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Abstract

We study the distribution of the exponential functional I(ξ, η) =
∫∞
0

exp(ξt−)dηt,
where ξ and η are independent Lévy processes. In the general setting, using the
theory of Markov processes and Schwartz distributions, we prove that the law of this
exponential functional satisfies an integral equation, which generalizes Proposition
2.1 in [9]. In the special case when η is a Brownian motion with drift, we show that
this integral equation leads to an important functional equation for the Mellin trans-
form of I(ξ, η), which proves to be a very useful tool for studying the distributional
properties of this random variable. For general Lévy process ξ (η being Brownian
motion with drift) we prove that the exponential functional has a smooth density on
R \ {0}, but surprisingly the second derivative at zero may fail to exist. Under the
additional assumption that ξ has some positive exponential moments we establish an
asymptotic behaviour of P(I(ξ, η) > x) as x → +∞, and under similar assumptions
on the negative exponential moments of ξ we obtain a precise asymptotic expansion
of the density of I(ξ, η) as x → 0. Under further assumptions on the Lévy process
ξ one is able to prove much stronger results about the density of the exponential
functional and we illustrate some of the ideas and techniques for the case when ξ has
hyper-exponential jumps.
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1 Introduction

In this paper, we are interested in studying distributional properties of the random
variable

I(ξ, η) :=

∫ ∞
0

eξt−dηt, (1.1)
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Distributional properties of exponential functionals of Lévy processes

where ξ and η are independent real-valued Lévy processes such that ξ drifts to −∞ and
E[|ξ1|] <∞ and E[|η1|] <∞.

The exponential functionals I(ξ, η) appear in various aspects of probability theory.
They describe the stationary measure of generalized Ornstein-Uhlenbeck processes and
the entrance law of positive self-similar Markov processes, see [6, 9]. They also play
a role in the theory of fragmentation processes and branching processes, see [4, 22].
Besides their theoretical value, the exponential functionals are very important objects
in Mathematical Finance and Insurance Mathematics. They are related to Asian op-
tions, present values of certain perpetuities, etc., see [10, 17, 14] for some particular
examples and results.

In general, the distribution of exponential functionals is difficult to study. It is known
explicitly only in some very special cases, see [8, 14, 19]. Properties of the distribution
of I(ξ, η) are also of particular interest. Lindner and Sato [26] show that the density of
I(ξ, η) doesn’t always exist, and in the special case when ξ and η are specific compound
Poisson processes, distributional properties of I(ξ, η) can be related to the problem of
absolute continuity of the distribution of Bernoulli convolutions, which dates back to
Erdős, see [12]. The distribution of I(ξ, η), when ξs = −s and in some other instances,
is known to be self-decomposable and hence absolutely continuous, see [5, 18]. When
η is a subordinator with a strictly positive drift, the law of the exponential functional
I(ξ, η) is absolutely continuous, see Theorem 3.9 in Bertoin et al. [5]. Some further
results are obtained in [24, 29, 30, 35].

The asymptotic behaviour P (I(ξ, η) > x), as x → ∞, is a question which has at-
tracted the attention of many researchers. In the general case, but under rather strin-
gent requirements on the existence of exponential moments for ξ and absolute moments
for η, it has been studied in [25]. The special case when ηt = t has been considered
in [27, 31, 32] and properties of the density of the law of I(ξ, η) at zero and infinity
have been studied by [19, 21, 28] and results such as asymptotic and convergent series
expansions for the density have been obtained.

The first objective of this paper is to develop a general integral equation for the law
of I(ξ, η) under the assumptions that E[|ξ1|] < ∞, E[ξ1] < 0, E[|η1|] < ∞ and ξ being
independent of η. Using the fact that in general I(ξ, η) is a stationary law of a gen-
eralized Ornstein-Uhlenbeck process, Carmona et al. [9] show that if ξ has jumps of
bounded variation and ηt = t then the law of I(ξ, η) satisfies a certain integral equa-
tion. We refine and strengthen their approach and using both stationarity properties
of I(ξ, η) and Schwartz theory of distributions, we show that in the general setting the
law of I(ξ, η) satisfies a certain integral equation. This equation is important on its
own right, as demonstrated by Corollary 2.5, but it is also amenable to different useful
transformations as can be seen from the discussion below.

The second main objective of the paper is to study some properties of Iµ,σ := I(ξ, η)

in the specific case when ηs = µs + σBs, where Bs is a standard Brownian motion.
Quantities of this type have already appeared in the literature, see [14], but have not
been thoroughly studied. The latter, as it seems to us, is due to the lack of suitable tech-
niques, which are available in the case when ηs = s, and in particular due to the lack of
any information about the Mellin transform of I(ξ, η), which is the key tool for studying
the properties of I(ξ, η), see [19, 21, 27]. We use the integral equation (2.3) and combine
techniques from special functions, complex analysis and probability theory to study the
Mellin transform of Iµ,σ, which is defined asM(s) = E

[
(Iµ,σ)s−11{Iµ,σ>0}

]
. In particular

we derive an important functional equation forM(s), see (3.13), and study the decay of
M(s) as Im(s)→∞. These results supply us with quite powerful tools for studying the
properties of the density of Iµ,σ via the Mellin inversion. Furthermore, the functional
equation (3.13) allows for a meromorphic extension of M(s) when ξ has some expo-
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nential moments. This culminates in very precise asymptotic results for P (Iµ,σ > x),
as x → ∞, see Theorem 4.3, and asymptotic expansions for k(x), the density of Iµ,σ,
as x → 0, see Theorem 4.1. The latter results show us that while k(x) ∈ C∞(R \ {0}),
rather unexpectedly k′′(0) may not exist. Finally, we would like to point out that while
the behaviour of P (Iµ,σ > x), as x→∞, might be partially studied via the fact that Iµ,σ
solves a random recurrence equation, see for example [25], the behaviour of k(x), as
x→ 0, seems for the moment to be only tractable via our approach based on the Mellin
transform.

As another illustration of possible applications of our general results, we study the
density of Iµ,σ when ξ has hyper-exponential jumps (see [7, 8, 20]). This class of pro-
cesses is quite important for applications in Mathematical Finance and Insurance Math-
ematics, and it is particularly well suited for investigation using our methods due to the
rich analytical structure enjoyed by these processes. In this case we show how to derive
complete asymptotic expansions of k(x) both at zero and infinity. We point out that our
methodology is not restricted to this particular case, and can be easily applied to more
general classes of Lévy processes.

The paper is organized as follows: in Section 2, we study the law of I(ξ, η) for general
independent Lévy processes ξ and η and derive an integral equation for the law of
I(ξ, η); in Section 3, we specialize the results obtained in Section 2 to the case when
ηs = µs+σBs and, employing additionally various techniques from special functions and
complex analysis, we study the properties of the density of Iµ,σ. Section 4 is devoted to
some applications of the results derived in the previous section. In particular, we study
the asymptotic behaviour at infinity of the tail of Iµ,σ and of its density at zero, and in
the case of processes with hyper-exponential jumps, we show how these results can be
considerably strengthened.

2 Integral equation satisfied by the law of I(ξ, η)

Let us introduce some notation which will be used throughout this paper. The main
underlying objects are two independent Lévy processes ξ and η defined on a probability
space (Ω,F ,P). As is standard, we assume that both processes are started from zero
under the probability measure P.

Assumption 2.1. Everywhere in this paper we will assume that

E[|ξ1|] <∞, E[ξ1] < 0, E[|η1|] <∞. (2.1)

The characteristics of the Lévy processes ξ and η will be denoted by (bξ, σξ,Πξ)

and (bη, ση,Πη). In particular Πξ(dx) and Πη(dx) are the Lévy measures of ξ and η,
respectively. We use the following notation for the double-integrated tail

Π
(+)

ξ (x) =

∫ ∞
x

Πξ((y,∞))dy and Π
(−)

ξ (x) =

∫ ∞
x

Πξ((−∞,−y))dy,

and similarly for Π
(+)

η and Π
(−)

η . Using the Lévy-Itô decomposition (see Theorem 2.1 in
[23]) it is easy to check that Assumption 2.1 implies that the above quantities are finite
for all x > 0.

We define the Laplace exponents ψξ(z) = ln
(
E
[
ezξ1

])
and ψη(z) = ln (E [ezη1 ]), where

without any further assumptions ψξ and ψη are defined at least for Re(z) = 0, see [3,
Chapter I]. The Laplace exponent ψξ can be expressed in the following two equivalent
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ways

ψξ(z) =
σ2
ξ

2
z2 + bξz +

∫
R

(ezx − 1− zx) Πξ(dx) (2.2)

=
σ2
ξ

2
z2 + bξz + z2

(∫ ∞
0

Π
(+)

ξ (w)exzdx+

∫ ∞
0

Π
(−)

ξ (x)e−xzdx

)
,

with a similar expression for ψη. The first equality in (2.2) is essentially the Lévy-
Khintchine formula (see Theorem 1 in [3]) with the cutoff function h(x) ≡ 1. The stan-
dard choice for the cutoff function in the Lévy-Khintchine formula would be 1{|x|<1},
however it is well-known that if E[|ξ1|] < ∞ then we can take a simpler cutoff function
h(x) ≡ 1. The second equality in (2.2) follows easily by repeated integration by parts.
Note that according to (2.2), we have bξ = ψ′ξ(0) = E[ξ1] and similarly bη = ψ′η(0) = E[η1].

We recall that the exponential functional I(ξ, η) is defined by (1.1), its law will be
denoted by m(dx) := P(I(ξ, η) ∈ dx). The density of I(ξ, η), provided it exists, will be
denoted by k(x).

Our main result in this section is the derivation of an integral equation for the law of
I(ξ, η). This equation will be very useful later, when we’ll derive the functional equation
(3.13) for the Mellin transform of the exponential functional in the special case when η
is a Brownian motion with drift. The main idea of this Theorem comes from Proposition
2.1 in [9].

Theorem 2.2. Assume that condition (2.1) is satisfied. Then the exponential functional
I(ξ, η) is well defined and its law satisfies the following integral equation: for v > 0(

bξ

∫ ∞
v

m(dx)

)
dv

+
σ2
ξ

2
vm(dv) +

(∫ ∞
v

Π
(−)

ξ

(
ln
x

v

)
m(dx)

)
dv +

(∫ v

0

Π
(+)

ξ

(
ln
v

x

)
m(dx)

)
dv

+

(
bη

∫ ∞
v

m(dx)

x

)
dv +

σ2
η

2

m(dv)

v
−

(
σ2
η

2

∫ ∞
v

m(dx)

x2

)
dv

+

(
1

v

∫ v

0

Π
(+)

η (v − x)m(dx)

)
dv +

(
1

v

∫ ∞
v

Π
(−)

η (x− v)m(dx)

)
dv (2.3)

−
(∫ ∞

v

1

w2

∫ w

0

Π
(+)

η (w − x)m(dx)dw

)
dv

−
(∫ ∞

v

1

w2

∫ ∞
w

Π
(−)

η (x− w)m(dx)dw

)
dv = 0,

where all quantities in (2.3) are a.e. finite. Equation (2.3) for the law of I(ξ,−η) on
(0,∞) describes m(dx) on (−∞, 0).

The proof of Theorem 2.2 is based on the so-called generalized Ornstein-Uhlenbeck
(GOU) process, which is defined as

Ut = Ut(ξ, η) = xeξt + eξt
∫ t

0

e−ξs−dηs
d
= xeξt +

∫ t

0

eξs−dηs, for t > 0. (2.4)

Note that the GOU process is a strong Markov process, see [9, Appendix 1]. Lindner
and Maller [25] have shown that the existence of a stationary distribution for the GOU
process is closely related to the a.s. convergence of the stochastic integral

∫ t
0
eξs−dηs, as

t→∞. Necessary and sufficient conditions for the convergence of I(ξ, η) were obtained
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by Erickson and Maller [13]. More precisely, they showed that this happens if and only
if

lim
t→∞

ξt = −∞ a.s. and

∫
R\[−e,e]

[
log |y|

1 +
∫ log |y|∨1

1
Πξ(R \ (−z, z))dz

]
Πη(dy) <∞.

(2.5)
It is easy to see that Assumption 2.1 implies (2.5). Hence I(ξ, η) is well-defined and the

stationary distribution satisfies U∞
d
= I(ξ, η). This identity in distribution is the starting

point of the proof of Theorem 2.2.
As the proof of Theorem 2.2 is rather long and technical, we will divide it into several

steps. We first compute the generator of U , here denoted by L(U). This result may be
of independent interest, therefore we present it in Proposition 2.3 below. Then we note
that the stationary measure m(dx) satisfies the equation∫ ∞

0

L(U)f(x)m(dx) = 0, (2.6)

where f is any infinitely differentiable function with a compact support in (0,∞). In-
deed, (2.6) follows from (2.1) in [9] or from the definition of infinitesimal generator and
the observation that, for all t ≥ 0,∫ ∞

0

E[f(Ut)]m(dx) =

∫ ∞
0

f(x)m(dx).

Finally, an application of Schwartz theory of distributions after rephrasing (2.6) gives
(2.3).

