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Abstract

By a classical result of [10] the g distance between stationary processes is iden-
tified with an optimal stationary coupling problem of the corresponding stationary
measures on the infinite product spaces. This is a modification of the optimal cou-
pling problem from Monge-Kantorovich theory. In this paper we derive some general
classes of examples of optimal stationary couplings which allow to calculate the g dis-
tance in these cases in explicit form. We also extend the p distance to random fields
and to general nonmetric distance functions and give a construction method for op-
timal stationary ¢-couplings. Our assumptions need in this case a geometric positive
curvature condition.
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1 Introduction

[10] introduced the p distance between two stationary probability measures yu, v on
EZ, where (E, o) is a separable, complete metric space (Polish space).

The p distance extends Ornstein’s d distance ([14]) and is applied to the information
theoretic problem of source coding with a fidelity criterion, when the source statistics
are incompletely known. The distance p is defined via the following steps. Let g, :
E™ x E™ — R denote the average distance per component on E"
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Qn(xvy) = Q(xwyz)v T = (1’0’---75%—1),2/: (y07---7yn—1)- (1.1)
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On optimal stationary couplings between stationary processes

Let 0,, denote the corresponding minimal /;-metric also called Wasserstein distance
or Kantorovich distance of the restrictions of u, v on E", i.e.

on(p,v) = inf{/gn(w,y)dﬁ(w,y) | B € M(u"w")}, (1.2)

where p", v™ are the restrictions of u, v on E™, i.e. on the coordinates (zo,...,Zn_1)
and M (u™,v™) is the Fréchet class of all measures on E™ x E™ with marginals u™, v™.
Then the p distance between p, v is defined as

o(p,v) = sup o, (p, v). (1.3)
nelN
In the original Ornstein version ¢ was taken as discrete metric on a finite alphabet. It
is known that g(p, v) = lim,_, 0n(u, v) by Fekete’s lemma on superadditive sequences.
The p-distance has a natural interpretation as average distance per coordinate be-
tween two stationary sources in an optimal coupling. This interpretation is further
justified by the basic representation result (cp. [10, Theorem 1])

o(p,v) = 0s(p,v) == Fe]\i}.l(fu V)/@(xo7yo)dF(I7y) (1.4)
= inf{E[o(X0,Yp)] | (X,Y) ~T € Ms(u,v)}. (1.5)

Here M;(p,v) is the set of all jointly stationary (i.e. jointly shift invariant) measures on
E?% x E? with marginals y, v and (X,Y) ~ I means that I is the distribution of (X,Y).
Thus g(u, v) can be seen as a Monge-Kantorovich problem on EZ with however a modi-
fied Fréchet class M;(u,v) C M(u,v). (1.5) states this as an optimal coupling problem
between jointly stationary processes X, Y with marginals u, v. A pair of jointly station-
ary processes (X, Y') with distribution T" € M(u, v) is called optimal stationary coupling
of u, v if it solves problem (1.5), i.e. it minimizes the stationary coupling distance g;.
By definition it is obvious (see [10]) that

81 v) < 8 v) < / o(zo, y0)du® (o) dv° (yo), (1.6)

the left hand side being the usual minimal ¢;-distance (Kantorovich distance) between
the single components 1°, 1°.

As remarked in [10, Example 2] the main representation result in (1.4), (1.5) does
not use the metric structure of ¢ and o can be replaced by a general cost function c on

FE x E implying then the generalized optimal stationary coupling problem
Cs(p,v) = inf{E[e(Xo,Y0)] | (X,Y) ~T € My(p,v)}. (1.7)

Only in few cases information on this optimal coupling problem for o resp. ¢ is
given in the literature. [10] determine p for two i.i.d. binary sequences with success
probabilities p;, p2. They also derive for quadratic cost ¢(xg, o) = (7o — yo)? upper and
lower bounds for two stationary Gaussian time series in terms of their spectral densities.
We do not know of further explicit examples in the literature for the p distance. The aim
of our paper is to derive optimal couplings and solutions for the g metric resp. the
generalized ¢ distance.

The p resp. ¢ distance is particularly adapted to stationary processes. One should
note that from the general Monge-Kantorovich theory characterizations of optimal cou-
plings for some classes of distances c are available and have been determined for time
series and stochastic processes in some cases. For processes with values in a Hilbert
space (like the weighted ¢, or the weighted L? space) and for general cost functions
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¢, general criteria for optimal couplings have been given in [18] and [16]. For some
examples and extensions to Banach spaces see also [2] and [17]. Some of these criteria
have been further extended to measures u, v in the Wiener space (W, H, u) w.r.t. the
squared distance c(z,y) = |z —y|?% by Feyel and Ustiinel (2002, 2004) and [23]. All these
results are also applicable to stationary measures and characterize optimal couplings
between them. But they do not respect the special stationary structure as described in
the representation result in (1.5), (1.7). In the following sections we want to determine
optimal stationary couplings between stationary processes.

In Section 2 we consider the optimal stationary coupling of stationary processes on
R and on R™ with respect to squared distance. In Section 3 we give an extension to
the case of random fields. Finally we consider in Section 4 an extension to general
cost functions. We interpret an optimal coupling condition by a geometric curvature
condition.

2 Optimal couplings of stationary processes w.r.t. squared dis-
tance

In this section we consider the optimal stationary coupling of stationary processes
on the Euclidean space with respect to squared distance.

We first recall the classical result for optimal couplings on R". For two probability
distributions p and v on R™ let M, (u,v) be the set of joint distributions I' of random
variables X ~ p and Y ~ v. Denote the Euclidean norm on R™ by || - [|2. We call a
joint distribution I' in M,, (11, v) an optimal coupling if I attains the minimum of [ ||z —
y||3T (dz, dy) over My, (u,v).

Theorem 2.1 ([18] and [1]). For given measures p and v on R" with existing second
moments, there is an optimal coupling I" € M,,(u,v) and it is characterized by

Y € 0h(X) T-a.s. (2.1)
for some convex function h, where the subgradient Oh(x) at x is defined by
Oh(z) ={y e R" | h(z) —h(z) >y - (2 —x), VzeR"} (2.2)

Furthermore, if 14 is absolutely continuous with respect to the Lebesgue measure on
R", then the gradient of h is essentially unique.

In the above theorem let p be absolutely continuous and assume that ;. and v are
invariant under the map =z = (z1,...,2,) — L,z = (zp,21,...,Z,-1). Then, by the
uniqueness result, the convex function A4 in (2.1) must be invariant under L,,. In addi-
tion, if h is differentiable, then the gradient Vh satisfies (Vh) o L,, = L,, o (Vh). This
identity motivates the following construction of optimal stationary coupling (see (2.3)).

