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Abstract

In this paper we study the stochastic partial differential systems of divergence type with C1 space
domains in Rd . Existence and uniqueness results are obtained in terms of Sobolev spaces with
weights so that we allow the derivatives of the solution to blow up near the boundary. The
coefficients of the systems are only measurable and are allowed to blow up near the boundary.
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1 Introduction

In this article we are dealing with W 1
2 -theory of the stochastic partial differential systems (SPDSs)

of d1 equations of divergent type:

duk = (Di(a
i j
kru

r
x j + b̄i

kru
r + f̄ ik) + bi

kru
r
x i + ckru

r + f k)d t

+(σi
kr,mur

x i + νkr,mur + gk
m)dwm

t , t > 0 (1.1)

uk(0) = uk
0

with x ∈ Rd , Rd
+ or O , a bounded C1 domain. Here, {wm

t : m = 1, 2, . . .} is a countable set of
independent one-dimensional Brownian motions defined on a probability space (Ω,F , P). Indices i
and j run from 1 to d while k, j = 1, 2, · · · , d1 and m = 1, 2, · · · . To make expressions simple, we
are using the summation convention on i, j, r, m. The coefficients ai j

kr , b̄i
kr , bi

kr , ckr ,σ
i
kr,m and νkr,m

are measurable functions depending on ω ∈ Ω, t, x . Detailed formulation of (1.1) follows in the
subsequent sections.

Demand for a general theory of stochastic partial differential systems(SPDSs) arises when we model
the interactions among unknowns in a natural phenomenon with random behavior. For example,
the motion of a random string can be modeled by means of SPDSs(see [20] and [2]).

We note that, if d1 = 1, then the system (1.1) becomes a single stochastic partial differential equation
(SPDE) of divergence type. In this case L2-theory on Rd was developed long ago and an account
of it can be found, for instance, in [21] and [22] (even if d1 6= 1, L2-theory on Rd , Theorem 2.4,
can be easily obtained by adopting the approaches in [21] and [22]). Also, Lp-theory(p ≥ 2) of
such single equations on C1-domains can be found in [4], [6] and [23] in which weighted Sobolev
spaces are used to allow derivatives of the solutions to blow up near the boundary. For comparison
with Lp-theory of SPDEs of non-divergence type, we refer to [5], [8], [14], [12] and references
therein.

The main goal of this article is to extend the results [22], [4], [6], [23] for single equations to the
case of systems under no smoothness assumptions on the coefficients. We prove the uniqueness and
existence results of system (1.1) in weighted Sobolev spaces so that we allow the derivatives of the
solutions to blow up near the boundary. The coefficients of the system are only measurable and are
allowed to blow up near the boundary (See (4.32)).

We declare that W 1
p -theory, a desirable further result beyond W 1

2 -theory, is not successful yet even

under the assumption that the coefficients ai j
kr and σi

kr are constants. This is due to the difficulty
caused by considering SPDSs instead of SPDEs. For Lp-theory, p > 2, one must overcome tremen-
dous mathematical difficulties rising in the general settings; one of the main difficulties in the case
p > 2 is that the arguments we are using in the proof of Lemma 3.3 below are not working since in
this case we get some extra terms which we simply can not control.

For previous works on certain non-linear stochastic systems such as Stochastic Navier-Stokes equa-
tions we refer the authors to [1, 16, 18, 17, 19] and references therein.

The organization of the article is as follows. Section 2 handles the Cauchy problem. In section 3 and
section 4 we develop our theory of the system defined on Rd

+ and bounded domain O , respectively.

As usual, Rd stands for the Euclidean space of points x = (x1, ..., xd), Br(x) = {y ∈ Rd : |x − y| <
r}, Br = Br(0) and Rd

+ = {x ∈ R
d : x1 > 0}. For i = 1, ..., d, multi-indices α = (α1, ...,αd),
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αi ∈ {0,1, 2, ...}, and functions u(x) we set

ux i =
∂ u

∂ x i = Diu, Dαu= Dα1
1 · ... · D

αd
d u, |α|= α1+ ...+αd .

If we write c = c(· · · ), this means that the constant c depends only on what are in parenthesis.

The authors are sincerely grateful to the referee for giving the authors many helpful comments and
finding few errors in the earlier version of this article.

2 The systems on Rd

In this section we develop some solvability results of linear systems defined on space domain Rd .
These results will be used later for systems defined on Rd

+ or a bounded C1 domain O .

Let (Ω,F , P) be a complete probability space and {Ft} be a filtration such that F0 contains all P-
null sets of Ω; the probability space (Ω,F , P) is rich so that we define independent one-dimensional
{Ft}-adapted Wiener processes {wm

t }
∞
m=1 on it. We let P denote the predictable σ-algebra on

Ω× (0,∞).
The space C∞0 = C∞0 (R

d ;Rd1) denotes the set of all Rd1-valued infinitely differentiable functions
with compact support in Rd . By D we mean the space of Rd1-valued distributions on C∞0 ; precisely,
for u ∈ D and φ ∈ C∞0 we define (u,φ) ∈ Rd1 with components (u,φ)k = (uk,φk), k = 1, . . . , d1.
Each uk is a usual R-valued distribution defined on C∞(Rd ;R). We let Lp = Lp(Rd ;Rd1) be the
space of all Rd1-valued functions u= (u1, . . . , ud1) satisfying

‖u‖p
Lp

:=
d1
∑

k=1

‖uk‖p
Lp
<∞.

For p ∈ [2,∞) and γ ∈ (−∞,∞) we define the space of Bessel potential Hγp = Hγp(Rd ;Rd1) as the
space of all distributions u such that (1−∆)γ/2u ∈ Lp, where

((1−∆)γ/2u)k := (1−∆)γ/2uk :=F−1[(1+ |ξ|2)γ/2F (uk)(ξ)].

Here, F is the Fourier transform. Define

‖u‖Hγp := ‖(1−∆)γ/2u‖Lp
.

Then, Hγp is a Banach space with the given norm and C∞0 is dense in Hγp . Note that Hγp are usual
Sobolev spaces for γ = 0,1, 2, . . .. It is well known that the first order differentiation operators,
∂i : Hγp(Rd ;R)→ Hγ−1

p (Rd ;R) given by u→ ux i (i = 1, 2, . . . , d), are bounded. On the other hand,
for u ∈ Hγp(Rd ;R), if supp (u)⊂ (a, b)×Rd−1 with −∞< a < b <∞, we have

‖u‖Hγp(Rd ;R) ≤ c(d,γ, a, b)‖ux‖Hγ−1
p (Rd ;R) (2.2)

(see, for instance, Remark 1.13 in [13]). Let `2 be the set of all real-valued sequences e =
(e1, e2, . . .) with the inner product (e, f )`2

=
∑∞

m=1 em fm and the norm |e|`2
:= (e, e)1/2

`2
. For

g = (g1, g2, · · · , gd1), where gk are `2-valued functions, we define

‖g‖p
Hγp(`2)

:=
d1
∑

k=1

‖|(1−∆)γ/2 gk|`2
‖p

Lp
.
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Using the spaces mentioned above, for a fixed time T , we define the stochastic Banach spaces

Hγp(T ) := Lp(Ω× (0, T],P , Hγp), Hγp(T,`2) := Lp(Ω× (0, T],P , Hγp(`2)),

Lp(T ) :=H0
p(T ), Lp(T,`2) =H

0
p(T,`2)

with norms given by

‖u‖p
H
γ
p(T )
= E

∫ T

0

‖u(t)‖p
Hγp

d t, ‖g‖p
H
γ
p(T,`2)

= E

∫ T

0

‖u(t)‖p
Hγp(`2)

d t.