We start by working out how the infinitesimal generator of U , i.e. L(U), acts on
functions in K ⊂ C0(R), where

K =
{
f(x) : f(x) ∈ C2

b (R), f(ex) ∈ C2
b (R) ∩ C0(R)

}
∩{ f(x) = 0, for x ≤ 0; f ′(0) = f ′′(0) = 0} (2.7)

and C2
b (R) stands for two times differentiable, bounded functions with bounded deriva-

tives on R and C0(R) is the set of continuous functions vanishing at ±∞. Denote by
L(ξ) and L(η) ( resp. Dξ and Dη) the infinitesimal generators (resp. domains) of ξ and η.
Note that

L(ξ)f(x) = bξf
′(x) +

σ2
ξ

2
f ′′(x) +

∫
R

(f(x+ y)− f(x)− yf ′(x)) Πξ(dy) (2.8)

= bξf
′(x) +

σ2
ξ

2
f ′′(x) +

∫
R+

f ′′(x+ w)Π
(+)

ξ (w)dw +

∫
R+

f ′′(x− w)Π
(−)

ξ (w)dw,

with a similar expression for L(η). The first formula in (2.8) is a trivial modification of the
form of the generator of Lévy processes for the case when the cutoff function is h(x) ≡ 1,
see [3, p. 24], whereas the second expression follows easily by integration by parts, the
fact that f ∈ K and E[|ξ1|] < ∞. Finally, we are ready to state our result, which should
strictly be seen as an extension of Proposition 5.8 in [9] where the generator L(U) has
been derived under very stringent conditions.

Proposition 2.3. Assume that condition (2.1) is satisfied. Let f ∈ K, g(x) := (xf ′(x))

and φ(x) := f(ex). Then, f ∈ Dη, φ ∈ Dξ and

L(U)f(x) = L(ξ)φ(lnx) + L(η)f(x)

= bξg(x) +
σ2
ξ

2
xg′(x) +

∫ x

0

g′(v)Π
(−)

ξ

(
ln
x

v

)
dv +

∫ ∞
x

g′(v)Π
(+)

ξ

(
ln
v

x

)
dv

+bηf
′(x) +

σ2
η

2
f ′′(x) +

∫ ∞
0

f ′′(x+ w)Π
(+)

η (w)dw +

∫ ∞
0

f ′′(x− w)Π
(−)

η (w)dw.(2.9)
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Proof. The main idea is to use the definition of the infinitesimal generator and Itô’s
formula. Let f ∈ K and note that by definition

L(U)f(x) = lim
t→0

Ex [f(Ut)]− f(x)

t
= lim
t→0

1

t

(
E

[
f

(
xeξt +

∫ t

0

eξs−dηs

)]
− f(x)

)
.

Using the fact that (Ut)t≥0 is a semimartingale and f ∈ K, we apply Itô’s formula to
f(Ut) to obtain

f(Ut)− f(x) =

∫ t

0

f ′(Us−)dUs

+
1

2

∫ t

0

f ′′(Us−)d[U,U ]cs

+
∑
s≤t

(f(Us)− f(Us−)−∆Usf
′(Us−)) . (2.10)

Now, let Ht := eξt and Vt := x +
∫ t

0
e−ξs−dηs, and note that Ut = HtVt. Hence by

integration by parts

Ut = x+

∫ t

0

Hs−dVt +

∫ t

0

Vs−dHs + [H,V ]t.

Using the Lévy-Itô decomposition (see Theorem 2.1 in [23]) and Assumption 2.1, we
find that the Lévy processes ξ and η can be written as follows

ξt = σξBt + bξt+Xt, ηt = σηWt + bηt+ Yt, (2.11)

where B and W are Brownian motions, X and Y are pure jump zero mean martingales,
and the processes B,W,X and Y are mutually independent. Then we get

Vt = x+ bη

∫ t

0

e−ξs−ds+ ση

∫ t

0

e−ξs−dWs +Nt,

where Nt =
∫ t

0
e−ξs−dYs is a pure jump local martingale. On the other hand using Itô’s

formula, we have

Ht = eξt = 1 +

∫ t

0

eξs−dξs +
1

2

∫ t

0

eξs−d[ξ, ξ]cs +
∑
s≤t

eξs−(e∆ξs −∆ξs − 1)

= 1 +

(
bξ +

σ2
ξ

2

)∫ t

0

eξs−ds+ σξ

∫ t

0

eξs−dBs + Ñt +
∑
s≤t

eξs−
(
e∆ξs −∆ξs − 1

)
,

where Ñs =
∫ t

0
eξsdXs is a pure jump local martingale. Therefore, we conclude that

[H,V ]t =

[
σξ

∫ t

0

e−ξs−dBs, ση

∫ t

0

e−ξs−dWs

]
t

+
∑
s≤t

∆Vs∆Hs = 0 a.s.,

since ∆Vs = e−ξs−∆ηs, ∆Hs = Hs−(e∆ξs − 1) and the fact that ξ and η are independent
and do not jump simultaneously a.s. This implies that

Ut = x+

∫ t

0

Hs−dVs +

∫ t

0

Vs−dHs = x+

∫ t

0

eξs−dVs +

∫ t

0

Vs−dHs.
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Using the expressions of H and V , we deduce that

Ut = x+ bηt+ σηWt +

∫ t

0

eξs−dNs +

(
bξ +

σ2
ξ

2

)∫ t

0

Vs−e
ξs−ds

+ σξ

∫ t

0

Vs−e
ξs−dBs +

∫ t

0

Vs−dÑs +
∑
s≤t

Vs−e
ξs−
(
e∆ξs −∆ξs − 1

)

= x+Kt +Kc
t + bηt+

(
bξ +

σ2
ξ

2

)∫ t

0

Us−ds+
∑
s≤t

Us−
(
e∆ξs −∆ξs − 1

)
,

where

Kt =

∫ t

0

eξs−dNs +

∫ t

0

Vs−dÑs = Yt +

∫ t

0

Us−dXs,

Kc
t = σηWt + σξ

∫ t

0

Us−dBs.

From the definition of K and Kc, and the mutual independence of B, W , N and Ñ , we
get for the continuous part of the quadratic variation of U

[U,U ]ct = [Kc,Kc]t = σ2
ηt+ σ2

ξ

∫ t

0

U2
s−ds.

Putting all the pieces together in identity (2.10), we have

f(Ut)− f(x) = Mt + bη

∫ t

0

f ′(Us−)ds+

(
bξ +

σ2
ξ

2

)∫ t

0

f ′(Us−)Us−ds

+
∑
s≤t

f ′(Us−)Us−

(
e∆ξs −∆ξs − 1

)
+
σ2
η

2

∫ t

0

f ′′(Us−)ds+
σ2
ξ

2

∫ t

0

f ′′(Us−)U2
s−ds

+
∑
s≤t

(f(Us)− f(Us−)−∆Usf
′(Us−))

where M is a local martingale starting from 0 and M describes the integration with
respect to K and Kc in the expressions above. Using the fact that f ∈ K implies
f(x) = 0 for x < 0 and x|f ′(x)| + x2|f ′′(x)| < C(f) < ∞, we deduce that Mt is a
proper martingale as all other terms in the expression above have a finite absolute first
moment. Furthermore applying the compensation formula to the jump part of f(Ut) we
get

E

∑
s≤t

f ′(Us−)Us−
(
e∆ξs −∆ξs − 1

)
= E

[∫ t

0

f ′(Us−)Us−

(∫
y∈R

(ey − y − 1)Πξ(dy)

)
ds

]
.

Similarly, using the fact that ∆Us = ∆ηs when ∆ηs 6= 0 and ∆Us = Us−(e∆ξs − 1) when
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∆ξs 6= 0 (see the definition of U ) we get

E

∑
s≤t

(f(Us)− f(Us−)−∆Us−f
′(Us−))


= E

[∫ t

0

∫
z∈R

(f(Us− + z)− f(Us−)− zf ′(Us−)) Πη(dz)ds

]
+ E

[∫ t

0

∫
y∈R

(
f(Us−e

y)− f(Us−)−
(
ey − 1

)
f ′(Us−)Us−

)
Πξ(dy)ds

]
.

Finally, as f ∈ K, we derive

E
[
f(Ut)

]
− f(x) = bηE

[∫ t

0

f ′(Us−)ds

]
+

(
bξ +

σ2
ξ

2

)
E

[∫ t

0

f ′(Us−)Us−ds

]

+
σ2
η

2
E

[∫ t

0

f ′′(Us−)ds

]
+
σ2
ξ

2
E

[∫ t

0

f ′′(Us−)U2
s−ds

]
+ E

[∫ t

0

∫
z∈R

(
f(Us− + z)− f(Us−)− zf ′(Us−)

)
Πη(dz)ds

]
+ E

[∫ t

0

∫
y∈R

(
f(Us−e

y)− f(Us−)− yf ′(Us−)Us−

)
Πξ(dy)ds

]
.

and dividing by t, letting t go to 0 and recalling that Ũ0 = x a.s., we obtain for f ∈ K the
identity

L(U)f(x) = bηf
′(x) +

(
bξ +

σ2
ξ

2

)
xf ′(x) +

σ2
η

2
f ′′(x) +

σ2
ξ

2
f ′′(x)x2

+

∫
z∈R

(
f(x+ z)− f(x)− zf ′(x)

)
Πη(dz)

+

∫
y∈R

(
f(xey)− f(x)− yxf ′(x)

)
Πξ(dy), (2.12)

and therefore the infinitesimal generator of U satisfies

L(U)f(x) = L(ξ)φ(lnx) + L(η)f(x).

In order to finish the proof one only has to apply integration by parts.

The following Lemma will also be needed for our proof of Theorem 2.2.

Lemma 2.4. Assume that condition (2.1) is satisfied. Let ν(dv) denote the measure in
the left-hand side of formula (2.3). Then |ν|(dv) and hence ν(dv) define finite measures
on any compact subset of (0,∞) and for any a > 0

lim
z→∞

z−1|ν| ((a, z)) = 0. (2.13)

Proof. We only need to prove (2.13), as the finiteness of |ν|(dv) on compact subsets of
(0,∞) follows from (2.13). It is sufficient to show the claims for 1 ≥ a > 0. We integrate
every term on the left-hand side of (2.3) from a to z and then divide by z. This shows
that the limit goes to zero, as z →∞. We first note that

lim
z→∞

z−1

∫ z

a

xm(dx) = 0 and lim
z→∞

z−1

∫ z

a

m(dx)

x
≤ lim
z→∞

(az)−1

∫ ∞
a

m(dx) = 0.
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Distributional properties of exponential functionals of Lévy processes

Hence,

lim
z→∞

z−1

∫ z

a

∫ ∞
v

m(dx)dv ≤ lim
z→∞

(
z−1

∫ z

a

xm(dx) +

∫ ∞
z

m(dx)

)
= 0,

lim
z→∞

z−1

∫ z

a

∫ ∞
v

m(dx)

x
dv = 0 and lim

z→∞
z−1

∫ z

a

∫ ∞
v

m(dx)

x2
dv = 0.

So far, we have checked that the terms in (2.3) that do not depend on the tail of the
Lévy measure vanish under the transformation we made, as z → ∞. Now, we turn our
attention to the terms that involve the Lévy measure of ξ. When we’ll be dealing with
these integrals, the main trick that we will use is to change the order of integration.
First, we check that

lim sup
z→∞

z−1

∫ z

a

∫ ∞
v

Π
(−)

ξ

(
ln
x

v

)
m(dx)dv

≤ lim sup
z→∞

z−1

(∫ z

a

∫ ev

v

Π
(−)

ξ

(
ln
x

v

)
m(dx)dv

)
+ lim sup

z→∞
z−1

(
Π

(−)

ξ (1)

∫ z

a

m(ev,∞)dv

)
= lim sup

z→∞
z−1

∫ z

a

∫ ev

v

Π
(−)

ξ

(
ln
x

v

)
m(dx)dv ≤ lim sup

z→∞
z−1

∫ ez

a

∫ x

x/e

Π
(−)

ξ

(
ln
x

v

)
dvm(dx)

=

[∫ 1

0

Π
(−)

ξ (w)e−wdw

]
× lim sup

z→∞
z−1

∫ ez

a

xm(dx) = 0

where we have applied Fubini’s Theorem, a change of variables w = ln(x/v) and
we have used the finiteness of E[|ξ1|] and henceforth the finiteness of the quantities∫ 1

0
Π

(−)

ξ

(
w
)

exp(−w)dw and Π
(+)

ξ (1).

Next using Fubini’s Theorem and the monotonicity of Π
(+)

ξ , we note that for any
positive number b,

lim sup
z→∞

z−1

∫ z

a

∫ v

0

Π
(+)

ξ

(
ln
v

x

)
m(dx)dv

≤ lim sup
z→∞

z−1

∫ z

0

∫ v

0

Π
(+)

ξ

(
ln
v

x

)
m(dx)dv

= lim sup
z→∞

z−1

∫ z

0

x

∫ ln(z/x)

0

Π
(+)

ξ

(
w
)
ewdwm(dx)

≤ lim sup
z→∞

z−1

(∫ b

0

Π
(+)

ξ

(
w
)
ewdw

∫ z

0

xm(dx) +

∫ z

0

x

∫ ln(z/x)∨b

b

Π
(+)

ξ

(
w
)
ewdwm(dx)

)

≤ Π
(+)

ξ

(
b
)
.

