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Abstract

We consider a sequence X(n), n ≥ 1, of continuous–time nearest–neighbor random
walks on the one dimensional latticeZ. We reduce the spectral analysis of the Markov
generator of X(n) with Dirichlet conditions outside (0, n) to the analogous problem
for a suitable generalized second order differential operator −DmnDx, with Dirichlet
conditions outside a given interval. If the measures dmn weakly converge to some
measure dm∞, we prove a limit theorem for the eigenvalues and eigenfunctions of
−DmnDx to the corresponding spectral quantities of −Dm∞Dx. As second result, we
prove the Dirichlet–Neumann bracketing for the operators −DmDx and, as a conse-
quence, we establish lower and upper bounds for the asymptotic annealed eigenvalue
counting functions in the case that m is a self–similar stochastic process. Finally, we
apply the above results to investigate the spectral structure of some classes of subd-
iffusive random trap and barrier models coming from one–dimensional physics.
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1 Introduction

Continuous–time nearest–neighbor random walks on Z are a basic object in prob-
ability theory with numerous applications, including the modeling of one–dimensional
physical systems. A fundamental example is given by the simple symmetric random
walk (SSRW) on Z, of which we recall some standard results. It is well known that the
SSRW converges to the standard Brownian motion under diffusive space–time rescaling.
Moreover, the sign–inverted Markov generator with Dirichlet conditions outside (0, n)

has exactly n− 1 eigenvalues, which are all positive and simple. Labeling the eigenval-
ues in increasing order

(
λ
(n)
k : 1 ≤ k < n

)
, the k–th one is given by λ(n)k = 1− cos(πk/n)
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Spectral analysis of 1D nearest-neighbor random walks

with associated eigenfunction f
(n)
k (j) = sin(kπj/n), j ∈ Z ∩ [0, n]. Extending f

(n)
k to all

[0, n] by linear interpolation, one observes that

lim
n↑∞

n2λ
(n)
k =

π2k2

2
=: λk

and
lim
n↑∞

f
(n)
k ([nx]) = sin(kπx) =: fk(x) ,

where [nx] denotes the integer part of nx and the last limit is in the space C([0, 1])

endowed of the uniform norm. On the other hand, the standard Laplacian −(1/2)∆ on
[0, 1] with Dirichlet boundary conditions has

(
λk : k ≥ 1

)
as family of eigenvalues and fk

as eigenfunction associated to the simple eigenvalue λk.

Considering this simple example it is natural to ask how general the above con-
siderations can be. In particular, given a family of continuous–time nearest–neighbor
random walks X(n) defined on the rescaled interval [0, 1] ∩ Zn, Zn := {k/n : k ∈ Z},
killed when reaching the boundary, one would like very general criteria to establish
(i) the convergence of X(n) to some stochastic process X(∞), (ii) the convergence of
the eigenvalues and eigenfunctions of the Dirichlet Markov generator of X(n) to the
corresponding spectral quantities of the Dirichlet Markov generator of some stochastic
process Y (∞). Note that we have not imposed X(∞) = Y (∞) and the reason will be
clarified soon.

Criteria to establish (i) also in a more general context have been developed by C.
Stone in [39]. These results have been successfully applied in order to study rigorously
the asymptotic behavior of nearest–neighbor random walks on Z with random environ-
ment, as the random barrier model [23], [15] and the random trap model [16], [3], [4]
(see below). In the first part of the paper, we focus on a general criterion to establish
(ii). As well known, by an injective map Zn → R, one can always transform X(n) into a
random walk Y (n) which can be expressed as time change of the Brownian motion B,
suitably killed, with scale function given by the identity map and speed measure dmn.
This transformation reveals crucial, since the Markov generator of Y (n) can be defined
on continuous and piecewise–linear functions and the convergence of eigenfunctions
is simply in the uniform topology (otherwise one is forced to deal with rather complex
functional spaces as in [15]). We point out that in order to establish the convergence (i)
one often needs to consider an additional transformation (thus explaining why the above
processes X(∞) and Y (∞) can differ). The sign–inverted Markov generator of Y (n) can
be written as a generalized differential operator −DmnDx on a suitable interval with
Dirichlet b.c. (boundary conditions). Briefly, in Theorem 2.1 we will show that the
asymptotic spectral structure of −DmnDx coincides with the one of −DmDx if the mea-
sure dmn weakly converges to the measure dm, in particular we show the convergence
of the k–th eigenvalue and the associated eigenfunction. A similar convergence result
is proven by T.Uno and I. Hong in [40] for a family of differential operators on Γn, where
Γn is a suitable sequence of subsets in R converging to the Cantor set. Some ideas in
their proof have been applied to our context, while others are very model–dependent.
The route followed here is more inspired by modern Sturm–Liouville theory [26], [44],
where the continuity of the spectral structure is related to the continuity properties
of a suitable family of entire functions. We point out that continuity theorems for the
spectral structure already exist. See for example Ogura’s paper [34][Section 5]. There
the author proves the vague convergence (even a stronger version) of the so called
spectral measure σn(dx) associated to −DmnDx to the one σ(dx) associated to −DmDx

if the measure dmn weakly converges to the measure dm. The spectral measure comes
from the Weyl–Kodaira–Titchmarsh theorem [25, 41], is a matrix–valued measure on R
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with support coinciding with the spectrum of the operator. One could work on Ogura’s
convergence result to deduce the convergence of the eigenvalues and the associated
eigenfunctions. We did not follow this route since more elaborated, preferring a more
elementary approach. The same observation holds for the continuity theorem of Kasa-
hara [22][Theorem 1] based on Krein’s correspondence.

As second step in our investigation we prove the Dirichlet–Neumann bracketing for
the generalized operator −DmDx (Theorem 6.7). This is a key result in order to get
estimates on the asymptotics of eigenvalues as in the Weyl’s classical theorem for the
Laplacian on bounded Euclidean domains (see [42], [43], [10], [36][Chapter XIII.15]).
The form of the bracketing used in our analysis goes back to G. Métivier and M.L.
Lapidus (cf. [32], [28]) and has been successfully applied in [24] to establish an ana-
logue of Weyl’s classical theorem for the Laplacian on finitely ramified self–similar frac-
tals. Finally, from the Dirichlet–Neumann bracketing we derive the behavior at∞ of the
averaged eigenvalue counting function of the operator −DmDx on a finite interval with
Dirichlet b.c. under the assumption that m is a self–similar stochastic process (see The-
orem 2.2). We point out that in [17], [19], [24] [40] the authors study the asymptotics
of the eigenvalues for the Laplacian defined on self–similar geometric objects. In our
case, the self–similarity structure enters into the problem through the self–similarity of
m.

As application of the above analysis (Theorem 2.1, Theorem 6.7 and Theorem 2.2)
we investigate the small eigenvalues of some classes of subdiffusive random trap and
barrier models (Theorems 2.3 and 2.5). Let T = {τx : x ∈ Z} be a family of positive i.i.d.
random variables belonging to the domain of attraction of an α–stable law, 0 < α < 1.
Given T , in the random trap model the particle waits at site x an exponential time with
mean τx and after that it jumps to x − 1, x + 1 with equal probability. In the random
barrier model, the probability rate for a jump from x − 1 to x equals the probability
rate for a jump from x to x − 1 and is given by 1/τ(x). We consider also generalized
random trap models, called asymmetric random trap models in [3]. Let us call X(n)

the rescaled random walk on Zn obtained by accelerating the dynamics of a factor of
order n1+

1
α (apart a slowly varying function) and rescaling the lattice by a factor 1/n.

As investigated in [23], [16] and [3], the law of X(n) averaged over the environment T
equals the law of a suitable V –dependent random walk X̃(n) averaged over V , V being
an α–stable subordinator. To this last random walk X̃(n) one can apply our general
results, getting at the end some annealed spectral information about X(n).

Random trap and random barrier walks on Z have been introduced in Physics in
order to model 1d particle or excitation dynamics, random 1d Heisenberg ferromagnets,
1d tight–binding fermion systems, electrical lines of conductances or capacitances [1].
More recently (cf. [6], [7] and references therein) subdiffusive random walks on Z
have been used as toy models for slowly relaxing systems as glasses and spin glasses
exhibiting aging, i.e. such that the time–time correlation functions keep memory of
the preparation time of the system even asymptotically. Our results contribute to the
investigation of the spectral properties of aging stochastic models. This analysis and the
study of the relation between aging and the spectral structure of the Markov generator
has been done in [8] for the REM–like trap model on the complete graph. Estimates on
the first Dirichlet eigenvalue of X(n) in the case of subdiffusive (also asymmetric and
in Zd, d ≥ 1) trap models have been derived in [33], while the spectral structure of the
1d Sinai’s random walk for small eigenvalues has been investigated in [9]. The method
developed in [9] is based on perturbation and capacity theory together with the property
that the random environment can be approximated by a multiple–well potential. This
method cannot be applied here and we have followed a different route.
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2 Model and results

We consider a generic continuous–time nearest–neighbor random walk (Xt : t ≥ 0)

on Z. We denote by c(x, y) the probability rate for a jump from x to y: c(x, y) > 0 if and
only if |x− y| = 1, while the Markov generator L of Xt can be written as

Lf(x) = c(x, x− 1)
[
f(x− 1)− f(x)

]
+ c(x, x+ 1)

[
f(x+ 1)− f(x)

]
(2.1)

for any bounded function f : Z→ R. The random walk Xt can be described as follows:
arrived at site x ∈ Z, the particle waits an exponential time of mean 1/[c(x, x − 1) +

c(x, x+ 1)], after that it jumps to x− 1 and x+ 1 with probability

c(x, x− 1)

c(x, x− 1) + c(x, x+ 1)
and

c(x, x+ 1)

c(x, x− 1) + c(x, x+ 1)
,

respectively.

By a recursive procedure, one can always determine two positive functions U and H
on Z such that

c(x, y) = 1/ [H(x)U(x ∨ y)] , ∀x, y ∈ Z : |x− y| = 1 . (2.2)

Moreover, the above functions U and H are univocally determined apart a positive
factor c multiplying U and dividing H. Indeed, the system of equation (2.2) is equivalent
to the system {

U(x+ 1) = U(x) c(x,x−1)c(x,x+1) ,

H(x) = 1
c(x,x−1)U(x) ,

∀x ∈ Z . (2.3)

We observe that U is a constant function if and only if the jump rates c(x, y) depend
only on the starting point x. Taking without loss of generality U ≡ 2, we get that after
arriving at site x the random walk Xt waits an exponential time of mean H(x) and then
jumps with equal probability to x − 1 and to x + 1. This special case is known in the
physics literature as trap model [1]. Similarly, we observe that H is a constant function
if and only if the jump rates c(x, y) are symmetric, that is c(x, y) = c(y, x) for all x, y ∈ Z.
Taking without loss of generality H ≡ 1, we get that c(x, x − 1) = c(x − 1, x) = U(x).
This special case is known in the physics literature both as barrier model [1] and as
random walk among conductances, sinceXt corresponds to the random walk associated
in a natural way to the linear resistor network with nodes given by the sites of Z and
electrical filaments between nearest–neighbor nodes x− 1, x having conductance c(x−
1, x) = U(x) [14]. If the rates {c(x, x ± 1)}x∈Z are random one speaks of random trap
model, random barrier model and random walk among random conductances.

In order to describe some asymptotic spectral behavior as n ↑ ∞, we consider a
family X(n)(t) of continuous–time nearest–neighbor random walks on Zn := {k/n : k ∈
Z} parameterized by n ∈ N+ = {1, 2, . . . }. We call cn(x, y) the corresponding jump rates
and we fix positive functions Un, Hn satisfying the analogous of equation (2.3) (all is
referred to Zn instead of Z). Below we denote by Ln the pointwise operator

Lnf(x) = cn(x, x− 1/n)[f(x− 1/n)− f(x)] + cn(x, x+ 1/n)[f(x+ 1/n)− f(x)] (2.4)

defined at x ∈ Zn for all functions f whose domain contains x− 1
n , x, x+ 1

n . The Markov

generator of X(n)
t with Dirichlet conditions outside (0, 1) will be denoted by Ln. We

recall that it is defined as the operator Ln : Vn → Vn, where

Vn := {f : [0, 1] ∩Zn → C, f(0) = f(1) = 0} , (2.5)
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such that

Lnf(x) =

{
Lnf(x) if x ∈ (0, 1) ∩Zn ,
0 if x = 0, 1 .

As discussed in Section 4, the operator −Ln has n− 1 eigenvalues which are all simple
and positive, while the related eigenvectors can be taken as real vectors. Below we
write the eigenvalues as λ(n)1 < λ

(n)
2 < · · · < λ

(n)
n−1.

In order to determine the suitable frame for the analysis of the eigenvalues and
eigenvectors of −Ln, we recall some basic facts from the theory of generalized second
order differential operators −DmDx (cf. [21], [11], [27][Appendix]), initially developed
to analyze the behavior of a vibrating string. Let m : R → [0,∞) be a nondecreasing
function with m(x) = 0 for all x < 0. Without loss of generality we can suppose that m
is càdlàg. We denote by dm the Lebesgue–Stieltjes measure associated to m, i.e. the
Radon measure on R such that dm((a, b]) = m(b) −m(a) for all a < b. We define Em as
the support of dm, i.e. the set of points where m increases:

Em := {x ∈ [0,∞) : m(x− ε) < m(x+ ε) ∀ε > 0} . (2.6)

We suppose that Em 6= ∅, 0 = inf Em and `m := supEm < ∞. Then, F ∈ C([0, `m],C)

is an eigenfunction with eigenvalue λ of the generalized differential operator −DmDx

with Dirichlet b.c. if F (0) = F (`m) = 0 and if it holds

F (x) = b x− λ
∫ x

0

dy

∫
[0,y)

dm(z)F (z) , ∀x ∈ [0, `m] , (2.7)

for some constant b. The number b is called derivative number and is denoted F ′−(0)

(see Section 4 for further details). As discussed in [29], [30], the operator −DmDx

with Dirichlet b.c. is the generator of the quasidiffusion on (0, `m) with scale function
s(x) = x and speed measure dm, killed when reaching the boundary points 0, `m. This
quasidiffusion can be suitably defined as time change of the standard one–dimensional
Brownian motion [30], [39].