Now we consider stationary processes. For simplicity, we first consider the one-
dimensional case £ = RR. The multi-dimensional case £ = R is discussed later. Let
Q= E% = R% and c(x0,y0) = (z0—0)?. Let L : Q — Q denote the left shift, (Lz); = 2;_;.

Then a pair of processes (X, Y') with values in Q2 x 2 is jointly stationary when (X,Y) 4

(LX,LY) (£ denotes equality in distribution). A Borel measurable map S : Q — Q is
called equivariant if
LoS=S80olL. (2.3)

This notion is borrowed from the corresponding notion in statistics, where it is used in
connection with statistical group models. The following lemma concerns some elemen-
tary properties.
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Lemma 2.2. a) Amap S : Q — Q is equivariant if and only if Sy(x) = So(L~"'z) for any
t,x.

b) If X is a stationary process and S is equivariant then (X, S(X)) is jointly stationary.

Proof. a) If LoS = SoL then by induction S = Lo SoL~* forall t € Z, and thus S;(z) =
So(L~tz). Conversely, if S;(z) = So(L~tz), then S;_1(x) = So(L~t*1z) = S;(Lx). This
implies L(S(z)) = S(Lx).

b) Since LX has the same law as X, it follows that (LX, L(S(X))) = (LX,S(LX))
(I,S)(LX) 2 (1,5)(X) = (X, S(X)), I denoting the identity.

ol

For X ~ pand S : Q — Q the pair (X, S(X)) is called optimal stationary coupling
if it is an optimal stationary coupling w.r.t. g and v := p° = Sup, i.e., when v is the
corresponding image (push-forward) measure.

To construct a class of optimal stationary couplings we define for a convex function
f:R™ — R an equivariant map S : Q — Q. For x € Q let

Of(x) ={y e R" [ f(2) = f(x) 2y-(z —x), VzeR} (2.4)

denote the subgradient of f at x, where a - b denotes the standard inner product of
vectors a and b. By convexity df(z) # (. Let F(x) = (Fy(z))o<k<n—1 be measurable and
F(z) € 0f(x), x € R™. The equivariant map S is defined via Lemma 2.2 by

n—1
So(r) =D Fu(@ g gn1),  Si(z)=So(L7'z), zeQ. (2.5)
k=0
For terminological reasons we write any map of the form (2.5) as
n—1
So(@) =Y Onf(@—p, - Tpn—r),  Si(z) = So(L7'x), z€Q. (2.6)
k=0

In particular for differentiable convex f the subgradient set coincides with the deriva-
tive of f, 0f(z) = {Vf(z)} and 8, f(z) = 52 f(=).

Remark 2.3. a) In information theory a map of the form Si(z) = F(®t—n+t1, .-, Tt4n—1)
is called a sliding block code (see [10]). Thus our class of maps S defined in (2.6)
are particular sliding block codes.

b) [19, 20, 21] introduced so-called structural gradient models (SGM) for stationary
time series, which are defined as {(Sy)*Q | ¥ € ©}, where Q is the infinite product
of the uniform distribution on [0,1], on [0,1]%, {Sy | ¥ € ©} is a parametric family of
transformations of the form given in (2.6) and SjﬁQ denotes the pullback measure
of () by Sy. It turns out that these models have nice statistical properties, e.g. they
allow for simple likelihoods and allow the construction of flexible dependencies. The
restriction to functions of the form (2.6) is well founded by an extended Poincaré
lemma (see [21, Lemma 3]) saying in the case of differentiable f that these func-
tions are the only ones with (the usual) symmetry and with an additional stationarity
property S;_1(z) = S;(Lz) for z € R%, which is related to our notion of equivariant
mappings.

c) Even if a map S has a representation of the form (2.6), the inverse map S~' does

not have the same form in general. We give an example. Let X = (X;)icz be a
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real-valued stationary process with a spectral representation X; = fol 2™ N T (dX),
where M (d)) is an L?-random measure. Define a process Y = (Y;) by

K:St(X) = Xt+6(Xt,1 +Xt+1), E#O

This is of the form (2.6) with a function f(xg,r1) = x%/4 + exox; + x%/4 which is
convex if |e| < 1/2. Under this condition, the map X — Y is shown to be invertible
as follows. The spectral representation of Y is N(d)) := (14 €(e?>™* +e72™4)) M (d\).
Then we have the following inverse representation

1 27iAt
Xt :/0 1+€(e27ri)\+672771)\ sezzb sYi- S

where (b,)scz is defined by {1 + e(e*™* + e72™A)} =1 = 3~ b.e~2™As. By standard
complex analysis, the coefficients (b,) are explicitly obtained:
2 —1+VI—1e
b= —"——, Zpi=——————.
ez —2_) 2¢
Note that |z1| < 1 and |2—| > 1 since |2¢| < 1. Hence by # 0 for all s € Z and the
inverse map S~}(Y) = >4 bsY, does not have a representation as in (2.6).

The following theorem implies that the class of equivariant maps defined in (2.6)
gives a class of examples of optimal stationary couplings between stationary processes.

Theorem 2.4 (Optimal stationary couplings of stationary processes on R). Let f be a
convex function on R", let S be the equivariant map defined in (2.6) and let X be a
stationary process with law u. Assume that X, and Oy f(X™) (k = 0,...,n — 1) are in
L?(u). Then (X, S(X)) is an optimal stationary coupling w.r.t. squared distance between
wand ;% ie
E[(Xo — So(X))?] = E[(Xo — Y)?] = &(p, %),
(o = So(X)?) = | min = BI(Xo ~Y0)*) = (s )
Proof. Fix any I' € M(u, ). By the gluing lemma (see Appendix A), we can construct
a jointly stationary process (X,Y, X) on a common probability space such that X ~ u,
Y = S(X)and (X,Y) ~ I'. From the definition of Yy = Sy(X), we have Yy € L?(x). Then
by the assumption of identical marginals
1 -
A= iE[(Xo —Y0)? — (X0 — Y0)?]
= E[-XoY) + XoYo]
= E[(Xo — X0)So(X)]

n—1

E l(ffo — X0) > (Okf)(X 4, .. 7Xk+n1)] ~

k=0

Using the joint stationarity of (X, X ) we get with X™ = (X, ... X,,_1), X" = (X0, ..., Xn_1)
that

Z Xy, — X&) Ok f)(Xo, - .. ,Xn_l)]

k=0

< E[f(X") — f(X™)]
=0,

the inequality is a consequence of convexity of f. This implies optimality of (X,Y). We
note that the last equality uses integrability of f(X™), which comes from convexity of f
and the L?-assumptions. This completes the proof. O
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Theorem 2.4 allows to determine explicit optimal stationary couplings for a large
class of examples. Note that — at least in principle - the ¢ distance can be calculated in
explicit form for this class of examples.