Since Π
(+)

(b) decreases to zero as b increases, we see that

lim
z→∞

z−1

∫ z

a

∫ v

0

Π
(+)

ξ

(
ln
v

x

)
m(dx) dv = 0.
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Since η has a finite mean and m is a finite measure

lim sup
z→∞

z−1

∫ z

a

1

v

∫ v

0

Π
(+)

η (v − x)m(dx) dv

≤ lim sup
z→∞

z−1

(
Π

(+)

η (a) ln
(z
a

)
+

∫ z

a

1

v

∫ v

v−a
Π

(+)

η (v − x)m(dx) dv

)
= lim sup

z→∞
z−1

(∫ z

0

m(dx)

∫ (x+a)∧z

a∨x
Π

(+)

η (v − x)
dv

v

)

≤
[∫ a

0

Π
(+)

η (s)ds

]
× lim
z→∞

(az)−1

∫ z

0

m(dx) = 0.

Similarly, we estimate the following integral

lim sup
z→∞

z−1

∫ z

a

∫ ∞
v

1

w2

∫ w

0

Π
(+)

η (w − x)m(dx) dw dv

≤ lim sup
z→∞

z−1

(
Π

(+)

η (a) ln
(z
a

)
+

∫ z

a

∫ ∞
v

1

w2

∫ w

w−a
Π

(+)

η (w − x)m(dx) dw dv

)
= lim sup

z→∞
z−1

∫ z

a

∫ ∞
v−a

∫ x+a

v∨x

1

w2
Π

(+)

η (w − x)dwm(dx) dv

≤
[∫ a

0

Π
(+)

η (s)ds

]
× lim sup

z→∞
z−1

∫ z

a

1

v2
m(v − a,∞) dv = 0.

As for the remaining two integrals, we split the innermost integrals at the point

x = v + a so that Π
(−)

η (x − v) = Π
(−)

η (a) and similarly estimate the resulting two terms
to get

lim sup
z→∞

z−1

∫ z

a

1

v

∫ ∞
v

Π
(−)

η (x− v)m(dx) dv

= lim sup
z→∞

z−1

∫ z

a

∫ ∞
v

1

w2

∫ ∞
w

Π
(−)

η (x− w)m(dx)dwdv = 0.

Thus, we verify (2.13) and conclude the proof of Lemma 2.4.

Now that we have established Proposition 2.3 and Lemma 2.4, we are ready to complete
the proof of Theorem 2.2.

Proof of Theorem 2.2. Take an infinitely differentiable function f with compact support
in (0,∞) and let g(x) := xf ′(x). We use (2.6), (2.9), and the identity g(x) =

∫ x
0
g′(v)dv to

get, ∫ ∞
0

L(ξ)φ(lnx)m(dx) = bξ

∫ ∞
0

g(x)m(dx) +
σ2
ξ

2

∫ ∞
0

xg′(x)m(dx)

+

∫ ∞
0

∫ x

0

g′(v)Π
(−)

ξ

(
ln
x

v

)
dvm(dx)

+

∫ ∞
0

∫ ∞
x

g′(v)Π
(+)

ξ

(
ln
v

x

)
dvm(dx)

=

∫ ∞
0

g′(v)

(
bξ

∫ ∞
v

m(dx)

)
dv +

∫ ∞
0

g′(v)

(
σ2
ξ

2
vm(dv)

)

+

∫ ∞
0

g′(v)

(∫ ∞
v

Π
(−)

ξ

(
ln
x

v

)
m(dx)

)
dv

+

∫ ∞
0

g′(v)

(∫ v

0

Π
(+)

ξ

(
ln
v

x

)
m(dx)

)
dv =: (g′, F1),
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where the interchange of integrals is permitted due to claims of Lemma 2.4.
Next, substituting f ′(x) = g(x)/x and f ′′(x) = g′(x)/x− g(x)/x2, we get∫ ∞

0

L(η)f(x)m(dx) = bη

∫ ∞
0

g(x)

x
m(dx) +

σ2
η

2

∫ ∞
0

(
g′(x)

x
− g(x)

x2

)
m(dx)

+

∫ ∞
0

∫ ∞
0

(
g′(x+ w)

x+ w
− g(x+ w)

(x+ w)2

)
Π

(+)

η (w)dwm(dx)

+

∫ ∞
0

∫ ∞
0

(
g′(x− w)

x− w
− g(x− w)

(x− w)2

)
Π

(−)

η (w)dwm(dx).

Again, using the identity g(x) =
∫ x

0
g′(v)dv and the fact that g is a function with compact

support on (0,∞), we get after careful calculations and an appeal again to Lemma 2.4
for interchange of integration∫ ∞

0

L(η)f(x)m(dx) = bη

∫ ∞
0

g′(v)

∫ ∞
v

m(dx)

x
dv

+
σ2
η

2

(∫ ∞
0

g′(x)
m(dx)

x
−
∫ ∞

0

g′(v)

∫ ∞
v

m(dx)

x2
dv

)
+

∫ ∞
0

g′(v)
1

v

∫ v

0

Π
(+)

η (v − x)m(dx)dv

−
∫ ∞

0

g′(w)

∫ ∞
w

1

v2

∫ v

0

Π
(+)

η (v − x)m(dx)dvdw

+

∫ ∞
0

g′(v)
1

v

∫ ∞
v

Π
(−)

η (x− v)m(dx)dv

−
∫ ∞

0

g′(w)

∫ ∞
w

1

v2

∫ ∞
v

Π
(−)

η (x− v)m(dx)dvdw

:= (g′, F2).

We arrange the above expressions in the form
∫
g′(x)ν(dx), where ν(dx) := F1(dx) +

F2(dx) is the same as in Lemma 2.4. From Lemma 2.4, we conclude that ν(dx) defines
a finite measure on every compact subset of (0,∞) and henceforth we consider it as a
distribution in Schwartz’s sense. Thus we get

0 =

∫ ∞
0

L(U)f(x)m(dx) = (g′, ν) = (g, ν′) = (xf ′, ν′) = (f ′, xν′) = (f, (xν′)′) ,

for each infinitely differentiable function f with compact support in (0,∞) and deriva-
tives in the sense of Schwartz. Therefore using Schwartz theory of distributions for
ν(dx), we get that xν′(dx) = Cdx and therefore

ν(dx) = (C lnx+D) dx.

Next, we show that C = D = 0. Note that from (2.13) with a = 1, we have
limz→+∞ z−1

∫ z
1
ν(dv) = 0. Comparing this with

0 = lim
z→+∞

z−1

∫ z

1

(C lnx+D)dx = lim
z→+∞

(C ln z − C +D)

we verify that C = D = 0. Thus the proof of Theorem 2.2 is complete.

The next result is an almost immediate corollary of Theorem 2.3, and in particular
of formula (2.3). See also Corollary 3.14 for a stronger result in a particular case when
η is a Brownian motion with drift.
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Distributional properties of exponential functionals of Lévy processes

Corollary 2.5. Assume that condition (2.1) is satisfied. If σ2
ξ + σ2

η > 0 then m(dx) has a
continuous density on R \ {0}.

Proof. The absolute continuity of I(ξ, η) and boundedness of its derivative on compact
subsets of (0,∞), when σ2

ξ + σ2
η > 0 is immediate from (2.3). Let k(x) be the density of

m(dx). To show the continuity of k(x), we investigate all integral terms in (2.3): all of

them, except possibly the ones involving Π
(+)

ξ and Π
(−)

ξ , are clearly continuous. Let us
check continuity of these remaining two terms. Fix v > 0 and v/4 > a > 0. Note that,
for any real h such that |h| < v/4, we have∫ v+h

0

Π
(+)

ξ

(
ln
v + h

x

)
k(x)dx =

∫ v+h−a

0

Π
(+)

ξ

(
ln
v + h

x

)
k(x)dx

+

∫ v+h

v+h−a
Π

(+)

ξ

(
ln
v + h

x

)
k(x)dx.

As Π
(+)

ξ is continuous and decreasing we verify the dominated convergence theorem

applies, as h→ 0, by bounding Π
(+)

ξ in the first term and k(x) in the second. This shows
that all integral terms in (2.3) are continuous in v and hence k(v) is continuous. The

computation for Π
(−)

ξ is the same whereas for v < 0 we study I(ξ,−η) with the same
effect.

3 Exponential functionals with respect to Brownian motion with
drift

In the next two sections, we study the special case when ηt = µt+σBt is a Brownian
motion with drift, so that the exponential functional is now defined as

Iµ,σ :=

∫ ∞
0

eξt−(µdt+ σdBt). (3.1)

We still work under Assumption 2.1, note that the condition E[|η1|] < ∞ is clearly sat-
isfied. From now on, we assume that σ > 0, and in order to simplify notations we

will write ψ(s) = ψξ(s). Note that formula (3.1) implies Iµ,σ
d
= σIµ/σ,1, therefore it is

sufficient to study the exponential functional with σ = 1.
The following three quantities will be very important in what follows

ρ := sup{z ≥ 0 : E
[
ezξ1

]
<∞},

ρ̂ := sup{z ≥ 0 : E
[
e−zξ1

]
<∞}, (3.2)

θ := sup{z ≥ 0 : E
[
ezξ1

]
≤ 1}.

In view of (2.2), it is clear that

ρ = sup

{
z ≥ 0 :

∫ ∞
1

ezxΠξ(dx) <∞
}
, ρ̂ = sup

{
z ≥ 0 :

∫ ∞
1

ezxΠξ(−dx) <∞
}
.

Thus ρ > 0 (ρ̂ > 0) if and only if the measure Πξ(dx) has exponentially decaying positive
(negative) tail. In this case the Lévy-Khintchine formula (2.2) implies that the Laplace
exponent ψ(z) can be extended analytically in a strip −ρ̂ < Re(z) < ρ. It is clear from
(3.2) that 0 ≤ θ ≤ ρ. At the same time, due to Assumption 2.1 we have E[ξ1] = ψ′(0) < 0,
which implies that θ > 0 if and only if ρ > 0.

In the next Lemma we collect some simple analytical properties of the Laplace ex-
ponent ψ(z).
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Lemma 3.1. Assume that ξ satisfies condition (2.1) and that ρ > 0. Then ψ(s) has
no zeros in the strip 0 < Re(s) < θ. Moreover if ξ has a non-lattice distribution and
ψ(θ) = 0, then θ is the unique zero of ψ(s) in the strip 0 < Re(s) ≤ θ and the unique real
zero in the interval (0, ρ).

Proof. Assume that 0 < Re(s) < θ. Since

eRe(ψ(s)) =
∣∣E [esξ1]∣∣ ≤ E [eRe(s)ξ1

]
= eψ(Re(s))

we conclude that Re(ψ(s)) ≤ ψ(Re(s)) < 0, therefore ψ(s) 6= 0 in the strip 0 < Re(s) < θ.
Next, assume that ψ(θ + iy) = 0 for some y 6= 0 and ξ has a non-lattice distribution.

Then the characteristic function of the probability measure eθvP(ξ1 ∈ dv) is equal to
one at y, therefore it has to be a lattice distributed probability measure, see [34, p 306,
Theorem 5] which contradicts our assumption.

In order to prove that θ is the unique real zero of ψ(s) on the interval (0, ρ), we note
that the first formula in (2.2) implies that

ψ′′(s) = σ2
ξ +

∫
R

x2esxΠξ(dx) > 0,

therefore ψ(s) is convex on (0, ρ) and it has at most one positive root at θ.

Next, let us introduce two other important objects

Jα :=

∫ ∞
0

eαξtdt, and V :=
J2

1

J2
. (3.3)

We will frequently use the following result, its proof follows immediately from Lemma
2.1 in [27]:

Proposition 3.2. Assume that ξ satisfies condition (2.1). For all z ∈ C in the strip
−1 ≤ Re(z) < θ/α we have E [Jzα] <∞.

Our main object of interest is the probability density function of Iµ,σ, which we will
denote by k(x) (or by kµ,σ(x) if we need to stress dependence on parameters). In the
next Lemma, we collect some simple properties of k(x).

Lemma 3.3. Assume that ξ satisfies condition (2.1). The law of Iµ,σ has a continuously
differentiable density kµ,σ(x) which is given by

kµ,σ(x) =

∫∫
R2

+

1

σ
√

2πz
e−

(x−µy)2

2zσ2 P(J1 ∈ dy; J2 ∈ dz). (3.4)

Moreover, both functions kµ,σ(x) and k′µ,σ(x) are uniformly bounded on R and if µ ≤ 0

then kµ,σ(x) is decreasing on R+.