Lastly, we set Uγp = Lp(Ω,F0, Hγ−2/p
p ).

Definition 2.1. For a D-valued function u ∈ Hγ+2
p (T ), we write u ∈ H γ+2

p (T ) if u(0, ·) ∈ Uγ+2
p and

there exist f ∈Hγp(T ), g ∈Hγ+1
p (T,`2) such that

du= f d t + gmdwm
t , t ≤ T

in the sense of distributions, that is, for any φ ∈ C∞0 and k = 1, 2, · · · , d1, the equality

(uk(t, ·),φ) = (uk(0, ·),φ) +
∫ t

0

( f k(s, ·),φ)ds+
∞
∑

m=1

∫ t

0

(gk
m(s, ·),φ)dwm

s (2.3)

holds (a.s.) for all t ≤ T . We write f = Du, g = Su to denote the deterministic part, the stochastic
part of u, respectively. Also write Dku = f k,Sku = gk and Dk

mu = gk
m. The norm in H γ+2

p (T ) is
defined by

‖u‖H γ+2
p (T ) = ‖u‖Hγ+2

p (T )+ ‖Du‖Hγp(T )+ ‖Su‖
H
γ+1
p (T,`2)

+ ‖u(0)‖Uγ+2
p

.

Remark 2.2. Note that since the coefficients in system (1.1) are only measurable, the spaceH γ+2
p (T )

is not appropriate for system (1.1) unless γ=−1.

We set Ai j = (ai j
kr), Σ

i = (σi
kr) andA i j = (αi j

kr), where

α
i j
kr =

1

2

d
∑

l=1

(σi
lk,σ j

l r)`2
, σi

kr = (σ
i
kr,1,σi

kr,2, · · · ).

Also, we set B̄i = (b̄i
kr), Bi = (bi

kr), C = (ckr),N = (νkr), where νkr := (νkr,1,νkr,2, . . .).

For any d1× d1 matrix M = (mkr) we let

|M | :=
È

∑

k,r

(mkr)2 ; |M | :=
È

∑

k,r

|mkr |2`2
,

where the latter is the case that the elements are in `2.

Throughout the article we assume the following.
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Assumption 2.3. (i) The coefficients ai j
kr , b̄i

kr , bi
kr , ckr ,σ

i
kr,m and νkr,m are P ×B(Rd)-measurable,

whereB(Rd) denotes Borel σ-field in Rd .

(ii) There exist finite constants δ, K j( j = 1, . . . , d), L > 0 so that

δ|ξ|2 ≤ ξ∗i
�

Ai j −A i j
�

ξ j (2.4)

holds for any ω ∈ Ω, t > 0, where ξ is any (real) d1 × d matrix, ξi is the ith column of ξ; again
the summations on i, j are understood. Moreover, we assume that for any ω, t > 0, x ∈ Rd ,
i, j = 1, . . . , d,

�

�A1 j(ω, t, x)
�

�≤ K j ,
�

�Ai j(ω, t, x)
�

�≤ L (i 6= 1), |A i j(ω, t, x)| ≤ L. (2.5)

Our main theorem in this section is the following.

Theorem 2.4. Assume that there is a constant N0 ∈ (1,∞) such that for any ω, t > 0, x ∈ Rd ,
i = 1, . . . , d,

|B̄i|, |Bi|, |C |, |N |< N0. (2.6)

Then for any f̄ i ∈ L2(T ) (i = 1, . . . , d), f ∈ H−1
2 (T ), g ∈ L2(T,`2), and u0 ∈ U1

2 , system (1.1) has a
unique solution u ∈H 1

2 (T ), and for this solution we have

‖ux‖L2(T ) ≤ c(‖u‖L2(T )+
∑

i

‖ f̄ i‖L2(T )+ ‖ f ‖H−1
2 (T )

+ ‖g‖L2(T,`2)+ ‖u0‖U1
2
), (2.7)

‖u‖H1
2(T )

≤ cecT (
∑

i

‖ f̄ i‖L2(T )+ ‖ f ‖H−1
2 (T )

+ ‖g‖L2(T,`2)+ ‖u0‖U1
2
), (2.8)

where c = c(d, d1,δ, K , L, N0).

Proof. 1. We note that f k can be expressed as f k = F0k+div(F1k, F2k, . . . , F dk), where F0k ∈H1
2(T ),

F ik ∈ L2(T ) with the estimate ‖F0k‖H1
2(T )
+
∑d

i=1 ‖F
ik‖L2(T ) ≤ c(d, d1)‖ f k‖H−1

2 (T )
; this follows from

the observation f k = (1−∆)(1−∆)−1 f k = (1−∆)−1 f k + div(−∇((1−∆)−1 f k)) (see, p.197 of
[13]). Hence, we may assume that f ∈ H1

2(T ) and show (2.7) and (2.8) with ‖ f ‖H1
2(T )

in place of
‖ f ‖H−1

2 (T )
.

2. By Theorem 4.10 and Theorem 5.1 in [12], for each k the equation

duk =
�

Di(δ ·δi jδkru
r
x i x j + f̄ ik) + f k

�

d t + gk
mdwm

t ,

or equivalently,
duk = (δ∆uk + f̄ ik

x i + f k)d t + gk
mdwm

t , uk(0) = uk
0,

has a solution uk and we have u := (u1, u2, · · · , ud1)∗ as the unique solution of

du= (δ∆u+ f̄ i
x i + f )d t + gmdwm

t , u(0) = u0,

inH 1
2 (T ) with estimates (2.7) and (2.8). For λ ∈ [0,1] we define

E i j
λ
= (ei j

kr,λ) := (1−λ)
�

Ai j −A i j
�

+λδ ·δi j I

=
�

(1−λ)Ai j +λδ ·δi j I
�

− (1−λ)A i j = Ai j
λ
−A i j

λ
,
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where Ai j
λ

:= (1−λ)Ai j +λδ ·δi j I , A
i j
λ

:= (1−λ)A i j . Then we have

|Ai j
λ
| ≤ |Ai j|, |A i j

λ
| ≤ |A i j|, δ|ξ|2 ≤

∑

i, j

ξ∗i E i j
λ
ξ j

for any real d1× d-matrix ξ. Also, we define

B̄i
λ := (1−λ)B̄i , Bi

λ := (1−λ)Bi , Cλ := (1−λ)C , Nλ := (1−λ)N .

Then B̄i
λ
, Bi
λ
, Cλ,Nλ satisfy (2.6). Thus, having the method of continuity in mind, we only prove

that (2.7) and (2.8) hold given that a solution u already exists.

3. Applying the stochastic product rule d|uk|2 = 2ukduk + dukduk for each k (see Remark 2.5
below), we have

|uk(t)|2 = |uk
0|

2

+

∫ t

0

2uk
�

Di(a
i j
kru

r
x j + f̄ ik) + bi

kru
r
x i + ckru

r + f k
�

ds

+

∫ t

0

|σi
kru

r
x i + νkru

r + gk|2`2
ds

+

∫ t

0

2uk(σi
kr,mur

x i + νkr,mur + gk
m)dwm

s , t > 0. (2.9)

Note that, making the summation on r, i appeared, we get

∑

k

�

�

�

�

�

∑

r,i

σi
kru

r
x i +

∑

r
νkru

r + gk

�

�

�

�

�

2

`2

= 2
∑

i, j

(ux i )∗A i jux j +
∑

k

h

�

�(N u)k
�

�

2
`2
+ |gk|2`2

i

+2
∑

k



(
∑

i

(Σiux i )k, gk)`2
+ ((N u)k, gk)`2

+ (
∑

i

(Σiux i )k, (N u)k)`2



 .