The spectral analysis of −Ln can be reduced to the spectral analysis of a suitable
generalized differential operator −DmnDx as follows. We define the function Sn : [0, 1]∩
Zn → R as

Sn(k/n) =

{
0 if k = 0 ,∑k
j=1 Un(j/n) if 1 ≤ k ≤ n .

(2.8)

To simplify the notation, we set

x
(n)
k := Sn(k/n) , for k : 0 ≤ k ≤ n . (2.9)

Finally, we define the nondecreasing càdlàg function mn : R→ [0,∞) as

mn(x) =

n∑
k=0

Hn(k/n)I
(
x
(n)
k ≤ x

)
(2.10)

where I(·) denotes the characteristic function. Then

dmn =

n∑
k=0

Hn(k/n)δ
x
(n)
k

, En := Emn = {x(n)k : 1 ≤ k ≤ n} , `n := `mn = x(n)n .

We denote by Cn[0, `n] the set of complex continuous functions on [0, `n] that are linear
on [0, `n] \ En. Then, the map

Tn : C[0,1]∩Zn 3 f → Tnf ∈ Cn[0, `n] , (2.11)
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associating to f the unique function Tnf ∈ Cn[0, `n] such that

Tnf(x
(n)
k ) = f(k/n) , 0 ≤ k ≤ n ,

is trivially bijective. As discussed in Section 4, the map Tn defines also a bijection
between the eigenvectors of −Ln with eigenvalue λ and the eigenfunctions of the dif-
ferential operator −DmnDx with Dirichlet conditions outside (0, `n) associated to the
eigenvalue λ.

We can finally state the asymptotic behavior of the small eigenvalues:

Theorem 2.1. Suppose that `n converges to some ` ∈ (0,∞) and that dmn weakly
converges to a measure dm, where m : R → [0,∞) is a càdlàg function such that
m(x) = 0 for all x ∈ (−∞, 0). Assume that 0 = inf Em, ` = supEm and that dm is not a
linear combination of a finite family of delta measures.

Then the generalized differential operator −DmDx with Dirichlet conditions outside
(0, `) has an infinite number of eigenvalues, which are all positive and simple. List these
eigenvalues in increasing order as {λk : k ≥ 1}, and list the n − 1 eigenvalues of the

operator −Ln, which are all positive and simple, as λ(n)1 < · · · < λ
(n)
n−1. Then for each

k ≥ 1 it holds
lim
n↑∞

λ
(n)
k = λk . (2.12)

For each k ≥ 1, fix an eigenfunction Fk with eigenvalue λk for the operator −DmDx

with Dirichlet conditions. Then, by suitably choosing the eigenfunction F (n)
k ∈ C([0, `n])

of eigenvalue λ(n)k for the operator −DmnDx with Dirichlet conditions, it holds

lim
n↑∞

F
(n)
k = Fk in C([0, `+ 1]) w.r.t. ‖ · ‖∞ , (2.13)

where Fk and F (n)
k are set equal to zero on (`, `+ 1] and (`n, `+ 1], respectively.

Since by hypothesis the supports of dmn and dm are all included in a common com-
pact subset, the above weak convergence of dmn towards dm is equivalent to the vague
convergence. The proof of the above theorem in given in Section 5.

We describe now another general result relating self–similarity to the spectrum
edge, whose application will be relevant below when studying subdiffusive random
walks. Recall the definition (2.6) of Em.

Theorem 2.2. Suppose that m : [0,∞)→ [0,∞) is a random process such that

(i) m(0) = 0,

(ii) m is càdlàg and increasing a.s.,

(iii) m has stationary increments,

(iii) m is self–similar, namely there exists α > 0 such that for all γ > 0 the processes(
m(x) : x ≥ 0

)
and

(
γ1/αm(x/γ) : x ≥ 0

)
have the same law,

(iv) extending m to all R by setting m ≡ 0 on (−∞, 0), for any x ∈ R with probability
one x is not a jump point of m.

Then, a.s. all eigenvalues of the operator−DmDx with Dirichlet conditions outside (0, 1)

are simple and positive, and form a diverging sequence
(
λk(m) : k ≥ 1

)
if labeled in

increasing order. The same holds for the eigenvalues
(
λk(m−1) : k ≥ 1

)
of the operator

−Dm−1Dx with Dirichlet conditions outside (0,m(1)), where m−1 denotes the càdlàg
generalized inverse of m, i.e.

m−1(t) = inf{s ≥ 0 : m(s) > t} , t ≥ 0 . (2.14)
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Moreover, if there exists x0 > 0 such that

E []{k ≥ 1 : λk(m) ≤ x0}] <∞ , (2.15)

then there exist positive constants c1, c2 such that

c1x
α

1+α ≤ E []{k ≥ 1 : λk(m) ≤ x}] ≤ c2x
α

1+α , ∀x ≥ 1 . (2.16)

Similarly, if there exists x0 > 0 such that

E
[
]{k ≥ 1 : λk(m−1) ≤ x0}

]
<∞ , (2.17)

then there exist positive constants c1, c2 such that

c1x
α

1+α ≤ E
[
]{k ≥ 1 : λk(m−1) ≤ x}

]
≤ c2x

α
1+α , ∀x ≥ 1 . (2.18)

Strictly speaking, in the above theorem we had to write −Dm∗Dx and −D(m−1)∗Dx

instead of −DmDx and −Dm−1Dx, respectively, where

m∗(x) =


0 if x ≤ 0 ,

m(x) if 0 ≤ x ≤ 1 ,

m(1) if x ≥ 1 ,

(m−1)∗(x) =


0 if x ≤ 0 ,

m−1(x) if 0 ≤ x ≤ m(1) ,

m−1
(
m(1)

)
if x ≥ m(1) .

(2.19)
This will be understood also below, in Theorems 2.3 and 2.5. Since m is càdlàg, it has a
countable (finite or infinite) number of jumps {zi}. For x ≥ 0 it holds

m−1(x) =

{
y if y = m(x) , x ∈ [0,∞) \ {zi} ,
zi if x ∈ [m(zi−),m(zi)] for some i .

(2.20)

Since we have assumed Em = [0,∞) a.s., m−1 must be continuous a.s. (observe that
the jumps of m−1 correspond to the flat regions of m).

The proof of the above theorem is given in Section 7 and is based on the Dirichlet–
Neumann bracketing developed in Section 6 (cf. Theorem 6.7). When m is a stable
subordinator (2.15) and (2.17) are fulfilled (see the proof of Theorem 2.3 and 2.5).

As application of Theorem 2.1 and Theorem 2.2, we consider special families of subd-
iffusive random trap and barrier models (cf. [1], [23], [16], [3], [4], [15] and references
therein). To this aim we fix a family T := {τ(x) : x ∈ Z} of positive i.i.d. random
variables in the domain of attraction of a one–sided α–stable law, 0 < α < 1. This is
equivalent to the fact that there exists some function L1(t) slowly varying as t → ∞
such that

F (t) = P(τ(x) > t) = L1(t)t−α , t > 0 .

Let us define the function h as

h(t) = inf{s ≥ 0 : 1/F (s) ≥ t} . (2.21)

Then, by Proposition 0.8 (v) in [37] we know that

h(t) = L2(t)t1/α t > 0 , (2.22)

for some function L2 slowly varying as t→∞.

Finally, we denote by V the double–sided α–stable subordinator defined on some
probability space (Ξ,F ,P) (cf. [2] Section III.2). Namely, V has a.s. càdlàg paths,
V (0) = 0 and V has non-negative independent increments such that for all s < t

E
[

exp
{
− λ[V (t)− V (s)]

}]
= exp{−λα(t− s)} . (2.23)
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(Strictly speaking, inside the exponential in the r.h.s. there should be an extra positive
factor c0 that we have fixed equal to 1). The sample paths of V are strictly increasing
and of pure jump type, in the sense that V (u) =

∑
0<v≤u{V (v) − V (v−)}. Moreover,

the random set {(u, V (u) − V (u−)) : u ∈ R, V (u) > V (u−)} is a Poisson point process
on R × R+ with intensity cw−1−αdu dw , for some c > 0. Finally, we denote by V −1

the generalized inverse function V −1(t) = inf{s ∈ R : V (s) > t}. Since V is strictly
increasing P–a.s., V −1 has continuous paths P–a.s.

For random trap models we obtain:

Theorem 2.3. Fix a ≥ 0 and let T = {τ(x)}x∈Z be a family of positive i.i.d. random
variables in the domain of attraction of an α–stable law, 0 < α < 1. If a > 0, assume also
that τ(x) is bounded from below by a non–random positive constant a.s.

Given a realization of T , consider the T –dependent trap model {X(t)}t≥0 on Z with
transition rates

c(x, y) =

{
τ(x)−1+aτ(y)a if |x− y| = 1

0 otherwise .
(2.24)

Call λ(n)1 (T ) < λ
(n)
2 (T ) < · · · < λ

(n)
n−1(T ) the (simple and positive) eigenvalues of the

Markov generator of X(t) with Dirichlet conditions outside (0, n). Then

i) For each k ≥ 1, the T –dependent random vector

γ2L2(n)n1+
1
α

(
λ
(n)
1 (T ), · · · , λ(n)k (T )

)
(2.25)

weakly converges to the V –dependent random vector(
λ1(V ), . . . , λk(V )

)
,

where γ = E (τ(0)−a), the slowly varying function L2 has been defined in (2.22)
and {λk(V ) : k ≥ 1} denotes the family of the (simple and positive) eigenvalues
of the generalized differential operator −DVDx with Dirichlet conditions outside
(0, 1).

ii) If a = 0 and E (exp{−λτ(x)}) = exp{−λα}, then in (2.25) the quantity L2(n) can
be replaced by the constant 1.

iii) There exist positive constants c1, c2 such that

c1x
α

1+α ≤ E []{k ≥ 1 : λk(V ) ≤ x}] ≤ c2x
α

1+α , ∀x ≥ 1 . (2.26)

The above random walk X(t) can be described as follows: after arriving at site x ∈ Z
the particle waits an exponential time of mean

τ(x)1−a

τ(x− 1)a + τ(x+ 1)a
,

after that it jumps to x− 1 and x+ 1 with probability given respectively by

τ(x− 1)a

τ(x− 1)a + τ(x+ 1)a
and

τ(x+ 1)a

τ(x− 1)a + τ(x+ 1)a
.

The random walk X(t) is called random trap model following [3], although according
to our initial terminology the name would be correct only when a = 0. Sometimes we
will also refer to the case a ∈ (0, 1] as generalized random trap model. The additional
assumption concerning the bound from below of τ(x) when a > 0 can be weakened.
Indeed, as pointed out in the proof, we only need the validity of strong LLN for a suitable
triangular arrays of random variables.

Of course, one can consider also the diffusive case. Extending the results of [5] we
get
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Proposition 2.4. Fix a ≥ 0 and let T = {τ(x)}x∈Z be a family of positive random
variables, ergodic w.r.t. spatial translations and such that E(τ(x)) <∞, E(τ(x)−a) <∞.
Given a realization of T , consider the T –dependent trap model {X(t)}t≥0 on Z with

transition rates (2.24) and call λ(n)1 (T ) < λ
(n)
2 (T ) < · · · < λ

(n)
n−1(T ) the (simple and

positive) eigenvalues of the Markov generator of X(t) with Dirichlet conditions outside
(0, n). Then for each k ≥ 1 and for a.a. T ,

n2E(τ(x)−a)E(τ(x))λ
(n)
k (T )→ π2k2 . (2.27)

Let us state our results concerning random barrier models:

Theorem 2.5. Let T = {τ(x)}x∈Z be a family of positive i.i.d. random variables in the
domain of attraction of an α–stable law, 0 < α < 1. Given a realization of T , consider
the T –dependent barrier model {X(t)}t≥0 on Z with jump rates

c(x, y) =

{
τ(x ∨ y)−1 if |x− y| = 1

0 otherwise .
(2.28)

Call λ(n)1 (T ) < λ
(n)
2 (T ) < · · · < λ

(n)
n−1(T ) the eigenvalues of the Markov generator of X(t)

with Dirichlet conditions outside (0, 1). Recall the definition (2.22) of the positive slowly
varying function L2. Then:

i) For each k ≥ 1, the T –dependent random vector

L2(n)n1+
1
α

(
λ
(n)
1 (T ), . . . , λ

(n)
k (T )

)
(2.29)

weakly converges to the V –dependent random vector(
λ1(V −1), . . . , λk(V −1)

)
,

where {λk(V −1) : k ≥ 1} denotes the family of the (simple and positive) eigen-
values of the generalized differential operator −DV −1Dx with Dirichlet conditions
outside (0, V (1)).

ii) If E(e−λτ(x)) = e−λ
α

then in (2.29) the quantity L2(n) can be replaced by the
constant 1.

iii) There exist positive constants c1, c2 such that

c1x
α

1+α ≤ E
[
]{k ≥ 1 : λk(V −1) ≤ x}

]
≤ c2x

α
1+α , ∀x ≥ 1 . (2.30)

Again, one can consider also the diffusive case. Extending the results of [5] we get

Proposition 2.6. Let T = {τ(x)}x∈Z be a family of positive random variables, ergodic
w.r.t. spatial translations and such that E(τ(x)) <∞. Given a realization of T , consider
the T –dependent barrier model {X(t)}t≥0 on Z with transition rates (2.28) and call

λ
(n)
1 (T ) < λ

(n)
2 (T ) < · · · < λ

(n)
n−1(T ) the (simple and positive) eigenvalues of the Markov

generator of X(t) with Dirichlet conditions outside (0, n). Then for each k ≥ 1 and for
a.a. T ,

n2E(τ(x))λ
(n)
k (T )→ π2k2 . (2.31)

Theorem 2.3 and 2.5 cannot be derived by a direct application of Theorem 2.1. In-
deed, for any choice of the sequence c(n) > 0, fixed a realization of T the measures
dmn associated to the space–time rescaled random walks X(n)(t) = n−1X

(
c(n)t

)
do not
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converge to dV or dV −1 restricted to (0, 1), (0, V (1)) respectively. On the other hand,
for each n one can define a random field Tn in terms of the α–stable process V , i.e.
Tn = Fn(V ), having the same law of T [3, 16]. Calling X̃(n) the analogous of X(n) with
jump rates defined in terms of Tn, one has that the associated measures dm̃n satisfy the
hypothesis of Theorem 2.1. This explains why Theorems 2.3 and 2.5 give an annealed
and not quenched result. On the other hand, for the random walks X̃(n) the result is
quenched, i.e. the convergence of the eigenvalues holds for almost all realizations of
the subordinator V . We refer to Sections 8 and 9 for a more detailed discussion of the
above coupling and for the proof of Theorems 2.3 and 2.5.