Proof. Expression (3.4) follows by conditioning on ξ and the fact that∫ ∞
0

ef(t)(µdt+ σdBt)
d
= N

(
µ

∫ ∞
0

ef(s)ds;σ2

∫ ∞
0

e2f(s)ds

)
,

where N(a, b) denotes a normal random variable with mean a and variance b. The
continuity of kµ,σ(x) follows from the Dominated Convergence Theorem and the fact

that E
[
J
− 1

2
2

]
<∞, see Proposition 3.2.
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Next, we observe that the function |v|e−v2 is bounded on R and therefore for some
C > 0 we have∣∣∣∣ ∫∫

R2
+

(x− µy)

σ3
√

2πz3
e−

(x−µy)2

2zσ2 P(J1 ∈ dy; J2 ∈ dz)

∣∣∣∣ ≤ CE[J−1
2 ] <∞,

where the last inequality follows from Proposition 3.2. This shows that we can differen-
tiate the right-hand side of (3.4) and obtain

k′µ,σ(x) = −
∫∫
R2

+

(x− µy)

σ3
√

2πz3
e−

(x−µy)2

2zσ2 P(J1 ∈ dy; J2 ∈ dz), (3.5)

and from the above discussion it follows that |k′µ,σ(x)| ≤ CE[J−1
2 ] < ∞ for all x ∈ R.

Finally, for µ ≤ 0 and x > 0 we check that k′µ,σ(x) < 0 (see (3.5)), therefore kµ,σ(x) is
decreasing.

Our main tool for studying the properties of kµ,σ(x) will be the Mellin transform of
Iµ,σ, which is defined for Re(s) = 1 as

Mµ,σ(s) := E[(Iµ,σ)s−11{Iµ,σ>0}] =

∫ ∞
0

xs−1kµ,σ(x)dx. (3.6)

Later we will extend this definition for a wider range of s, but a priori it is not clear why
this object should be finite for Re(s) 6= 1. Also, this choice of truncated random vari-
able may seem awkward, since we only use the information about the density kµ,σ(x)

for x ≥ 0. However, it is easy to see that the Mellin transform Mµ,σ(s) uniquely de-
termines kµ,σ(x) for x ≥ 0 while M−µ,σ(s) uniquely determines kµ,σ(x) for x ≤ 0. This

follows from the simple fact that kµ,σ(−x) = k−µ,σ(x) (clearly Iµ,σ
d
= −I−µ,σ, see (3.1)).

Moreover, later it will be clear that our definition of the Mellin transform is in fact quite
natural, since Mµ,σ(s) satisfies the crucial functional equation (3.13), which will lead
to a wealth of interesting information about kµ,σ(x).

As a first step in our study of the Mellin transform Mµ,σ(s) we obtain its analytic
continuation into a vertical strip in the complex plane.

Lemma 3.4. Assume that ξ satisfies condition (2.1). The function Mµ,σ(s) can be
extended to an analytic function in the strip −1 < Re(s) < 1+θ, except for a simple pole
at s = 0 with residue k(0). Moreover, for all s in the strip −1 < Re(s) < 1 + θ we have

Mµ,σ(s) =
k(0)

s
+

∫ 1

0

(k(x)− k(0))xs−1dx+

∫ ∞
1

k(x)xs−1dx, (3.7)

and for all s in the strip −1 < Re(s) < 0 it is true that

Mµ,σ(s) = −1

s

∫ ∞
0

xsk′(x)dx. (3.8)

Proof. First of all, since k(x) is a probability density, it is integrable on [0,∞). Also, due
to Lemma 3.3, we know that k(x) = k(0) +k′(0)x+o(x) as x→ 0+, these two facts imply
thatMµ,σ(s) exists for all s in the strip 0 < Re(s) ≤ 1.

Next, one can easily check that identity (3.7) is valid for s in the strip 0 < Re(s) ≤ 1.
Since k(x) − k(0) = k′(0)x + o(x), as x → 0+ we see that the first integral in the right-
hand side of (3.7) extends analytically into the larger strip −1 < Re(s) < 1, while the
second integral is analytic in the half-plane Re(s) < 1. Thus (3.7) provides an analytic
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continuation ofMµ,σ(s) into the strip −1 < Re(s) < 1 and it is clear thatMµ,σ(s) has a
simple pole at s = 0 with residue k(0).

Next, we note that for −1 < Re(s) < 0 we have∫ ∞
1

k(x)xs−1dx =

∫ ∞
1

(k(x)− k(0))xs−1dx− k(0)

s
.

Combining this expression with (3.7) and applying integration by parts we obtain (3.8).
If θ = 0, then the proof is finished. However, if θ > 0 we still have to prove that

Mµ,σ(s) <∞ for 1 < s < 1+θ, and this requires a little bit more work. The proof will be
based on certain special functions. The confluent hypergeometric function (see section
9.2 in [16] or chapter 6 in [11]) is defined as

1F1(a, b, z) =
∑
n≥0

(a)n
(b)n

zn

n!
, (3.9)

where (a)n = a(a+ 1) . . . (a+n− 1) is the Pochhammer symbol. Using the ratio test it is
easy to see that the series in (3.9) converges for all z ∈ C, thus 1F1(a, b, z) is an entire
function of z. We will also need the parabolic cylinder function, which is defined as

Dp(z) = 2
p
2 e−

z2

4

[ √
π

Γ
(

1−p
2

) 1F1

(
−p

2
,

1

2
;
z2

2

)
+

√
2πz

Γ
(
−p2
) 1F1

(
1− p

2
,

3

2
;
z2

2

)]
. (3.10)

Note that the parabolic cylinder function is analytic function of p and z. See sections
9.24-9.25 in [16] for more information on the parabolic cylinder function. We will prove
that Mµ,1(s) exists for all s in the strip Re(s) ∈ (0, 1 + θ) and everywhere in this strip
we have

Mµ,1(s) =
Γ(s)√

2π
E

[
J
s−1
2

2 e−
µ2

4 VD−s

(
−µ
√
V
)]
. (3.11)

Let us assume first that Re(s) = 1. Then using (3.4) and (3.6) we conclude that

Mµ,1(s) = E

[∫ ∞
0

xs−1 1√
2πJ2

e−
(x−µJ1)2

2J2 dx

]
=

1√
2π
E

[
1√
J2

e−
µ2

2 V

∫ ∞
0

xs−1e−
1

2J2
x2+

µJ1
J2

xdx

]
.

Performing the change of variables x = u
√
J2 and using the following integral identity

(formula 9.241.2 in [16])∫ ∞
0

us−1e−
u2

2 −uzdu = Γ(s)e
z2

4 D−s(z), Re(s) > 0,

we obtain equation (3.11).
Thus, we have established that (3.11) is true for all s on the vertical line Re(s) = 1.

Now, we will perform analytic continuation into a larger domain. Formulas 9.246 in
[16], give us the following asymptotic expansions: for z ∈ R

D−s(z) =

O
(
z−se−

z2

4

)
, z → +∞,

O
(
z−se−

z2

4

)
+O

(
zs−1e

z2

4

)
, z → −∞.

(3.12)

Assume that µ < 0 and s ∈ (0, 1 + θ) or µ > 0 and s ∈ (0, 1). Then, from (3.12) and the
fact that Ds(z) is a continuous function of z we find that there exists a constant C1 > 0

such that

|e−
µ2

4 zD−s
(
−µ
√
z
)
| < C1
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for all z > 0. Therefore from (3.11), we conclude that

|Mµ,1(s)| < C1
Γ(s)√

2π
E
[
J
s−1
2

2

]
,

and the right-hand side is finite if s ∈ (0, 1 + θ), see Proposition 3.2.
Next, when µ > 0 and s ∈ (1, 1 + θ), we again use (3.12) and the fact that Ds(z) is

continuous in z to conclude that there exists C2 > 0 such that |e−
µ2

4 zD−s (−µ
√
z) | <

C2z
s−1
2 for all z > 0. Therefore from (3.11), we conclude that

|Mµ,1(s)| < C2
Γ(s)√

2π
E
[
J
s−1
2

2 V
s−1
2

]
= C2

Γ(s)√
2π
E
[
Js−1

1

]
,

and the right-hand side is finite if s ∈ (1, 1 + θ), see Proposition 3.2.

The next theorem is our first main result in this section.

Theorem 3.5. Assume that ξ satisfies condition (2.1) and that θ > 0. Then for all s
such that 0 < Re(s) < θ, we have

ψ(s)

s
Mµ,σ(s+ 1) + µMµ,σ(s) +

σ2

2
(s− 1)Mµ,σ(s− 1) = 0. (3.13)

Proof. Setting Πη ≡ 0 in (2.3) we find that k(x) satisfies the following integral equation

σ2
ξ

2
F1(k; v) + bξF2(k; v) + F3(k; v) + F4(k; v) + µF5(k; v) +

σ2

2
F6(k; v) = 0, (3.14)

where we have defined F1(k; v) := k(v) and

F2(k; v) :=
1

v

∫ ∞
v

k(x)dx, F3(k; v) :=
1

v

∫ ∞
v

Π
(−)

ξ

(
ln
(x
v

))
k(x)dx,

F4(k; v) :=
1

v

∫ v

0

Π
(+)

ξ

(
ln
( v
x

))
k(x)dx, F5(k; v) :=

1

v

∫ ∞
v

k(x)

x
dx, (3.15)

F6(k; v) :=
1

v

[
k(v)

v
−
∫ ∞
v

k(x)

x2
dx

]
.

Our plan is to compute the Mellin transform of each term in (3.14). Assume first that
1 < Re(s) < 1 + min{1, θ}. According to Lemma 3.4, the Mellin transform of the first
term exists in this strip and is equal toMµ,σ(s).

Let us compute the Mellin transform of the second term. We use integration by parts
and obtain for all y > 0∫ y

0

vs−1F2(k; v)dv =
1

s− 1
ys−1

∫ ∞
y

k(x)dx+
1

s− 1

∫ y

0

vs−1k(v)dv. (3.16)

As y → +∞ the first term in the right-hand side of the above equation goes to zero
(this follows from the fact that the k(x)xs−1 is absolutely integrable on (0,∞)), thus we
conclude that the Mellin transform of F2(k; v) is equal toMµ,σ(s)/(s− 1). In exactly the
same way one finds that the Mellin transform of F5(k; v) is equal toMµ,σ(s− 1)/(s− 1).

Let us consider the third term F3(k; v). Performing the change of variables x 7→ yv

we find that

F3(k; v) =

∫ ∞
1

Π
(−)

ξ (ln(y)) k(yv)dy.
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Therefore the Mellin transform of F3(k; v) is given by∫ ∞
0

vs−1F3(k; v)dv =

∫ ∞
1

Π
(−)

ξ (ln(y))

∫ ∞
0

vs−1k(yv)dvdy

=

[∫ ∞
1

Π
(−)

ξ (ln(y)) y−sdy

]
×Mµ,σ(s) =

[∫ ∞
0

Π
(−)

ξ (u)e−(s−1)udu

]
×Mµ,σ(s),

where we have used Fubini’s theorem in the first step, performed the change of vari-
ables v 7→ z/y in the second step and applied the change of variables y 7→ exp(u) in the
last step.

In exactly the same way we find that the Mellin transform of F4(k; v) is equal to∫ ∞
0

vs−1F4(k; v)dv =

[∫ ∞
0

Π
(+)

ξ (u)e(s−1)udu

]
×Mµ,σ(s).

Finally, let us consider the sixth term F6(k; v). Using integration by parts and the
fact that k(x) is bounded we find that

F6(k; v) = −1

v

∫ ∞
v

k′(x)

x
dx. (3.17)

Since k′(x) is uniformly bounded on [0,∞) we conclude that F6(k; v) = O(ln(v)/v), as
v → 0+, and from (3.15) we see that F6(k; v) = O(1/v2), as v → +∞. This shows that
the Mellin transform of F6(k; v) exists for 1 < Re(s) < 1 + min{1, θ}. Using (3.17) and
integration by parts we find that for 0 < v0 < v1 <∞∫ v1

v0

vs−1F6(k; v)dv =
vs1
s− 1

F6(k; v1)− vs0
s− 1

F6(k; v0)− 1

s− 1

∫ v1

v0

vs−2k′(v)dv. (3.18)

From the above discussion we find that the first (second) term in right-hand side of
(3.18) converges to zero as v1 → +∞ (v0 → 0+), therefore from (3.8) and (3.18) we
conclude that for 1 < Re(s) < 1 + min{1, θ} the Mellin transform of F6(k; v) is given by∫ ∞

0

vs−1F6(k; v)dv = − 1

s− 1

∫ ∞
0

vs−2k′(v)dv =
s− 2

s− 1
Mµ,σ(s− 2).

Collecting all the terms in (3.14) we see that for all s in the strip

1 < Re(s) < 1 + min{1, θ}

we have

σ2
ξ

2
Mµ,σ(s) +

bξ
s− 1

Mµ,σ(s)

+

[∫ ∞
0

Π
(−)

ξ (u)e−(s−1)udu+

∫ ∞
0

Π
(+)

ξ (u)e(s−1)udu

]
×Mµ,σ(s)

+
µ

s− 1
Mµ,σ(s− 1) +

σ2

2

s− 2

s− 1
Mµ,σ(s− 2) = 0.

Formula (3.13) follows from the above equation by changing variables s 7→ s − 1 and
applying formula (2.2). This ends the proof in the case θ ∈ (0, 1). If θ > 1 then (3.13)
can be extended from the strip 0 < Re(s) < min{1, θ} to 0 < Re(s) < θ by analytic
continuation.