By taking expectation, integrating with respect to x , and using integrating by parts in turn on (2.9),
we obtain

E

∫

Rd

|u(t)|2d x + 2 E

∫ t

0

∫

Rd

∑

i, j

(ux i )∗(Ai j −A i j)ux j d xds

= E

∫

Rd

|u0|2d x

+2
∑

i

E

∫ t

0

∫

Rd

�

−2u∗
x i f̄ i + u∗(Biux i )

�

d xds+ 2E

∫ t

0

∫

Rd

�

Cu+ u∗ f
�

d xds

+
∑

k

E

∫ t

0

∫

Rd

h

�

�(N u)k
�

�

2
`2
+ |gk|2`2

i

d xds

+2
∑

k

E

∫ t

0

∫

Rd



(
∑

i

(Σiux i )k, gk)`2
+ ((N u)k, gk)`2

+ (
∑

i

(Σiux i )k, (N u)k)`2



 d xds.(2.10)
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Note that we have

2

�

�

�

�

�

∑

k

(
∑

i

(Σiux i )k, gk)`2

�

�

�

�

�

≤ 2
∑

k

�

�

∑

r,i

σi
kru

r
x i

�

�

`2

�

�gk
�

�

`2

≤
∑

k





ε

2

�

�

∑

r,i

σi
kru

r
x i

�

�

2
`2
+

2

ε

�

�gk
�

�

2
`2





≤
ε

2
|ux |2

∑

k,r,i

�

�σi
kr

�

�

2
`2
+

2

ε

∑

k

�

�gk
�

�

2
`2

= ε|ux |2
∑

r,i

�

�αii
r r

�

�

2
+

2

ε

∑

k

�

�gk
�

�

2
`2

(2.11)

for any ε > 0; similarly, we get

2

�

�

�

�

�

∑

k

((N u)k, gk)`2

�

�

�

�

�

≤ |N ||u|+
∑

k

|gk|2`2
, (2.12)

2

�

�

�

�

�

∑

k

(
∑

i

(Σiux i )k, (N u)k)`2

�

�

�

�

�

≤ ε|ux |2
∑

r,i

�

�αii
r r

�

�

2
+

2

ε
|N ||u|. (2.13)

Hence, it follows that

E

∫

Rd

|u(t)|2d x + 2δ E

∫ t

0

∫

Rd

|ux |2d xds

≤ E

∫

Rd

|u0|2d x + cε E

∫ t

0

∫

Rd

|ux |2d xds+ cE

∫ t

0

∫

Rd

|u(s)|2d xds

+c
∑

i

E

∫ t

0

∫

Rd

| f̄ i|2d xds+E

∫ t

0

∫

Rd

| f |2d xds+ c E
∑

k

∫ t

0

∫

Rd

|gk|2`2
d xds

≤ cε E

∫ t

0

∫

Rd

|ux |2d xds+ cE

∫ t

0

∫

Rd

|u(s)|2d xds

+c
∑

i

‖ f̄ i‖2
L2(T )

+ ‖ f ‖2
L2(T )

+ c‖g‖2
L2(T,`2)

+ ‖u0‖2U1
2
.

Choosing small ε, we obtain

‖ux‖2L2(T )
≤ c(‖u‖2

L2(T )
+ ‖ f ‖2

L2(T )
+
∑

i

‖ f̄ i‖2
L2(T )

+ ‖g‖2
L2(T,`2)

+ ‖u0‖2U1
2
),

E

∫

Rd

|u(t)|2d x ≤ cE

∫ t

0

∫

Rd

|u(s)|2d xds

+c(‖ f ‖2
L2(T )

+
∑

i

‖ f̄ i‖2
L2(T )

+ ‖g‖2
L2(T,`2)

+ ‖u0‖2U1
2
),

where c does not depend on T . Now we recall the remark in step 1, and see that the first inequality
implies (2.7). Also the second inequality and Gronwall’s inequality lead us to (2.8). The theorem is
proved.
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Remark 2.5. In (2.9) we assumed that uk(t, x) has Itô differential for each x , however Itô’s formula
works even when uk has Itô’s differential in the sense of distributions (see Theorem 2.1 [10]).
Alternatively, one can proceed as follows: Take a nonnegative function ψ ∈ C∞0 (B1(0)) with unit
integral, and for ε > 0 define ψε(x) = ε−dψ(x/ε). For any generalized function v, define v(ε)(x) =
v ∗ψε(x) := (v(·),ψε(x − ·)), then v(ε)(x) is infinitely differentiable function of x . By plugging
ψε(x − ·) instead of φ in (2.3),

uk(ε)(t, x) = uk(ε)(0, x) +

∫ t

0

(Dku)(ε)(s, x)d t +

∫ t

0

(Sk
mu)(ε)dwm

t .

Considering Itô’s formula, integrating over Rd and taking the expectation, for each k we get

E‖uk(ε)(t)‖2L2
= E‖uk(ε)

0 ‖2L2
+E

∫ t

0

∫

Rd

h

2uk(ε)(Dku)(ε)+ |(Sku)(ε)|2`2

i

d xds. (2.14)

Since u(ε) → u in H 1
p (T ) as ε → 0 (see the proof of Theorem 3.7 in [12]), (2.14) leads to (2.10),

i.e.

E‖uk(t)‖2L2
= E‖uk

0‖
2
L2
+E

∫ t

0

∫

Rd

h

2ukDku+ |Sku|2`2

i

d xds.

3 The system on Rd
+

In this section we present some results for the systems defined on Rd
+. In the next section, these

results will be modified and be used to develop our theory of the systems defined on C1-domains.

Here we use the Banach spaces introduced in [13]. Let ζ ∈ C∞0 ((a, b)), where (a, b) ⊂ R+, be a
function satisfying

∞
∑

n=−∞
ζ(en+x)> c > 0, ∀x ∈R, (3.15)

where c is a constant. Note that any nonnegative function ζ, ζ > 0 on [1, e], satisfies (3.15). For
θ ,γ ∈R, we let Hγp,θ denote the set of all distributions u= (u1, u2, · · ·ud1) on Rd

+ such that

‖u‖p
Hγp,θ

:=
∑

n∈Z
enθ‖ζ(·)u(en·)‖p

Hγp
<∞. (3.16)

Here ζ(x) := ζ(x1). Since ζ(x)u(en x) = 0 for x1 ∈ (0, a), by extending ζ(x)u(en x) as zero for
x1 ≤ 0 one can regard it as a distribution defined on Rd . If g = (g1, g2, . . . , gd1) and each gk is an
`2-valued function, then we define

‖g‖p
Hγp,θ (`2)

=
∑

n∈Z
enθ‖ζ(·)g(en·)‖p

Hγp(`2)
.

It is known (see [13]) that up to equivalent norms the space Hγp,θ is independent of the choice of ζ.
Also, for any η ∈ C∞0 (R+), we have

∞
∑

n=−∞
enθ‖u(en·)η‖p

Hγp
≤ c

∞
∑

n=−∞
enθ‖u(en·)ζ‖p

Hγp
, (3.17)
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where c depends only on d, d1,γ,θ , p,η,ζ. Furthermore, if γ is a nonnegative integer, then

‖u‖p
Hγp,θ
∼

γ
∑

n=0

∑

|α|=n

∫

Rd
+

|(x1)nDαu(x)|p(x1)θ−d d x . (3.18)

Below we collect some other properties of spaces Hγp,θ . Let Mα be the operator of multiplying by

(x1)α and M = M1.