The construction of Theorem 2.4 can be extended to multivariate stationary se-
quences in the following way. Let (X;):cz be a stationary process, X; € R™ and let
f: (R™)™ — R be a convex function on (R™)". Define an equivariant map S : (R™)% —
(R™)* by

n—1
So(x) =) Ohf(@—py - s Tpgn—1)
1;) (2.7)

Si(x) = So(Ltx), ze€Q=(Rm)~%

where L~ operates on each component of z and 0, f is (a representative of) the subgra-
dient of f w.r.t. the /-th component. Thus for differentiable f we obtain

n—1
So(x) = kaf(l‘,k7...,$,k+n,1> (28)
k=0

where V,f is the gradient of f w.r.t. the /-th component.
Then the following theorem is proved similarly to Theorem 2.4.

Theorem 2.5 (Optimal stationary couplings of stationary processes on R™). Let f be
a convex function on (R™)" and let S be the equivariant map on Q = (R™)% defined in
(2.7). Let X be a stationary process on R™ with distribution p and assume that X, and
OLf(X™), 0 <k <n—1, are square integrable. Then (X, S(X)) is an optimal stationary
coupling between p and p° = Sup wrt. squared distance, i.e.

E[| Xo — So(X)|3] = inf{E[||Xo — Yol[3] | (X,Y) ~ T € My(u, n*)} = &(p, n%).  (2.9)

Remark 2.6. Multivariate optimal coupling results as in Theorem 2.5 for the squared
distance or later in Theorem 4.1 for general distance allow to compare higher dimen-
sional marginals of two real stationary processes. For this purpose we consider a lifting
of one-dimensional processes to multi-dimensional processes as follows. For fixed m we
define an injective map q from R% to (R™)% by q(x) = (qx(2))rez = (Tks -+, Thym—1))kez-
Note that g satisfies the equivariant condition (2.3). For one-dimensional processes
X = (X)) ~pand Y = (V) ~ v define m-dimensional processes X = ¢(X) and
Yy = q(Y) and denote their distributions by i and U, respectively. Let ¢(™) be a cost
function on R™ x R™. Then we have the optimal coupling problems between [ and U as

™ (1, 7) = inf{E[c"™ (X0, )] | (X,Y) ~ T € My(j1, )}
= inf{E[c™ (q0(X), a0 (V)] | (X,Y) ~ T € My(u, )},
where the second equality follows from the fact that any (X,Y) ~ T e My(1,p) is
supported on ¢(R%) x ¢(R?%), and ¢~ *(X) ~ u,q *(Y) ~ v. If the cost function c¢(™ is the
squared distance as in Theorem 2.5, then we can solve the lifted problem immediately
when we solve the case m = 1 since
™ (1, 7) = inf{E[| Xo — Yol3 | (X,Y) ~ T € M(1,7)}
— f{E[m(Xo — ¥0)?] | (X,Y) ~ T € My(p, 1)} = mel) (u,v).

For general c not written as sum of one-dimensional cost functions the quantity Egm) (i, D)

has a meaning different from one-dimensional ones.
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3 Optimal stationary couplings of random fields

In the first part of this section we introduce the g distance defined on a product space
in the case of countable groups and establish an extension of the [10] representation
result to random fields. In a second step we extend this result to amenable groups
on a Polish function space. This motivates the consideration of the optimal stationary
coupling result as in Section 2.

We consider stationary real random fields on an abstract group G. Section 2 was
concerned with the case of stationary discrete time processes, where G = Z. Interest-
ing extensions concern the case of stationary random fields on lattices G = Z¢ or the
case of stationary continuous time stochastic processes with G = R or G = R,

To state the most general version of the representation result, we prepare some
notations and definitions. Let (G,G) be a topological group with the neutral element
e. Let B be a Polish space equipped with a continuous and non-negative cost function
c(z,y), x,y € B. We assume that the group G continuously acts on B on the left:
(gh).x = g.(h.x), ex = x and the map = — g.x is continuous. A Borel probability
measure p on B is called stationary if 49 = u for every g € G, where u9 is the push-
forward measure of u by g.

Example 3.1. If G is countable, an example of B is the product space Q = E® of a
Polish space E (e.g. E = R) equipped with the product topology. The left group action
of G on  is defined by (g.x),, = x4-15. Indeed,

((9h)-2)k = T(gny- 1k = Tn-1g1x = (hw)g 1k = (g.(h2))p.

It is easy to see that e.x = z and the function x — g¢.x is continuous.

If G is not countable, then Q = E€ is not Polish. One can consider a Polish space
B C Q such that the projection B — E, x +— x., is measurable and g.B = B. For
example, let G = R, E = R and B be the set of all continuous functions on G = R with
the compact-open topology, that is, define f,, — f in B if sup,cx |fn(x) — f(z)| — O for
each compact K. Then all the requirements are satisfied.

We assume that G is an amenable group, i.e. there exists a sequence \,, of asymp-
totically right invariant probability measures on G such that

sup [An(Ag) — An(A)] = 0 when n — cc. (3.1)
Aeg

The hypothesis of amenability is central for example in the theory of invariant tests.
Many of the standard transformation groups are amenable. A typical exception is the
free group of two generators. The Ornstein distance can be extended to this class of
stationary random fields as follows. Define the average distance w.r.t. A\, by

enle,y) = / (g 2, g~ ) An(d). (3.2)

For example, if B = E“ and c(z,y) depends only on (z.,v.), say c(z.,y.), then ¢, is
given by

cn(z,y) :/C(xwyg))\n(dg)- (3.3)

Let 1 and v be stationary probability measures on B. The induced minimal probabil-
ity metric is given by

en(p,v) = Inf{E[c, (X, V)] | (X,Y) ~T € M(p,v)}. (3.4)
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Finally, the natural extension of the ¢ metric of [10] is defined as
c(u,v) = sup ép(u, v). (3.5)

The optimal stationary coupling problem is introduced similarly as in Section 2 by
Cs(p,v) = mf{E[c(X, V)] | (X,Y) ~T € My(u,v)} (3.6)

where M,(u,v) = {I' € M(pu,v) | T99 =T, Vg € G} is the class of jointly stationary
measures with marginals x4 and v. We use the notation I'(c) = E[¢(X,Y)] and T'(c,,) =
Elc (X, Y)] forT' € M (u,v).