Remark 3.6. Note that the functional equation (3.13) is a more general version of the
well-known functional equation when σ = 0, see formula (2.3) in Maulik and Zwart, [27].
Nonetheless, the derivation of (3.13) requires the integral equation (2.3) whereas the
classical functional equation (2.3) in [27] can be obtained by rather simple arguments.
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Distributional properties of exponential functionals of Lévy processes

Theorem 3.5 will prove crucial for applications. It allows to derive the analytical
properties of the Mellin transform Mµ,σ(s) (such as its behaviour at the singularities
and their precise location in the complex plane) from the properties of the Laplace
exponent ψ(s) itself. The next result serves to illustrate these ideas.

Corollary 3.7. Assume that ξ satisfies condition (2.1) and that θ > 0.

(i) The functionMµ,σ(s) can be analytically continued into the strip

Re(s) ∈ (−1− ρ̂, 1 + ρ).

Its only singularities in the strip −1− ρ̂ < Re(s) < 1 + θ are the simple poles at the
points {−n : 0 ≤ n < 1 + ρ̂}.

(ii) If ξ has a non-lattice distribution and θ < ρ then Mµ,σ(s) has a simple pole at
s = 1 + θ with residue

R(θ) := − θ

ψ′(θ)

(
µMµ,σ(θ) +

σ2

2
(θ − 1)Mµ,σ(θ − 1)

)
. (3.19)

The only other singularities ofMµ,σ(s) in the strip 0 < Re(s) < 1 + ρ are poles of
the form ζ + n, where n ∈ N and ζ is a root of ψ(s) in the strip θ < Re(s) < ρ.

(iii) Consider the “boundary” case θ = ρ. Assume that ξ has a non-lattice distribution.
If ψ(θ) < 0 then the functionMµ,σ(s) is continuous in the strip

0 < Re(s) ≤ 1 + θ.

On the other hand, if ψ(θ) = 0 and E
[
ξ2
1 exp(θξ1)

]
<∞, then the function

Mµ,σ(s)−R(θ)/(s− 1− θ)

is continuous in the strip 0 < Re(s) ≤ 1 + θ.

Proof. The proof of parts (i) and (ii) follows easily from Theorem 3.5 and Lemmas 3.1
and 3.4.

Let us prove (iii). If ψ(θ) < 0 we use the same argument as in the proof of Lemma
3.1 and conclude that Re(ψ(s)) ≤ ψ(Re(s)) = ψ(θ) < 0 on the line Re(s) = θ; this fact
and Lemma 3.1 imply that ψ(s) 6= 0 in the strip 0 < Re(s) ≤ θ. Since ψ(θ) < 0 we can
use (2.2) and the dominated convergence theorem to show that ψ(s) is continuous in
the strip 0 < Re(s) ≤ θ. These two facts and the functional equation (3.13) show that
Mµ,σ(s) is continuous in the strip 0 < Re(s) ≤ θ.

Finally, let us consider the case when θ = ρ and ψ(θ) = 0. Condition

E[ξ2
1 exp(θξ1)] <∞

and the dominated convergence theorem show that the functions ψ(s), ψ′(s) and ψ′′(s),
which are analytic in the strip 0 < Re(s) < θ, can be continuously extended to the right
boundary of this strip Re(s) = θ. Again, using (2.2) and the dominated convergence
theorem one can check that as s→ θ in the strip 0 < Re(s) ≤ θ, it is true that

H(s) :=
1

ψ(s)
− 1

ψ′(θ)(s− θ)
→ −1

2

ψ′′(θ)

ψ′(θ)2
<∞. (3.20)

Note that ψ′(θ) > 0 due to the convexity of ψ(s) on the interval 0 < s < ρ. Lemma 3.1
and the fact that ξ has non-lattice distribution guarantee that the only zero of ψ(s) in
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the strip 0 < Re(s) ≤ θ is at s = θ. From here and from (3.20), we see that the function
H(s) defined in (3.20) is continuous in the strip 0 < Re(s) ≤ θ.

Let us define

F (s) = −s
(
µMµ,σ(s) +

σ2

2
(s− 1)Mµ,σ(s− 1)

)
.

It is clear from Lemma 3.4 that F (s) is analytic in some neighbourhood of the line
Re(s) = θ, thus the function G(s) = (F (s) − F (θ))/(s − θ) is also analytic in the neigh-
bourhood of the line Re(s) = θ. Next, we use the functional equation (3.13) in the form
Mµ,σ(s+ 1) = F (s)/ψ(s) and after rearranging the terms, we find

Mµ,σ(s+ 1)− F (θ)

ψ′(θ)

1

s− θ
= F (s)H(s) +

G(s)

ψ′(θ)
.

From the above discussion it is clear that the function in the right-hand side is continu-
ous in the strip 0 < Re(s) ≤ θ, which ends the proof of part (iii).

In view of (3.4) it is clear that kµ,σ(x) depends on the joint distribution of J1 and J2.
As we will see later in Proposition 3.9, the Mellin transformMµ,σ(x) can be expressed
in terms of the joint moments E[Ju1 J

v
2 ]. The next Lemma presents several crucial results

on the existence of joint moments of this form. Recall that V = J2
1/J2.

Lemma 3.8. Assume that ξ satisfies condition (2.1).

(i) There exists ε > 0 such that
E
[
eεV
]
<∞. (3.21)

(ii) For any (u, s) ∈ R2 in the domain

D =
{
− 1 < s < 1 + θ, u ≤ 0

}
∪
{
s > 0;u > 0; u ≤ 1− s

}
we have

E
[
J−u1 J

1
2 (u+s−1)
2

]
<∞. (3.22)

The function (u, s) ∈ C2 7→ E
[
J−u1 J

1
2 (u+s−1)
2

]
is analytic as long as (Re(s),Re(u)) ∈

D and it is uniformly bounded if (Re(s),Re(u)) belongs to a compact subset of D.

Proof. Let us prove (i). Denote by J1(t) =
∫ t

0
eξsds and J2(t) =

∫ t
0
e2ξsds. It is clear that

J1(0) = J2(0) = 0 and that both J1(t) and J2(t) are continuous in t. Since

d

dt
J2

1 (t)

∣∣∣∣
t=0

= 0 and
d

dt
J2(t)

∣∣∣∣
t=0

= 1, (3.23)

we conclude that for every x > 0 with probability one, there exists ε > 0 such that
J2

1 (t) < xJ2(t) for 0 < t < ε. This fact and the continuity of J1(t) and J2(t) imply that

g(x) := P (Tx <∞) ≥ P(J2
1 > xJ2), (3.24)

where Tx = inf{t > 0 : J2
1 (t)/J2(t) = x} and as usual we assume that inf{∅} = +∞. We

aim to show that for all x > 0, we have g(2x) ≤ g2(x).
From the (3.23), we know that J2

1 (t)/J2(t)→ 0 as t→ 0+. This fact and the continuity
of J1(t) and J2(t) imply that P(Tx = 0) = 0 for all x > 0 and Tx < Ty a.s., for y > x.
Using the inequality 2a2 + 2b2 ≥ (a+ b)2, we get

2 (J1(Tx + t)− J1(Tx))
2

+ 2J2
1 (Tx) ≥ J2

1 (Tx + t),
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and we estimate

g(2x) = P(T2x <∞) = P
(
Tx <∞;∃ t > 0 : J1(Tx + t)2 = 2xJ2(Tx + t)

)
≤

P
(
Tx <∞;∃ t > 0 : 2 (J1(Tx + t)− J1(Tx))

2
+ 2J2

1 (Tx) = 2xJ2(Tx + t)
)
.

Since J2
1 (Tx) = xJ2(Tx), we obtain from the above inequality

g(2x) ≤ P
(
Tx <∞;∃ t > 0 : (J1(Tx + t)− J1(Tx))2 = x(J2(Tx + t)− J2(Tx))

)
= P

(
Tx <∞;∃ t > 0 : e2ξTx J̃2

1 (t) = xe2ξTx J̃2(t)
)

= g2(x),

where J̃i are the exponential functionals based on ξ̃t = ξTx+t − ξTx and we have used
the fact that the process {ξ̃t}t≥0 is independent of FTx . Thus, we have obtained the key
inequality g(2x) ≤ g2(x).

Next, let us prove that there exists x∗ > 0 such that g(x∗) < 1. Assume that the
converse is true, that is g(x) = 1 for all x > 0. In particular, g(n) = 1 for all n ≥ 1.
Let An = {∃ t > 0 : J1(t)2 = nJ2(t)}. Since P(An) = 1 for all n ≥ 1, we conclude that
P(∩n≥1An) = 1. This implies that with probability one there exists a strictly increasing
random sequence of positive numbers {tn}n≥1 such that J2

1 (tn) = nJ2(tn). Since J2(tn)

is an increasing sequence, we conclude that as n→ +∞ we have P(J1(tn)2 → +∞) = 1,
and due to the fact that J1(tn) ≤ J1, we arrive at a contradiction P(J1 =∞) = 1.

Thus, we have proved that there exists x∗ > 0 such that g(x∗) < 1. For x > x∗,
let us define N > 0 to be the unique integer number such that 2N ≤ x/x∗ < 2N+1.
Applying the inequality g(x) < g(x/2)2 exactly N times, we obtain g(x) ≤ g(x/2N )2N .
Using the fact that g(x) is a decreasing function and that x∗ ≤ x/2N , we conclude that
g(x) ≤ g(x∗)2N , and since x/(2x∗) < 2N , we see that for all x > x∗

g(x) < e−cx,

where c = − ln(g(x∗))/(2x∗) > 0. This fact and (3.24) imply that P(V > x) < exp(−cx)

for all x > x∗, thus (3.21) is true for any ε ∈ (0, c). This ends the proof of part (i).
Let us prove (ii). Assume first that u ≤ 0. Then using Holder inequality we get

E
[
J−u1 J

1
2 (u+s−1)
2

]
= E

[
V −

u
2 J

1
2 (s−1)
2

]
≤
(
E
[
V −

u
2 p
]) 1

p

(
E
[
J
q
2 (s−1)
2

]) 1
q

.

From part (i), we know that V has finite positive moments of all orders. Then it suffices
to choose q = 2(1 − s)−1 for −1 < s < 0, q = 2 for 0 ≤ s ≤ 1 and q = 1

2 + θ
2(s−1) for

1 < s < 1 + θ to conclude that (3.22) holds.
Assume next 0 < s < 1, u > 0 and u ≤ 1− s. Then with p = u−1 and q = (1− u)−1 we

have

E
[
J−u1 J

1
2 (u+s−1)
2

]
≤
(
E
[
J−1

1

])u(
E

[
J

1
2 (−1+ s

1−u )

2

])1−u

<∞,

due to Proposition 3.2 and the fact that
(
−1 + s

1−u

)
∈ (−1, 0].

Now we are ready to present several integral expressions for the Mellin transform
Mµ,σ(s). These expressions are interesting in their own right, but they will also lead
to an important result about the exponential decay ofMµ,σ(s) as Im(s)→∞ (Theorem
3.13 below). Note that due to the identity

Iµ,σ
d
= σIµ/σ,1

we haveMµ,σ(s) = σs−1Mµ/σ,1(s), therefore it is enough to state the results for σ = 1.
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Proposition 3.9. Assume that ξ satisfies condition (2.1).

(i) For −1 < Re(s) < 1 + θ

M0,1(s) =
2−

1
2 (s+1)Γ(s)

Γ
(

1
2 (s+ 1)

) E [J 1
2 (s−1)
2

]
. (3.25)

(ii) For µ < 0 and −1 < Re(s) < 1 + θ

Mµ,1(s)

=M0,1(s) +
2−

1
2 (s+1)

2πi

∫
− 1

2 +iR

Γ(s)Γ(u)

Γ
(

1
2 (u+ s+ 1)

)E [J−u1 J
1
2 (u+s−1)
2

]
(2µ2)−

u
2 du.

(3.26)

(iii) For µ > 0 and −1 < Re(s) < 1 + θ

Mµ,1(s) =
2−

1
2 (s−1)Γ(s)

Γ
(

1
2 (s+ 1)

) E [J 1
2 (s−1)
2 1F1

(
1− s

2
,

1

2
,−µ

2

2
V

)]
−M−µ,1(s). (3.27)

The proof of this Proposition is quite technical, therefore we have divided it into
several steps. First of all, in Lemmas 3.10, 3.11, 3.12, we establish several technical
results which will be needed in the proof of Proposition 3.9, and also useful later.

Lemma 3.10.

(i) For every ε > 0 and a < b there exists C = C(ε, a, b) > 0 such that∣∣Γ(x+ iy)
∣∣ < Ce−(π2−ε)|y|

for all a < x < b and |y| > 1.

(ii) For every ε > 0 and a < b there exists C = C(ε, a, b) > 0 such that∣∣Γ(x+ iy)
∣∣ > Ce−(π2 +ε)|y|

for all a < x < b and y ∈ R.

Proof. We start with the following asymptotic expression∣∣∣Γ(x+ iy)
∣∣∣ =
√

2π|y|x− 1
2 e−

π
2 |y|

(
1 +O

(
1

|y|

))
, y →∞ (3.28)

which holds uniformly in x on compact subsets of R, see formula 8.328.1 in [16]. Part
(i) follows easily from (3.28) and for part (ii), we use the additional fact that Γ(s) has no
zeros in the entire complex plane.

