∈ H1

0 (D)

such that un → w weakly in H1
0 (D). It is known (see [17]) that for every x ∈ D the pair

(Y n, Zn) = (un(XD), σ∇un(XD)) is a unique solution of the BSDE(f, µ+n(un−ψ)−). In
particular, for T > 0,

un(Xt∧τ )− un(XT∧τ ) =

∫ T∧τ

t∧τ
(fun + µ)(Xs) ds+ n

∫ T∧τ

t∧τ
(Y ns − ψ(Xs))

− ds

−
∫ T∧τ

t∧τ
σ∇un(Xs) dBs, t ∈ [0, T ], Px-a.s.. (4.2)

By Remark 3.3, Y n ≤ Y n+1, Px-a.s. for every x ∈ D. It follows in particular that
un ≤ un+1, n ∈ N, and hence that un ≤ w a.e.. As a consequence,

1

2
(a∇(un − w),∇(un − w))2 = (fun − fw, un − w)2 + (fw, un − w)2

+ (µ, un − w)2 + n((un − ψ)−, un − w)2

≤ (fw, un − w)2 + (µ, un − w)2,

from which we conclude that un → w in H1
0 (D). Since for any v ∈ Kψ,

1

2
(a∇un,∇(v − un))2 − (fun , v − un)2 = (µ, v − un)2 + n((un − ψ)− , v − un)2

≥ (µ, v − un)2,

letting n → ∞ and using the fact that fun → fw in L2(D) by Nemitskii’s theorem (see
[11, Theorem 2.1]), we see that

1

2
(a∇w,∇(v − w))2 − (fw, v − w)2 ≥ (µ, v − w)2

for v ∈ Kψ, which shows that w is a solution of EVI(f, µ, ψ), i.e. w = u. Now, let R ∼ µ,
K ∼ γ and let

Kn
t = n

∫ t

0

(Y ns − ψ(Xs))
− ds, t ≥ 0,
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i.e. Kn ∼ γn, where γn = n(un − ψ)− dx. Since γ = fu + µ−Au, γn = fun + µ−Aun and

‖A(un − u)‖H−1(D) ≤
Λ

2
‖un − u‖H1

0 (D),

we see that γn → γ in H−1(D). Hence, by Lemma 2.6 and (2.7), there is a subsequence
(still denoted by n) such that for any ν ∈ S+

00(D),

sup
t≤T
|Kn

t∧τ −Kt∧τ | → 0 in measure Pν . (4.3)

Moreover, by Doob’s inequality and Lemma 2.1, for any ν ∈ S+
00(D),

Eν sup
t≤T
|
∫ t∧τ

0

σ∇(un − u)(Xs) dBs|2 ≤ CEν
∫ T∧τ

0

|∇(un − u)|2(Xs) ds

≤ C(1 + T )‖U1ν‖∞‖∇(un − u)‖2 → 0

and, since fun → fu in L1(D),

Eν

∫ T∧τ

0

|(fun − fu)(Xs)| ds ≤ C(1 + T )‖U1ν‖∞‖fun − fu‖1 → 0.

Finally, from [8, Lemma 5.1.5] and (2.7) it follows that there is a subsequence (still
denoted by n) such that Pν -a.s. the sequence {un(X)} converges to u(X) uniformly in
[0, T ] in probability Pν . Therefore letting n→∞ in (4.2) gives

u(Xt∧τ )− u(XT∧τ ) =

∫ T∧τ

t∧τ
fu(Xs) ds+RT∧τ −Rt∧τ +KT∧τ −Kt∧τ

−
∫ T∧τ

t∧τ
σ∇u(Xs) dBs, t ∈ [0, T ], Pν -a.s.. (4.4)

Since

Y nt ≥ ψ(XD
t ), t ∈ [0, T ],

∫ T∧τ

0

(un(Xt)− ψ(Xt)) dK
n
t = 0, Pν -a.s.,

it follows that

Yt ≥ ψ(XD
t ), t ∈ [0, T ],

∫ T∧τ

0

(u(Xt)− ψ(Xt)) dKt = 0, Pν -a.s.. (4.5)

Letting T →∞ in (4.4), (4.5) shows that under Pν the triple defined by (4.1) is a solution
of RBSDE with data f, µ, ψ and hence, by (2.7), is a solution of RBSDEx(f, µ, ψ) for q.e.
x ∈ D.
Step 2. We now show how to dispense with the assumption that µ ∈ L∞(D). If µ ∈
H−1(D) ∩Mb(D) then there exist g0 ∈ L2(D), g ∈ L2(D)d such that µ = g0 − divg. Let
jn be a mollifier and let µn = Tng

0 − div((Tng) ∗ jn). Let un ∈ H1
0 (D) be a weak solution

of EVI(f, µn, ψ) and let γn be the obstacle reaction associated with un so that

Aun + fun = −µn − γn.