2.1 Outline of the paper

The paper is structured as follows. In Section 3 we explain how the spectral analysis
of −Ln reduces to the spectral analysis of the operator −DmnDx. In Section 4 we recall
some basic facts of generalized second order operators. In particular, we characterize
the eigenvalues of −Ln as zeros of a suitable entire function. In Section 5 we prove
Theorem 2.1. In Section 6 we prove the Dirichlet–Neumann bracketing. This result,
interesting by itself, allows us to prove Theorem 2.2 in Section 7. Finally, we move to
applications: in Section 8 we prove Theorem 2.3, in Section 9 we prove Theorem 2.5,
while in Section 10 we prove Propositions 2.4 and 2.6.

3 From −Ln to −DmnDx

Recall the definition of the local operator Ln given in (2.4) and of the bijection Tn
given in (2.11).

Lemma 3.1. Given functions f, g : [0, 1] ∩Zn → R, the system of identities

Lnf(x) = g(x) , ∀x ∈ (0, 1) ∩Zn , (3.1)

is equivalent to the system

f(x) = f(0) +

nx∑
j=1

Un(j/n)

(
f(1/n)− f(0)

Un(1/n)
+

j−1∑
k=1

Hn(k/n)g(k/n)

)
, ∀x ∈ (0, 1] ∩Zn ,

(3.2)
where we convey to set

∑0
k=1Hn(k/n)g(k/n) = 0. Setting F = Tnf , G = Tng and

b =
F (x

(n)
1 )− F (0)

Un(1/n)
−Hn(0)G(0) ,

(3.2) is equivalent to

F (x) = F (0) + bx+

∫ x

0

dy

∫
[0,y)

G(z)dmn(z) , ∀x ∈ [0, `n] . (3.3)

In particular, f : [0, 1]∩Zn → R is an eigenvector with eigenvalue λ of the operator −Ln
if and only if Tnf is an eigenfunction with eigenvalue λ of the generalized differential
operator −DmnDx with Dirichlet conditions outside (0, `n).

Proof. For simplicity of notation we write U,H instead of Un, Hn. Moreover, we use the
natural bijection Z 3 k → k/n ∈ Zn, denoting the point k/n of Zn simply as k. Setting
∆f(j) = f(j)− f(j − 1), we can rewrite (3.1) by means of the recursive identities

∆f(j + 1)

U(j + 1)
= H(j)g(j) +

∆f(j)

U(j)
, ∀j ∈ (0, n) ∩Z .
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By a simple telescopic argument the above system is equivalent to

f(x) = f(0) +

x∑
j=1

U(j)

(
∆f(1)

U(1)
+

j−1∑
k=1

H(k)g(k)

)
, ∀x ∈ (0, n] ∩Z ,

with the convention that the last sum is zero if j = 1. This proves that (3.1) is equivalent
to (3.2). Using Tn, F,G,mn we can rewrite (3.2) as

F (x) = F (0) +

∫ x

0

dy

(
F (x

(n)
1 )− F (0)

U(1)
+

∫
(0,y)

G(z)dmn(z)

)
, ∀x ∈ (0, `n] . (3.4)

Trivially, equation (3.4) is equivalent to (3.3). Finally, the conclusion of the lemma
follows from the previous observations and the discussion about the generalized differ-
ential operator −DmDx given in Section 2.

4 Generalized second order differential operators

For the reader’s convenience and for next applications, we recall the definition of
generalized differential operator. We mainly follow [21], with some slight modifications
that we will point out. We refer to [21], [11] and [31] for a detailed discussion.

Let m : R → [0,∞) be a càdlàg nondecreasing function with m(x) = 0 for all x < 0.
We define mx as the magnitude of the jump of the function m at the point x:

mx = m(x)−m(x−) , x ∈ R . (4.1)

We define Em as the support of dm, i.e. the set of points where m increases (see (2.6)).
We suppose that Em 6= ∅, 0 = inf Em and `m := supEm <∞.

Given a continuous function F (x) ∈ C([0, `m]) and a dm–integrable function G on
[0, `m] we write −DmDxF = G if there exist complex constants a, b such that

F (x) = a+ bx−
∫ x

0

dy

∫
[0,y)

dm(z)G(z) , ∀x ∈ [0, `m] . (4.2)

We remark that the integral term in equation (4.2) can be written also as∫ x

0

dy

∫
[0,y)

dm(z)G(z) =

∫
[0,x]

(x− z)G(z)dm(z) =

∫ x

0

dy

∫
[0,y]

dm(z)G(z) .

We point out that equation (4.2) implies that F is linear on [x1, x2] if m is constant on
(x1, x2) ⊂ [0, `m].

As discussed in [21], the function G is not univocally determined from F . To get
uniqueness, one can for example fix the value of b and b−

∫
[0,`m]

G(s)dm(s). These values

are called derivative numbers and denoted by F ′−(0) and F ′+(`m), respectively. Indeed,
in [21] the domain Dm of the differential operator −DmDx is defined as the family
of complex–valued extended functions F [x], given by the triple

(
F (x), F ′−(0), F ′+(`m)

)
,

while the authors set −DmDxF [x] = G(x). We prefer to avoid the notion of extended
functions here, since not necessarily.

It is simple to check that the function F satisfying (4.2) fulfills the following proper-
ties: for each x ∈ [0, `m) the function F (x) has right derivative F ′+(x), for each x ∈ (0, `m]

the function F (x) has left derivative F ′−(x) and

F ′+(x) = b−
∫
[0,x]

G(s)dm(s) , x ∈ [0, `m) , (4.3)

F ′−(x) = b−
∫
[0,x)

G(s)dm(s) , x ∈ (0, `m] . (4.4)
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In view of the definition of F ′−(0) and F ′+(`m), the above identities extend to any x ∈
[0, `m]. In addition, if m0 = 0 then F ′−(0) = limε↓0 F

′
+(ε), while if m`m = 0 then F ′+(`m) =

limε↓0 F
′
−(`m − ε).

As discussed in [21], fixed λ ∈ C there exists a unique function F ∈ C([0, `m]) solving
equation (4.2) with G = λF for fixed a, b. In other words, fixed F (0) and F ′−(0) there
exists a unique solution of the homogeneous differential equation

−DmDxF = λF . (4.5)

Given λ ∈ C, we define ϕ(x, λ) and ψ(x, λ) as the solutions (4.5) satisfying respectively
the initial conditions

ϕ(0, λ) = 1 , ϕ′−(0, λ) = 0 , (4.6)

ψ(0, λ) = 0 , ψ′−(0, λ) = 1 . (4.7)

It is known that each function F ∈ C([0, `m]) satisfying (4.5) is a linear combination of
the independent solutions ϕ(·, λ) and ψ(·, λ). Finally, F 6≡ 0 is called an eigenfunction
of the operator −DmDx with Dirichlet [Neumann] b.c. if F solves (4.5) for some λ ∈ C,
and moreover F (0) = F (`m) = 0 [F ′−(0) = F ′+(`m) = 0]. By the above observations, we
get that F is a Dirichlet eigenfunction if and only if F is a nonzero multiple of ψ(x, λ) for
λ ∈ C satisfying ψ(`m, λ) = 0, while F is a Neumann eigenfunction if and only if F (x) is
a nonzero multiple of ϕ(x, λ) with λ ∈ C satisfying∫ `

0

ϕ(s, λ)dm(s) = 0 . (4.8)

In particular, the Dirichlet and the Neumann eigenvalues are all simple.

We collect in the following lemma some known results concerning the Dirichlet
eigenvalues and eigenfunctions:

Lemma 4.1. Let m : R→ [0,∞) be a nondecreasing càdlàg function such that m(x) = 0

for x < 0, 0 = inf Em, `m := supEm < ∞. Then the differential operator −DmDx with
Dirichlet conditions outside (0, `m) has a countable (finite or infinite) family of eigen-
values, which are all positive and simple. The set of eigenvalues has no accumulation
points. In particular, if there is an infinite number of eigenvalues {λn}n≥1, listed in
increasing order, it must be limn↑∞ λn =∞.

The above eigenvalues coincide with the zeros of the entire function C 3 λ →
ψ(`m, λ) ∈ C. The eigenspace associated to the eigenvalue λ is spanned by the real
function ψ(·, λ). Moreover, F is an eigenfunction of −DmDx with Dirichlet conditions
outside (0, `m) and associated eigenvalue λ if and only if

F (x) = λ

∫
[0,`m)

G0,`m(x, y)F (y)dm(y) , ∀x ∈ [0, `m] , (4.9)

where, given an interval [a, b], the Dirichlet Green function Ga,b : [a, b]2 → R is defined
as

Ga,b(x, y) =

{
(y−a)(b−x)

b−a if y ≤ x ,
(x−a)(b−y)

b−a if x ≤ y .
(4.10)

In particular, for any Dirichlet eigenvalue λ it holds

λ ≥
[
`mm(`m)]−1 . (4.11)
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Proof. The first part of the lemma follows easily from the analysis given in [21] concern-
ing the entire function ψ(·, λm). The characterization (4.9) follows by straightforward
computations from the definition of Dirichlet eigenfunctions. To conclude, we observe
that (4.9) implies ‖F‖∞ ≤ λ‖F‖∞`mdm([0, `m)), since trivially 0 ≤ G0,`m(x, y) ≤ `m.
(4.11) then follows.

As discussed in [21], page 29, the function ϕ can be written as λ–power series
ϕ(s, λ) =

∑∞
j=0(−λ)jϕj(s) for suitable functions ϕj . Therefore the l.h.s. of (4.8) equals∑∞

j=0(−λ)j
∫
(0,1)

ϕj(s)dm(s). From the bounds on ϕj one derives that the l.h.s. of (4.8)
is an entire function in λ, thus implying that its zeros (or equivalently the eigenvalues
of the operator −DmDx with Neumann b.c.) form a discrete subset of [0,∞). Moreover
(cf. [21]) the eigenvalues are nonnegative and 0 itself is an eigenvalue.

5 Proof of Theorem 2.1

We divide the proof in subsections.

5.1 Eigenvalues as zeros of entire functions

At this point, we have reduced the analysis of the spectrum of the differential oper-
ator −DmDx with Dirichlet conditions outside (0, `m) to the analysis of the zeros of the
entire function ψ(`, ·). As in [26] and [44] a key tool is the following result, whose proof
can be found in [12], page 248:

Lemma 5.1. Let Ξ be a metric space, f : Ξ×C→ C be a continuous function such that
for each α ∈ Ξ the map f(α, ·) is an entire function. Let V ⊂ C be an open subset whose
closure V̄ is compact, and let α0 ∈ Ξ be such that no zero of the function f(α0, ·) is on
the boundary of V . Then there exists a neighborhood W of α0 in Ξ such that:

1. for any α ∈W , f(α, ·) has no zero on the boundary of V ,

2. the sum of the orders of the zeros of f(α, ·) contained in V is independent of α as
α varies in W .

From now on, let mn and m be as in Theorem 2.1. Given λ ∈ C, define ψ(x, λ) as the
solution on the homogeneous differential equation (4.5) satisfying the initial condition
(4.7). Define similarly ψ(n)(x, λ) by replacing m with mn. The following fact will be
fundamental in the application of Lemma 5.1.

Lemma 5.2. Define ψ(·, λ), ψ(·, `) as ψ(`, λ), ψ(`n, λ) on (`, `+ 1], (`n, `+ 1], respectively
(note that `n < ` + 1 eventually). Fix a sequence λn ∈ C converging to some λ∞ ∈ C.
Then ψn(·, λn) converges to ψ(·, λ∞) as n→∞ uniformly in C([0, `+ 1]).

Proof. The proof is similar to the first part of the proof of Theorem 1 in [22]. As dis-
cussed in [21], page 30, one can write explicitly the power expansion of the entire
function C 3 λ → ψ(n)(x, λ) ∈ C. In particular, it holds ψ(n)(x, λ) =

∑∞
j=0(−λ)jψ

(n)
j (x),

where ψ(n)
0 (x) = x, ψ(n)

j+1(x) =
∫ x
0

(x − s)ψ(n)
j (s)dm(s) for j ≥ 0 and x ∈ [0, `n]. Note that

in the above integrals we do not need to specify the border of the integration domain
since the integrand functions vanish both at 0 and at x. By the same arguments used

in [21][page 32] one gets ψ(n)
k (x) ≤

(
x
k+1

)k+1
mn(x)
k! for x ∈ [0, `n]. These bounds imply

easily that the family F of functions {ψ(n)(·, λn)}n is uniformly bounded in C([0, ` + 1]).
Since

ψ(n)(x, λn) = x− λn
∫ x

0

dy

∫
[0,y)

dmn(z)ψ(n)(z, λn) , x ∈ [0, `n] , (5.1)
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the above bounds imply also that the family F is equicontinuous in C([0, ` + 1]). By
Ascoli–Arzelà theorem, F is relatively compact. From the weak convergence of dmn to
dm and from (5.1), one gets that all limit functions ψ̃ satisfies

ψ̃(x) = x− λ
∫ x

0

dy

∫
[0,y)

dm(z)ψ̃(z, λ) , x ∈ [0, `] , (5.2)

and is equal to ψ̃(`) on [`, `+ 1]. Since the integral equation (5.1) has a unique solution,
given by ψ(·, λ), we get the thesis.