Lemma 3.11. For µ < 0, Re(w) < 1
2 and 0 < Re(s) < 1− 2Re(w)∫∫

R2
+

1√
2πz

e−
(x−µy)2

2z xs−1zw−1dxdz = 2w−1(−µy)2w+s−1 Γ(s)Γ(1− 2w − s)
Γ(1− w)

. (3.29)
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Proof. We change the integrated variable z 7→ 1
u and find that for a > 0 and Re(w) < 1/2∫ ∞

0

e−
a
z zw−1− 1

2 dz =

∫ ∞
0

e−auu−
1
2−wdu = aw−

1
2 Γ
(1

2
− w

)
.

Then for 2Re(w) + Re(s)− 1 < 0 we can apply the Fubini’s theorem and obtain∫∫
R2

+

1√
2πz

e−
(x−µy)2

2z xs−1zw−1dxdz =
1√
2π

2
1
2−wΓ

(1

2
− w

)∫ ∞
0

(x− µy)2w−1xs−1dx

= (−µy)2w+s−1 1√
2π

2
1
2−wΓ

(1

2
− w

)∫ ∞
0

(x+ 1)2w−1xs−1dx

= (−µy)2w+s−1 1√
2π

2
1
2−wΓ

(1

2
− w

)Γ(s)Γ(1− 2w − s)
Γ(1− 2w)

,

where in the last step we have used the beta-integral identity (see equation 3.194.3
[16]). Formula (3.29) can be derived from the above equation by application of the
Legendre duplication formula for the gamma function (see formula 8.335.1 in [16]).

Lemma 3.12. Assume that a0 < a1 and b ∈ C are such that Re(b) ∈ (0, 1)∪ (1, 2). Recall
that 1F1(a, b, z) denotes the confluent hypergeometric function defined by (3.9). For
each ε > 0 there exist a constant C = C(a0, a1, b, ε) > 0 and a constant D = D(a0, a1, ε) ∈
(0, π2 ) such that for all a ∈ C with a0 < Re(a) < a1 and all z > 0∣∣

1F1(a, b,−z)
∣∣ ≤ Ceεz+D|Im(a)|. (3.30)

Proof. We start with the following integral representation

1F1(a, b,−z) =
1

2πi
Γ(b)z1−be−z

∫
γ+iR

ewzw−b(1− w−1)a−bdw, (3.31)

which holds for z > 0, Re(b) > 0 and γ > 1. This representation follows from formula (7)
on page 273 in [11] and the identity 1F1(a, b,−z) = exp(−z)1F1(b − a, b, z) (see formula
(7) on page 253 in [11]).

Next fix ε > 0 and assume that Re(b) ∈ (1, 2) and z ≥ 1. We also denote γ = 1 + ε.
Then changing variables w 7→ γ + it we obtain from (3.31)

∣∣
1F1(a, b, z)

∣∣ =

∣∣∣∣∣ 1

2πi
Γ(b)z1−beεz

∫ ∞
−∞

eitz(γ + it)−b
(

1− (γ + it)−1
)a−b

dt

∣∣∣∣∣
≤ C1(b)eεz

∫ ∞
−∞

∣∣∣(γ + it)−b
∣∣∣× ∣∣∣(1− (γ + it)−1

)a−b∣∣∣dt. (3.32)

Note that the set {(γ + it)−1 : t ∈ R} ⊂ C is a circle with centre (2γ)−1 and radius
(2γ)−1. Therefore the set {1 − (γ + it)−1 : t ∈ R} ⊂ C is a circle with centre 1 − (2γ)−1

and radius (2γ)−1. Recall that γ = 1 + ε > 0, therefore this last circle does not touch the
vertical line iR and we have

D = max
t∈R

{
|arg(1− (γ + it)−1)|

}
<
π

2
. (3.33)

At the same time, we have for all t ∈ R

ε

1 + ε
≤
∣∣1− (γ + it)−1

∣∣ =

√
ε2 + t2

γ2 + t2
< 1.
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The above two estimates and the equality |uv| = |u|Re(v)e|arg(u)×Im(v)| (which is valid for
all u ∈ C and v ∈ C with Re(u) > 0, Re(v) > 0) show that for all t ∈ R, we have∣∣∣(1− (γ + it)−1

)a−b∣∣∣ ≤ C2(a0, a1, b, ε)e
D|Im(a)|, (3.34)

where

C2(a0, a1, b, ε) = max

{
1,

(
ε

1 + ε

)a0−Re(b)

,

(
ε

1 + ε

)a1−Re(b)
}
.

Using (3.32) and (3.34), we conclude that

∣∣
1F1(a, b,−z)

∣∣ ≤ C1(b)C2(a0, a1, b, ε)e
εz+D|Im(a)|

∫ ∞
−∞

∣∣(γ + it)−b
∣∣dt

= C(a0, a1, b, ε)e
εz+D|Im(a)|.

Note that the integral appearing in the above estimate converges since Re(b) ∈ (1, 2).
This proves (3.30) for z ≥ 1.

Assume next that z ∈ (0, 1). Using (3.31) with γ = (1 + ε)/z and changing variables
in the integral w 7→ (1 + ε+ it)/z we get

1F1(a, b,−z) =
e1+ε−z

2π
Γ(b)

∫
R

eit (1 + ε+ it)−b
(

1− z

1 + ε+ it

)a−b
dt.

Now we can proceed as in the case when z > 1 noting that the set {1− z(1 + ε+ it)−1 :

t ∈ R} ⊂ C is a circle with centre 1− z(2(1 + ε))−1 and radius z(2(1 + ε))−1. As 0 < z < 1

one can see that this only improves all the estimates above. For example, the estimate
(3.33) also holds true and for all t ∈ R, we have

ε

1 + ε
<

1 + ε− z
1 + ε

≤
∣∣1− z(1 + ε+ it)−1

∣∣ =

√
(1 + ε− z)2 + t2

(1 + ε)2 + t2
< 1.

Therefore (3.30) is also true for z ∈ (0, 1).
Finally, we consider the case when Re(b) ∈ (0, 1). One can see that this case follows

easily from the already established result valid for Re(b) ∈ (1, 2) and the following
identity for the confluent hypergeometric function

b1F1(a, b,−z) = a1F1(a+ 1, b+ 1,−z) + (b− a)1F1(a, b+ 1,−z),

see formula 9.212.3 in [16].

Proof of Proposition 3.9. The equation (3.25) follows from (3.11) and the fact that

D−s(0) =

√
π2−

s
2

Γ
(

1
2 (s+ 1)

) ,
see the definition of the parabolic cylinder function (3.10).

Let us prove (ii). Assume first that s ∈ C is a fixed number which satisfies Re(s) ∈(
1
4 ,

3
4

)
. Using Lemma 3.3 and Fubini Theorem we find that the Mellin transform of k(x)

is given by

Mµ,1(s) =

∫∫
R2

+

F (s, y, z)P(J1 ∈ dy, J2 ∈ dz), (3.35)
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where

F (s, y, z) =
1√
2πz

∫ ∞
0

xs−1e−
(x−µy)2

2z dx.

According to Lemma 3.11, since Re(s) ∈
(

1
4 ,

3
4

)
the Mellin transform of F (s, y, z) in the

z-variable exists for all w such that 0 < Re(w) < 1/8 and is given by

G(s, y, w) :=

∫ ∞
0

F (s, y, z)zw−1dz = 2w−1(−µy)2w+s−1 Γ(s)Γ(1− 2w − s)
Γ(1− w)

. (3.36)

Using Lemma 3.10, we find that for every s such that 1/4 < Re(s) < 3/4 there exists
C = C(s) > 0 such that for all w with Re(w) = 1/16 we have

|G(s, y, w)| < C|y|Re(s)− 7
8 e−|Im(w)|. (3.37)

Therefore as |G(s, y, w)| is absolutely integrable along the line w = 1
16 +iR then F (s, y, z)

can be written as an inverse Mellin transform

F (s, y, z) =
1

2πi

∫
1
16 +iR

G(s, y, w)z−wdw.

From the above identity and (3.35) we find that

Mµ,1(s) =
1

2πi

∫ ∞
y=0

∫ ∞
z=0

∫
w∈ 1

16 +iR
G(s, y, w)z−wdwP(J1 ∈ dy, J2 ∈ dz).

Due to (3.37) and the fact that E[J
Re(s)−7/8
1 J

−1/16
2 ] < ∞ since 1/4 < Re(s) < 3/4 (see

Lemma 3.8), we conclude that the function G(s, y, w)z−w is absolutely integrable with
respect to the measure dw × P(J1 ∈ dy, J2 ∈ dz). Thus, we can apply Fubini’s Theorem
to the right-hand side of the above equation and with the help of (3.36), we obtain

Mµ,1(s) =
Γ(s)

2πi

∫
1
16 +iR

Γ(1− 2w − s)
Γ(1− w)

E
[
J2w+s−1

1 J−w2

]
2w−1(−µ)2w+s−1dw. (3.38)

Next, we perform a change of variables w 7→ 1
2 (1 − u − s) (recall that s is a fixed

number) and obtain from (3.38)

Mµ,1(s) =
2−

1
2 (s+1)Γ(s)

2πi

∫
7
8−s+iR

Γ(u)

Γ( 1
2 (u+ s+ 1))

E
[
J−u1 J

1
2 (u+s−1)
2

]
(2µ2)−

u
2 du. (3.39)

For s fixed, such that 1/4 < Re(s) < 3/4, we know from (ii) Lemma 3.8 that

E
[
J−u1 J

1
2 (u+s−1)
2

]
is a bounded analytic function of u everywhere in the strip −1 < Re(u) < 17/18− Re(s)

and hence bounded on Re(u) = 7/8 − Re(s). The ratio Γ(u)/Γ( 1
2 (u + s + 1)) decays

exponentially (and uniformly) as Im(u) → ∞ in the strip −1 < Re(u) < 17/18 − Re(s),
and it has a unique simple pole at u = 0, coming from Γ(u). Thus we can shift the
contour of integration in (3.39) 7/8 − s + iR 7→ −1/2 + iR and taking into account the
residue at u = 0 we finally obtain

Mµ,1(s) =
2−

1
2 (s+1)Γ(s)

Γ
(

1
2 (s+ 1)

) E [J 1
2 (s−1)
2

]
(3.40)

+
2−

1
2 (s+1)

2πi

∫
− 1

2 +iR

Γ(s)Γ(u)

Γ
(

1
2 (u+ s+ 1)

)E [J−u1 J
1
2 (u+s−1)
2

]
(2µ2)−

u
2 du.
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From Lemma 3.8, E
[
J−u1 J

1
2 (u+s−1)
2

]
is a bounded analytic function for Re(w) = −1/2

and −1 + ε < Re(s) < 1 + θ − ε, for any ε > 0. Due to Lemma 3.10, the ratio of Gamma
functions Γ(u)/Γ( 1

2 (u + s + 1)) decays exponentially as Im(u) → ∞, Re(u) = −1/2 and
uniformly in s if −1 + ε < Re(s) < 1 + θ − ε. Therefore, the right-hand side in (3.40)
defines a meromorphic function in the strip −1 < Re(s) < 1 + θ, which has a unique
simple pole at s = 0 (which comes from Γ(s)), and we can apply analytic continuation
and conclude that (3.40) is valid for all s in the strip −1 < Re(s) < 1 + θ. This ends the
proof of part (ii).

Finally, let us prove (iii). Assume first that 0 < Re(s) < 1. We use formulae (3.10)
and (3.11) to find that

Mµ,1(s) +M−µ,1(s) = Γ(s)
2−

1
2 (s−1)

Γ( 1
2 (s+ 1))

E

[
J

1
2 (s−1)
2 e−

µ2

2 V 1F1

(
s

2
,

1

2
,
µ2

2
V

)]
. (3.41)

From the above formula and the identity e−z1F1(a, b, z) = 1F1(b − a, b,−z) (see formula
(7) on page 253 in [11]), we conclude that (3.27) holds true for 0 < Re(s) < 1. Now our
goal is to check that (3.27) can be extended into the wider strip −1 < Re(s) < 1 + θ.

Assume that δ > 0 is a small number and that −1 + δ < Re(s) < 1 + θ − δ. It is clear
that we can find p = p(δ) > 1 such that for all s in the strip −1 + δ < Re(s) < 1 + θ − δ,
we have (Re(s) − 1)p ∈ (−2, θ). Define q = p/(p − 1). According to Lemma 3.8, we can

find ε > 0 small enough such that E
[
exp(εq µ

2

2 V )
]
< ∞. Using Lemma 3.12, we see

that there exists D = D(δ) ∈ (0, π/2) and C = C(δ) > 0 such that for all s in the strip
−1 + δ < Re(s) < 1 + θ − δ, we have∣∣∣∣1F1

(
1− s

2
,

1

2
,−µ

2

2
V

) ∣∣∣∣ < Ceε
µ2

2 V+D|Im( s2 )|.

Therefore, we can use Hölder inequality with p and q defined as above and estimate the
expectation in the right-hand side of (3.27) as follows∣∣∣∣∣E

[
J

1
2 (s−1)
2 1F1

(
1− s

2
,

1

2
,−µ

2

2
V

)] ∣∣∣∣∣ < CeD|Im( s2 )|
(
E
[
J

1
2 (Re(s)−1)p
2

]) 1
p

(
E

[
eεq

µ2

2 V

]) 1
q

<∞, (3.42)

where in the last step we have used the fact that 1
2 (Re(s)− 1)p ∈ (−1, θ/2). This shows

that the expectation in the right-hand side of (3.27) is well-defined for all s such that
−1 + δ < Re(s) < 1 + θ − δ, and since δ > 0 is an arbitrary small number, we can extend
the validity of this equation into the whole strip −1 < Re(s) < 1 + θ.