We now can state an extension of the Gray-Neuhoff-Shields representation result
for the ¢ distance of stationary random fields to amenable groups.

Theorem 3.2 (General representation result for ¢ distance). Let G be an amenable
group acting on a Polish space B and c be a non-negative continuous cost function on
B x B. Let u, v be stationary probability measures on B. Assume that for X ~ u (resp.
v), Ec(X,y) < oo for y € B. Then the extended Ornstein distance ¢ defined in (3.5)
coincides with the optimal stationary coupling distance cs,

e(p,v) = s(p,v).
In particular, ¢ does not depend on choice of \,,.

Proof. To prove that ¢(u,v) < &(p,v) let for e > 0 given I' € M;(p,v) be such that
I'(c) < &(u,v) + e. Then using the integrability assumption and stationary of I' we
obtain for all n € IN

IN

el v) < T(en) = B / (g™ X, g V) A (dg)]

/ Ele(g™" X, g~ V) An(dg) = T(c) < () + <.
This implies that ¢(u, v) < é(u, v).

For the converse direction we choose for fixed ¢ > 0 and n > 0 an element I',, €
M (1, v) such that T',,(c,) < €,(u, ) + €. We define probability measures {T,,} by

Th(A) = /Gl“n(g.A))\n(dg). (3.7)
Note that T',,(c) = I',,(c,,). Indeed,
Ba(©) = [ clo.p)laldo,dy) = [[ el y)ugdz, gdy)ralds)
= // c(g ™z, g L) T (da, dy) M (dg) = /cn(x,y)I‘n(dx,dy) =T(cn)-
Using Fubini’s theorem we obtain that
[, (hA)-T,(A) = /G(Fn(gh.A) —Tn(g9-A) M (dg)
= / (A (Cryh ™) = Ao (Ciy )T (dzdy), (3.8)
BxB
where C, , = {g € G|(z,y) € g.A}. By amenability (3.1) of G we have

T, (h.A) —Tp(A)| < / M (Cryh™) = X\ (Cy )T (dzdy) — 0 (3.9)
BxB
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as n — oo, i.e. I',, is asymptotically left invariant on B x B.
We have I',, € M (u,v) since projections on finite components of T',, are

La(4r % 9) = [ Tulg A x DA, (dg)
G

since p is stationary. Using tightness of {I',,} we get a weakly converging subsequence
of {I',}. Without loss of generality we assume that {I',,} converges weakly to some
probability measure I on B x B. In consequence by (3.9) we get I' € M(u, ). Finally,

és(p,v) < T(e) <limsupT,,(c) = limsup ', (cy,)

< limsup &, (u,v) + e < é(u,v) +¢e
for all € > 0 which concludes the proof. O

Example 3.3. Let G be countable and A\, = ﬁ >_ger, €9 for some increasing class
of finite sets F,, C G with G = U,F},, where ¢, denotes the point-mass measure at g.
Amenability of G corresponds to the condition that F,, is asymptotically right invariant
in the sense that

|E, N (FLh)|/|F.| — 1, YheQG. (3.10)

For example, the group G = Z is amenable because F,, = {|-n/2],...,|n/2] — 1}
satisfies the above conditions. In the optimal coupling problem, we can take F) =
{0,...,n — 1} instead of F,, because y and v are stationary, although F, does not cover
Z.

Now take the product space B = E¢ and assume that c(x, y) depends only on (z., y.)
and is denoted as c(z,y) = c(zc,y.). Then we obtain c,(z,y) = 77 YD yep, ¢(2g,Yg) =:
cn(zp,,yr, ), where zp, = (x4)4er, . We now show that é,(u,v) in (3.4) is equal to

inf{E[c,(XF,,Yr, )| | (XE,,YF,) ~T'F, € M(ur,,vE,)} (3.11)

with Xg, = 7p,(X), Yr, = 75, (Y), up, = p™» and vp, = v"F, where np, is defined
by g, (x) = xp,. The equation (3.11) follows from the general extension property of
probability measures with given marginals, that is, we can construct

I'(dx,dy) = I'p, (dvr,, dyr, ) ue\F, (dxe\F, |TF, Ve F, (dye\F, |[YF, )

from any I'p, € M(ur,,vr,) (see also Appendix A). Finally, the original representation
result (1.4) follows from Theorem 3.2 with G = Z since (3.11) is consistent with (1.2).

Motivated by the representation results in Theorem 3.2 we now consider the op-
timal stationary coupling problem for general groups G acting on Q = R® and the
squared distance c(z,y) = (zo — o). Let F be a finite subset of G and let f : Rf — R
be a convex function. The function f is naturally identified with a function on 2 by
f(z) = f((z4)ger). As in Section 2 any choice of the subgradient of f is denoted by
((Ogf)(x))ger. Define an equivariant Borel measurable function S : Q@ — by the
shifted sum of gradients

Se(r) =Y (9yf)(gz) and Sp(z) = S.(h~'x),h €G. (3.12)

geF

Note that S.(z) depends only on (z,),cc(r), Where G(F) is the subgroup generated by
Fin G. We have So g = go S for any g € G because

Sh(gz) = Se(h™'gz) = Sy-14(x) = (95(x))-
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Hence if X is a stationary random field, then (X, S(X)) is a jointly stationary random
field.
We obtain the following theorem.

Theorem 3.4. Let ;1 be a stationary probability measure on Q2 = R® with respect to
a general group of measurable transformations GG. Let S be an equivariant map as
defined in (3.12) with a convex function f. Let X be a real stationary random field with
law p and assume that X, and (0, f(X))ger are in L?(p). Then (X, S(X)) is an optimal
stationary coupling w.r.t. squared distance between 1. and 1., i.e.

2 . 21 _ = s
E[(X. — S.(X))*] = (X,Y)Nggfls(;t,;LS)E[(Xe Ye)'] = es(p, p1°).