By applying Lemma 4.1, Lemma 5.1 and Lemma 5.2 we obtain:

Lemma 5.3. Let mn and m be as in Theorem 2.1. Fix a constant L > 0 different
from the Dirichlet eigenvalues of −DmDx, and let {λi : 1 ≤ i ≤ k0} be the Dirichlet
eigenvalues of −DmDx smaller than L. Let ε > 0 be such (i) λk0 + ε < L and (ii) each
interval Ji := [λi − ε, λi + ε] intersects {λi : 1 ≤ i ≤ k0} only at λi, for any i : 1 ≤ i ≤ k0.
Then there exists an integer n0 such that:

i) for all n ≥ n0, the spectrum of −Ln has only one eigenvalue in Ji ,

ii) for all n ≥ n0, −Ln has no eigenvalue inside (0, L) \
(
∪k0i=1Ji

)
.

Proof. We already know that the Dirichlet eigenvalues of the operator−DmnDx [−DmDx]
are given by the zeros of the entire function ψ(n)(`n, ·) [ψ(`, ·)]. Hence, it is natural to
derive the thesis by applying Lemma 5.1 with different choices of V . More precisely,
we take α0 =∞ and Ξ = N+∪{∞} endowed of any metric d such that all points n ∈ N+

are isolated w.r.t. d and limn↑∞ d(n,∞) = 0. We define f : Ξ× C→ C as

f(α, λ) =

{
ψ(n)(`n, λ) if α = n ,

ψ(`, λ) if α =∞ .

Finally, we choose V = (λi − ε, λi + ε) as i varies in {1, . . . , k0} and after that we take

V = (0, L) \
(
∪k0r=1Jr

)
. The thesis then easily follows by applying Lemma 5.1 if we prove

that f is continuous. The nontrivial part is to prove that limn↑∞ ψ(n)(`n, λn) = ψ(`, λ)

for any sequence of complex numbers {λn}n≥1 converging to some λ ∈ C. This result
follows from Lemma 5.2 and the equicontinuity of the family of functions {ψ(n)(·, λn)}n
in C([0, `+ 1]).

5.2 Minimum–maximum characterization of the eigenvalues

For the reader’s convenience, we list some vector spaces that will be repeatedly
used in what follows. We introduce the vector spaces A(n) and B(n) as

A(n) := {f : [0, 1] ∩Zn → R : f(0) = f(1) = 0} , B(n) = TnA(n) , (5.3)

where the map Tn has been defined in (2.11). Hence F ∈ B(n) if and only if (i) F (0) =

F (1) = 0, (ii) F is continuous and (iii) F is linear on all subintervals [x
(n)
j−1, x

(n)
j ], 1 ≤ j ≤

n. Since we already know that the eigenvalues and suitable associated eigenfunctions
of −Ln are real, we can think of −Ln as operator defined on A(n). Finally, given a < b

we write C0[a, b] for the family of continuous functions f : [a, b] → R such that f(a) =

f(b) = 0.

Let us recall the min–max formula characterizing the k–th eigenvalue λ(n)k of −Ln,
or equivalently of the differential operator −DmnDx with Dirichlet conditions outside
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(0, `n). We refer to [10], [36] for more details. First we observe the validity of the
detailed balance equation:

Hn(x)cn
(
x, x+

1

n

)
=

1

Un(x+ 1/n)
= Hn(x+

1

n
)cn
(
x+

1

n
, x
)

∀x ∈ Zn . (5.4)

IdentifyingA(n) with {f : (0, 1)∩Zn → R}, this implies that−Ln is a symmetric operator
in L2((0, 1) ∩Zn, µn), where µn :=

∑
x∈(0,1)∩Zn Hn(x)δx. Given f ∈ A(n) we write Dn(f)

for the Dirichlet form Dn(f) := µn(f,−Lnf). By simple computations, we obtain

Dn(f) =

n∑
j=1

Un(j/n)−1
[
f(j/n)− f((j − 1)/n)

]2
.

Note that Dn(f) = 0 with f ∈ A(n) if and only if f ≡ 0. The min–max characterization

of λ(n)k is given by the formula

λ
(n)
k = min

Vk
max

f∈Vk:f 6≡0

Dn(f)

µn(f2)
, (5.5)

where Vk varies among the k–dimensional subspaces of A(n). Moreover, the minimum

is attained at Vk = V
(n)
k , defined as the subspace spanned by the eigenvectors f

(n)
j

associated to the first k eigenvalues {λ(n)j : 1 ≤ j ≤ k}.
We can rewrite the above min–max principle in terms of F = Tnf and dmn. Indeed,

given f ∈ A(n), the function F = Tnf is linear between x
(n)
j−1 and x

(n)
j , thus implying

that

Un(j/n)−1
[
f(j/n)− f((j − 1)/n)

]2
=

∫ x
(n)
j

x
(n)
j−1

DsF (s)2ds .

Hence, Dn(f) =
∫ `n
0
DsF (s)2ds. From this identity and (5.5) one easily obtains that

λ
(n)
k = min

Sk
max

F∈Sk :F 6=0
Φn(F ) , (5.6)

where Sk varies among all k–dimensional subsets of B(n) (recall (5.3)), while for a
generic function F ∈ C0[0, `n] we define

Φn(F ) :=

∫ `n
0
DsF (s)2ds∫ `n

0
F (s)2dmn(s)

(5.7)

whenever the denominator is nonzero. Here and in what follows, we write
∫ `n
0

instead
of
∫
[0,`n]

.

The following observation will reveal very useful:

Lemma 5.4. Let F ∈ B(n) and let G ∈ C0[0, `n] be any function satisfying F (x
(n)
j ) =

G(x
(n)
j ) for all 0 ≤ j ≤ n. Then

∫ `n

0

DsF (s)2ds ≤
∫ `n

0

DsG(s)2ds . (5.8)

In particular, if F 6≡ 0 then Φn(F ) and Φn(G) are both well defined and Φn(F ) ≤ Φn(G).
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Proof. In order to get (5.8) it is enough to observe that by Schwarz’ inequality it holds

∫ x
(n)
j

x
(n)
j−1

DsF (s)2ds =

[
F
(
x
(n)
j

)
− F

(
x
(n)
j−1
)]2

x
(n)
j − x(n)j−1

=

[
G
(
x
(n)
j

)
−G

(
x
(n)
j−1
)]2

x
(n)
j − x(n)j−1

=

[∫ x(n)
j

x
(n)
j−1

DsG(s)ds
]2

x
(n)
j − x(n)j−1

≤
∫ x

(n)
j

x
(n)
j−1

DsG(s)2ds .

From (5.8) one derives the last issue by observing that dmn(F 2) = dmn(G2) (dmn(·)
denoting the average w.r.t. dmn).

We have now all the tools in order to prove that the eigenvalues λ(n)k are bounded
uniformly in n:

Lemma 5.5. For each k ≥ 1, it holds supn>k λ
(n)
k =: a(k) <∞.

Proof. Given a function f ∈ C0[0, `n] and n ≥ 1, we define Knf as the unique function

in B(n) such that f(x
(n)
j ) = Knf(x

(n)
j ) for all 0 ≤ j ≤ n. Note that Kn commutes with

linear combinations: Kn(a1f1 + · · ·+ akfk) = a1Knf1 + · · ·+ akKnfk.

Due to the assumption that dm is not a linear combination of a finite number of
delta measures, for some ε > 0 we can divide the interval [0, ` − ε) in k subintervals
Ij = [aj , bj) such that dm(int(Ij)) > 0, int(Ij) = (aj , bj).

Since dmn converges to dm weakly, it must be dmn(int(Ij)) > 0 for all j : 1 ≤ j ≤ k,
and for n large enough. For each j we fix a piecewise–linear function fj : R → R, with
support in Ij and strictly positive on int(Ij). Since `n → ` > `−ε, taking n large enough,
all functions fj are zero outside (0, `n), hence we can think of fj as function in C0[0, `n].
Having disjoint supports, the functions f1, f2,..., fk are independent in C0[0, `n].

Trivially Knf1, Knf2,..., Knfk are independent functions in B(n) for n large enough
since dmn(int(Ij)) > 0 for all j if n is large enough. Due to the above independence, we
can apply the min–max principle (5.6). Let us write Sk for the real vector space spanned
by Knf1,Knf2, . . . ,Knfk and S̄k for the real vector space spanned by f1, f2, . . . , fk. As
already observed, Sk = Kn(S̄k). Using also Lemma 5.4, we conclude that for n large
enough

λ
(n)
k ≤ max{Φn(f) : f ∈ Sk , dmn(f2) > 0} ≤ max{Φn(f) : f ∈ S̄k , dmn(f2) > 0} .

Take f = a1f1 + a2f2 + · · ·+ akfk such that dmn(f2) > 0. Since Φn(f) = Φn(cf), without
loss of generality we can assume that

∑k
i=1 a

2
i = 1. Since the functions fj have disjoint

supports, it holds (Dsf)2 =
∑k
j=1 a

2
j (Dsfj)

2 a.e., while f2 =
∑k
j=1 a

2
jf

2
j . In particular,

we can write

Φn(f) =

∑k
j=1 a

2
j

∫ `n
0
Dsfj(s)

2ds∑k
j=1 a

2
j

∫ `n
0
fj(s)2dmn(s)

. (5.9)

Hence, for n large enough, it holds

λ
(n)
k ≤

max{
∫ `
0
Dsfj(s)

2ds : 1 ≤ j ≤ k}
min{

∫ `
0
fj(s)2dmn(s) : 1 ≤ j ≤ k}

. (5.10)

The conclusion is now trivial.
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5.3 Proof of Theorem 2.1

Most of the work necessary for the convergence of the eigenvalues has been done for
proving Lemma 5.3 and Lemma 5.5. Due to Lemma 4.1, we know that the eigenvalues of
−Ln and the eigenvalues of the differential operator −DmDx with Dirichlet conditions
outside (0, `) are simple, positive and form a set without accumulation points. Since
−Ln is a symmetric operator on the (n−1)–dimensional space L2((0, 1)∩Zn, µn), where
µn has been introduced in Section 5.2, we conclude that −Ln has n− 1 eigenvalues.

Given k ≥ 1 we take a(k) as in Lemma 5.5 and we fix L ≥ a(k) such that L is not
an eigenvalue of −DmDx with Dirichlet conditions. Let k0, ε and n0 be as in Lemma
5.3. Then for n ≥ n0 the following holds: in each interval Ji = [λi − ε, λi + ε] there
is exactly one eigenvalue of −Ln and in [0, L) \ ∪k0i=1Ji there is no eigenvalue of −Ln.
Since we know by Lemma 5.5 that −Ln has at least k eigenvalues in [0, L] it must be

k ≤ k0 and λ
(n)
i ∈ Ji for all i : 1 ≤ i ≤ k. In particular, lim supn↑∞ |λ

(n)
i − λi| ≤ ε

for all i : 1 ≤ i ≤ k. Using the arbitrariness of ε and k we conclude that the operator
−DmDx with Dirichlet conditions outside (0, `) has infinite eigenvalues satisfying (2.12).

Knowing that λ(n)k → λk as n→∞, the convergence from the eigenfunction ψ(·, λ(n)k ) to
ψ(·, λk), as specified in the theorem, follows from Lemma 5.2.

6 Dirichlet–Neumann bracketing

Let m : R → [0,∞) be a càdlàg nondecreasing function with m(x) = 0 for all x < 0.
We recall that Em denotes the support of dm, i.e. the set of points where m increases
(see (2.6)) and that mx denotes the magnitude of the jump of the function m at the point
x, i.e. mx := m(x+) − m(x−) = m(x) − m(x−). We suppose that Em 6= ∅, 0 = inf Em
and `m := supEm < ∞. We want to compare the eigenvalue counting function for the
generalized operator −DxDm with Dirichlet boundary conditions to the same function
when taking Neumann boundary conditions. In order to apply the Dirichlet–Neumann
bracketing as stated in Section XIII.15 of [36] and as developed by Métivier and Lapidus
(cf. [32] and [28]), we need to study generalized differential operators as self–adjoint
operators on suitable Hilbert spaces.

In the rest of the section we assume that m0 = m`m = 0. The reason will become
clear soon. We consider the real Hilbert spaceH := L2([0, `m], dm) and denote its scalar
product as (·, ·). When writing

∫
dm(y)g(y) we mean

∫
[0,`m]

dm(y)g(y).

6.1 The operator −LD
We define the operator −LD : D(−LD) ⊂ H → H as follows. First, we set that

f ∈ D(−LD) if there exists a function g ∈ H such that

f(x) = bx−
∫ x

0

dy

∫
[0,y)

dm(z)g(z) , b :=
1

`m

∫ `m

0

dy

∫
[0,y)

dm(z)g(z) . (6.1)

We note that the above identity implies that f has a representative given by a continuous
function in C[0, `m] such that f(0) = f(`m) = 0. Moreover, by the discussion following
(4.2) (cf. (4.3) and (4.4)) and the assumption m0 = m`m = 0, we derive from identity
(6.1) that the function g ∈ H satisfying (6.1) is unique. Hence, we define −LDf = g.
Always due to (4.3) and (4.4), we know that if f ∈ D(−LD), then f has right derivative
D+
x f on [0, `m), f has left derivative D−x f on (0, `m] and has derivative Dxf on (0, `m)

apart a countable set of points. In particular, f has derivative Lebesgue a.e. on (0, `m).
The operator −LD is simply the operator −DxDm with Dirichlet boundary conditions
thought on the space H.

Proposition 6.1. The following holds:
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(i) the operator −LD : D(−LD) ⊂ H → H is self–adjoint;

(ii) consider the symmetric compact operator K : H → H defined as

Kg(x) =

∫
K(x, y)g(y)dm(y) , g ∈ H , (6.2)

where the function K(x, y) := G0,`m(x, y) is given by (4.10). Then, Ran(K) =

D(−LD) and −LD ◦K = I onH. In particular, the operator −LD admits a complete
orthonormal set of eigenfunctions and therefore −LD has pure point spectrum.
Moreover, the above eigenvalues and eigenfunctions coincide with the ones in
Lemma 4.1.