Lemma 3.1. ([13]) Let d − 1< θ < d − 1+ p.

(i) Assume that γ− d/p = m+ ν for some m = 0,1, · · · and ν ∈ (0,1]. Then for any u ∈ Hγp,θ and
i ∈ {0,1, · · · , m}, we have

|M i+θ/pDiu|C + [M m+ν+θ/pDmu]Cν ≤ c‖u‖Hγp,θ
.

(ii) Let α ∈R, then MαHγp,θ+αp = Hγp,θ ,

‖u‖Hγp,θ
≤ c‖M−αu‖Hγp,θ+αp

≤ c‖u‖Hγp,θ
.

(iii) M D, DM : Hγp,θ → Hγ−1
p,θ are bounded linear operators.

(iv) There is a constant c = c(d, p,θ ,γ)> 0 so that

c−1‖M−1u‖Hγp,θ
≤ ‖ux‖Hγ−1

p,θ
≤ c‖M−1u‖Hγp,θ

.

(v) For any γ ∈R and v ∈ M−1Hγp,θ , there exists v1, · · · , vd ∈ Hγ+1
p,θ so that

∑

i

Di v
i = v,

∑

i

‖v i‖Hγ+1
p,θ
≤ c‖M v‖Hγp,θ

.

Proof. All results are taken from [13]. We only give a short comment on (v), since the statement
may look different. By Remark 2.15 of [13], for any u ∈ Hγp,θ , there exist u1, u2, · · ·ud ∈ Hγ+1

p,θ so that

u =
∑d

i=1 M Diu
i and

∑

i ‖u
i‖Hγ+1

p,θ
≤ N‖u‖Hγp,θ

. Thus it is enough to apply this result with u = M v

(note
∑

i M Di v
i = M v implies

∑

i Di v
i = v).

We define the following stochastic Banach spaces.

H
γ
p,θ (T ) = Lp(Ω× [0, T],P , Hγp,θ ), H

γ
p,θ (T,`2) = Lp(Ω× [0, T],P , Hγp,θ (`2))

Lp,θ (T ) :=H0
p,θ (T ), Lp,θ (T,`2) :=H0

p,θ (T,`2), Uγp,θ = Lp(Ω,F0, M1−2/pHγ−2/p
p,θ ).

Definition 3.2. We write u ∈ H
γ+2
p,θ (T ) if u ∈ MHγ+2

p,θ (T ), u(0) ∈ Uγ+2
p,θ and for some f ∈

M−1H
γ
p,θ (T ), g ∈Hγ+1

p,θ (T,`2),
du= f d t + gmdwm

t

holds in the sense of the distributions. The norm in H
γ+2
p,θ (T ) is defined by

‖u‖
H
γ+2
p,θ (T )

= ‖M−1u‖
H
γ+2
p,θ (T )

+ ‖M f ‖Hγp,θ (T )
+ ‖g‖

H
γ+1
p,θ (T,`2)

+ ‖u(0)‖Uγ+2
p,θ

.
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Let us denote

K :=
È

∑

j

(K j)2.

Lemma 3.3. Let

θ ∈
�

d −
δ

2K −δ
, d +

δ

2K +δ

�

, (3.19)

b̄i = bi = c = 0 and ν = 0. Also assume that u ∈ MH1
2,θ (T ) is a solution of system (1.1) on

[0, T]×Rd
+ and u vanishes when x1 is near zero or infinity, i.e. there exists a compact set G ⊂ R+ so

that u(t, x) = 0 if x1 6∈ G. Then we have

‖M−1u‖2
H1

2,θ (T )
≤ c(‖ f̄ i‖2

L2,θ (T )
+ ‖M f ‖2

H−1
2,θ (T )

+ ‖g‖2
L2,θ (T,`2)

+ ‖u0‖2U1
2,θ
), (3.20)

where c = c(d, d1,δ,θ , K , L).

Proof. 1. By Lemma 3.1(iv), f k has the following representation:

f k =
d
∑

i=1

Di F
ik,

∑

i

‖F ik‖L2,θ (T ) ≤ c‖M f k‖H−1
2,θ (T )

.

Also since ‖M−1u‖H1
2,θ
≤ c‖ux‖L2,θ

( see Lemma 3.1(iv) ), it is enough to assume f k = 0 and prove

‖ux‖2L2,θ (T )
≤ c(‖ f̄ i‖L2,θ (T )+ ‖g‖

2
L2,θ (T,`2)

+ ‖u0‖2U1
2,θ
).

2. Again, as in the proof of Theorem 2.4, applying the stochastic product rule d|uk|2 = 2ukduk +
dukduk for each k (see Remark 2.5), we get

|uk(t)|2 = |uk
0|

2+

∫ t

0

2uk
h

Di(a
i j
kru

r
x j + f̄ ik)

i

ds

+

∫ t

0

|σi
kru

r
x i + gk|2`2

ds+

∫ t

0

2uk(σi
kr,mur

x i + gk
m)dwm

s ,

where the summations on i, j, r are understood. Denote c = θ − d. For each k, we have

0 ≤ E

∫

Rd
+

|uk(T, x)|2(x1)cd x

= E

∫

Rd
+

|uk(0, x)|2(x1)cd x

+2E

∫ T

0

∫

Rd
+

ukDi(a
i j
kru

r
x j )(x1)cd xds+ 2E

∫ T

0

∫

Rd
+

ur f̄ ik
x i (x1)cd xds

+E

∫ T

0

∫

Rd
+

|σi
kru

r
x i |2`2
(x1)cd xds

+2E

∫ T

0

∫

Rd
+

(Σiux i )k, gk)`2
(x1)cd xds+E

∫ T

0

∫

Rd
+

|gk|2`2
(x1)cd xds. (3.21)
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Note that, by integration by parts, we get

2E

∫ T

0

∫

Rd
+

ur f̄ ik
x i (x1)cd xds =−2E

∫ T

0

∫

Rd
+

�

ur
x i f̄ ik(x1)c + cM−1ur f̄ 1k(x1)c

�

d xds

≤ ε‖ux‖2L2,θ (T )
+ ε‖M−1u‖2

L2,θ (T )
+ c(ε)‖ f̄ ‖2

L2,θ (T )
.

Also, the second term in the right hand side of (3.21) is

E

∫ T

0

∫

Rd
+

h

−2ai j
kru

k
x i u

r
x j − 2c(a1 j

kru
r
x j )(M−1uk)

i

(x1)cd xds.

Thus, by summing up the terms in (3.21) over k and rearranging the terms, we obtain

2E

∫ T

0

∫

Rd
+

u∗
x i

�

Ai j −A i j
�

ux j (x1)cd xds

≤ |c|
�

κ‖ux‖2L2,θ (T )
+ K2κ−1‖M−1u‖2

L2,θ (T )

�

+Nε
�

‖M−1u‖2
L2,θ (T )

+ ‖ux‖2L2,θ (T )

�

+c(ε)
�

‖ f̄ i‖2
L2,θ (T )

+ ‖g‖2
L2,θ (T,`2)

�

+ ‖u(0)‖2
U1

2,θ
, (3.22)

for any κ,ε > 0. This is because for any vectors v, w ∈Rn and κ > 0

|< A1 j v, w > | ≤ |A1 j v||w| ≤ K j|v||w| ≤
1

2
(κ|v|2+κ−1(K j)2|w|2)

and consequently,

E

∫ T

0

∫

Rd
+

h

−2ai j
kru

k
x i u

r
x j − 2c(a1 j

kru
r
x j )(M−1uk)

i

(x1)cd xds

≤ E

∫ T

0

∫

Rd
+

−2ai j
kru

k
x i u

r
x j d xds+ |c|

�

κ‖ux‖2L2,θ (T )
+ K2κ−1‖M−1u‖2

L2,θ (T )

�

. (3.23)

Now, Assumption (2.4), inequality (3.22), the inequality

‖M−1u‖2L2,θ
≤

4

(d + 1− θ)2
‖ux‖2L2,θ

(3.24)

(see Corollary 6.2 in [13]), and Lemma 3.1 (iv) lead us to

2δ‖ux‖2L2,θ (T )
− |c|

�

κ+
4K2

κ(d + 1− θ)2

�

‖ux‖2L2,θ (T )

≤ Nε‖ux‖2L2,θ (T )
+ N‖ f̄ i‖2

L2,θ (T )
+ N‖g‖2

L2,θ (T )
+ ‖u(0)‖2

U1
2,θ

.