The next theorem is our second main result in this section and it opens the way for
the application of powerful complex-analytical tools.

Theorem 3.13. Assume that ξ satisfies condition (2.1). For any µ ∈ R and any small
number δ > 0, there exist constants A = A(µ, σ, δ) > 0 and B = B(µ, σ, δ) > 0 such that∣∣Mµ,σ(s)

∣∣ ≤ Ae−B|Im(s)|, (3.43)

for all s ∈ C such that Re(s) ∈ (−1 + δ, 1 + θ − δ) and |Im(s)| > 1.

Proof. Note that Iµ,σ
d
= σIµ

σ ,1
, henceMµ,σ(s) = σs−1Mµ

σ ,1
(s), therefore without loss of

generality we can assume σ = 1.
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Since −1/2 is not a pole for Γ(s), we use Lemma 3.10 and conclude that there exists
C1 > 0 such that for all y ∈ R ∣∣∣Γ(−1

2
+ iy)

∣∣∣ ≤ C1e
− 7π

16 |y|. (3.44)

At the same time, from Lemma 3.10 we find that for all x ∈ (−1, 1 + θ) and y ∈ R there
exists C2 > 0 such that ∣∣∣Γ(x+ iy)

∣∣∣ ≥ C2e
− 9π

16 |y|. (3.45)

First let us assume that µ = 0. Then (3.43) follows immediately from Lemma 3.10 and

(3.25) since
∣∣∣E [J s−1

2
2

]∣∣∣ < C(δ), for Re(s) ∈ (−1 + δ, 1 + θ− δ). The latter is obvious from

Proposition 3.2 for J2.

Next, assume that µ < 0. Thanks to (3.26) and Lemma 3.8, we get that

|Mµ,1(s)| ≤ C̃(µ, δ, ε)

(
|Γ(s)|

|Γ( 1
2 (s+ 1))|

+ |Γ(s)|
∫
R

|Γ
(
− 1

2 + iy
)
|∣∣Γ ( 1

2

(
1
2 + iy + s

))∣∣dy
)
. (3.46)

From Lemma 3.10, we deduce that for −1 < Re(s) < 1 + θ and |Im(s)| > 1 there exists
C3 > 0 such that

|Γ(s)|
|Γ( 1

2 (s+ 1))|
≤ C3e

−π6 |Im(s)|,

which shows that the first term in (3.46) is decaying exponentially as Im(s)→∞. Next,
from Lemma 3.10, we know that for −1 < Re(s) < 1 + θ and |Im(s)| > 1 there exists
C4 > 0 such that

|Γ(s)| < C4e
− 7π

16 |Im(s)|.

Using this fact and estimates (3.44) and (3.45), we see that for |Im(s)| > 1

|Γ(s)|
∫
R

|Γ
(
− 1

2 + iy
)
|∣∣Γ ( 1

2

(
1
2 + iy + s

))∣∣dy ≤ C1

C2
|Γ(s)|

∫ ∞
−∞

e−
7π
16 |y|+

9π
32 |y+Im(s)|dy

≤ C4
C1

C2
e−

7π
16 |Im(s)|

∫ ∞
−∞

e−
7π
16 |y|+

9π
32 |y|+

9π
32 |Im(s)|dy

≤ C4
C1

C2
e−

5π
32 |Im(s)|

∫ ∞
−∞

e−
5π
32 |y|dy = C5e

− 5π
32 |Im(s)|.

The above estimate shows that the second term in (3.46) is decaying exponentially as
Im(s)→∞, which ends the proof in the case µ < 0.

Finally, let us consider the case when µ > 0. In the proof of part (iii) of Proposition
3.9 (see (3.42)), we have established that for every δ > 0 there exist constants D =

D(δ) ∈ (0, π/2) and C = C(δ) > 0 such that for all s in −1 + δ < Re(s) < 1 + θ − δ,∣∣∣∣∣E
[
J

1
2 (s−1)
2 1F1

(
1− s

2
,

1

2
,−µ

2

2
V

)] ∣∣∣∣∣ < CeD|Im( s2 )|.

Then from (3.27), we find that for all s in the strip −1 + δ < Re(s) < 1 + θ − δ

∣∣Mµ,1(s)
∣∣ < ∣∣∣∣∣ Γ(s)

Γ( 1
2 (s+ 1))

∣∣∣∣∣CeD|Im( s2 )| +
∣∣M−µ,1(s)

∣∣. (3.47)
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Using Lemma 3.10 and the fact that D < π/2, we conclude that there exist C1 > 0 such
that for all s in the strip −1 + δ < Re(s) < 1 + θ − δ and |Im(s)| > 1, we have∣∣∣∣∣ Γ(s)

Γ( 1
2 (s+ 1))

∣∣∣∣∣ < C1e
− 1

4 (π2 +D)|Im(s)|.

Therefore the first term in (3.47) can be bounded by

CC1e
− 1

4 (π2−D)|Im(s)|,

and it decays exponentially as Im(s) → ∞ since π/2 − D > 0. This ends the proof in
the case µ > 0, since we have already established that the second term in (3.47) decays
exponentially to zero.

Corollary 3.14. Assume that ξ satisfies condition (2.1). The function k(x) is infinitely
differentiable on R \ {0} and k(x) ∈ C1(R).

Proof. The fact that k(x) ∈ C1(R) was already established in Lemma 3.3. Assume that
x ∈ (0,∞). Applying Mellin transform inversion, we find that

kµ,σ(x) =
1

2πi

∫
1
2 +iR

x−sMµ,σ(s)ds, (3.48)

where the integral converges absolutely since (3.43) guarantees exponential decay of
Mµ,σ(s) on the line 1/2 + iR. This exponential decay also guarantees that for every
n ≥ 0 the functions

n−1∏
i=0

(s+ i)Mµ,σ(s)

are absolutely integrable along the line 1/2 + iR, which shows by differentiation under

the integral in (3.48) that kµ,σ(x) ∈ C∞(0,∞). Noting that −Iµ,σ
d
= I−µ,σ we deduce

that kµ,σ(x) ∈ C∞(−∞, 0).

Corollary 3.15. Assume that ξ satisfies condition (2.1) and that ρ̂ > 0, θ > 0. For any
µ ∈ R and any small number δ > 0 the estimate (3.43) holds uniformly in the strip
Re(s) ∈ (−1− ρ̂+ δ, 1 + θ − δ).

Proof. The statement about the exponential decay follows from Theorem 3.13, the func-
tional equation (3.13) and the fact that ψ(z) = O(z2) uniformly in the strip Re(s) ∈
(−1− ρ̂+δ, 1+θ−δ). The latter fact follows from (2.2) (see also Proposition 2 in [3]).

Theorem 3.13 is very important for several reasons. First of all, as we have seen in
Corollary 3.14, it implies smoothness of k(x) on R \ {0}. This should be compared with
the case σ = 0, where it is known that k(x) may be non-smooth on (0,∞). For example,
if ξ has bounded variation and negative linear drift µξ, then k(x) may be non-smooth
at point −1/µξ, see Proposition 2.1 in [9] and remark 2 in [19]. Secondly, as we will
see in the next section, Theorem 3.13 together with Theorem 3.5 will allow us to use
simple techniques from Complex Analysis, such as shifting the contour of integration
in the inverse Mellin transform, to prove rather strong results about the asymptotic
behaviour of k(x) as x→ 0+ or x→ +∞.
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4 Applications

In this section, we present several applications of the results obtained in the pre-
vious section. We are still working under the same assumptions as in Section 3, i.e.
we consider the exponential functional Iµ,σ defined by (3.1) under the assumptions:
E[|ξ1|] <∞, E[ξ1] < 0 and σ = ση > 0.

Our main tools are the meromorphic extension of Mµ,σ, Tauberian theorems and
Mellin inversion with shifting of the contour of integration. We will also use the func-
tional equation (3.13) and the estimate (3.43) developed in Section 3. In Theorem 4.1
we derive some asymptotic results for k(x) as x → 0, while in Theorem 4.3 we dis-
cuss the behaviour of P(Iµ,σ > x) and k(x) as x → ∞, thus strengthening significantly
some of the results of Lindner and Maller [25, Theorem 4.5] in this special case when
ηs = µs+σBs. We note that under further assumptions much stronger results are within
reach for the asymptotic behaviour of P(Iµ,σ > x) and k(x) both as x → 0 and x → ∞.
In order to illustrate the techniques, we choose to work with a rather simple but never-
theless very useful for applications class of processes ξ which have hyper-exponential
jumps (see [7, 8, 20]). The same results can be easily generalized to more general class
of Lévy processes with jumps of rational transform (see [19]).

Finally we point out that P(Iµ,σ > x) can be associated to ruin probability for certain
actuarial models, see for example Theorem 4 in [1].

4.1 General results about asymptotic behaviour of k(x)

Our first theorem in this section deals with the asymptotic behaviour of k(x) at zero.
As usual, we define the “floor” (or “integer part”) function as

bxc = max{n ∈ Z : n ≤ x}.

We recall that ρ̂ is defined by (3.2): if ρ̂ > 0 then the Lévy measure of ξ has exponentially
decaying negative tail with the rate of decay equal to ρ̂.

Theorem 4.1. Assume that ξ satisfies condition (2.1) and that θ > 0, ρ̂ > 0. Then for
every integer m ≥ 0 and ε ∈ (0, 1) such that m+ ε < 1 + ρ̂ we have

kµ,σ(x) =

m∑
n=0

bn
n!
xn +O(xm+ε), as x→ 0, (4.1)

where the coefficients {bn}n≥0 are defined recursively: b−1 = 0, b0 = k(0) and

bn+1 =
2

σ2
(µbn − ψ(−n)bn−1) , for 0 ≤ n < ρ̂. (4.2)

In particular, k(x) ∈ C1+bρ̂c(R), and if ρ̂ =∞ then k(x) ∈ C∞(R). Moreover, as Remark
4.7 shows k′′(0) may fail to exist.

Proof. Recall from Corollary 3.13 thatMµ,σ(s) is analytic in Re(s) ∈ (−1− ρ̂, 1 + θ) and
has simple poles at all negative integers −n such that 0 ≤ n < 1 + ρ̂. Define

an = an(µ, σ) = Res(Mµ,σ(s) : s = −n), 0 ≤ n < 1 + ρ̂. (4.3)

Choose c < 1 + ρ̂, such that c /∈ N. We start from the Mellin transform inversion formula
(3.48), use the fact thatMµ,σ(s) decays exponentially as Im(s) → ∞ (and uniformly in
Re(s)) and shift the contour of integration 1/2 + iR 7→ −c+ iR while taking into account
the residues at points −n to obtain

kµ,σ(x) =
1

2πi

∫
s= 1

2 +iR
x−sMµ,σ(s)ds =

∑
0≤n<c

anx
n +

1

2πi

∫
−c+iR

x−sMµ,σ(s)ds. (4.4)

EJP 17 (2012), paper 8.
Page 28/35

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v17-1755
http://ejp.ejpecp.org/


Distributional properties of exponential functionals of Lévy processes

The integral term in the right-hand side of the above equation can be estimated as
follows ∣∣∣∣∣

∫
−c+iR

x−sMµ,σ(s)ds

∣∣∣∣∣ ≤ xc
∫
R

∣∣∣Mµ,σ(−c+ it)
∣∣∣dt,

therefore this term is O(xc) as x→ 0+.
Let us derive a recurrence relation for the coefficients an. First of all, from Lemma

3.4 we find that a0 = k(0) (this fact is also obvious from (4.4)). Next, from the definition
(4.3) and the fact that all the poles are simple, we find that

Mµ,σ(s) =
an
s+ n

+O(1), s→ −n. (4.5)

Using formula (4.5) and the functional equation (3.13), we find that as s→ 0 we have

ψ(s)

s
Mµ,σ(s+ 1) + µ

a0

s
+O(1) +

σ2

2
(−1)

a1

s
+O(1) = 0.

Due to the fact that ψ(s)/s → ψ′(0) = E[ξ1] < ∞, as s → 0, and that Mµ,σ(s + 1) → 1,
as s→ 0, we conclude that µa0 − σ2a1/2 = 0. Following the same steps and considering
the functional equation (3.13), as s → −n, we find that the coefficients an satisfy the
recurrence relation

ψ(−n)

−n
an−1 + µan +

σ2

2
(−n− 1)an+1 = 0, n ≥ 1.

Therefore, if we define bn = bn(µ, σ) = n!an(µ, σ) then from the above equation, we
obtain the recurrence relation (4.2).