By Step 1, for q.e. x ∈ D the triple (Y n, Zn,Kn) defined by

Y nt = un(XD
t , ), Znt = σ∇un(XD

t ), t ≥ 0, Kn ∼ γn (4.6)
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is a solution of RBSDEx(f, µn, ψ). Hence, for any T > 0,

un(Xt∧τ )− un(XT∧τ ) =

∫ T∧τ

t∧τ
fun(Xs) ds+RnT∧τ −Rnt∧τ +Kn

T∧τ −Kn
t∧τ

−
∫ T∧τ

t∧τ
σ∇un(Xs) dBs, t ∈ [0, T ], Px-a.s. (4.7)

for q.e. x ∈ D, where Rn ∼ µn, Kn ∼ γn. Let u ∈ H1
0 (D) be a weak solution of

EVI(f, µ, ψ) and let γ be the obstacle reaction associated with u. Taking v = un as a test
function in (1.4) we get

−〈Au, un − u〉 ≥ 〈µ, un − u〉.

Since −〈Aun, v − un〉 ≥ 〈µn, v − un〉 for v ∈ Kψ, we also have

−〈Aun, u− un〉 ≥ 〈µn, u− un〉.

Hence

1

2
(a∇(un − u),∇(un − u))2 ≤ (fun − fu, un − u)2 + 〈µn − µ, un − u〉

≤ 〈µn − µ, un − u〉
≤ ‖µn − µ‖H1(D)‖un − u‖H1

0 (D),

from which it follows that un → u in H1
0 (D). As a consequence, fun → fu in L2(D) by

Nemitskii’s theorem, and hence γn → γ in H−1(D). From Lemma 2.6 and (2.7) it follows
now that there is a subsequence (still denoted by n) such that for any ν ∈ S+

00(D),

sup
t≤T

(|Rnt∧τ −Rt∧τ |+ |Kn
t∧τ −Kt∧τ |)→ 0 in measure Pν ,

where R ∼ µ, K ∼ γ. To complete the proof it suffices now to let n → ∞ in (4.7) and
repeat step by step arguments following (4.3) in Step 1.

Proposition 4.2. Let f, µ satisfy the assumptions of Proposition 4.1 and let u ∈ H1
0 (D)

be a weak solution of the problem
Au = −µ.

Then for q.e. x ∈ D the pair

Yt = u(XD
t ), Zt = σ∇u(XD

t ), t ≥ 0

is a solution of BSDEx(f, µ).

Proof. Follows from the proof of Proposition 4.1 with ψ = −∞ and γ = 0, K = 0.

Proposition 4.3. Under the assumptions of Proposition 4.1,

‖γ‖Mb(D) ≤ ‖(µ− µ∗)−‖Mb(D).

Proof. Let us define the operator B : H1
0 (D)→ H−1(D) by

Bw = Aw + (fw+ψ∗ − fψ∗).

Let un ∈ H1
0 (D) be a solution of EVI(f, µ, ψn) with ψn = ψ − n−1 and let wn ∈ H1

0 (D) be
a solution of the elliptic variational inequality with the operator B, measure µ− µ∗ and
obstacle ψn − ψ∗, i.e.{

〈−Bwn, ξ − wn〉 ≥ 〈µ− µ∗, ξ − wn〉 ∀ξ ∈ Kψn−ψ∗(D),

wn ∈ Kψn−ψ∗(D).
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Since Aψ∗ = −µ∗, for every η ∈ Kψn we have

〈−A(wn + ψ∗), η − wn − ψ∗〉 = 〈−Awn − (fwn+ψ∗ − fψ∗)−Aψ∗ − fψ∗ , η − ψ∗ − wn〉
= 〈−Bwn, η − ψ∗ − wn〉+ 〈µ∗, η − ψ∗ − wn〉
≥ 〈µ, η − ψ∗ − wn〉.

From the above it follows that wn+ψ∗ is a solution of EVI(f, µ, ψn), i.e. un = wn+ψ∗. As
a consequence, the obstacle reaction βn associated with wn coincides with the obstacle
reaction γn associated with un because

Aun + fun = Awn + fwn+ψ∗ +Aψ∗ = Bwn +Aψ∗+ fψ∗ = −(µ−µ∗)−βn−µ∗ = −µn−βn.

Let v ∈ H1
0 (D) be a solution to the equation

Bv = −(µ− µ∗)+

and let ξ = wn ∧ v. Since g(x, y) = f(x, y+ ψ∗(x))− f(x, ψ∗(x)) is bounded and satisfies
(H1a), it follows from Proposition 4.2 and Remark 3.3 that v ≥ 0. Hence ξ ∈ Kψn−ψ∗

and
1

2
(a∇wn,∇(ξ − wn))2 − (fwn+ψ∗ − fψ∗ , ξ − wn)2 − 〈µ− µ∗, ξ − wn〉 ≥ 0.

Since ξ − wn ≤ 0,

1

2
(a∇v,∇(ξ − wn))2 − (fv+ψ∗ − fψ∗ , ξ − wn)2 − 〈µ− µ∗, ξ − wn〉

= 〈(µ− µ∗)−, ξ − wn〉 ≤ 0.

By the above inequalities,

0 ≥ (a∇(v − wn),∇(ξ − wn))2 − 2(fv+ψ∗ − fwn+ψ∗ , ξ − wn)2

=

∫
D

1{v<wn}(a∇(v − wn),∇(ξ − wn)) dx

− 2

∫
D

1{v<wn}(fv+ψ∗ − fwn+ψ∗)(v − wn) dx

≥
∫
D

1{v<wn}(a∇(ξ − wn),∇(ξ − wn)) dx

≥ (a∇(ξ − wn),∇(ξ − wn))2.