Proof. The construction of the equivariant mapping in (3.12) and the following remark
allow us to transfer the proof of Theorem 2.5 to the class of random field models. Fix
I € My(u, p°). Let G(F) be the subgroup generated by F in G. Then G(F) is countable
(or finite). We denote the restricted measure of ;. on R(*) by tla(r)- By the gluing
lemma, we can consider a jointly stationary random field (X,,Y,, Xg)geg(p) on a com-
mon probability space such that (X;)gcar) ~ plar), Yy = Sg(X) and (X, Yy)gear) ~
I'l¢(r). Then we have

SE[(X, — S.(X))? — (%, — 5.(X))”) = BS.(X)(X. — X,)

This implies that (X, S(X)) is an optimal stationary coupling w.r.t. squared distance
between the random fields p and p° = Syt O

The generalization to the multi-dimensional case ' = R™ is now obvious and omit-
ted.

4 Optimal stationary couplings for general cost functions

We consider general cost functions c on general spaces other than the squared dis-
tance on R™. The Monge-Kantorovich problem and the related characterization of
optimal couplings have been generalized to general cost functions c¢(z,y) in [16, 17],
while [13] extended the squared loss case to manifolds; see also the surveys in [15]
and [24, 25]. Based on these developments we will extend the optimal stationary cou-
pling results in Sections 2, 3 to more general classes of distance functions. Some of
the relevant notions from transportation theory are collected in the Appendix B. We will
restrict to the case of time parameter Z. As in Section 3 an extension to random fields
with general time parameter is straightforward.

Let E4, E5 be Polish spaces. and let ¢ : F; X F2 — R be a measurable cost function.
For f: F1 — R and zy € E; let

9°f(z0) = {yo € Bz | c(zo,y0) — f(w0) = Oingl{C(Zo,yo) — f(20)}} (4.1)

zZ

denote the set of c-supergradients of f in x.
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A function ¢ : By — R U {—oo} is called c-concave if there exists a function
¥ : E5 — R U{—00} such that

¢(x) = inf (c(z,y) —¢¥(y)), Vo€ Ep. (4.2)
yeE>

If p(z) = c(z,y0) — ¥(yo), then yo is a c-supergradient of ¢ at z. For squared distance
c(z,y) = ||z — y||3 in R™ = E; = E, c-concavity of ¢ is equivalent to the concavity of
2 () — [l2ll3/2

Consider Ey; = E; = R™. The characterization of optimal couplings 7'(x) € 9°p(x)
for some c-concave function ¢ leads for regular ¢ to a differential characterization of
c-optimal coupling functions T’

(Vzo)(z,T(x)) = V(). (4.3)

In case (4.3) has a unique solution in 7'(x) this equation describes optimal c-coupling
functions 7" in terms of differentials of c-concave functions ¢ and the set of c-supergradients
0°p(x) reduces to just one element

p(x) = {Vac'(z,0(x))}. (4.4)

Here c* is the Legendre transform of ¢(z, -) and V.¢(z, ) is invertible and (V,¢)~!(z, ¢(z))
= V.c*(z,¢(z)) (see [16, 15] and [24, 25]). For functions ¢ which are not c-concave, the
supergradient 9°p(z) is empty at some point z. Even if ¢ is c-concave, the supergradi-
ent may be empty. If ¢(z,y) = h(x — y) with a superlinear strictly convex function % on
R™, the existence of supergradients and regularity of c-concave functions are proved in
the appendix of [9].

The construction of optimal stationary c-couplings of stationary processes can be
pursued in the following way. Define the average distance per component ¢, : ET X
EY — R by

1 _
- E xtayt (45)
n

t=0

and assume that for some function f : E}' — R, there exists a function F" : B} — EJ
such that
F"(z) = (Fp(x))o<k<n—1 € 0" f(x), =€ EY. (4.6)

Note that (4.6) needs to be satisfied only on the support of (the projection of) the station-
ary measure u. In general we can expect 0° f(x) # (), Vo € ET only if f is ¢,-concave.
For fixed yq, . . .,yn—1 € Es we introduce the function h.(xg) = % ZZ;& c(xo,yx), To € F1.
he(z) describes the average distance of z( to the n points yo, ..., y,—1 in F>. We define
an equivariant map S : E# — EZ by

So(z) € 0°(he(20)) lyp=Fi(@—irio—in1),0<k<n—1
Sy(x) = So(L™"x), S(x) = (S¢(x))iez.

Here the c-supergradient is taken for the function h.(x() and the formula is evaluated
at yx = Fr(@—g, ..., T_gyn-1), 0 <k < n — 1. After these preparations we can state the
following theorem.

(4.7)

Theorem 4.1 (Optimal stationary c-couplings of stationary processes). Let X =
(X¢)tez be a stationary process with values in F; and with distribution p, let ¢ : By X
E> — R be a measurable distance function on E; x E, and let f : E} — R be measur-
able c,-concave. IfS is the equivariant map induced by f in (4.7) and if ¢(Xo, So(X)),
{e(Xk, Fi(X™))}7Zy and f(X") are integrable, then (X, S(X)) is an optimal stationary

c-coupling of the stationary measures j, ;1° i.e.
Ele(Xo, So(X))] = nf{E[e(Yo, Zo)] | (Y, Z) ~ T € My(p, 1)} = (. ). (4.8)
EJP 17 (2012), paper 17. ejp.ejpecp.org
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Proof. The construction of the equivariant function in (4.7) allows us to extend the
basic idea of the proof of Theorem 2.4 to the case of general cost function. Fix any I' €
M;(p, #%). By the gluing lemma, we can consider a jointly stationary process (X, Y, X’)
on a common probability space with properties X ~ y, Y = S(X) and (X,Y) ~ I. Then
we have by construction in (4.7) and using joint stationarity of (X, X)

Ele(Xo, S0(X)) — ¢(Xo, So(X))]
<E|n Y {e(Xo,yr) — e(Xo,yr)}
L k=0

n—1

—E|n! Z {e( Xk, yx) — C(Xk,yk)}
k=0 Y

yk_Fk(ka---an+7Ll)]

- E :cn(X",F"(X")) - cn(f(”,F"(X”))}

< E[f(X") — f(X™)]
= 0.

The first inequality is a consequence of Sy € 9°(h.)(zo). The last inequality follows from

cp-concavity of f while the last equality is a consequence of the assumption that X <X,
As consequence we obtain that (X, S(X)) is an optimal stationary c-coupling. O

The conditions in the construction (4.7) of optimal stationary couplings in Theorem
4.1 (conditions (4.6), (4.7)) simplify essentially in the case n = 1. In this case we get as
corollary of Theorem 4.1

Corollary 4.2. Let X = (X;):cu be a stationary process with values in E; and distribu-
tion i and let ¢ : E1 X F; — R be a cost function as in Theorem 4.1. Let f : E; — R be
measurable c-concave and define

So(x) € 0°f(z0), Si(z) = So(L™'x) € 0°f(x¢), S(x) = (Se(x))tez- (4.9)
Then (X, S(X)) is an optimal stationary c-coupling of the stationary measures i, j1°.