Now, it is enough to take κ= 2K/(d + 1− θ) and observe that (3.19) is equivalent to the condition

2δ− |c|
�

κ+
4K2

κ(d + 1− θ)2

�

= 2δ−
4|c|K

d + 1− θ
> 0.

The lemma is proved.
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Here is the main result of this section.

Theorem 3.4. Suppose (3.19) holds and

|M b̄i
kr |+ |M bi

kr |+ |M
2ckr |+ |Mνkr |`2

< β . (3.25)

Then there exists constant β0 = β0(d, d1,θ ,δ, K , L) > 0 so that if β ≤ β0, then for any f̄ i ∈ L2,θ (T ),
f ∈ M−1H−1

2,θ (T ), g ∈ L2,θ (T,`2), and u0 ∈ U1
2,θ , system (1.1) has a unique solution u ∈ H1

2,θ (T ), and
furthermore

‖u‖H1
2,θ (T )

≤ c‖ f̄ i‖L2,θ (T )+ c‖M f ‖H−1
2,θ (T )

+ c‖g‖L2,θ (T,`2)+ c‖u0‖U1
2,θ

(3.26)

where c = c(d,δ, K , L, T ).

Proof. As before, we only prove that the a priori estimate (3.26) holds given that a solution u already
exists.

Step 1. Assume that u vanishes when x1 is near zero or infinity, and b̄i = bi = c = 0 and ν = 0.
Then in this case, the a priori estimate follows from Lemma 3.3.

Step 2. Only assume u vanishes when x1 is near zero or infinity. Then, by Step 1,

‖M−1u‖H1
2,θ (T )

≤ c‖M b̄i
kr M−1ur + f̄ ik‖L2,θ (T )+ c‖M bi

kru
r
x i +M2ckr M−1ur +M f k‖H−1

2,θ (T )

+c‖Mνkr M−1ur + gk‖L2,θ (T,`2)+ c‖u0‖U1
2,θ

.

Since ‖ · ‖H−1
2,θ
≤ ‖ · ‖L2,θ

, we easily see that the above is less than

cβ‖M−1u‖H1
2,θ (T )

+ c‖ f̄ ‖L2,θ (T )+ c‖M f ‖H−1
2,θ (T )

+ c‖g‖L2,θ (T,`2)+ c‖u0‖U1
2,θ

.

Now it is enough to take β0 so that cβ < 1/2 for any β ≤ β0.

Step 3. General case. Let β0 be from Step 2. Take a sequence of smooth function ηn(x) = ηn(x1) ∈
C∞0 (R+) so that ηn(x)→ 1, M Dηn are bounded uniformly in n, and ηnv→ v in H

γ
2,θ (T ) as n→∞

for any v ∈ H
γ
2,θ (T ) (see for instance the proof of Theorem 2.9 in [14]). Note that un := ηnu satisfies

duk
n = (Di(a

i j
kru

r
nx j + b̄i

kru
r
n+ f̄ ik

n ) + bi
kru

r
nx i + ckru

r
n+ f k

n )d t

+(σi
kr,mur

nx i + νkr,mur
n+ gk

n,m)dwm
t ,

where

f̄ ik
n = ηn f̄ ik −ηnx i ai j

kru, f k
n =−ηnx j (ai j

kru
r
x i + b̄kru

r + f̄ ik), gk
n,m = σ

i
kr,mηnx i ur +ηn gk

m.

Then by the result of Step 2,

‖M−1un‖H1
2,θ (T )

≤ c
�

‖ f̄n‖L2,θ (T )+ ‖M fn‖H−1
2,θ (T )

+ ‖gn‖L2,θ (T,`2)

�

.

Finally one gets the desired estimate by taking n→∞. Indeed, for instance, since u ∈ H1
2,θ (T ) and

Mηnx are bounded uniformly in n, by DCT

‖Mηnx j (ai j
kru

r
x i + b̄kru

r)‖H−1
2,θ (T )

≤ ‖Mηnx j (ai j
kru

r
x i + b̄kru

r)‖L2,θ (T )→ 0,

and hence ‖M fn‖H−1
2,θ (T )

→ ‖M f ‖H−1
2,θ (T )

. The other terms are treated similarly and hence the lemma
is proved.
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Remark 3.5. We do not know how sharp (3.19) is. However, if θ 6∈ (d − 1, d + 1) then Theorem 3.4
is false even for the heat equation ut = ∆u+ f (see [13]). We also mention that if the coefficients
are sufficiently smooth in x , then one can get quite wider range of θ . This will be shown in the
subsequent article [7].

4 The system on O ⊂Rd

In this section we assume the following.

Assumption 4.1. The domain O is of class C1
u . In other words, for any x0 ∈ ∂ O , there exist constants

r0, K0 ∈ (0,∞) and a one-to-one continuously differentiable mapping Ψ of Br0
(x0) onto a domain

J ⊂Rd such that

(i) J+ :=Ψ(Br0
(x0)∩O )⊂Rd

+ and Ψ(x0) = 0;

(ii) Ψ(Br0
(x0)∩ ∂ O ) = J ∩ {y ∈Rd : y1 = 0};

(iii) ‖Ψ‖C1(Br0 (x0)) ≤ K0 and |Ψ−1(y1)−Ψ−1(y2)| ≤ K0|y1− y2| for any yi ∈ J ;

(iv) Ψx is uniformly continuous in Br0
(x0).

To proceed further we introduce some well known results from [3] and [9].

Lemma 4.2. Let the domain O be of class C1
u . Then

(i) there is a bounded real-valued function ψ defined in Ō such that the functions ψ(x) and ρ(x) :=
dist(x ,∂ O ) are comparable in the part of a neighborhood of ∂ O lying in O . In other words, if ρ(x) is
sufficiently small, say ρ(x) ≤ 1, then N−1ρ(x) ≤ ψ(x) ≤ Nρ(x) with some constant N independent
of x,

(ii) for any multi-index α it holds that

sup
O
ψ|α|(x)|Dαψx(x)|<∞. (4.27)

To describe the assumptions of f̄ is, f , and g in (1.1) with space domain O we use the Banach spaces
introduced in [9] and [15]. Let ζ ∈ C∞0 (R+) be a nonnegative function satisfying (3.15). For x ∈ O
and n ∈Z := {0,±1, ...} we define

ζn(x) = ζ(e
nψ(x)).

Then we have
∑

n ζn ≥ c in O and

ζn ∈ C∞0 (O ), |Dmζn(x)| ≤ N(m)emn.