Hence ξ = wn, and so wn ≤ v. Since

Bv − Bwn = −(µ− µ∗)+ + µ− µ∗ + γn = −(µ− µ∗)− + γn,

we have

〈(µ− µ∗)− − γn, Tε(v − wn)〉 =
1

2
(a∇(v − wn),∇Tε(v − wn))2

− (fv+ψ∗ − fwn+ψ∗ , Tε(v − wn))2 ≥ 0,

the last inequality being a consequence of monotonicity of f(x, ·). Consequently,∫
D

Tε(v − wn) dγn ≤
∫
D

Tε(v − wn) d(µ− µ∗)−,

from which we deduce that γn({v − wn > ε}) ≤ (µ − µ∗)−(D) for ε > 0, and hence that
γn({v − wn > 0}) ≤ (µ− µ∗)−(D). From this it may be concluded that

γn(D) ≤ ‖µ− µ∗‖Mb(D) , n ∈ N. (4.8)
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Indeed, since v ≥ wn, (4.8) will be proved once we prove that γn({v = wn}) = 0. Since
v ≥ 0 and ψn − ψ∗ < 0,

γn({v = wn}) ≤ γn({wn ≥ 0}) ≤ γn({wn > ψn − ψ∗}) = γn({un > ψn}).

On the other hand, by (2.9),

0 = Em

∫ t

0

(un − ψn)(XD
s ) dKn

s = 〈
∫ t

0

PDs 1 ds, (un − ψn) · γn〉,

where Kn ∼ γn. Since X has continuous trajectories,
∫ t

0
PDs 1(x) ds =

∫ t
0
Px(τ > s) ds > 0

for x ∈ D. From this we conclude that∫
D

(un − ψn) dγn = 0, (4.9)

and hence that γn({un > ψn}) = 0. Thus, γn({v = wn}) = 0, and (4.8) is proved. To
complete the proof of the proposition it suffices now to prove that γn → γ in Mb(D),
where γ is the obstacle reaction associated with the solution u of EVI(f, µ, ψ). To see
this, we first show that {un} is bounded in H1

0 (D). Since un ≤ un+1 by Proposition
4.1 and Theorem 3.1, it follows that there is w ∈ H1

0 (D) such that un → w weakly in
H1

0 (D). In fact, as in Step 1 of the proof of Proposition 4.1 one can show that w = u

and un → u strongly in H1
0 (D). By [13, Proposition 3.8], un is a solution of OP(0, µ̄n, ψn)

whereas u is a solution of OP(0, µ̄, ψ), where µ̄n = fun + µ, µ̄ = fu + µ. Since µ̄n → µ̄ in
Mb(D), it follows from [13, Theorem 2.7] that γn → γ in Mb(D), which is the desired
conclusion.

Proposition 4.4. Under the assumptions of Proposition 4.1, if u ∈ H1
0 (D) is a solution

of EVI(f, µ, ψ) then it is a solution of OP(f, µ, ψ).

Proof. Our method of proof will be adaptation of the proof of [13, Proposition 3.8]. Let
γ be the obstacle reaction associated with u. By Proposition 4.3, γ ∈M+

b (D) and hence
γ ∈M2,+

b (D) since γ ∈ H−1(D). Therefore u is an entropy solution of the problem (3.5).
Let γ̄ ∈M2,+

b (D) and let v be an entropy solution of the problem Av = −µ− γ̄, v|∂D = 0

such that v ≥ ψ q.e. in D. What is left is to show that v ≥ u q.e. in D. By [13, Remark
4.5] there is a sequence {γ̄n} ⊂ H−1(D)∩M2,+

b (D) such that γ̄n ↑ γ̄ strongly inMb(D).
Let vn ∈ H1

0 (D) be a weak solution of the problem Avn = −µ−γ̄n, and let un ∈ H1
0 (D) be

a solution of EVI(f, µ, ψn) with ψn = ψ ∧ vn. By Propositions 4.1, 4.2 and Theorem 3.1,
vn ≥ un, so the proof will be completed by showing that vn ↑ v, un ↑ u q.e. in D. To see
this, let us first observe that by Proposition 4.2 and Remark 3.3, vn ≤ vn+1 q.e. Hence
ψn ≤ ψn+1, so using once again Propositions 4.1, 4.2 and Theorem 3.1 we see that
un ≤ un+1. By the above there are v∗, u∗ such that vn ↑ v∗, un ↑ u∗ q.e. Let w ∈ H1

0 (D)

be a weak solution of the problem Aw = −fv∗ − µ − γ̄, w|∂D = 0. Since fvn → fv∗ in
L1(D), it follows from the stability results for entropy solutions (see Theorem 2.3 and
Corollary 3.2 in [13]) that Tkvn → Tkw in H1

0 (D) for every k > 0. It follows that w = v∗,
hence that v∗ is a weak solution of the problem Av∗ = −fv∗ − µ − γ̄, v∗|∂D = 0. Since
the last problem has a unique solution, v = v∗, and consequently, vn ↑ v q.e. in D. On
the other hand, by the definition of a weak solution of EVI,