Thus the equivariant componentwise transformation of a stationary process by su-
pergradients of a c-concave function is an optimal stationary coupling. In particular in
the case that E; = R several examples of c-optimal transformations are given in [17]
resp. [15] which can be used to apply Corollary 4.2.

In case n > 1 conditions (4.6), (4.7) are in general not obvious. In some cases
cn-convexity of a function f : Ef — R is however easy to see.

Lemma 4.3. Let f(x) = Zz;lfk(:vk), fo: B1 = R 0< k <n-—1. If the f;’s are
c-concave, 0 < k <n — 1, then f is ¢,-concave and

n—1

0 f(x) =Y 0°f (k). (4.10)
k=0

Proof. Let y; € 0°fi(xr), 0 < k < m — 1, then with y = (yx)o<k<n—1 by definition of
c-supergradients

1 . "
en(,y) = f(2) = ~ > (c(wn, yr) = fulon)) = inf{en(2,y) - f(2); 2 € BY'}
k
and thus y € 9° f(z). The converse inclusion is obvious. O
EJP 17 (2012), paper 17. ejp.ejpecp.org
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Lemma 4.3 allows to construct some examples of functions F™ satisfying condition
(4.5). For n > 1 non-emptiness of the c-supergradient of h.(zo) = + >/ _, " ¢(z0,yx) has
to be established. The condition ug € 0°h.(xy) is equivalent to

c(xg,ug) — he(xo) = irzlf(c(z,uo) — he(2)). (4.11)

In the differentiable case (4.11) implies the necessary condition
1 «—
T 3 = mhc = - T 3 . 4.12
Vac(w0, o) = Vahe(wo) = ~ > Vae(zo, yi) (4.12)

If the map v — V,c(xg, u) is invertible then equation (4.12) implies

uo = (V40) ™ (0, - ( szcxo,yk> (4.13)

(see (4.4)). Thus in case that (4.11) has a solution, it is given by (4.13).

Lemma 4.4. Suppose that for some xy € F1, 0°h.(xo) # 0, and that the map E; — Es :
u+— Vc(zo,u) is one to one, then 0°h.(x¢) is reduced to the single point uy defined by

ug = (Vee) H(zo, - ( ZV c(zo, Yk ) . (4.14)

Example 4.5. If ¢(x,y) = H(xz — y) for a superlinear strictly convex function H, then
V.c(z,-) is invertible and we can construct the necessary c-supergradients of h.. The

c-concavity of h,. is not discussed here. If for example c(x,y) = ||z — y||3, where | - ||2 is
the Euclidean norm, then we get for any xo € R™,
1 i (4.15)
U = .
0= n
k=0
is independent of xy and
7 € 0%he(z0), Vzo € R™. (4.16)
Ifc(z,y) = ||z — y||5, p > 1, then we get for zo € R™
o o p ( 0)
ug = (o) = o + |lalzo)|ls (4.17)
la(zo)ll>"

where a(zo) = + ZZ;& lzo — yr b~ 1%. For this and related further examples see
[17] and [9].

The c-concavity of h. has a geometrical interpretation. ug € 9°h.(x¢) if the difference
of the distance of zp in F to ug in E5 and the average distance of 2, to the given points
Yo, ---sYn—1 iN Fo is minimized in zy. The c-concavity of h. can be interpreted as a
positive curvature condition for the distance c¢. To handle this condition we introduce
the notion of convex stability.

Definition 4.6. The cost function c is called convex stable of indexn > 1 if 0h.(xo) # 0
for any xo € E; andy € E%, where

n—1

1
he(zo) = n ZC(on»yk), zo € Ey. (4.18)
k=0

The cost ¢ is called convex stable if it is convex stable of index n for all n > 1.
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Example 4.7. Let £ = FE, = H be a Hilbert space, as for example H = R™, let
c(z,y) = ||x — y||3/2 and fixy € H™, then

1
he(xo) = EZC(JTOJJI@)
C(gayk)v (419)

where § = % ZZ;S yr Thus by definition (4.2) h. is c-concave and a c-supergradient of
h. is given by iy independent of x, i.e.

Yy € 8Chc(az0), Vao € H. (4.20)
Thus the squared distance c is convex stable.

The property of a cost function to be convex stable is closely connected with the
geometric property of non-negative cross curvature. Let F; and F5 be open connected
subsets in R™ (m > 1) with coordinates = = («*);“, and y = (y/)7-,. Letc: By x E; = R
be C?2, i.e. cis two times differentiable in each variable. Denote the cross derivatives
by cijr = 0°¢/0x'0279y* and so on. Define ¢, (z,y) = (9c/0z' )2, ¢y (z,y) = (Dc/Dy? )T,
Up ={cz(z,y) |y € Es} CR™, V, = {cy(z,y) | x € E1} C R™. Assume the following two

conditions.

[B1] The maps c,(z,-) : B2 — U, and ¢y(-,y) : E1 — V,, are diffeomorphic, i.e., they are
injective and the matrix (¢; ;(x,y)) is invertible everywhere.
[B2] The sets U and V are convex.

The conditions [B1] and [B2] are called bi-twist and bi-convex conditions, respectively.
Now we define the cross curvature o(z,y;u,v) inz € Eq, y € Fa, u € R™ and v € R™ by

o(x,y;u,v) := Z <—cij7kz + Zciqucp’qcpﬁkl> wrud vFo! (4.21)

1,5,k,1 p,q

where (¢*7) denotes the inverse matrix of (c; ;).

The following result is given by [11]. Note that these authors use the terminology
time-convex sliding-mountain instead of the notion convex-stability as used in this pa-
per.

Proposition 4.8. Assume the conditions [B1] and [B2]. Then c is convex stable if and
only if the cross curvature is non-negative, i.e.,

o(x,y;u,v) >0, Va,y,u,v. (4.22)

The cross-curvature is related to the Ma-Trudinger-Wang tensor ([12]), which is the
restriction of o(x, y;u,v) to ZZ j Y ¢;,; = 0. Known examples that have non-negative
cross-curvature are the n-sphere with the squared Riemannian distance ([11], [7]), its
perturbation ([3], [8]), their tensorial product and their Riemannian submersion.

If F4, F> C R, then the conditions [B1] and [B2] are implied from a single condition
in case ¢, , = 0%c(x,y)/0zdy # 0. Hence we have the following result as a corollary. A
selfcontained simplified proof of this result is given in Appendix C.