For θ ,γ ∈R, let Hγp,θ (O ) denote the set of all distributions u= (u1, u2, · · ·ud1) on O such that

‖u‖p
Hγp,θ (O )

:=
∑

n∈Z
enθ‖ζ−n(e

n·)u(en·)‖p
Hγp
<∞. (4.28)

If g = (g1, g2, . . . , gd1) and each gk is an `2-valued function, then we define

‖g‖p
Hγp,θ (O ,`2)

=
∑

n∈Z
enθ‖ζ−n(e

n·)g(en·)‖p
Hγp(`2)

.
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It is known (see, for instance, [15]) that up to equivalent norms the space Hγp,θ (O ) is independent
of the choice of ζ and ψ. Moreover, if γ= n is a non-negative integer, then it holds that

‖u‖p
Hγp,θ (O )

∼
n
∑

k=0

∑

|α|=k

∫

O
|ψkDαu(x)|pψθ−d(x) d x . (4.29)

By comparing (3.18) and (4.29), one finds that two spaces Hγp,θ (R
d
+) and Hγp,θ are different since ψ

is bounded. Also, it is easy to see that, for any nonnegative function ξ= ξ(x1) ∈ C∞0 (R
1) satisfying

ξ= 1 near x1 = 0, we have

‖u‖Hγp,θ (R
d
+)
∼
�

‖ξu‖Hγp,θ
+ ‖(1− ξ)u‖Hγp

�

. (4.30)

In particular, if u(x) = 0 for x1 ≥ r, then for any α ∈R we get

c−1‖Mαu‖Hγp,θ
≤ ‖ψαu‖Hγp,θ (R

d
+)
≤ c‖Mαu‖Hγp,θ

, (4.31)

where c = c(r,α,γ, p,θ). We also mention that the space Hγp,θ can be defined on the basis of (4.28)

by formally taking ψ(x) = x1 so that ζ−n(en x) = ζ(x) and (4.28) becomes

‖u‖p
Hγp,θ

:=
∑

n∈Z
enθ‖u(en·)ζ‖p

Hγp
<∞.

We place the following lemma similar to Lemma 3.1.

Lemma 4.3. ([13]) Let d − 1< θ < d − 1+ p.

Assertions (i)-(iii) in Lemma 3.1 hold true with ψ and Hγp,θ (O ) in place of M and Hγp,θ , respectively.

We define

H
γ
p,θ (O , T ) = Lp(Ω× [0, T],P , Hγp,θ (O )), H

γ
p,θ (O , T,`2) = Lp(Ω× [0, T],P , Hγp,θ (O ,`2)),

Uγp,θ (O ) =ψ
1−2/p Lp(Ω,F0, Hγ−2/p

p,θ (O )), Lp,θ (O , T ) =H0
p,θ (O , T ).

Definition 4.4. We define H
γ+2
p,θ (O , T ) as the space of all functions u= (u1, · · · , ud1) ∈ψHγ+2

p,θ (O , T )

such that u(0, ·) ∈ Uγ+2
p,θ (O ) and for some f ∈ψ−1H

γ
p,θ (O , T ), g ∈Hγ+1

p,θ (O , T,`2),

du= f d t + gm dwm
t ,

in the sense of distributions. The norm in H
γ+2
p,θ (O , T ) is introduced by

‖u‖
H
γ+2
p,θ (O ,T ) = ‖ψ

−1u‖
H
γ+2
p,θ (O ,T )+ ‖ψ f ‖Hγp,θ (O ,T )+ ‖g‖Hγ+1

p,θ (O ,T,`2)
+ ‖u(0, ·)‖Uγ+2

p,θ (O )
.

The following result is due to N.V.Krylov (see, for instance, [11]).
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Lemma 4.5. Let p ≥ 2. Then there exists a constant c = c(d, p,θ ,γ, T ) such that

E sup
t≤T
‖u(t)‖p

Hγ+1
p,θ (O )

≤ c‖u‖p

H
γ+2
p,θ (O ,T )

.

In particular, for any t ≤ T,

‖u‖p

H
γ+1
p,θ (O ,t)

≤ c

∫ t

0

‖u‖p

H
γ+2
p,θ (O ,s)

ds.

Assumption 4.6. There is control on the behavior of b̄i
kr , bi

kr , ckr and νkr near ∂ O , namely,

lim
ρ(x)→0

x∈O

sup
t,ω
[ρ(x)|b̄i

kr(t, x)|+ρ(x)|bi
kr(t, x)|+ρ2(x)|ckr(t, x)|+ρ(x)|νkr(t, x)|`2

] = 0. (4.32)

Note that Assumption 4.6 allows the coefficients to be unbounded and to blow up near the boundary.
(4.32) holds if, for instance,

|b̄i
kr(t, x)|+ |bi

kr(x)|+ |νkr(x)|`2
≤ cρ−1+ε(x), |ckr(t, x)| ≤ ρ−2+ε(x),

for some c,ε > 0.

Here is the main result of this section.

Theorem 4.7. Let O = Rd
+ or O be bounded. Suppose (3.19) and Assumption 4.6 hold. Then for any

f̄ i ∈ L2,θ (O , T ) (i=1,. . . ,d), f ∈ ψ−1H−1
2,θ (O , T ), g ∈ L2,θ (O , T,`2), and u0 ∈ U1

2,θ (O ), the system
(1.1) admits a unique solution u ∈ H1

2,θ (O , T ), and for this solution we have

‖ψ−1u‖H1
2,θ (O ,T ) ≤ c‖ f̄ i‖L2,θ (O ,T )+ c‖ψ f ‖H−1

2,θ (O ,T )+ c‖g‖L2,θ (O ,T,`2)+ c‖u0‖U1
2,θ (O )

, (4.33)

where c = c(d,δ,θ , K , L).

Remark 4.8. By carefully inspecting our arguments below one can check that Theorem 4.7 holds
even if the C1-domain O is not bounded.

To prove Theorem 4.7 we need the following a priori estimate near the boundary when ∂ O ∈ C∞.

Lemma 4.9. Assume that u ∈ H1
2,θ (O , T ) is a solution of system (1.1) such that u(t, x) = 0 for any

x ∈ O \Br(x0), where x0 ∈ ∂ O and r > 0. Then there exists constant r1 ∈ (0, 1), independent of x0
and u, such that if r ≤ r1, then a priori estimate (4.33) holds.

Proof. Let x0 ∈ ∂ O and Ψ be a function from Assumption 4.1. We claim that Ψ can be chosen in
such a way that

ρ(x)Ψx x(x)→ 0 as ρ(x)→ 0 (4.34)

where the convergence in (4.34) is independent of x0. Indeed, by Theorem 2.12 of [9](iv), there
exists a C∞-domain O ′ ⊂ O and C∞-diffeomorphism Ψ1 : O → O ′ so that for any multi-index α,
ρ|α|(x)Dα(DΨ1)(x) → 0 as ρ(x) → 0. Thus it is enough to take Ψ(x) = Ψ1(Ψ2(x)), where Ψ2 is
a C∞-function chosen as in Assumption 4.1 near Ψ1(x0) ∈ ∂ O ′ (remember O ′ ∈ C∞ and DαΨ2 is
bounded for any multi-index α).
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Define r = r0/K0 and fix smooth functions η ∈ C∞0 (Br),ϕ ∈ C∞(R) such that 0 ≤ η,ϕ ≤ 1, and
η = 1 in Br/2, ϕ(t) = 1 for t ≤ −3, and ϕ(t) = 0 for t ≥ −1 and 0 ≥ ϕ′ ≥ −1. We observe that
Ψ(Br0

(x0)) contains Br . For n= 1,2, ..., t > 0, x ∈Rd
+ we introduce ϕn(x) := ϕ(n−1 ln x1),

âi j(t, x) := η(x)





d
∑

l,m=1

alm(t,Ψ−1(x)) · ∂lΨ
i(Ψ−1(x)) · ∂mΨ

j(Ψ−1(x))



+δi j(1−η(x))I ,

ˆ̄bi,n(t, x) := η(x)ϕn(x)
∑

l

b̄l(t,Ψ−1(x)) · ∂lΨ
i(Ψ−1(x)),

b̂i,n(t, x) := η(x)ϕn(x)
h

−
∑

l,m,r, j

alm(t,Ψ−1(x)) · (∂mΨ
j · ∂l rΨ

i)(Ψ−1(x)) · ∂ j(Ψ
−1)r(x)

+
∑

l

bl(t,Ψ−1(x)) · ∂lΨ
i(Ψ−1(x))

i

,

ĉn(t, x) := η(x)ϕn(x)c(t,Ψ
−1(x)),

σ̂i(t, x) := η(x)
∑

l

σl(t,Ψ−1(x)) · ∂lΨ
i(Ψ−1(x)),

ν̂n(t, x) := η(x)ϕn(x)ν(t, x)(t,Ψ−1(x)).