− 〈Aun, v − un〉 ≥ 〈µ, v − un〉, v ∈ Kψn . (4.10)

From (4.10) with v = ψ∗ and the fact that Aψ∗ = −µ∗ it follows that

1

2
(a∇(ψ∗ − un),∇(ψ∗ − un))2 ≤ (fψ∗ − fun , ψ∗ − un)2 + 〈µ∗ − µ, ψ∗ − un〉

≤ 〈µ∗ − µ, ψ∗ − un〉,
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hence that {un} is bounded in H1
0 (D). Therefore we may assume that un → u∗ weakly

in H1
0 (D). In fact, since we already know that u∗ ≥ ψ ∧ v = ψ q.e.,

1

2
(a∇(u∗ − un),∇(u∗ − un))2 ≤ (fu∗ − fun , u∗ − un)2 + 〈Au∗ − µ, u∗ − un〉

≤ 〈Au∗ − µ, u∗ − un〉,

from which it follows that un → u∗ strongly in H1
0 (D). Therefore letting n→∞ in (4.10)

shows that u∗ is a solution of EVI(f, µ, ψ). Accordingly u = u∗, and consequently, un ↑ u
q.e. in D.

4.2 General measure data

Let Mq(D), q ≥ 1, denote the Marcinkiewicz space of order q (see, e.g., [12, Section
2.18]). Recall that Mq(D) can be defined as the set of measurable functions u : D → R

such that the corresponding distribution function

λ(t) = m({x ∈ D : |u(x)| > t}), t > 0

satisfies an estimate of the form

λ(t) ≤ Ct−q

for some C ≥ 0. One can check that Lq(D) ⊂Mq(D) ⊂ Lp(D) for 1 ≤ p < q.
In the proof of the existence of a solution to the problem OP(f, µ, ψ) under (H1)–(H3)

we will need the following stability result for entropy solutions of (3.2).

Theorem 4.5. Assume that f satisfies (H2) and µ, µn ∈ M2
b(D). Let u be an entropy

solution of the problem (3.2) and un be an entropy solution of the problem

Aun = −µn, un|∂D = 0.

If µn → µ in Mb(D) then un → u in W 1,q
0 (D) for q ∈ [1, d/(d − 1)) and Tkun → Tku in

H1
0 (D) for every k > 0.

Proof. The proof follows closely the proof of [1, Theorem 6.1] (see also [2]). Neverthe-
less we provide its main ingredients because we will use them in the proof of our main
result.

We first assume that d ≥ 3. By (3.4) with v = 0 and the fact that unfun ≤ 0,

Λ−1‖∇Tkun‖22 = Λ−1

∫
{|un|<k}

|∇un|2 dx ≤
∫
{|un|<k}

(a∇un,∇un) dx

= 2

∫
{|un|<k}

unfun dx+ 2

∫
{|un|<k}

un dµn ≤ 2k‖µn‖Mb(D). (4.11)

It follows that {∇Tkun}n is bounded in L2(D) and hence, by Poincaré’s inequality, in
H1

0 (D). Let q ∈ [1, 2d/(d − 2)). Since the imbedding H1
0 (D) ↪→ Lq(D) is compact,

we may and will assume that {Tkun}n is a Cauchy sequence in Lq(D). From this and
estimates of meas{|un−um| > t} on pages 256–256 in [1] it follows that {un} is a Cauchy
sequence in measure. Hence there is u such that un → u in measure in D. Extracting
a subsequence if necessary we may and will assume that un → u a.e.. Since f(x, ·) is
continuous, fun → fu a.e.. Let {ξi} be a sequence of real smooth increasing functions
such that ξi(y)→ ξ(y), where ξ(y) = 0 if |y| ≤ k and ξ(y) = sign(y) if |y| > k. Since

0 ≤ (a∇un,∇ξi(un))2 = 2

∫
D

funξi(un) dx+ 2

∫
D

ξi(un) dµn,
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letting i→∞ gives

0 ≤ −
∫
{un<−k}

fun dx+

∫
{un>k}

fun dx+

∫
{|un|>k}

dµn,

that is ∫
{|un|>k}

|fun | dx ≤
∫
{|un|>k}

dµn. (4.12)

Letting k ↓ 0 in (4.12) we see that ‖fun‖1 ≤ ‖µn‖Mb(D). Hence, by Fatou’s lemma,
‖fu‖1 ≤ lim infn→∞ ‖fun‖1 = ‖µ‖Mb(D). By (4.11) and [1, Lemma 4.2], for every ε > 0

there exists A > 0 such that meas{|∇un| > A} ≤ ε for all n. Moreover,∫
{|un−um|≤k}

(a∇(un − um),∇(un − um)) dx

≤ 2

∫
{|un−um|≤k}

|fun − fum | · |un − um| dx+ 2

∫
{|un−um|≤k}

|un − um| dµn

≤ 2k‖µm‖Mb(D) + 6k‖µn‖Mb(D) ≤ 8kC.