Proposition 4.9. Let F, F5 be open intervals in R and let c € C?2, ¢: E; x Ey — R.
Assume that ¢, ,, # 0 for all z,y. Then c is convex stable if and only if o (x,y) 1= —Cgy yy +
CayCayy/ Cay = 0.
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Example 4.10. Let F1, F> C R be open intervals and let E1 N Ey = (). Consider c(x,y) =
%|x—y|” with p > 2 orp < 1. Then c is convex stable. In factc, , = —(p— 1)z —y[P72 # 0
for all z,y and o(x,y) = (p— 1)(p — 2)|z — y|P~* > 0 for all z,y. As p — 0, we also have a
convex stable cost ¢(x,y) = log |z — y|.

If the cost function c is a metric then the optimal coupling in the case E; = E; = R
can be reduced to the case of E1 N E5 = () as in the classical Kantorovich-Rubinstein
theorem. This is done by subtracting (and renormalizing) from the marginals pg, vy the
lattice infimum, i.e. defining

o1 ,o_ 1
Mo = E(MO —Ho A1), V= 5(1/0 — o A ). (4.23)
The new probability measures live on disjoint subsets to which the previous proposition
can be applied.

Some classes of optimal c-couplings for various distance functions ¢ have been dis-
cussed in [17], see also [15]. The examples discussed in these papers can be used to
establish ¢, -concavity of f in some cases. This is an assumption used in Theorem 4.1
for the construction of the optimal stationary couplings. Note that ¢,, is convex-stable if
c is convex-stable. Therefore the following proposition due to [6] (partially [22]) is also
useful to construct a ¢,-concave function f.

Proposition 4.11. Assume [B1] and [B2]. Then c satisfies the non-negative cross
curvature condition if and only if the space of c-concave functions is convex, that is,
(1 = A)f 4+ A\g is c-concave as long as f and g are c-concave and X € [0, 1].

Example 4.12. Consider Example 4.10 again. Let E; = (0,1), E3 = (—00,0), ¢(z1,y1) =
p~ 'z —y1)P (p > 2) and ¢, (z,y) = (np) "' Sp—o(zx — yi)P. An example of c¢,-concave
functions of the form f(x) = ZZ‘;& fr(zy) with suitable real functions fy, is given in [17]
Example 1 (b). We add a further example here. Putz = n~! ZZ;& xy and let f(x) = A(Z)
with a real function A. We prove f(x) is c,-concave if A’ > 1 and A” < 0. For example,
A(&) = &€ + /€ satisfies this condition. Equation (4.3) becomes

n"Ha; — )P =ntA(2) (4.24)

which uniquely determines y; € FE5 since A’ > 1 and z; € E,. To prove c,-concavity of f,
it is sufficient to show convexity of © — ¢, (x,y) — f(z) for each y. Indeed, the Hessian
is

Sin tHp — D)z —y)P 2 —n2A"(7) = —n2A"(Z) = 0

in matrix sense. Note that the set of functions A satisfying A’ > 1 and A” < 0 is
convex, which is consistent with Proposition 4.11. Therefore, any convex combination
of A(z) and the c,-concave function ), fr(x)) discussed above is also c,-concave by
Proposition 4.11.

Appendix
A Gluing lemma for stationary measures

The gluing lemma is a well known construction of joint distributions. We repeat this
construction in order to derive an extension to the gluing of jointly stationary processes.
For given probability measures P and (Q on some measurable spaces F; and F5, we
denote the set of joint probability measures on E; x Fs with marginals P and @ by
M(P,Q).
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Lemma A.1 (Gluing lemma). Let P;, P,, P; be Borel probability measures on Polish
spaces E1, Es, E3, respectively. Let Pis € M(Py, P») and Ps3 € M(P,, P3). Then there
exists a probability measure Py»3 on Fy X Fs x E3 with marginals Py on F1 x E5 and
Py3 on Fy x E3.

Proof. Let Py|5(-|-) be the regular conditional probability measure such that

Pia(A) x Ag) = / Pyjo(Ar]x) Py (dx)

2

and Ps)5(-|-) be the regular conditional probability measure such that

P23(A2 X Ag) = / PS‘Q(Ag,‘I‘)PQ(dJJ)

Ay

Then a measure P53 uniquely defined by
P123(A1 X AQ X Ag) = / P1|2(A1|x)P3|2(A3|x)P2(dx) (A].)
Az

satisfies the required condition. O

Next we consider an extension of the gluing lemma to stationary processes. We note
that even if a measure Pjo3 on EZ x EZ x EZ has stationary marginals Pj; on EZ x EZ and
Py3 on EZ x EZ, it is not necessarily true that P is stationary. For example, consider
the {—1,1}-valued fair coin processes X = (X;)icz and Y = (Y};):cz independently,
and let Z; = (—1)!X,Y;. Then (X,Y) and (Y, Z) have stationary marginal distributions
respectively, but (X,Y, Z) is not jointly stationary because X;Y;Z; = (—1).

For given stationary measures P and ) on some product spaces, let M;(P, Q) be the
jointly stationary measures with marginal distributions P and () on the corresponding
product spaces.

Lemma A.2. Let F1, F>, E3 be Polish spaces. Let P, P>, P3; be stationary measures on
E% FE% FEZ, respectively. Let Pio € My(Py, P;) and Py3 € My(P, P3). Then there exists
a jointly stationary measure Pia3 on EZ x EZ x EZ with marginals Pi5 and Pa3.

Proof. We define P23 by (A.1) and check joint stationarity of Pj23. First, since Pis is
stationary, the conditional probability P, is stationary in the sense that P 5(LA;|Lx) =
P”Q(A1|$) for any A; and z (P%»-a.s.). Indeed, for any A; and A,,

/ Pl‘Q(Al‘I)PQ(dI) = Plg(Al X Ag)

Az

= P12(LA1 X LAQ)

_ / Ppp(LAy ) Py(da)
LAs
:/A P1|2(LA1|LJ))P2(d'T)a

where the second and last equality is due to stationarity of P> and P,, respectively.
Now joint stationarity of P23 follows from (A.1) and stationarity of P, P32 and . O
B c-concave function

We review some basic results on c-concavity. See [16, 17, 15, 24, 25] for details.
Let FE; and E5 be two Polish spaces and ¢ : F; x F; — R be a measurable function.
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Definition B.1. We define the c-transforms of functions f on F, and g on E5 by

() == inf {c(z,y) — f(z)} and g¢°(x):= inf {c(z,y) —g(y)}.

rxEFEq yeE>

A function f on E, is called c-concave if there exists some function g on F> such that

f(@) = g°(x).