Proof. It is trivial to check that (6.1) can be rewritten as

f(x) =

∫
K(x, y)g(y)dm(y) . (6.3)

Hence, by definition D(−LD) = Ran(K) and LD(K(g)) = g for all g ∈ H and K is in-
jective (see the discussion on the well definition of −LD). Since K(x, y) = K(y, x),
the operator K is symmetric. Since K ∈ L2(dm ⊗ dm) (K is bounded and dm has fi-
nite mass), by [35][Theorem VI.23] K is an Hilbert–Schmidt operator and therefore is
compact (cf. [35][Theorem VI.22]). In particular, H has an orthonormal basis {ψn}
such that Kψn = γnψn for suitable eigenvalues γn (cf. Theorems VI.16 in [35]). Since
K is injective, we conclude that γn 6= 0, ψn = K((1/γn)ψn) ∈ Ran(K) = D(−LD) and
−LDψn = (1/γn)ψn. It follows that {ψn} is an orthonormal basis of eigenvectors of−LD.
By (6.1), the function ψn ∈ L2(dm) must have a representative in C[0, `m]. Taking this
representative, the identity ψn = −(1/γn)LDψn simply means that ψn is an eigenfunc-
tion with eigenvalue 1/γn of the generalized differential operator −DxDm with Dirichlet
boundary conditions as defined in Section 4. Finally, since −LD admits an orthonormal
basis of eigenvectors, its spectrum is pure point and is given by the family of eigenval-
ues. This concludes the proof of point (ii).

In order to prove (i), we observe that D(−LD) contains the finite linear combinations
of the orthonormal basis {ψn} and therefore it is a dense subspace in H. Given f, f̂ ∈
D(−LD), let g, ĝ ∈ H such that f = Kg, f̂ = Kĝ. Then, using the symmetry of K
and point (ii), we obtain (−LDf, f̂) = (g,Kĝ) = (Kg, ĝ) = (f,−LDf̂). This proves that
−LD is symmetric. In order to prove that it is self–adjoint we need to show that, given
v, w ∈ H such that (−LDf, v) = (f, w) for all f ∈ D(−LD), it must be v ∈ D(−LD) and
−LDv = w. To this aim, we write g = −LDf . Then, by the symmetry of K, it holds
(g, v) = (−LDf, v) = (f, w) = (Kg, w) = (g,Kw). Since this holds for any f ∈ D(−LD)

and therefore for any g ∈ H, it must be v = Kw. By point (ii), this is equivalent to the
fact that w ∈ D(−LD) and w = −LDv. This concludes the proof of (i).

6.2 The operator −LN
We define the operator −LN : D(−LN ) ⊂ H → H as follows. First, we say that

f ∈ D(−LN ) if there exist a function g ∈ H and a constant a ∈ R such that

f(x) = a−
∫ x

0

dy

∫
[0,y)

dm(z)g(z) (6.4)

and ∫
[0,`m)

dm(z)g(z) = 0 . (6.5)

We note that the above identity implies that f has a representative given by a continuous
function in C[0, `m]. Moreover, by the discussion following (4.2) (cf. (4.3) and (4.4)) and
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the assumption m0 = m`m = 0, we derive from identity (6.4) that the function g ∈ H
satisfying (6.4) is unique. Hence, we define −LNf = g. Always due to (4.3) and (4.4),
we know that if f ∈ D(−LN ), then f has right derivative D+

x f on [0, `m), f has left
derivative D−x f on (0, `m] and has derivative Dxf on (0, `m) apart a countable set of
points. In addition, D+

x f(0) and D−x f(`m) are zero due to (6.4) and (6.5). The operator
−LD is simply the operator −DxDm with Neumann boundary conditions thought of on
the space H.

Proposition 6.2. The following holds:

(i) the operator −LN : D(−LN ) ⊂ H → H is self–adjoint;

(ii) the operator −LN admits a complete orthonormal set of eigenfunctions and there-
fore −LN has only pure point spectrum. The eigenvalues and eigenfunctions are
the same as the ones associated to the operator −DxDm with Neumann boundary
conditions as defined in Section 4.

Proof. We start with point (i). First we prove that −LN is symmetric. Take f, g, a as in
(6.4) and (6.5), and take f̂ , ĝ, â similarly. Then,

(f,−LN f̂) =

∫
dm(x)f(x)ĝ(x) = a

∫
dm(dx)ĝ(x)−

∫
dm(x)ĝ(x)

∫ x

0

dy

∫
[0,y)

dm(z)g(z) .

Using that
∫
dm(x)ĝ(x) = 0 by (6.5), we conclude that

(f,−LN f̂) =

∫
dm(x)

∫
dm(z)ĝ(x)g(z)Iz≤x(z − x) .

Since, by (6.5) and its analogous version for ĝ, it holds
∫
dm(x)

∫
dm(z)g(x)ĝ(z)(z−x) =

0, we can rewrite the above expression in the symmetric form

(f,−LN f̂) = −1

2

∫
dm(x)

∫
dm(z)ĝ(x)g(z)|x− z| , (6.6)

which immediately implies that −LN is symmetric.

Let us consider the Hilbert subspace W = {f ∈ H : (1, f) = 0}, namely W is the
family of functions in H having zero mean w.r.t. dm. Then we define the operator
T : H → H as

Tg(x) = −
∫ x

0

dy

∫
[0,y)

dm(z)g(z) =

∫
dm(z)g(z)(z − x)I0≤z≤x . (6.7)

Finally, we write P : H → W for the orthogonal projection of H onto W: Pf = f −
(1, f)/(1, 1). Note that [P ◦ T ]g(x) =

∫
dm(z)g(z)H(x, z), where

H(x, z) = (z − x)I0≤z≤x −
∫
(z,`m)

dm(u)(z − u)
/∫

dm(u)

SinceH ∈ L2(dm⊗dm), due to [35][Theorem VI.23] P ◦T is an Hilbert–Schmidt operator
on H, and therefore a compact operator. In particular, the operator W : W → W
defined as the restriction of P ◦ T to W is again a compact operator. We claim that W
is symmetric. Indeed, setting f = Wg and f ′ = Wg′, due to the first identity in (6.7) we
get that f, f ′ ∈ D(−LN ) and −LNf = g, −LNf ′ = g′. Then, using that LN is symmetric
as proven above, we conclude

(Wg, g′) = (f,−LNf ′) = (−LNf, f ′) = (g,Wg′) .
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Having proved that W is a symmetric compact operator, from [35][Theorem VI.16] we
derive that W has an orthonormal basis {ψn}n of eigenvectors of W , i.e. Wψn = γnψn
for suitable numbers γn. SinceW is injective (recall the discussion on the well definition
of −LN ), it must be γn 6= 0. From the identity Wψn = γnψn we conclude that

ψn(x) = an −
1

γn

∫ x

0

dy

∫
[0,y)

dm(z)ψn(z)

for some constant an ∈ R. The above identity implies that ψn ∈ D(−LN ) and −LNψn =

(1/γn)ψn. On the other hand 1 ∈ D(−LN ) and −LN1 = 0. Since H = {c : c ∈ R}⊕W, we
obtain that H admits an orthonormal basis of eigenvectors of −LN . This also implies
that −LN has only pure point spectrum. Trivially, all eigenvectors (as all elements in
D(−LN )) are continuous and are eigenvectors of −DxDm with Neumann b.c. in the
sense of Section 4. This concludes the proof of (i) and (ii).

6.3 The quadratic forms qD and qN

Consider now the symmetric form qN onH with domain Q(qN ) given by the elements
f ∈ H having a representative f which satisfies

(A1) f is absolutely continuous on [0, `m],

(A2)
∫ `m
0

Dxf(x)2dx <∞,

(A3) Dxf is constant on each connected component of (0, `m) \ supp(dm), supp(dm)

being the support of the measure dm.

and such that qN (f, f̂) =
∫ `m
0

Dxf(x)Dxf̂(x)dx for all f, f̂ ∈ Q(qN ). In addition, we set
qN (f) := qN (f, f). We point out that one cannot apply directly the theory discussed in
[18][Example 1.2.2] since the fundamental condition (1.1.7) there can be violated in our
setting. Some care is necessary. First of all we need to prove that qN is well defined:

Lemma 6.3. The representative f satisfying the above properties (A1),(A2),(A3) is
unique. In particular the form qN is well defined.

Proof. Take two functions f, f̂ on [0, `m] satisfying the above properties (A1),(A2),(A3)
and such that f = f̂ dm–a.e. We denote by C the support of dm. We first show that
f = f̂ on C. Suppose that x ∈ C. Then for each ε > 0 the set Iε := (x− ε, x+ ε) ∩ [0, `m]

has positive dm–measure and therefore there exists xε ∈ Iε such that f(xε) = f̂(xε)

(otherwise f and f̂ would differ on a set having positive dm–measure). By taking the
limit ε ↓ 0 and by continuity (property (A1)) we conclude that f(x) = f̂(x) as claimed.
Consider now the open set [0, `m] \ C and take one of its connected components (a, b)

(recall that 0, `m ∈ C). By property (A3) it must be f(x) − f̂(x) = c0x + c1 on (a, b) for
a suitable constants c0, c1. Since a, b ∈ C and f = f̂ on C we get that c0 = c1 = 0, thus
proving that f = f̂ on (a, b). This allows to conclude.

Below, when handling with f ∈ Q(qN ) it will be understood that we refer to the
representative satisfying the above properties (A1),(A2),(A3).

Lemma 6.4. The form qN is closed. Equivalently, the space Q(qN ) endowed of the
scalar product

(f, g)1 = qN (f, g) + (f, g) , f, g ∈ Q(qN )

is an Hilbert space.
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Proof. Take a ‖ · ‖1–Cauchy sequence (fn)n≥0 in Q(qN ). Since Dxfn is Cauchy in L2(dx),
it converges to some function u ∈ L2(dx). Therefore, due top Schwarz inequality,

fn(x)− fn(0) =

∫ x

0

Dxfn(z)dz →
∫ x

0

u(z)dz := g(x) (6.8)

uniformly in x ∈ [0, `m]. Since (fn)n≥0 is a Cauchy sequence in H, we have that fn
converges to some f in H. Having fn − fn(0) → g uniformly and therefore in H, and
fn → f in H, it must be fn(0)→ f −g in H. In particular, the sequence of numbers fn(0)

converges to
∫

(f − g)dm/
∫
dm. This result implies that fn converges uniformly to the

absolutely continuous function h := g +
∫

(f − g)dm/
∫
dm on [0, `m] such that Dxh = u.

In particular, h must be linear on the connected components of [0, `m]\supp(dm). Hence
h ∈ Q(qN ) and, due to the previous considerations, fn converges to h w.r.t. the norm
‖ · ‖1.

Finally, we define another symmetric form qD on H with domain

Q(qD) := {f ∈ Q(qN ) : f(0) = f(`m) = 0} (6.9)

setting qD(f, f̂) := qN (f, f̂) =
∫ `m
0

Dxf(x)Dxf̂(x)dx.
To each closed symmetric form onH one associates in a canonical way a nonnegative

definite self–adjoint operator on H (see [18][Theorem 1.3.1],[35][Chapter VIII].

Lemma 6.5. The following holds:

(i) The forms qN , qD are the canonical closed symmetric forms associated to−LN ,−LD,
respectively.

(ii) Q(qD) is a closed subspace of the Hilbert space
(
Q(qN ), (·, ·)1

)
with codimension

2.

(iii) The inclusion map
ι :
(
Q(qN ), ‖ · ‖1

)
3 f → f ∈

(
H, ‖ · ‖

)
is a continuous compact operator.

Proof. Item (i). We first focus on qN ,−LN . We already know that qN is a closed sym-
metric form. Trivially, D(−LN ) is included in Q(qN ). We claim that

(−LNf, v) =

∫ `m

0

Dxf(x)Dxv(x)dx , ∀f ∈ D(−LN ) , v ∈ Q(qN ) . (6.10)

By Proposition 6.2 the operator −LN is self–adjoint, while by the above claim it is
also symmetric and nonnegative definite. Moreover, our claim (6.10) together with
[18][Corollary 1.3.1] implies that qN is canonically associated to −LN .

To prove (6.10) assume (6.4) and (6.5) with g ∈ H. Then Dxf(x) = −
∫
[0,x)

dm(z)g(z)

and∫ `m

0

Dxf(x)Dxv(x)dx = −
∫ `m

0

dxDxv(x)

∫
[0,x)

dm(z)g(z)

= −
∫
[0,`m)

dm(z)g(z)

∫
(z,`m]

dxDxv(x) =

∫
[0,`m)

dm(z)g(z)
(
v(z)− v(`m)

)
= (g, v) = (−LNf, v) .

Note that in the forth identity we used (6.5).

Let us now prove the correspondence between qD and −LD. First we show that qD
is closed. To this aim, take fn ∈ Q(qD) such that fn is ‖ · ‖1–Cauchy. Since qN is closed,
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we know that there exists f ∈ Q(qN ) with ‖f − fn‖1 → 0 as n → ∞. Reasoning as in
Lemma 6.4, we deduce that fn converges to f in the uniform norm, thus implying that
f(0) = f(`m) = 0. This proves the closeness of qD.

Knowing that qD is a closed symmetric form and reasoning as for qN ,−LN , to con-
clude we only need to show that

(−LDf, v) =

∫ `m

0

Dxf(x)Dxv(x)dx , ∀f ∈ D(−LD) , v ∈ Q(qD) . (6.11)

To this aim we assume (6.1) for some g ∈ H. Then

∫ `m

0

Dxf(x)Dxv(x)dx = −
∫ `m

0

dxDxv(x)

∫
[0,x)

dm(z)g(z)

= −
∫
[0,`m)

dm(z)g(z)

∫
(z,`m]

dxDxv(x) = (g, v) = (−LDf, v) .

Note that in the first identity and in the third one we used that v(0) = v(`m) = 0.

Item (ii). The thesis follows from item (i), the definition of Q(qN ) and Q(qD).

Item (iii). Since ‖f‖ ≤ ‖f‖1 for each f ∈ Q(qN ), the inclusion map ι is trivially
continuous. In order to prove compactness, we need to show that each sequence fn ∈
Q(qN ) with ‖fn‖1 ≤ 1 admits a subsequence fnk which converges in H. Since ‖fn‖1 ≤ 1

it holds |fn(x)−fn(y)| ≤
√
y − x for all x, y ∈ [0, `m]. Applying Ascoli–Arzelà Theorem, we

then conclude that fn admits a subsequence fnk which converges in the space C([0, `m])

endowed of the uniform norm. Trivially, this implies the convergence in H.