Using the above estimate one can show as in [1] (see pages 257–258) that {∇un} is a
Cauchy sequence in measure. Hence {∇un} converges in measure to some function v.
Since we know that for each k > 0, {∇Tkun}n is bounded in L2(D), it converges weakly
in L2(D) to ∇Tku for k > 0 and v = ∇u. Thus,

un → u, ∇un → ∇u in measure. (4.13)

By (4.11) and [1, Lemma 4.1], the sequence {un} is bounded in the Marcinkiewicz space
Md/(d−2)(D). Moreover, again by [1, Lemma 4.1], {∇un} is bounded in Md/(d−1)(D).
Since we already know that ∇un → ∇u in measure, it follows from this that ∇un → ∇u
in Lq(D) for q < d/(d− 1), and hence, by Poincaré’s inequality, that

un → u in W 1,q
0 (D), q ∈ [1, d/(d− 1)). (4.14)

From (4.12) it follows also that the sequence {fun} is equiintegrable. Hence {fun − fu}
is equiintegrable, and consequently,

fun → fu in L1(D) (4.15)

since we know that fun → fu a.e.. Finally, to show that u is an entropy solution to (3.2)
let us consider an entropy solution w to the problem

Aw = −fu − µ, w|∂D = 0.

By [13, Corollary 3.2] one can find g, gn ∈ L1(D), G,Gn ∈ H−1(D) such that µ = g +G,
µn = gn + Gn and gn → g in L1(D), Gn → G in H−1(D). From this, (4.15) and known
stability results for entropy solutions (see [13, Theorem 2.3] or [14, Theorem 1.2]) it
follows that Tkun → Tkw in H1

0 (D) for k > 0. Thus, w = u. As a consequence, Tkun →
Tku in H1

0 (D) for k > 0 and u is an entropy solution of (3.2), which completes the proof
in case d ≥ 3.

Now assume that d = 2. Then the imbedding H1
0 (D) ↪→ L2(D) is compact, so the

same proof as in case d ≥ 3 shows that (4.13) holds true. By (4.11), for any p ∈ [1, 2),∫
{|un|<k}

|∇u|p dx ≤ Ckp/2,
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from which in much the same way as in the proof of [1, Lemma 4.1] it follows that {un}
is bounded in the space Mp/(2−p)(D). Thus, {un} is bounded in Mq(D) for any q ≥ 1.
Moreover, from (4.11) and the proof of [1, Lemma 4.2] it follows that {∇un} is bounded
in Mq(D) for q ∈ [1, 2). In particular, it follows that {un} is bounded in W 1,q

0 (D) for
q ∈ [1, d/(d − 1)). From this and (4.13) we get (4.14). The rest of the proof runs as
before.

In part (ii) of the following main theorem we use some ideas from [4], where L1 solu-
tions of non-reflected BSDEs with deterministic terminal time and coefficients satisfying
the monotonicity condition are considered. L1 solutions of similar reflected BSDEs are
considered in [19].

Theorem 4.6. Assume that (H1)–(H3) are satisfied and d ≥ 2.

(i) There exists a quasi-continuous q.e. finite entropy solution u of OP(f, µ, ψ). More-
over, if d ≥ 3 then

u ∈M2d/(d−2)(D), |∇u| ∈Md/(d−1)(D),

and if d = 2 then
u ∈Mp(D), |∇u| ∈Mq(D)

for any p ≥ 1, q ∈ [1, 2). In particular, in both cases, u ∈ W 1,q
0 (D) for any q ∈

[1, d/(d− 1)).

(ii) Let γ be the obstacle reaction associated with u. Then for q.e. x ∈ D the triple
(Y,Z,K), where

Yt = u(XD
t ), Zt = σ∇u(XD

t ), t ≥ 0, K ∼ γ (4.16)

is a unique solution of RBSDEx(f, µ, ψ). Moreover, for every T > 0 and β ∈ (0, 1),

Ex sup
t≤T
|Yt|β <∞, Ex(

∫ T∧τ

0

|Zs|2 ds)β/2 <∞ (4.17)

for q.e. x ∈ D.

Proof. By (2.6), µ = g +G for some g ∈ L1(D), G ∈ H−1(D) ∩M2
b(D). Let gn = Tng and

let µn = gn+G. Since gn, G ∈ H−1(D)∩Mb(D), µn ∈ H−1(D)∩Mb(D). Let un ∈ H1
0 (D)

be a solution to EVI(Tnf, µn, ψ) and let γn be the obstacle reaction associated with un,
i.e.

Aun + (Tnf)un = −µn − γn. (4.18)

By Proposition 4.4, un is a solution of OP(Tnf, µn, ψ). Furthermore, by (4.18), the fact
that (Tnf)unun ≤ 0 and Proposition 4.3 we have

Λ−1

∫
{|un|<k}

|∇un|2 dx ≤
∫
{|un|<k}

(a∇un,∇un) dx

= 2

∫
{|un|<k}

(Tnf)unun dx+ 2

∫
{|un|<k}

un d(µn + γn)

≤ 2k(‖µn‖Mb(D) + ‖γn‖Mb(D))

≤ 2k(‖µn‖Mb(D) + ‖(µn − µ∗)−‖Mb(D)

≤ 2k(2‖g‖1 + ‖µ∗‖Mb(D)) ≡ kC. (4.19)

Let us define ξi as in the proof of Theorem 4.5. Then

0 ≤ (a∇un,∇ξi(un))2 = 2

∫
D

(Tnf)unξi(un) dx+ 2

∫
D

ξi(un) d(µn + γn),
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from which as in the proof of (4.12) it follows that∫
{|un|>k}

|(Tnf)un | dx ≤
∫
{|un|>k}

d(µn + γn). (4.20)

Letting k ↓ 0 in (4.20) we get

‖(Tnf)un‖1 ≤ ‖µn‖Mb(D) + ‖γn‖Mb(D) ≤ C.