Combining all the above results we see that we have established (4.1), but only in

the one-sided sense x→ 0+. Using the fact that Iµ,σ
d
= −I−µ,σ and repeating the above

arguments, we obtain

kµ,σ(−x) = k−µ,σ(x) =

m∑
n=0

bn(−µ, σ)

n!
xn +O(xm+ε), as x→ 0+.

Clearly, (4.1) would be true if bn(−µ, σ) = (−1)nbn(µ, σ). This fact can be easily verified:
using the recurrence relation (4.2), we check that bn(µ, σ) is a polynomial in µ of degree
n, which is odd (even) if n is an odd (even) number. This ends the proof of asymptotic
formula (4.1).

Finally, formula (4.1) and the fact that k(x) ∈ C∞(R \ {0}) imply k(x) ∈ C1+bρ̂c(R),
which ends the proof of Theorem 4.1.

Remark 4.2. To the best of our knowledge this is the first general result on the be-
haviour of kµ,σ(x) as x→ 0 in the case σ > 0. At the same time there are several recent
results concerning such behaviour when σ = 0, see [19, 21, 28].

Note that if the process ξ is spectrally positive, or more generally, if Πξ(dx) restricted
to (−∞, 0) has exponential moments of arbitrary order, then k(x) ∈ C∞(R).

Our next result provides an account of the asymptotic behaviour of P(Iµ,σ > x) as
x→ +∞.

Theorem 4.3. Assume that ξ satisfies condition (2.1) and that θ > 0 and ξ has a non-
lattice distribution.
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(i) If one of the following conditions is satisfied

(a) θ < ρ,
(b) θ = ρ, ψ(θ) = 0 and E[ξ2

1 exp(θξ1)] <∞,

then

P(Iµ,σ > x) = Cx−θ + o
(
x−θ

)
, x→ +∞, (4.6)

where C = −R(θ)/θ and R(θ) is defined in (3.19).

(ii) If θ = ρ and ψ(θ) < 0 then

P(Iµ,σ > x) = o
(
x−θ

)
, x→ +∞. (4.7)

Moreover, if µ ≤ 0 then the asymptotic expressions (4.6) and (4.7) can be differentiated
and leads to an asymptotic expression for k(x).

Proof. Let us prove part (i). For x ≥ 0 we define

F (x) :=

x∫
0

P(Iµ,σ > y
1
2θ )dy.

Using integration by parts in the same way as we did above when dealing with the
Mellin transform of the F2(k; v) term in the proof of Theorem 3.5 (see also equation
(3.16)), we find that for all s in the strip Re(s) ∈ (0, 1

2 )

F̂ (s) :=

∫ ∞
0

xs−1dF (x) = s−1Mµ,σ(1 + 2θs). (4.8)

Due to Corollary 3.7, the function F̂ (s) − C/(1/2 − s) is continuous in 0 < Re(s) ≤ 1/2,
therefore we can apply Wiener-Ikehara Theorem (see Theorem 7.3 in [2]) and conclude
that as x→ +∞

F (x) = 2C
√
x+ o

(√
x
)
.

Using the above asymptotic expression, the fact that P(Iµ,σ > y
1
2θ ) is a decreasing

function of y and applying the Monotone Density Theorem we obtain (4.6).
The proof of part (ii) is very similar: now we use Corollary 3.7 to find that F̂ (s) is

continuous in the strip 0 < Re(s) ≤ 1/2, therefore by applying Wiener-Ikehara Theorem
we conclude that as x → +∞, we have F (x) = o(

√
x), and applying the Monotone

Density Theorem we obtain (4.7).
If µ < 0 then from Lemma 3.3 we know that k(x) is a decreasing function on (0,∞),

therefore we can apply the Monotone Density Theorem to (4.6) or (4.7) and obtain the
corresponding asymptotic expression for k(x).

Remark 4.4. Note that, for all t > 0,

Iµ,σ =

∫ t

0

eξsdηs + eξtI ′µ,σ,

where I ′µ,σ
d
= Iµ,σ and I ′µ,σ independent of

(
eξt ,

∫ t
0
eξsdηs

)
. Recalling that in [25, Prop.

4.1 ; Theorem 4.5] the authors use −ξ for ξ in the definition of Iµ,σ, we point out that
the authors supplement the theory of random recurrent equations developed in [15]
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to deduce general results for the behaviour of P (I(ξ, η) > x). For the case when ηt =

µt+ σBt their result translates to

lim
x→∞

xθP (Iµ,σ > x) = C+ ≥ 0; lim
x→∞

xθP (Iµ,σ < −x)

= C− ≥ 0; lim
x→∞

xθP (|Iµ,σ| > x) = C+ + C− > 0

under the conditions (following our notation) that either ρ > θ ≥ 1 or θ < 1 < ρ. Our
assumptions are much weaker, see (i) Theorem 4.3 and we also compute the constants
C±.

Moreover, assuming µ ≤ 0, or otherwise working with I−µ,σ
d
= −Iµ,σ, one can show

that −R(θ) > 0, thus C+ > 0 and hence C+ + C− > 0. To prove that −R(θ) > 0, we
consider two cases: when θ ≥ 1 this follows directly from (3.19) and the fact that ψ′(θ) >
0, and when θ ∈ (0, 1) this follows from (3.19) and the fact that (θ − 1)Mµ,σ(θ − 1) > 0

(the latter is true due to (3.8) and the fact that k(x) is decreasing, see Lemma 3.3).

Finally we note that, despite dealing with the asymptotics of I(ξ, η) for general η,
the methodology in [25] cannot seemingly be improved to yield stronger results for the
special case when η is a Brownian motion with drift.

Remark 4.5. The case when σ = 0 has been completely dealt with in [27, 31, 32]. We
note that the technique applied there again relies on the random recurrence equations
studied in [15] and the authors are able to obtain results in part (i), condition (b) under
the weaker assumption E [ξ1 exp(θξ1)] < ∞. A recent paper by V. Rivero [33] addresses
the case when the process ξ has convolution equivalent Lévy measure, the main tools
are fluctuation theory of Lévy processes and an explicit path-wise representation of the
exponential functional.

4.2 Case study: processes with hyper-exponential jumps

In this section, we will show how our methods can be extended to derive quite strong
results about the density of the exponential functional, provided that we impose addi-
tional restrictions on the Lévy process ξ. In particular, we will need more information
about the analytical structure of the Laplace exponent ψ(z). Our purpose in this section
is not to prove the most general results possible, but rather to present the ideas and
give the flavour of the results which can be derived.

Let us consider a simple (but very useful) class of processes having hyper-expo-
nential jumps (see [7, 8, 20]). In this case the Lévy measure of a process ξ is essentially
a mixture of exponential distributions

Πξ(dx) = 1{x>0}

N∑
n=1

ane
−ρnxdx+ 1{x<0}

N̂∑
n=1

âne
ρ̂nxdx. (4.9)

where all the constants an, ân, ρn, ρ̂n are strictly positive. Since λ = Πξ(R) < 0, the
process ξ can be represented as Brownian motion with drift plus a compound Poisson
process

ξt = µξt+ σξWt +

N(λt)∑
n=1

Yi,

where N(t) is the standard Poisson process and Yi are i.i.d. random variables with
distribution P(Yi ∈ dy) = λ−1Πξ(dy). Note that µξ is the linear drift of the process ξ, it
is easy to relate it to the constant bξ = E[ξ1] by bξ = µξ + λE[Y1].
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Formula (4.9) implies that the Laplace exponent of a hyper-exponential process is a
rational function of the form

ψ(z) =
σ2
ξ

2
z2 + µξz + z

N∑
n=1

an
ρn(ρn − z)

− z
N̂∑
n=1

ân
ρ̂n(ρ̂n + z)

. (4.10)

For hyper-exponential processes, it is known (see [7, 20]) that the equation ψ(z) = 0

has only real simple solutions. Denote the positive solutions as {ζm}1≤m≤M , where we
assume that they are arranged in increasing order. It is also known that M = N + 1 if
(i) σξ > 0 or (ii) σξ = 0 and µξ > 0, and M = N otherwise (see [19]). Note that in our
previous notation (3.2), we have θ = ζ1, ρ = ρ1 and ρ̂ = ρ̂1.

Using this information about zeros and poles of ψ(z) and the functional equation
(3.13) it is easy to see that Mµ,σ(s) can be extended to a meromorphic function, with
poles at the points

{ζm + n : m ≥ 1, 1 ≤ n ≤ N} ∪ {−ρ̂n −m : m ≥ 1, 1 ≤ n ≤ N̂} ∪ {−m : m ≥ 0}.

If we further assume that{
ζi − ζj /∈ Z for all 1 ≤ i, j ≤M and i 6= j,

ρ̂i /∈ N and ρ̂i − ρ̂j /∈ Z for all 1 ≤ i, j ≤ N̂ and i 6= j,
(4.11)

then it is clear that all the poles ofMµ,σ(s) are simple. Let us introduce the following
notations

ci,j = − 1

(ζi)j
Res (Mµ,σ(s) : s = j + ζi) , 1 ≤ i ≤M, j ≥ 1,

bi,j = (1 + ρ̂i)jRes (Mµ,σ(s) : s = −j − ρ̂i) , 1 ≤ i ≤ N̂ , j ≥ 1,

recall that (a)n = a(a+ 1) . . . (a+n− 1) denotes the Pochhammer symbol. Our next goal
is to compute coefficients ci,j and bi,j in terms of the Mellin transformMµ,σ(s). Let us
fix i such that 1 ≤ i ≤ M . Since ζi is a simple root of a rational function ψ(z), we have
ψ(z) = ψ′(ζi)(z− ζi) +O((z− ζi)2) as z → ζi. This fact and the functional equation (3.13)
show that

ci,1 =
1

ψ′(ζi)

(
µMµ,σ(ζi) +

σ2

2
(ζi − 1)Mµ,σ(ζi − 1)

)
. (4.12)

Next, using the functional equation (3.13) and the same technique as in the proof of
Theorem 4.1, we obtain a recursion equation

ci,j+1 = − 1

ψ(j + ζi)

(
µci,j +

σ2

2
ci,j−1

)
, j ≥ 1, (4.13)

where we have defined ci,0 = 0. Next, let us fix i such that 1 ≤ i ≤ N̂ . Formula (4.10)
implies that ψ(z) has a simple pole at z = −ρ̂i with residue âi. Again, we use this fact
and the functional equation (3.13) to conclude that

bi,1 = − 2

σ2

âi
ρ̂i
Mµ,σ(1− ρ̂i), (4.14)

and

bi,j+1 =
2

σ2
(µbi,j − ψ(−j − ρ̂i)bi,j−1) , j ≥ 1, (4.15)
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where we have defined bi,0 = 0. Recall that the coefficients

bj = j!Res(Mµ,σ(s) : s = −j)

can be computed via the recurrence relation (4.2)
Our main result in this section is the following Theorem, which provides a complete

asymptotic expansion for k(x) as x→ 0+ and at x→ +∞. The corresponding expansions
as x→ 0− and x→ −∞ can be obtained by considering k−µ,σ(x) = kµ,σ(−x).

Theorem 4.6. Assume that ξ is a process with hyper-exponential jumps (4.9), which
satisfies E[ξ1] < 0 and for which conditions (4.11) are satisfied. Then for every c > 0

kµ,σ(x) =



∑
0≤j<c

bj
j!
xj +

N̂∑
i=1

∑
j≥1

1{j+ρ̂i<c}bi,j
xj+ρ̂i

(1 + ρ̂i)j
+O (xc) , as x→ 0+,

M∑
i=1

∑
j≥1

1{j+ζi<c}ci,j
(ζi)j
xj+ζi

+O
(
x−c

)
, as x→ +∞.

(4.16)

Proof. From (4.10) it is clear that ψ(z) = O(z2) and 1/ψ(z) = O(1) as Im(z) → ∞,
|Im(z)| > 1, and that these estimates are uniform in Re(s). Therefore, using Theorem
3.13 and the functional equation (3.13) we see that Mµ,σ(s) decays exponentially as
Im(s) → ∞, Im(s) > 1, and uniformly if Re(s) belongs to a compact subset of R. This
shows that we can apply the same technique as in the proof of Theorem 4.1: shift the
contour of integration, collect all the residues and estimate the resulting integral. The
details are left to the reader.

Remark 4.7. Note that if ρ̂ = ρ̂1 ∈ (0, 1) then the coefficient bi,1 defined by (4.14) is
strictly negative. Theorem 4.6 shows that as x→ 0+ we have

k(x) = k(0) + k′(0)x+
bi,1

1 + ρ̂
x1+ρ̂ + o(x1+ρ̂),

which implies that in this case k′′(0) does not exist.

We would also like to point out that if conditions (4.11) are not satisfied, then
Mµ,σ(s) will have multiple poles. This is not a big problem, but it implies that the
asymptotic expansions (4.16) will contain terms of the form xα ln(x)k, where −α is the
pole of Mµ,σ(s) and k is a non-negative integer which is not greater than the multi-
plicity of the pole −α. Also, results similar to Theorem 4.6 can be derived for a more
general class of Lévy processes, for example for processes which have jumps of rational
transform, see [19] for results in the case σ = 0.
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