Then (âi j , σ̂i) satisfies (2.4) and (2.5). We take β0 from Theorem 3.4 corresponding to d, d1,θ ,δ, L
and K . We observe that ϕn(x) = 0 for x1 ≥ e−n. Also, note that (4.34) implies x1Ψx x(Ψ−1(x))→ 0
as x1 → 0. Using these facts and (4.32), one can fix n > 0 which is sufficiently large, independent
of x0, and

x1|ˆ̄bi,n
kr (t, x)|+ x1|b̂i,n

kr (t, x)|+ (x1)2|ĉn
kr(t, x)|+ x1|ν̂n

kr(t, x)|`2
≤ β0, ∀ ω, t, x .

Now, we fix r1 < r0 so that
Ψ(Br1

(x0))⊂ Br/2 ∩ {x : x1 ≤ e−3n}. (4.35)

Next, we observe that, by Lemma 4.2 and Theorem 3.2 in [15] (or see [9]), for any ν ,α ∈ R and
h ∈ψ−αHνp,θ (O ) with support in Br0

(x0) we have

‖ψαh‖Hνp,θ (O )
∼ ‖Mαh(Ψ−1)‖Hνp,θ

. (4.36)

Thus, for v(t, x) := u(t,Ψ−1(x)) we have v ∈ H1
2,θ (T ) and v satisfies

dvk = (Di(â
i j
kr vr

x j +
ˆ̄bi,n

kr vr + ˆ̄f ik) + b̂i,n
kr vr

x i + ĉn
kr vr + f̂ k)d t

+(σ̂i
kr,mvr

x i + ν̂n
kr,mvr + ĝk

m)dwm
t , (4.37)

where

ˆ̄f ik :=
∑

`

( f̄ `k∂`Ψ
i)(Ψ−1(x)), f̂ k :=− f̄ `k(Ψ−1(x))∂`rΨ

i(Ψ−1(x))∂i(Ψ
−1)r(x) + f k(Ψ−1(x)).

Hence, the a priori estimate follows from Theorem 3.4 and (4.36). The lemma is proved.
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Remark 4.10. Let O = Rd
+. Then, in fact, Lemma 4.9 holds if u(t, x) = 0 for x1 ≥ r1 for some r1.

Indeed, by (4.32) there is r1 > 0 so that

|M b̄i|+ |M bi|+ |M2c|+ |Mν |`2
< β0 (4.38)

for x1 ≤ r1. Now, if u(t, x) = 0 for x1 ≥ r1, then without affecting the system we may put b̄i = bi =
c = 0 and ν = 0 for x1 ≥ r1 so that (4.38) holds for all x . Consequently the assertion follows from
Theorem 3.4 and (4.31).

Next, we prove the a priori estimate for small T .

Lemma 4.11. Let assumptions in Theorem 4.7 be satisfied. Then there exists a constant ε ∈ (0, 1) so
that if T ≤ ε, then a priori estimate (4.33) holds for any solution u ∈ H1

2,θ (O , T ) of system (1.1) with
u0 = 0.

Proof. We prove the lemma only when O is bounded. The case O = Rd
+ is treated similarly. Take

a partition of unity {ζn : n = 0,1, 2, ..., N0}, where N0 < ∞, such that ζ0 ∈ C∞0 (O ) and ζn ∈
C∞0 (Br1/2(xn)) with xn ∈ ∂ O for n= 1, . . . , N0. Also, we fix functions ζ̄n such that ζ̄0 ∈ C∞0 (O ), ζ̄n ∈
C∞0 (Br1

(xn)) for n= 1, . . . , N0, and ζnζ̄n = ζn for each n. We note that vn := uζn satisfies

dvk
n = (Di(a

i j
kr vr

nx j + b̄i
kr vr

n + f̄ ik
n ) + bi

kr vr
nx i + ckr vr

n + f k
n − ai j

kru
r
x jζnx i ) d t

+(σik
kr,mvr

nx i + νkr,mvr
n + gk

m) dwm
t , (4.39)

where
f k
n :=−(b̄i

kru
r + f̄ ik + bi

kru
r)ζnx i + f kζn,

f̄ ik
n :=−ai j

kru
rζnx j + f̄ ikζn, gk

n =−σ
ikuζnx i + gkζn.

Also, we note that ζ0u ∈H 1
2 (T ) and ‖ψ−1ζ0u‖H1

2,θ (O ,T ) ∼ ‖ζ0u‖H1
2(T )

. By Theorem 2.4 and Lemma
4.9, we have

‖ψ−1u‖2
H1

2,θ (O ,T )
≤

N0
∑

n=0

‖ψ−1vn‖2H1
2,θ (O ,T )

(4.40)

≤ N
N0
∑

n=0

(‖ f̄ i
n‖

2
L2,θ (O ,T )+ ‖ψ fn‖2H−1

2,θ (O ,T )
+ ‖ψai j

kru
r
xζnx‖2H−1

2,θ (O ,T )
+ ‖gn‖2L2,θ (O ,T,`2)

). (4.41)

Actually relations like (4.40) hold even if N0 =∞ and this is why the theorem is true even when O
is not bounded.

Since ai j is only measurable, at most we get
∑

n
‖ψai j

kru
r
x jζnx i‖2

H−1
2,θ (O ,T )

≤
∑

n
‖ψai j

kru
r
x jζnx i‖2

L2,θ (O ,T ) ≤ N‖ux‖2L2,θ (O ,T ) ≤ N‖ψ−1u‖2
H1

2,θ (O ,T )

and consequently (4.41) only leads us to the useless inequality

‖ψ−1u‖2
H1

2,θ (O ,T )
≤ N‖ψ−1u‖2

H1
2,θ (O ,T )

+ · · ·.