Moreover,∫
{|un−um|≤k}

(a∇(un − um),∇(un − um)) dx

≤ 2

∫
{|un−um|≤k}

|(Tnf)un − (Tmf)um | · |un − um| dx

+ 2

∫
{|un−um|≤k}

|un − um| d(µn + γn)

≤ 2k(‖µm‖Mb(D) + ‖γm‖Mb(D)) + 6k(‖µn‖Mb(D) + ‖γn‖Mb(D)) ≤ 8kC. (4.21)

Using (4.19)–(4.21) in much in the same way as in the proof of Theorem 4.5 we show
that there is u ∈ W 1,q

0 (D), q ∈ [1, d/(d − 1)), such that (4.14), (4.15) are satisfied. Set
µ̄n = (Tnf)un , µ̄ = fu + µ and denote by v the solution of the problem OP(0, µ̄, ψ). Since
‖µ̄n − µ̄‖Mb(D) ≤ |(Tnf)un − fu‖1 + ‖gn − g‖1, µ̄n → µ̄ in Mb(D), and hence, by [13,
Theorem 2.7], Tk(un) → Tk(v) in H1

0 (D) for every k > 0 and γn → γ in Mb(D), where
γ ∈ M2,+

b (D) is the obstacle reaction associated with v. From this and (4.14) it follows
in particular that v = u. Therefore u is an entropy solution of the problem (3.5) and
Tkun → Tk(u) in H1

0 (D) for k > 0. By the last statement and (4.19), ‖∇Tku‖2 ≤ Ck,
k > 0, so according to the remark following the definition of a solution of the obstacle
problem, u is q.e. finite. Before we prove that u satisfies the minimality condition
(ii) in the definition of the obstacle problem we will show that for q.e. x ∈ D the
triple (Y, Z,K) defined by (4.16) is a solution of RBSDEx(f, µ, ψ) satisfying (4.17). By
Proposition 4.1, for each x ∈ D the triple (Y n, Zn,Kn) defined by (4.6) is a solution of
RBSDEx(Tnf, µn, ψ), i.e.

Y nt =

∫ τ

t∧τ
(Tnf)un(Xs) ds+Rnτ −Rnt∧τ +Kn

τ −Kn
t∧τ −

∫ τ

t∧τ
Zns dBs, t ≥ 0, Px-a.s.,

where Rn ∼ µn. Write cn = (Tnf)un + gn and let Cn ∼ cn(x) dx, A ∼ G. Then the above
equation takes the form

Y nt = Aτ −At∧τ + Cnτ − Cnt∧τ +Kn
τ −Kn

t∧τ −
∫ τ

t∧τ
Zns dBs, t ≥ 0.

To simplify notation set

δΦ = Φn − Φn+k, Φ := C,K, Y, Z.

Using arguments from the proof of [4, Proposition 6.4] one can show that for any 0 ≤
t ≤ T and x ∈ D,

|δYt| ≤ Ex (|δYT∧τ |+ |δC|T∧τ + |δK|T∧τ |Ft∧τ ) ≡Mt. (4.22)

Hence Ex|δYt| ≤ Ex|Mt| for x ∈ D, and consequently, for any ν ∈ S+
00(D),

Eν |δYt| ≤ Eν |Mt|. (4.23)
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By Lemma 2.1,
lim
n→∞

sup
k≥1

Eν(|δC|T∧τ + |δK|T∧τ ) = 0. (4.24)

On the other hand, since un → u in W 1,q
0 (D) for q < d/(d − 1) and limT→∞ u(XD

T ) = 0,
limT→∞ un(XD

T ) = 0, we have

lim
T→∞

sup
n,k≥1

Eν |δYT∧τ | ≤ 2 lim
T→∞

sup
n≥1

Eν |un(XD
T )| = 0. (4.25)

Since (4.24) holds for every T > 0, it follows from (4.23) and (4.25) that

lim
n→∞

sup
k≥1

Eν |δYt| = 0, t ≥ 0. (4.26)

Since M defined by (4.22) is a martingale under Px for every x ∈ D, applying [4, Lemma
6.1] yields

Ex(sup
t≤T
|Mt|β) ≤ (1− β)−1(Ex|MT |)β .

Hence, for every x ∈ D,

Ex sup
t≤T
|δYt|β ≤ (1− β)−1(Ex(|δYT∧τ |+ |δC|T∧τ + |δK|T∧τ ))β .

Integrating the above inequality with respect to ν and using Hölder’s inequality we get

Eν sup
t≤T
|δYt|β ≤

1

1− β
(ν(D))1−β(Eν(|δYT∧τ |+ |δC|T∧τ + |δK|T∧τ ))β

≤ 1

1− β
(ν(D))1−β{(Eν |δYT∧τ |)β + (Eν(|δC|T∧τ + |δK|T∧τ ))β}.