In general, f° > f holds. Indeed, for any = and y, we have c(x,y) — f°(y) > f(x).
Then f*(z) = infy{c(z,y) — f°(y)} = f(2).

Lemma B.2. Let f be a function of F1. Then f is c-concave if and only if f°¢ = f.

Proof. The “if” part is obvious. We prove the “only if” part. Assume f = ¢g°. Then
f€ =g > g, and therefore

fe(e) = mf{e(z,y) - f4(y)} < inflc(z,y) —g(y)} = 9°(x) = f(2).
Since f°¢ > f always holds, we have f<¢ = f. O

Define the c-supergradient of any function f : £4; — R by

Of(x) ={y € Bz | c(z,y) — f(z) = f“(y)}-
Lemma B.3. Assume that 9°f(x) # () for any x € E;. Then f is c-concave.

Proof. Fix x € E; and let y € 9°f(x). Then we have

flx) = clz,y) = f(y) = f(2) = fz).
Hence f°¢ = f and thus f is c-concave. O

The converse of Lemma B.3 does not hold in general. For example, consider F; =
[0,00), F3 = R and ¢(z,y) = —zy. Then c-concavity is equivalent to usual concavity. The
function f(x) = y/x is concave but the supergradient at = 0 is empty.

C Proof of Proposition 4.9

Consider the cost function ¢(x,y) on E; x E, with the assumptions in Proposition
4.9. Since ¢, # 0, the map y — c,(z,y) is injective. Denote its image and inverse
function by U, = {c.(x,y) | y € F2} and 1, = (cz(z,-)) "' : U, — E», respectively. Hence
ce(x,ne(uw)) = u for all w € U, and 7n.(c.(x,y)) = y for all y € E,. Note that U, is an
interval and therefore convex. Also note that the subscript = of 7, does not mean the
derivative. By symmetry, we can define V, = {¢,(z,y) | * € E1} and &, = (¢, (-, y)) "' :
Vy — Ei.

We first characterize the c-gradient of a differentiable c-concave function f. Let
x € Fyand y € 9°f(x). Then ¢(z,y) — f(x) < ¢(z,y) — f(2) for any z € E;. By the tangent
condition at z = z, we have ¢, (z,y) — f'(x) = 0, or equivalently, y = n,(f’'(z)). Hence we
have 9¢f(x) = {n.(f'(z))}. We denote the unique element also by 9¢f(x) = n.(f'(z)).

To prove Proposition 4.9, it is sufficient to show that the following conditions are
equivalent:

(i) cis convex stable for any index n
(ii) The map u — c(x, 1, (u)) — ¢(z,n:(u)) is convex for all z, z € Fj.

(i) —cua,yy + Coz,yCayy/Cay = 0.
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We first prove (i) < (ii). Assume (i). Let Q be the set of rational numbers. By the
definition of convex stability, for any ug,u; € U, and A € [0, 1] N Q, the function

¢(2) := (1 = A)e(2, 12 (u0)) + Ae(z, 1z (ur))

is c-concave. The c-gradient of ¢ is given by

O°P(x) = 12 (1 = N)ew (2,12 (w0)) + Ace (2,112 (u1))) = 02 (1 = Nuo + Aun).
Then c-concavity, c(x, 0°¢(x)) — ¢(x) < ¢(z,0°(z)) — ¢(z) for any z, is equivalent to

(2, e (1 — Nug + Aup)) — e(z,m: (1 — Nug + Auq))
< (1= M{e(@,n2(uo)) — e(z,n2(uo)) } + Me(z, ma(ur)) — e(z,m0(u))}-

Since both hand side is continuous with respect to A, (ii) is obtained. The converse is
similar.

Next we prove (ii) < (iii). Assume (ii). Fix z,z € E; and ug € U,. Let yo = n.(uop)
and therefore ug = ¢;(x,yp). Since u — c(z,n,(u)) — (2,1, (u)) is convex for any z, its
second derivative at u = ug is non-negative:

On{c(w, no(w)) = c(z,m0 (W)},

= {eyy (@, 90) — cyy(2,50) 0P (10))? + {ey (2, 50) — cy (2, 30) 10 (uo)

> 0. (C.1)

On the other hand, by differentiating the identity ¢, (z,n,(u)) = u twice at u = ug, we
have
Cayy (,90) (157 (10))? + oy (2, y0 )1 (ug) = 0.

Combining the two relations, we have

Coyy (1'7 yO)

Cry (T, Y0) {ey(x,90) — cy(2,90) } (D (up))? > 0.

{ny(gj’yo) - ny(za yO)} -

Since ng(gl)(uo) =1/cpy(x,y0) # 0, we obtain

Cxyy (JZ, Z/o)

cz,y(x, yo) {Cy(337y0) - Cy(z,yo)} > 0.

{eyy(m,90) — eyy(2:90)} —

Now let vy = ¢y(z,y0) and v = ¢y(z,y0). Then & = £, (vo) and z = &,,(v) from the
definition of §,. We have

e v  Cayy(Eyo (v0), %0) o — v
{ny(gyo(UO)J/O) yy(gyn( )»yo)} Cac,y(fyo(vo),yo) (vo ) >0. (C.2)

This means convexity of the map v — —cy, (&, (v),%0). Hence its second derivative is
non-negative. Therefore

*Caca:,yy(za yO)(fg(/i) (v))Z - C.uyy(zv yO)géﬁ) (U) > 0.

On the other hand, by differentiating the identity c,(&,,(v), y0) = v twice, we have

Cmm,y(za yO)(gg(;é) (,U))Q + ci,y(zv yO)Eg(j) (U) =0.
Combining the two relations, we have

Cxoc,y(za yo)

(1) (1))2
oo (g (@ 90) | (6, ()7 2 0. ©.3)

_Cxa;,yy(za yO) +
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Since fg(,?(v) =1/cs4(2,%0) # 0, we conclude

c:m:,y (Za y())

> 0.
Ca;,y(za yO)

—Caz yy(2,Y0) + €y (2, Y0)

Since z and yo(= 7. (up)) are arbitrary, we obtain (iii).

The proof of (iii) = (ii) is just the converse. First, (C.3) follows from (iii). Since
(C.3) is the second derivative of the left hand side of (C.2), the convexity condition (C.2)
follows. The condition (C.2) is equivalent to (C.1), and (C.1) is also equivalent to (ii).
This completes the proof.
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