As a consequence of the above result we get that

0 ≤ −LN ≤ −LD (6.12)

according to the definition on [36][page 269]. For the reader’s convenience and for later
use, we recall the definition given in [36][page 269]: given nonnegative self–adjoint
operators A,B, where A is defined on a dense subset of a Hilbert space H′ and B is
defined on a dense subset of a Hilbert subspace H′1 ⊂ H′, one says that 0 ≤ A ≤ B if
(i) Q(qA) ⊃ Q(qB), and (ii) 0 ≤ qA(ψ) ≤ qB(ψ) for all ψ ∈ Q(qB), where Q(qA) and Q(qB)

denote the domains of the quadratic forms qA and qB associated to the operators A and
B, respectively.

Considering the space Q(qN ) endowed of the scalar product (·, ·)1, the above Lemma
6.5 implies that

(
Q(qN ),H, qN (·, ·)

)
is a variational triple (cf. [32][Section II-2]). Indeed,

the following holds: (i) Q(qN ) and H are Hilbert spaces, (ii) the inclusion map gives
a continuous injection of Q(qN ) into H, (iii) qN (·, ·) is a continuous scalar product on
Q(qN ) since |qN (f, g)| ≤ ‖f‖1‖g‖1 for all f, g ∈ Q(qN ), (iv) the scalar product qN (·, ·) is
coercive with respect to H: ‖f‖21 − ‖f‖2 ≤ qN (f, f) for all f ∈ Q(qN ).

We denote by N [0,`m]
D,m (x) the number of eigenvalues of −LD not larger than x. Simi-

larly we define N [0,`m]
N,m (x). By Lemma 6.5 the inclusion map ι : Q(qN ) ↪→ H is compact

and Q(qD) is a closed subspace in Q(qN ). Applying Proposition 2.9 in [32] we get the

equality N [0,`m]
m,N (x) = N(x;Q(qN ),H, qN ) and N [0,`m]

m,N (x) = N(x;Q(qD),H, qD), where the
functions N(x;Q(qN ),H, qN ) and N(x;Q(qD),H, qD) are defined in [32][Page 131]. As
byproduct of Lemma 6.5, Proposition 2.7 in [32] and the arguments used in Corollary
4.7 in [24], we obtain that

N [0,`m]
D,m (x) ≤ N [0,`m]

N,m (x) ≤ N [0,`m]
D,m (x) + 2 , ∀x ≥ 0 . (6.13)
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We point out that the first inequality follows also from (6.12) and the lemma preceding
Proposition 4 in [36][Section XIII.15].

Up to now we have defined −LD and −LN referring to the interval (0, `m), where
0 = inf Em, `m = supEm, m0 = 0 and m`m = 0. In general, given an open interval
I = (u, v) ⊂ (0, `m), such that

mu = mv = 0, dm
(
(u, u+ ε)

)
> 0 and dm

(
(v − ε, v)

)
> 0 ∀ε > 0 , (6.14)

we define −LID,−LIN as the operators −LD and −LN but with the measure dm replaced

by its restriction to I. For simplicity, we write L2(I, dm) for the space L2(I, d̃m) where

d̃m denotes the restriction of dm to the interval I. Then, f ∈ D(−LID) ⊂ L2(I, dm) if and
only if there exists g ∈ L2(I, dm) such that, writing I = (u, v),

f(x) = b(x− u)−
∫ x

u

dy

∫
[u,y)

dm(z)g(z) , ∀x ∈ I ,

where b = (v−u)−1
∫ v
u
dy
∫
[u,y)

dm(z)g(z). The above g ∈ L2(I, dm) is unique and one sets

−LIDf = g. The definition is similar for −LIN . Propositions 6.1 and 6.2 extend trivially
to −LID and −LIN . We write qID, q

I
N for the corresponding quadratic forms. Finally, for

x ≥ 0 we define

N I
m,D(x) := ]{λ ∈ R : λ ≤ x, λ is eigenvalue of − LID} , (6.15)

N I
m,N (x) := ]{λ ∈ R : λ ≤ x, λ is eigenvalue of − LIN} . (6.16)

Lemma 6.6. Let I1 = (a1, b1),...,Ik = (ak, bk) be a finite family of disjoint open intervals,
where a1 < b1 ≤ a2 < b2 ≤ a3 < · · · ≤ ak < bk and

mar = 0 , mbr = 0 ∀r = 1, . . . , k ,

dm
(
(ar, ar + ε)

)
> 0 , dm

(
(br − ε, br)

)
> 0 ∀ε > 0,∀r = 1, . . . k .

Then for any x ≥ 0 it holds N (a1,bk)
m,D (x) ≥

∑k
r=1N

(ar,br)
m,D (x). If in addition the intervals

Ir are neighboring, i.e. br = ar+1 for all r = 1, . . . , k − 1, then for any x ≥ 0 it holds

N (a1,bk)
m,N (x) ≤

∑k
r=1N

(ar,br)
m,N (x).

The above result is the analogous to Point c) in Proposition 4 in [36][Section XIII.15].

Proof. We begin with the superadditivity (w.r.t. unions of intervals) of N (·)
m,D(x). We

consider the direct sum ⊕kr=1L
2(Ir, dm). We define A = ⊕kr=1(−LIrD ) as the operator

with domain
D(A) = ⊕kr=1D

(
−LIrD

)
⊂ ⊕kr=1L

2(Ir, dm)

such that A
[
(fr)

k
r=1

]
=
(
−LIrD fr

)k
r=1

. Due to the properties listed in [36][page 268] and
due to Proposition 6.1, the operator A is a nonnegative self–adjoint operator.

Trivially, the map ψ : ⊕kr=1L
2(Ir, dm)→ L2([a1, bk], dm) where

ψ
[
(fr)

k
r=1

]
(x) =

{
fr(x) if x ∈ Ir for some r ,

0 otherwise ,

is injective and conserves the norm. In particular, the image of ψ is a closed (and
therefore Hilbert) subspace of L2([a1, bk], dm). Consider, the operator

A′ : ψ(D(A)) ⊂ ψ
[
⊕kr=1L

2(Ir, dm)
]
→ ψ

[
⊕kr=1L

2(Ir, dm)
]
,
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defined as A′(ψ(f)) = ψ(Af) for all f ∈ D(A). Then, A′ is a nonnegative self–adjoint
operator. Due to property (3) on page 268 of [36] and the characterization of the form
domain Q(qD), we get that −L(a1,bk)

D ≤ A′. The superadditivity then follows from the
lemma stated in [36][page 270] and property (5) on page 268 of [36].

In order to prove subadditivity of N (·)
m,N (x) under the hypothesis br = ar+1 for all

r = 1, . . . , k − 1, we first observe that the above map ψ is indeed an isomorphism of
Hilbert spaces (recall that mar = 0 and mbr = 0). From the definition of qN and Lemma
6.5 it is trivial to check that

0 ≤ ⊕kr=1

(
−L(a1,bk)

N

)
≤ ψ−1 ◦

(
−L(a1,bk)

N

)
◦ ψ ,

where the operator on the right is simply the self–adjoint operator on ⊕kr=1L
2(Ir, dm)

with domain
{
ψ−1(f) : f ∈ D

(
−L(a1,bk)

N

)}
, mapping ψ−1(f) into ψ−1

(
−L(a1,bk)

N f
)
. At this

point, the subadditivity follows from the Lemma on page 270 of [36] and property (5)
on page 268 of [36].

6.4 Conclusion

We can now conclude stating the Dirichlet–Neumann bracketing in our context:

Theorem 6.7. (Dirichlet–Neumann bracketing). Let I = [a, b], let

a = a0 < a1 < · · · < an−1 < an = b

be a partition of the interval I and set Ir := [ar, ar+1] for r = 0, . . . , n− 1. Suppose that
m : I → R is a nondecreasing function such that

(i) mar = 0 for all r = 0, . . . , n,

(ii) dm([ar, ar + ε]) > 0 for all r = 0, . . . , n− 1 and ε > 0,

(iii) dm([ar − ε, ar]) > 0 for all r = 1, . . . , n and ε > 0.

Then, for all x ≥ 0 it holds

N I
m,D(x) ≤ N I

m,N (x) ≤ N I
m,D(x) + 2 , (6.17)

N I
m,D(x) ≥

n−1∑
i=0

N Ii
m,D(x) (6.18)

N I
m,N (x) ≤

n−1∑
i=0

N Ii
m,N (x) . (6.19)

Proof. The bounds in (6.17) have been obtained in (6.13). The inequalities (6.18) and
(6.19) follow from Lemma 6.6.

As immediate consequence of (6.17) and (6.19) we get a bound which will reveal
very useful to derive (2.15) and (2.17):

Corollary 6.8. In the same setting of Theorem 6.7 it holdsN I
m,D(x) ≤ 2n+

∑n−1
i=0 N

Ii
m,D(x).

7 Proof of Theorem 2.2

We first consider how the eigenvalue counting functions change under affine trans-
formations:
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Lemma 7.1. Let m : R → R be a nondecreasing càdlàg function. Given the interval
I = [a, b], suppose that ma = mb = 0 and dm

(
(a, a + ε)

)
> 0, dm

(
(b − ε, b)

)
> 0 for

all ε > 0. Given γ, β > 0, set J = [γa, γb] and define the function M : R → R as
M(x) = γ1/βm(x/γ). Then

N I
m,D/N (x) = N J

M,D/N (x/γ1+1/β) . (7.1)

Trivially, Mγa = Mγb = 0 and dM
(
(γa, γa+ ε)

)
> 0, dM

(
(γb− ε, γb)

)
> 0 for all ε > 0

Proof. For simplicity of notation we take a = 0. Suppose that λ is an eigenvalue of the
operator −DmDx on [0, b] with Dirichlet b.c. at 0 and b. This means that for a nonzero
function F ∈ C(I) with F (b) = 0 and a constant c it holds

F (x) = cx− λ
∫ x

0

dy

∫
[0,y)

dm(z)F (z) , ∀x ∈ I . (7.2)

Taking X ∈ J , the above identity implies that

F (X/γ) =
cX

γ
− λ

∫ X
γ

0

dy

∫
[0,y)

dm(z)F (z) =
cX

γ
− λ

γ

∫ X

0

dY

∫
[0,Yγ )

dm(z)F (z) =

cX

γ
− λ

γ1+1/β

∫ X

0

dY

∫
[0,Y )

dM(Z)F (Z/γ) . (7.3)

Since trivially F (X/γ) = 0 for X = bγ, the above identity implies that λ/γ1+1/β is an
eigenvalue of the operator −DMDx on J with Dirichlet b.c. and eigenfunction F (·/γ).
This implies (7.1) in the case of Dirichlet b.c. The Neumann case is similar.

We have now all the tools in order to prove Theorem 2.2:

Proof of Theorem 2.2. Take m as in Theorem 2.2 and recall the notational convention
stated after the theorem. We first prove (2.16), assuming without loss of generality
that (2.15) holds with x0 = 1. By assumption, with probability one, for any n ∈ N+

and any k ∈ N : 0 ≤ k ≤ n it holds: (i) dm({k/n}) = 0, (ii) dm((k/n, k/n + ε)) > 0

for all ε > 0 if k < n, (iii) dm((k/n − ε, k/n)) > 0 for all ε > 0 if k > 0. Below, we
assume that the realization of m satisfies (i), (ii) and (iii). This allows us to apply the
Dirichlet–Neumann bracketing stated in Theorem 6.7 to the non–overlapping subinter-
vals Ik := [k/n, (k + 1)/n], k ∈ {0, 1, . . . , n − 1}. Due to the superadditivity (resp. sub-
additivity) of the Dirichlet (resp. Neumann) eigenvalue counting functions (cf. (6.18)
and (6.19) in Theorem 6.7), we get for any x ≥ 0 that N [0,1]

m,D(x) ≥
∑n−1
k=0 N

Ik
m,D(x), while

N
[0,1]
m,N (x) ≤

∑n−1
k=0 N

Ik
m,N (x). By taking the average over m and using that m has station-

ary increments we get that EN [0,1]
m,D(x) ≥ nEN [0,1/n]

m,D (x) and EN [0,1]
m,N (x) ≤ nEN [0,1/n]

m,N (x).
Using now the scaling property of Lemma 7.1 with γ = n, β = α and the self–similarity
of m, we conclude that

EN [0,1]
m,D(x) ≥ nEN [0,1/n]

m,D (x) = nEN [0,1]
M,D(x/n1+1/α) = nEN [0,1]

m,D(x/n1+1/α) , (7.4)

EN [0,1]
m,N (x) ≤ nEN [0,1/n]

m,N (x) = nEN [0,1]
M,N (x/n1+1/α) = nEN [0,1]

m,N (x/n1+1/α) , (7.5)

where M(x) := n1/αm(x/n). On the other hand, by (6.17) of Theorem 6.7

EN [0,1]
m,D(x) ≤ EN [0,1]

m,N (x) ≤ EN [0,1]
m,D(x) + 2 . (7.6)

From the above estimates (7.4), (7.5) and (7.6), we conclude that

EN [0,1]
m,D(1) ≤ n−1EN [0,1]

m,D(n1+1/α) ≤ n−1EN [0,1]
m,N (n1+1/α) ≤ EN [0,1]

m,N (1) ≤ EN [0,1]
m,D(1) + 2 .

(7.7)
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We remark that (2.15) with x0 = 1 simply reads EN [0,1]
m,D(1) < ∞. Since the eigenvalue

counting functions are monotone, in the above estimate (7.7) we can think of n as any
positive number larger than 1. Then, substituting n1+1/α with x we get (2.16).

In order to prove (2.18), we first prove the joint self–similarity of m,m−1: given
γ > 0, it holds

(
m(x),m−1(y) : x, y ≥ 0

)
∼
(
γ1/αm(x/γ), γm−1(γ−1/αy) : x, y ≥ 0

)
∼(

γm(x/γα), γαm−1(x/γ) : x, y ≥ 0
)
. (7.8)

To check the above claim, first we observe that for each x ≥ 0 it holds

inf
{
t ≥ 0 : γ1/αm(t/γ) > y

}
= γ inf

{
t ≥ 0 : m(t) > γ−1/αy

}
= γm−1(γ−1/αy) . (7.9)

On the other hand, by the self–similarity of m and by the definition of the generalized
inverse function, we get(

γ1/αm(x/γ), inf
{
t ≥ 0 : γ1/αm(t/γ) > y

}
: x, y ≥ 0

)
∼
(
m(x),m−1(y) : x, y ≥ 0

)
.