From this as in the proof of (4.26) we get

lim
n→∞

sup
k≥1

Eν sup
t≤T
|δYt|β = 0, T ≥ 0. (4.27)

As in the proof of [4, Lemma 3.1] one can show that for every β ∈ (0, 1) there exists
Cβ ≥ 0 such that for x ∈ D,

Ex(

∫ T∧τ

0

|δZs|2 ds)β/2 ≤ CβEx{sup
t≤T
|δYT∧τ |β + (|δC|T∧τ )β + (|δK|T∧τ ))β}.

Hence

Eν(

∫ T∧τ

0

|δZs|2 ds)β/2

≤ CβEν{sup
t≤T
|δYT∧τ |β + (ν(D))1−β(Eν |δC|T∧τ )β + (Eν |δK|T∧τ )β}.

Using (4.27) and arguing as before we conclude from the above that

lim
n→∞

sup
k≥1

Eν(

∫ T∧τ

0

|δZt|2 dt)β/2 = 0, T ≥ 0. (4.28)

Let Sβ(Rd) (resp. Mβ(Rd)) denote the space of progressively measurable Rd-valued
processes on [0,∞) equipped with the metric

%(X,X ′) =

∞∑
N=1

2−N (Eν sup
t≤N
|Xt −X ′t|β ∧ 1)
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(
resp. %(Z,Z ′) =

∞∑
N=1

2−N ((Eν(

∫ N

0

|Zt − Z ′t|2 dt)β/2) ∧ 1)

)
.

Obviously Sβ(Rd), Mβ(Rd) are complete spaces. By (4.27) and (4.28), {(Y n, Zn)} is a
Cauchy sequence in Sβ(Rd) ×Mβ(Rd × Rd). Let (Y ν , Zν) denote its limit. Clearly Y ν ,
Zν do not depend on β and are adapted. Moreover, Y ν is Pν -a.s. continuous, because
the processes Y n are continuous and

sup
t≤T
|Y nt − Y νt | → 0 in measure Pν (4.29)

for every T > 0. By Doob’s inequality for continuous local martingales,

Eν sup
t≤T
|
∫ t∧τ

0

(Zns − Zνs ) dBs|β ≤
4− β
2− β

Eν(

∫ t∧τ

0

|Zns − Zνs |2 ds)β/2 → 0.

Since cn → c in L1(D) and γn → γ inMb(D), it follows from the above and Lemma 2.3
that

Y νt =

∫ τ

t∧τ
c(Xs) ds+Kτ −Kt∧τ −

∫ τ

t∧τ
Zνs dBs, t ≥ 0, Pν -a.s., (4.30)

where K ∼ γ. Since Y nt ≥ ψ(XD
t ), t ≥ 0 for n ∈ N and ψ(XD) has continuous trajecto-

ries under Pν , from (4.29) it also follows that

Y νt ≥ ψ(XD
t ), t ≥ 0, Pν -a.s. (4.31)

and ∫ τ

0

(Y νt − ψ(XD
t )) dKt = 0, Pν -a.s., (4.32)

the last equality being a consequence of that fact that

sup
t≤T
|
∫ t∧τ

0

(Y ns − ψ(XD
s )) dKn

s −
∫ t∧τ

0

(Y νs − ψ(XD
s )) dKs| → 0

in measure Pν for T > 0. Since (4.30)–(4.32) hold for every ν ∈ S+
00(D), to complete the

proof it suffices to show that
u(XD) = Y ν , Pν -a.s. (4.33)

and ∫ T∧τ

0

|Zνt − σ∇u(Xt)|2 dt = 0, Pν -a.s. (4.34)

for T > 0. We know that Y nt = un(XD
t ), t ≥ 0. Since Tkun → Tku in H1

0 (D) for k > 0, it
follows from [8, Lemma 5.1.2] that there is a subsequence, still denoted by n, such that
for every k ∈ N and T > 0,

sup
t≤T
|Tk(un(XD

t ))− Tk(u(XD
t ))| → 0 in measure Pν .

On the other hand, by (4.29), for k ∈ N, T > 0,

sup
t≤T
|Tk(Y nt )− Tk(Y νt )| → 0 in measure Pν .

Hence Tku(XD) = Tk(Y ν) under Pν for every k ∈ N, which yields (4.33). To show (4.34)

let us first observe that from the fact that
∫ T∧τ

0
|Znt −Zνt |2 dt→ 0 in measure Pν it follows

that ∫ T∧τ

0

|Tk(Znt )− Tk(Zνt )|2 dt→ 0 in measure Pν (4.35)
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for every k ∈ N. On the other hand, since σ∇un → σ∇u in Lq(D) with q < d/(d− 1),∫ T∧τ

0

|Tk(σ∇un(Xt))− Tk(σ∇u(Xt))|2 dt→ 0 in measure Pν . (4.36)