(7.10)
The first identity in (7.8) follows from (7.9) and (7.10). The second identity follows by
replacing γ1/α with γ. This concludes the proof of (7.8).

Recall the convention established after (2.18). We already know that dm−1 is a
continuous function a.s., hence a.s. it holds (P1) dm−1

(
{m(k/n)}

)
= 0 for all n ∈ N

and k ∈ N : 0 ≤ k ≤ n. By identity (2.20) m−1(x) = m−1(y) if and only if x, y ∈[
m(zi−),m(zi)

]
for some jump point zi of m. Since by property (iv) in Theorem 2.2

m(k/n) is not a jump point for m a.s. (with k, n as above), the following properties
hold a.s.: (P2) dm−1

(
(m(k/n),m(k/n) + ε)

)
> 0 for all ε > 0 if 0 ≤ k < n and (P3)

dm−1
(
(m(k/n)−ε,m(k/n))

)
> 0 for all ε > 0 if 0 < k ≤ n. In what follows we assume that

the realization of m satisfies the properties (P1), (P2) and (P3). This allows us to apply
the Dirichlet–Neumann bracketing to the measure dm−1 and to the non–overlapping
subintervals Ik = [m(k/n),m((k + 1)/n)], k ∈ {0, 1, . . . , n − 1}. We point out that the
measure dm−1 restricted to each subinterval Ik is univocally determined by the values
{m(x)−m(k/n) : x ∈ [k/n, (k+ 1)/n]. The fact that m has stationary increments, allows
to conclude that the random functions N Ik

m−1,D/N (·) are identically distributed.

We observe now that (7.8) with γ = n1/α implies that(
m(x),m−1(y) : x, y ≥ 0

)
∼
(
n1/αm(x/n), nm−1(x/n1/α) : x, y ≥ 0

)
. (7.11)

Then, using the Dirichlet–Neumann, Lemma 7.1 with β = 1/α and γ = n1/α and the
joint self–similarity (7.11),we conclude that

EN [0,m(1)]
m−1,D (x) ≥ nEN [0,m(1/n)]

m−1,D (x) = nEN [0,n1/αm(1/n)]
M,D (x/n1+1/α) = nEN [0,m(1)]

m−1,D (x/n1+1/α) ,

(7.12)

EN [0,m(1)]
m−1,N (x) ≤ nEN [0,1/n]

m−1,N (x) = nEN [0,n1/αm(1/n)]
M,N (x/n1+1/α) = nEN [0,m(1)]

m−1,N (x/n1+1/α) ,

(7.13)

where now M(x) = nm−1(x/n1/α). Note that (7.12) and (7.13) have the same structure
of (7.4) and (7.5), respectively. The conclusion then follows the same arguments used
for (2.16).
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8 Proof of Theorem 2.3

As already mentioned in the Introduction, the proof of Theorem 2.3 is based on
a special coupling introduced in [16] (and very similar to the coupling of [23] for
the random barrier model). If τ(x) is itself the α–stable law with Laplace transform
E
[
e−λτ(x)

]
= e−λ

α

, this coupling is very simple since it is enough to define, for each
realization of V and for all n ≥ 1, the random variables τn(x)’s as

τn(x) = n1/α
[
V
(
x+

1

n

)
− V (x)

]
, ∀x ∈ Zn . (8.1)

Due to (2.23) and the fact that V has independent increments, one easily derives that
the V –dependent random field {τn(x) : x ∈ Zn} has the same law of {τ(nx) : x ∈ Zn}.
In the general case one proceeds as follows. Define a function G : [0,∞) → [0,∞) such
that

P(V (1) > G(x)) = P(τ(0) > x) , ∀x ≥ 0 .

(Recall that V is defined on the probability space (Ξ,F ,P).) The above function G is
well defined since V (1) has continuous distribution, G is right continuous and nonde-
creasing. Then the generalized inverse function

G−1(t) = inf{x ≥ 0 : G(x) > t}

is nondecreasing and right continuous. Finally, set

τn(x) = G−1
(
n

1
α

[
V
(
x+

1

n

)
− V (x)

])
, x ∈ Zn . (8.2)

It is trivial to check that the V –dependent random field {τn(x) : x ∈ Zn} has the same
law of {τ(nx) : x ∈ Zn}. Indeed, since V has independent and stationary increments
one obtains that the τn(x)’s are i.i.d., while since n

1
α

(
V (x+ 1

n )− V (x)
)

and V (1) have
the same law, one obtains that

P(τn(x) > t) = P(G−1(V (1)) > t) = P(V (1) > G(t)) = P(τ(nx) > t) , ∀t ≥ 0 .

We point out that the coupling obtained by this general method does not lead to (8.1) in
the case that τ(x) is itself the α–stable law with Laplace transform E

[
e−λτ(x)

]
= e−λ

α

.

8.1 Proof of Point (i)

Let us keep definition (8.2). For any n ≥ 1 we introduce the generalized trap model
{X̃(n)(t)}t≥0 on Zn with jump rates

cn(x, y) =

{
γ2L2(n)n1+

1
α τn(x)−1+aτn(y)a if |x− y| = 1/n

0 otherwise ,

where γ = E(τ(x)−a). The above jump rates can be written as cn(x, y) = 1/Hn(x)Un(x∨
y) for |x− y| = 1/n by taking{

Un(x) = γ−2n−1τn(x− 1
n )−aτn(x)−a

Hn(x) = L2(n)−1n−
1
α τn(x) .

Note that in all cases both Un and Hn are functions of the α–stable subordinator V .
Then the following holds

Lemma 8.1. Let mn be defined as in (2.10) by means of the above functions Un, Hn.
Then for almost any realization of the α–stable subordinator V , `n → 1 and the measures
dmn weakly converge to the measure dV∗ (recall definition (2.19)).
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Proof. Due to our definition (2.8) we have

Sn

(k
n

)
=

1

n

k∑
j=1

γ−2τn

(j − 1

n

)−a
τn

( j
n

)−a
, 0 ≤ k ≤ n ,

with the convention that the sum in the r.h.s. is zero if k = 0. If a = 0 trivially γ = 1

and S(k/n) = k/n. If a > 0 we can apply the strong law of large numbers for triangular
arrays. Indeed, all addenda have the same law and they are independent if they are not
consecutive, moreover they have bounded moments of all orders since τ(x) is bounded
from below by a positive constant a.s. (this assumption is used only here and could
be weakened in order to assure the validity of the strong LLN). Due to the choice of
γ we have that γ−2τn

(
j−1
n

)−a
τn
(
j
n

)−a
has mean 1. By the strong law of large number

we conclude that for a.a. V it holds limn↑∞ S
(
bxnc/n

)
= x for all x ≥ 0. This proves in

particular that `n := Sn(1)→ 1. It remains to prove that for all f ∈ Cc(R) it holds

lim
n↑∞

n∑
k=0

f(Sn(k/n))Hn(k/n) =

∫ 1

0

f(s)dV∗(s) . (8.3)

This limit can be obtained by reasoning as in the proof of Proposition 5.1 in [3], or can
be derived by Proposition 5.1 in [3] itself together with the fact that P a.s. V has no
jump at 0, 1. To this aim one has to observe that the constant cε (where ε = 1/n) in
[16] and [3][eq. (49)] equals our quantity 1/h(n) = 1/

(
n1/αL2(n)

)
(recall the definitions

preceding Theorem 2.3). In particular, Hn(k/n) = c1/nτn(k/n).

Due to the above result, Point (i) in Theorem 2.3 follows easily from Theorem 2.1
and the fact that the random fields {τn(x) : x ∈ Zn} and {τ(nx) : x ∈ Zn} have the
same law for all n ≥ 1.

8.2 Proof of Point (ii)

Point (i) can be proved in a similar and simpler way. In this case, we define τn(x) as
in (8.1) and we consider the generalized trap model {X̃(n)(t)}t≥0 on Zn with jump rates

cn(x, y) =

{
n1+

1
α τn(x)−1 if |x− y| = 1/n

0 otherwise ,

with associated functions

Un(x) = 1/n , Hn(x) = n−
1
α τn(x) = V (x+ 1/n)− V (x) =: ∆nV (x) .

By this choice, dmn =
∑n
k=0 δk/n∆nV (k/n). Trivially, `n = 1 and dmn → dV∗ for all

realizations of V giving zero mass to the extreme points 0 and 1. Since this event takes
place P–almost surely, the proof of part (ii) is concluded.

8.3 Proof of Point (iii)

Part (iii) of Theorem 2.3 (i.e. (2.26)) follows from Theorem 2.2 and Lemma 8.2 below.
The self–similarity of V is the following: for each γ > 0 it holds(

V (x) , x ∈ R
)
∼
(
γ

1
αV (x/γ) : x ∈ R

)
. (8.4)

Indeed, both processes are càdlàg, take value 0 at the origin and have independent
increments with the same law due to (2.23).

Lemma 8.2. Taking m = V , the bound (2.15) is satisfied.
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Proof. Using the notation of Section 7, we denote byN [0,1]
V,D (1) the number of eigenvalues

not larger than 1 of the operator −DVDx on [0, 1] with Dirichlet boundary conditions.
We assume that V has no jump at 0, 1 (this happens P–a.s.). We recall that V can
be obtained by means of the identity dV =

∑
j∈J xjδvj , where the random set ξ =

{(xj , vj) : j ∈ J} is the realization of a inhomogeneous Poisson point process on R×R+

with intensity cv−1−αdxdv, for a suitable positive constant c. In order to distinguish
between the contribution of big jumps and not big jumps it is convenient to work with
two independent inhomogeneous Poisson point processes ξ(1) and ξ(2) on R × R+ with
intensity cv−1−αI(v ≤ 1/2)dxdv and cv−1−αI(v > 1/2)dxdv. We write ξ(1) = {(xj , vj) :

j ∈ J1} and ξ(2) = {(xj , vj) : j ∈ J2}. The above point process ξ can be defined as
ξ = ξ(1) ∪ ξ(2). Moreover, a.s. it holds ξ(1) ∩ ξ(2) = ∅ (this fact will be understood in what
follows). By the Master Formula (cf. Proposition (1.10) in [38]), it holds

E
[ ∑
j∈J1 : xj∈[0,1]

vj

]
= c

∫ 1

0

dx

∫ 1/2

0

dv v−α <∞ , (8.5)

E
[
]{j ∈ J2 : xj ∈ [0, 1]}

]
= c

∫ 1

0

dx

∫ ∞
1/2

dv v−1−α <∞ . (8.6)

We label in increasing order the points in {xj : j ∈ J2 , xj ∈ [0, 1]} as y1 < y2 < · · · < yN
(note that the set is finite due to (8.6)).

Given δ ∈ (0, 1/8), we take ε ∈ (0, 1) small enough that

(i) the intervals (yi − ε, yi + ε) are included in (0, 1) and do not intersect as i varies
from 1 to N ,

(ii) for all i : 1 ≤ i ≤ N , it holds
∑
j∈J1:xj∈(yi−ε,yi+ε) vj < δ,

(iii) for all i : 1 ≤ i ≤ N , the points yi − ε and yi + ε do not belong to {xj : j ∈ J1}.

Defining V (1)(t) =
∑
j∈J1 : xj≤t vj , the last condition (iii) can be stated as follows: for

all i : 1 ≤ i ≤ N , the points yi − ε and yi + ε are not jump points for V (1).
By construction the function V (1) has jumps not larger than 1/2. In particular, all

the intervals A0 = (0, y1 − ε), A1 = (y1 + ε, y2 − ε), A2 = (y2 + ε, y3 − ε),..., AN−1 =

(yN−1 + ε, yN − ε), AN = (yN + ε, 1) can be partitioned in subintervals such that, on each
subinterval, the function V (1) has increment in [1/2, 1) and has no jump at the border
(recall property (iii) above). As a consequence, the total number R of subintervals is
bounded by 2V (1)(1), which has finite expectation due to (8.5). By the bound (4.11) in
Lemma 4.1, we get that the operator−DVDx on any subinterval with Dirichlet boundary
conditions has no eigenvalues smaller than 2. This observation and Corollary 6.8 imply
that

N [0,1]
D,V (1) ≤ 2R+

N∑
i=1

N [yi−ε,yi+ε]
D,V (1) . (8.7)

Claim: For each i : 1 ≤ i ≤ N it holds N [yi−ε,yi+ε]
D,V (1) ≤ 1.

Proof of the claim. We reason by contradiction supposing that f1 and f2 are eigenfunc-
tions of the Dirichlet operator −DVDx on U = [yi − ε, yi + ε], whose corresponding
eigenvalues λ1 and λ2 satisfy 0 < λ1 < λ2 ≤ 1. We can take f1 and f2 continuous on U ,
satisfying

∫
U
f2j (x)dV (x) = 1 and

|fj(x)− fj(yi)| ≤
√
|x− yi| , x ∈ U (8.8)

for j = 1, 2. Indeed, recall that |f(x)− f(y)|2 ≤ qD(f)|x− y| for any f ∈ Q(qD) in Section
6. Calling ∆ = dV ({yi}), (8.8) and property (ii) imply that

1 =

∫
U

f2j (x)dV (x) ≤ ∆f2j (yi) + δ(|fj(yi)|+
√
ε)2 ≤ ∆f2j (yi) + 2δf2j (yi) + 2δε .
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In particular, we get f2j (yi) ≥ (1 − 2δε)/(∆ + 2δ). Due to our choice of the constants,
1 − 2δε ≥ 1 − 2(1/8) = 3/4, while ∆ + 2δ ≤ ∆ + 1/4 < (3/2)∆ (recall that ∆ > 1/2).
Hence, we get that ∆f2j (yi) ≥ 1/2. On the other hand, using the orthogonality between
f1 and f2, it must be

1/4 ≤
∣∣∆f1(yi)f2(yi)

∣∣ =
∣∣∫
U\{yi}

f1(x)f2(x)dV (x)
∣∣ ≤ δ(|f1(yi)|+

√
ε)(|f2(yi)|+

√
ε) . (8.9)

Since by construction ε ≤ 2 ≤ ∆f2j (yi) and ∆ > 1/2 we can bound

|fj(yi)|+
√
ε ≤
√

2
√

∆|fj(yi)|+
√
ε ≤ (1 +

√
2)
√

∆|fj(yi)| . (8.10)

Combining (8.9) and (8.10), we conclude that

1/4 ≤
∣∣∆f1(yi)f2(yi)

∣∣ ≤ (1 +
√

2)2δ
∣∣∆f1(yi)f2(yi)

∣∣ ,
in contrast with the bound δ < 1/8.

Applying the above claim to (8.7) we conclude that N [0,1]
D,V (1) ≤ 2R + N . We have

already observed that R has finite expectation. The same trivially holds also for N due
to (8.6).

9 Proof of Theorem 2.5

Recall the definition of Tn given in the previous section. Given a realization of V , for
each n ≥ 1 we consider the continuous–time nearest–neighbor random walk X̃(n) on Zn
with jump rates

cn(x, y) =

{
L2(n)n1+

1
α τn(x ∨ y)−1 if |x− y| = 1/n ,

0 otherwise .
(9.1)

The rates cn(x, y) for |x − y| = 1/n can be written as cn(x, y) = 1/
[
Hn(x, y)Un(x ∨ y)

]
,

where Hn(x) = 1/n and Un(x) = L2(n)−1n−
1
α τn(x). To the above random walk we

associate the measure dmn defined in (2.10).

9.1 Proof of Point (i)

Let us show that dmn weakly converges to d(V −1)∗ (recall (2.19)). We point out that
in [23] a similar result is proved, but the definition given in [23] of the analogous of dmn

is different, hence that proof cannot be adapted to our case. In order to prove the weak
convergence of dmn to d(V −1)∗, we use some results and ideas developed in Section 3
of [16]. Recall that the constant cε of [16] equals our quantity 1/h(n) = 1/

(
n1/αL2(n)

)
if ε = 1/n . Given n ≥ 1 and x > 0 we define

gn(x) =
(
L2(n)n

1
α

)−1
G−1(n

1
αx) .

We point out that gn coincides with the function gε defined in [16][(3.12)] if ε = 1/n.
As stated in Lemma 3.1 of [16] it holds gn(x) → x as n → ∞ for all x > 0. Since gn is
nondecreasing, we conclude that

gn(xn)→ x as n→∞ , ∀x > 0, ∀{xn}n≥1 : xn > 0 , xn → x . (9.2)

As stated in Lemma 3.2 of [16], for any δ′ > 0 there exist positive constants C ′ and C ′′

such that
gn(x) ≤ C ′x1−δ

′
for n−

1
α ≤ x ≤ 1 and n ≥ C ′′ . (9.3)
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Since Un(x) = gn
(
V (x+ 1/n)− V (x)

)
, we can write

Sn
(
k/n

)
=

k−1∑
j=0

gn
(
V
(
(k + 1)/n

)
− V

(
k/n

))
. (9.4)

Lemma 9.1. For P–almost all V it holds

lim
n↑∞

max
0≤k≤n

∣∣Sn(k/n)− V (k/n)
∣∣ = 0 . (9.5)

Proof. We recall that V can be obtained by means of the identity dV =
∑
j∈J xjδvj ,

where the random set ξ = {(xj , vj) : j ∈ J} is the realization of a inhomogeneous Poisson
point process on R × R+ with intensity cv−1−αdxdv, for a suitable positive constant c.
Given y > 0, let us define

Jn,y := {r ∈ {0, 1, . . . , n− 1} : V ((r + 1)/n)− V (r/n) ≥ y} ,
Jy := {j ∈ J : vj ≥ y , xj ∈ [0, 1]} .

Note that the set Jy is always finite. Reasoning as in the Proof of Proposition 3.1 in [16],
and in particular using also (9.3), one obtains for P–a.a. V that

lim sup
n↑∞

∑
r:0≤r<n ,r 6∈Jn,δ

gn
(
V
(
(r + 1)/n

)
− V

(
r/n
))

= 0 , ∀δ > 0 . (9.6)

We claim that, given δ > 0, for a.a. V it holds

Jn,δ =
{
r ∈ {0, 1, . . . , n− 1} : ∃j ∈ Jδ such that xj ∈ (r/n, (r + 1)/n]

}
(9.7)

eventually in n. Let us suppose that (9.7) is not satisfied. Since the set in the r.h.s. is
trivially included in Jn,δ, there exists a sequence of integers rn with 0 ≤ rn < n such
that an := V ((rn + 1)/n) − V (rn/n) ≥ δ while vj < δ for all xj ∈ (rn, (rn + 1)/n]. We
introduce the càdlàg function V̄ (t) =

∑
j∈J:xj≤t vjI(vj < δ) and we note that, if ∀j ∈ J

with xj ∈ (rn/n, (rn + 1)/n] it holds vj < δ, then an = V̄ ((rn + 1)/n) − V̄ (rn/n). At cost
to take a subsequence, we can suppose that rn/n converges to some point x. It follows
then that V̄ (x+) − V̄ (x−) ≥ δ, in contradiction with the fact that V̄ has only jumps
smaller than δ. This concludes the proof of our claim.

Due to the above claim and due to (9.2), we conclude that a.s., given δ > 0, it holds

lim
n↑∞

sup
1≤k≤n

∣∣∣ ∑
r∈Jn,δ,r<k

gn
(
V
(
(r + 1)/n

)
− V

(
r/n
))
−

∑
j∈Jδ:xj≤k/n

vj

∣∣∣ = 0 . (9.8)

Combining (9.8) and (9.6), we conclude that for any ε > 0 one can fix a.s. δ > 0 small
enough such that

max
0≤k≤n

∣∣S(k/n)−
∑

j∈Jδ:xj≤k/n

vj
∣∣ ≤ ε (9.9)

for n large enough. On the other hand, a.s. one can fix δ small enough that
∑
j∈Jδ:xj∈[0,1] vj

is bounded by ε. This last bound and (9.9) imply (9.5).

Lemma 9.2. For P–almost all V and for any function f ∈ Cc(R) it holds

lim
n↑∞

1

n

n∑
k=0

f (Sn(k/n)) =

∫
[0,V (1)]

f(x)dV −1(x) . (9.10)
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Proof. Since f is uniformly continuous, by Lemma 9.1 it is enough to prove (9.10) with
Sn(k/n) replaced by V (k/n). Approximating f by stepwise functions with jumps on
rational points, it is enough to prove that, fixed t ∈ Q, for P–a.a. V the limit (9.10)
holds with Sn(k/n) replaced by V (k/n) and with f(x) = I(x ≤ t). This last check is
immediate.

We have now all the tools in order to prove Point (i) of Theorem 2.5. Indeed, by
Lemma 9.1 `n = Sn(1) → V (1) P–a.s. Moreover, by Lemma 9.2 the measure dmn

defined in (2.10) weakly converges to the measure d(V −1)∗. In order to get Point (i) of
Theorem 2.5 it is enough to apply Theorem 2.1.

9.2 Proof of Point (ii)

If E(e−λτ(x)) = e−λ
α

one can replace L2(n) with 1 in (9.1) and in the above definition
of Un(x), and one can define τn(x) directly by means of (8.1). In this case, definition
(2.8) gives Sn(k/n) = V

(
(k + 1)/n

)
and therefore dmn = 1

n

∑n+1
k=1 δV (k/n). It is simple

to prove that a.s. dmn weakly converges to dm := d(V −1)∗. Hence, one gets that
the assumptions of Theorem 2.1 are fulfilled with `n = V

(
(n + 1)/n), ` = V (1) and

dm = (V −1)∗, for almost all realization of V . As a consequence, one derives Point (ii) in
Theorem 2.5.

9.3 Proof of Point (iii)

The proof of point (iii) of Theorem 2.5 follows from Theorem 2.2 once we prove (2.17)
with m = V . As in the proof of Lemma 8.2 we denote by 0 < y1 < y2 < · · · < yN < 1 the
points in [0, 1] where V has a jump larger than 1/2 (note that V is continuous in 0 and 1

a.s.). We set ai := V (yi−), bi = V (yi) and remark that the function V −1 is constant on
[ai, bi]. Then we fix ε > 0 (which is a random number) such that the following properties
holds:

(i) the intervals Ui := [ai − ε, bi + ε], i = 1, ..., N , are disjoint and included in [0, V (1)],

(ii) V has no jump at ai − ε and bi + ε, for all i = 1, . . . , N ,

(iii) for all i = 1, . . . , N ,

(bi − ai + 2ε)
(
V −1(bi + ε)− V −1(ai − ε)

)
≤ 1/2 . (9.11)

Note that, since V −1 is continuous a.s. and flat on Ui, condition (iii) is satisfied for ε
small enough. Moreover, due to condition (ii) it holds V −1(x) < V −1(y) < V −1(z) if
y ∈ {ai − ε, bi + ε} and x < y < z.

Let now f be an eigenfunction of the operator −DV −1Dx on Ui with Dirichlet bound-
ary conditions. Writing λ for the associated eigenvalue, by equation (4.9) in Lemma 4.1
it holds

f(x) = λ

∫
Ui

Gai−ε,bi+ε(x, y)f(y)dV −1(y) .

Using that ‖Gai−ε,bi+ε‖∞ ≤ bi − ai + 2ε we get

|f(x)| ≤ λ(bi − ai + 2ε)‖f‖∞
(
V −1(bi + ε)− V −1(ai − ε)

)
. (9.12)

Combining (9.11) and (9.12) we conclude that λ ≥ 2. Hence NUi
V −1,D(1) = 0. We now

observe that the set W = [0, V (1)] \ ∪Ni=1Ui is the union of N + 1 intervals and its total
length is smaller than V (1)(1) (see the proof of Lemma 8.2 for the definition of V (1)).
It follows that we can partition W in at most 2V (1)(1) + N subintervals Ar of length
bounded by 1/2. Since the dV −1–mass of any subinterval Ar is bounded by the total
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dV −1–mass of [0, V (1)] (which is a.s. 1), by the estimate (4.11) in Lemma 4.1 we get
that all eigenvalues of the operator −DV −1Dx restricted to any subinterval Ar (with
Dirichlet b.c.) is at least 2, hence NAr

V −1,D(1) = 0. We now apply Corollary 6.8, observing

that we are in the same setting on Theorem 6.7 (recall that V −1 is continuous a.s. and
recall our condition (ii), thus leading to (i)–(iii) in Theorem 6.7). By Corollary 6.8, we
conclude thatN [0,V (1)]

V −1,D (1) ≤ V (1)(1)+4N a.s. As already observed in the proof of Lemma

8.2, both V (1)(1) and N have finite expectation, thus leading to (2.17).

10 The diffusive case: Proof of Propositions 2.4 and 2.6

10.1 Proof of Proposition 2.4

We consider the diffusively rescaled random walk X(n)on Zn with jump rates

cn(x, y) =

{
E(τ(0)−a)2E(τ(0))n2τ(nx)−1+aτ(ny)a if |x− y| = 1/n

0 otherwise .

The above jump rates can be written as cn(x, y) = 1/Hn(x)Un(x ∨ y) for |x− y| = 1/n by
taking {

Un(x) = E(τ(0)−a)−2n−1τ(nx− 1)−aτ(nx)−a

Hn(x) = E(τ(0))−1n−1τ(nx) .

Due to our definition (2.8) we have

Sn
(
k/n

)
=

1

nE(τ(0)−a)2

k∑
j=1

τ(j − 1)−aτ(j)−a , 0 ≤ k ≤ n .

By the ergodic theorem and the assumptionE
(
τ(0)−a

)
<∞, it holds limn↑∞ Sn

(
bxnc/n) =

x for all x ≥ 0 (a.s.). In particular, it holds `n = Sn(1)→ 1. Since π2k2 is the k–th eigen-
value of −∆ with Dirichlet conditions outside (0, 1), by Theorem 2.1 it remains to prove
that, a.s., for all f ∈ Cc([0,∞)) it holds

lim
n↑∞

dmn(f) = lim
n↑∞

n∑
k=0

f(Sn(k/n))Hn(k/n) =

∫ 1

0

f(s)ds . (10.1)

By the ergodic theorem and the assumption E
(
τ(0)

)
< ∞, the total mass of dmn,

i.e.
∑n
k=0Hn(k/n), converges to 1 a.s. Hence, by a standard approximation argument

with stepwise functions, it is enough to prove (10.1) for functions f of the form f =

I([0, t)). By the ergodic theorem a.s. it holds: for any ε > 0 there exists a random inte-
ger n0 such that Sn(k/n) < t for all k ≤ (t − ε)n and Sn(k/n) > t for all k ≥ (t + ε)/n.
Therefore, for f as above and n ≥ n0, we can bound

1

nE(τ(0))

∑
k∈N:k≤(t−ε)n

τ(k) ≤ dmn(f) ≤ 1

nE(τ(0))

∑
k∈N:k≤(t+ε)n

τ(k) .

Applying again the ergodic theorem, it is immediate to conclude.

10.2 Proof of Proposition 2.6

We sketch the proof since the technical steps are very easy and similar to the ones
discussed above. We consider the diffusively rescaled random walk X(n)on Zn with
jump rates

cn(x, y) =

{
n2E(τ(0))τ(nx ∨ ny)−1 if |x− y| = 1/n ,

0 otherwise .
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The rates cn(x, y) for |x − y| = 1/n can be written as cn(x, y) = 1/
[
Hn(x, y)Un(x ∨ y)

]
,

where Hn(x) = 1/n and Un(x) = τ(nx)/nE(τ(0)). By the ergodic theorem and the
assumption E(τ(0)) < ∞, a.s. it holds limn↑∞ Sn(bnxc) = x for all x ≥ 0. In particular,
a.s. Sn(n)→ 1 and

lim
n↑∞

dmn(f) = lim
n↑∞

1

n

n∑
k=0

f
(
Sn(k/n)

)
=

∫ 1

0

f(x)dx ,

for all f ∈ Cc([0,∞)). At this point it is enough to apply Theorem 2.1.
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