Combining (4.35), (4.36) with the fact that Zn = σ∇un(XD), dt ⊗ Pν -a.s. we conclude

that
∫ T∧τ

0
|Tk(σ∇u(Xt)) − Tk(Zνt )|2 dt = 0, Pν -a.s. for k > 0, T > 0, from which we get

(4.34). By what has already been proved and (2.7), for q.e. x ∈ D the triple (4.16) is
a solution of RBSDEx(f, µ, ψ) and satisfies (4.17), so the proof is completed by showing
that u satisfies the minimality condition. Let γ̄ ∈ M2,+

b (D) and let ū be an entropy
solution of the problem

Aū = −fū − µ− γ̄, ū|∂D = 0

such that ū ≥ ψ q.e. in D. We have to show that ū ≥ u. Since γ̄ ∈ M2,+
b (D), γ̄ = h + H

for some h ∈ L1(D), H ∈ H−1(D). Let hn = Tnh, γ̄n = hn + H and let ūn ∈ H1
0 (D) be a

weak solution of the problem

Aūn = −(Tnf)ūn − µn − γ̄n.

Since µn + γ̄n → µ + γ̄ in Mb(D), it follows from Theorem 4.5 that ūn → ū in W 1,q
0 (D)

and Tkūn → Tkū in H1
0 (D) for k > 0. Moreover, as in the proof of (4.15) one can show

that (Tnf)ūn → fū in L1(D). On the other hand, by Proposition 4.2, for q.e. x ∈ D the
pair (Ȳ n, Z̄n) defined by

Ȳ nt = ūn(XD
t ), Z̄nt = σ∇ūn(XD

t ), t ≥ 0

is a solution of BSDEx(Tnf, µn + γ̄n), i.e.

Ȳ nt =

∫ τ

t∧τ
(Tnf)ūn(Xs) ds+ R̄nτ − R̄nt∧τ −

∫ τ

t∧τ
Z̄ns dBs, t ≥ 0, Px-a.s.,

where R̄n ∼ µn + γ̄n. Since (Tnf)ūn → fū in L1(D) and µn + γ̄n → µ + γ̄ in Mb(D), in
much the same way as in the proof of (4.30) we show that for any ν ∈ S00(D) there exist
a continuous proces Ȳ ν ∈ Sβ(Rd) and Z̄ν ∈Mβ(Rd ×Rd) such that

Ȳ νt =

∫ τ

t∧τ
c(Xs) ds+ R̄τ − R̄t∧τ −

∫ τ

t∧τ
Z̄νs dBs, t ≥ 0, Pν -a.s.,

where R̄ ∼ µ+ γ̄. Then, using the fact that Tkūn → Tkū in H1
0 (D) for k > 0 we show as

in the proof of (4.33), (4.34) that

ū(XD) = Ȳ ν ,

∫ T∧τ

0

|Z̄νt − σū(Xt)|2 dt = 0, Pν -a.s.,

from which it follows that for q.e. x ∈ D the pair

Ȳt = ū(XD
t ), Z̄t = σ∇ū(XD

t ), t ≥ 0

is a solution of BSDEx(f, µ+ γ̄). That ū ≥ u now follows from Theorem 3.1.

Remark 4.7. (i) Under the assumptions and notation of Theorem 4.6,∫
D

(u− ψ) dγ = 0.

This follows from the fact that γ ∼ K and
∫ t

0
(u−ψ)(XD

s ) dKs = 0 for q.e. x ∈ D (see the
proof of (4.9)).
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(ii) If γ = h+H for some h ∈ L1(D), H ∈ H−1(D) andH = h0−divh̄ for some h0 ∈ L2(D),
h̄ ∈ L2(D)d then for a.e. x ∈ D,

Kt =

∫ t∧τ

0

(h+ h0)(Xs) ds+

∫ t∧τ

0

(a−1h̄)(Xs) ∗ dXs, t ≥ 0, Px-a.s.

(see (2.10) and Proposition 2.4).

Remark 4.8. The entropy solution u of Theorem 4.6 is the renormalized solution of
OP(f, µ, ψ), that is if v is a renormalized solution of (3.6) such that v ≥ ψ q.e. then v ≥ u
on D and u satisfies (3.5) in the sense of [7, Definition 2.13]. The last statement means
that

1

2
(a∇u,∇w)2 + (fu, w)2 =

∫
D

w d(µ+ γ) (4.37)

for every w ∈ H1
0 (D) ∩ L∞(D) with the property that there exist k > 0 and w+, w− ∈

W 1,p
0 (D) ∩ L∞(D) with p > d such that w = w+ a.e. on the set {u > k} and w = w− a.e.

on the set {u > k}. For equivalent definitions of renormalized solutions see [7]. The first
statement, i.e. that v ≥ u q.e. follows immediately from the fact that the renormalized
solution of (2.16) is the entropy solution (see [7, Remark 2.17]). To show (4.37) let us
define un, µn, γn as in the proof of Theorem 4.6. Since un is a weak solution of (4.18), it
is a renormalized solution of (4.18). Hence

1

2
(a∇un,∇w)2 + (fun , w)2 =

∫
D

w d(µn + γn). (4.38)

We know that Tkun → Tku in H1
0 (D), un → u in W 1,q

0 (D) for q ∈ [1, d/(d − 1)) and
µn + γn → µ + γ inMb(D). Therefore letting n → ∞ in (4.38) and using [13, Corollary
3.2] and Lemma 2.5 we get (4.37).
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