Hence, to avoid estimating the norm ‖ψai j
kru

r
x jζnx i‖H−1

2,θ (O ,T ) we proceed as in [6]. We note that for

each k we have
ψ−1ai j

kru
r
x jζnx i ∈ψ−1L2,θ (O , T ).
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Thus, by Theorem 2.9 in [5], for each k the solution v̄k
n ∈ H2

2,θ (O , T ) of the single equation

dv = (∆v−ψ−1ai j
kru

r
x jζnx i )d t, v(0) = 0

satisfies
‖v̄k

n‖H2
2,θ (O ,T ) ≤ N‖ai j

kru
r
x jζnx i‖L2,θ (O ,T ) ≤ N‖uxζnx‖L2,θ (O ,T ) (4.42)

and, by Lemma 4.5, for each t ≤ T we have

‖v̄k
n‖

2
H1

2,θ (O ,t)
≤ N t‖v̄k

n‖
2
H2

2,θ (O ,t)
≤ N t‖uxζnx‖2L2,θ (O ,t), (4.43)

where N is independent of T since we assume T ≤ 1. Now, we denote ūk
n := v̄k

nψζ̄n and ūn =
(ū1

n, ·, ūd1
n ). Then ūn satisfies

dūk
n = (∆ūk

n+ f̂ k
n − ai j

kru
r
x jζnx i ) d t, ūk

n(0) = 0,

where f̂ k
n =−2v̄k

nx i (ζ̄nψ)x i− v̄k
n∆(ζ̄nψ). Finally, as we denote un := vn− ūn, we find that un satisfies

duk
n = (Di(a

i j
kru

r
nx j + b̄iun+ F̄ ik

n ) + bi
kru

r
nx i + ckru

r
n+ F k

n ) d t

+ (σi
kr,mur

nx i + νkr,mur
n+ Gk

n,m) dwm
t , (4.44)

where
F̄ ik

n = f̄ ik
n + (a

i j
kr −δ

i jδkr)ūr
nx j + b̄i

kr ū
r
n,

F k
n = f k

n + f̂ k
n + bi

kr ū
r
nx i + ckr ū

r
n, Gk

n = σ
i
kr ū

r
nx i + νkr ū

r
n+ gk

n .

Then, by Lemma 4.9, for any n≥ 1 and t ≤ T we have

‖ψ−1un‖2H1
2,θ (O ,t)

≤ N‖F̄ i
n‖

2
L2,θ (O ,t)+ N‖ψFn‖2H−1

2,θ (O ,t)
+ N‖Gn‖2L2,θ (O ,t). (4.45)

Also, since uζ0 has compact support in O , (4.45) holds for n = 0 by Theorem 2.4. As we recall that
ψb,ψb̄,ψ2c,ψx ,ψψx x , (ζ̄nψ)x ,ψ∆(ζ̄nψ) are bounded, ‖ · ‖H−1

2,θ (O )
≤ ‖ · ‖L2,θ (O ), and

ψ−1ūn = ζ̄n v̄n, ūnx = ζ̄nψv̄nx + v̄n(ζ̄nψ)x ,

we get

‖ψ( f̂ k
n + bi

kr ū
r
nx i + ckr ū

r
n)‖H−1

2,θ (O ,t)

≤ N
�

‖ψv̄nx‖L2,θ (O ,t)+ ‖v̄n‖L2,θ (O ,t)+ ‖ūnx‖L2,θ (O ,t)+ ‖ψ−1ūn‖2L2,θ (O ,t)

�

≤ N
�

‖ψv̄nx‖L2,θ (O ,t)+ ‖v̄n‖L2,θ (O ,t)

�

≤ N‖v̄n‖H1
2,θ (O ,t)

and it leads to
‖ψFn‖2H−1

2,θ (O ,t)
≤ N‖ψ fn‖2H−1

2,θ (O ,t)
+ N‖v̄n‖2H1

2,θ (O ,t)
.

Also, by (4.43) we have
‖v̄n‖2H1

2,θ (O ,t)
≤ N t‖uxζnx‖L2,θ (O ,t)
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and consequently
∑

n
‖ψFn‖2H−1

2,θ (O ,t)

≤ N
∑

n

�

‖ψ fn‖2H−1
2,θ (O ,t)

+ t‖uxζnx‖2Lp,θ (O ,t)

�

≤ N‖u‖2
L2,θ (O ,t)+ N t‖ux‖2L2,θ (O ,t)+ N‖ f̄ ‖2

L2,θ (O ,t)+ N‖ψ f ‖2
H−1

2,θ (O ,t)
.

The sums
∑

n
‖F̄ i

n‖
2
L2,θ (O ,t),

∑

n
‖Gn‖2L2,θ (O ,t).

are estimated similarly. Then for each t ≤ T one gets

‖ψ−1u‖2
H1

2,θ (O ,t)
≤ N

∑

n
‖ψ−1vn‖2H1

2,θ (O ,t)

≤ N‖ f̄ ‖2
L2,θ (O ,T )+ N‖ψ f ‖2

H−1
2,θ (O ,T )

+ N‖g‖2
L2,θ (O ,T )

+N‖u‖2
L2,θ (O ,t)+ N · t‖ψ−1u‖2

H1
2,θ (O ,t)

.

Now, we choose ε ∈ (0,1] such that for t ≤ T ≤ ε

N · t‖ux‖2L2,θ (O ,t) ≤ 1/2‖ψ−1u‖2
H1

2,θ (O ,t)
.

Then, by Lemma 4.5, for each t ≤ T we obtain

‖u‖2
H1

2,θ (O ,t)
≤ N

∫ t

0

‖u‖2
H1

2,θ (O ,s)
ds+ N‖ f̄ ‖2

L2,θ (O ,T )

+N‖ψ f ‖2
H−1

2,θ (O ,T )
+ N‖g‖2

L2,θ (O ,T ). (4.46)

This and Gronwall’s inequality lead to the a priori estimate for T ≤ ε.

For the case T ≥ ε we need the following lemma, which is proved in [6] for d1 = 1.

Lemma 4.12. Let d − 1< θ < d + 1+ p, t0 ≤ T, and u ∈ H
γ+2
p,θ (O , t0) satisfy

duk(t) = f k(t)d t + gk
m(t)dwm

t , u(0) = 0.

Then there exists a unique ũ ∈ H
γ+2
p,θ (O , T ) such that ũ(t) = u(t) for t ≤ t0(a.s) and on (0, T )

dũk = (∆ũk(t) + f̃ k(t))d t + gk It≤t0
dwm

t , (4.47)

where f̃ = ( f k(t)−∆uk(t))It≤t0
. Furthermore, we have

‖ũ‖
H
γ+2
p,θ (O ,T ) ≤ N‖u‖

H
γ+2
p,θ (O ,t0)

, (4.48)

where N is independent of u and t0.
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Proof. We note that for each k, f̃ k ∈ ψ−1H
γ
p,θ (O , T ) and gk It≤t0

∈ Hγ+1
p,θ (O , T ). Thus, by Theorem

2.9 in [5], equation (4.47) has a unique (real-valued) solution ũk ∈ H
γ+2
p,θ (O , T ) and we have

‖ũk‖
H
γ+2
p,θ (O ,T ) ≤ N‖uk‖

H
γ+2
p,θ (O ,t0)

. (4.49)

We define ũ = (ũ1, ũ2, · · · , ũd1). To show ũ(t) = u(t) for t ≤ t0 we notice that, for t ≤ t0, the
function vk(t) = ũk(t)− uk(t) satisfies the equation

dvk(t) = ∆vk d t, v(0, ·) = 0.

Thus, by Theorem 2.9 in [5], vk(t) = 0 for t ≤ t0 (a.e). The lemma is proved.

We finish the proof of Theorem 4.7.

Proof of Theorem 4.7 As usual, we only prove that estimate (4.33) holds given that a solution
u already exists. For simplicity, we assume u0 = 0. See the proof of Theorem 5.1 in [12] for the
general case.

Take an integer M ≥ 2 such that T/M ≤ ε and we denote tn = T n/M . Assume that, for
n = 1,2, ..., M − 1, we have the estimate (4.33) with tn in place of T (and N depending only
on d, d1,θ ,δ, K , L and T). We use the induction on n.

Let un ∈ H1
2,θ be the continuation of u on [tn, T], which exists by Lemma 4.12 with γ = −1 and

t0 = tn. As we denote vn := u− un, we have vn(t) = 0 for t ≤ tn(a.s) and, for any t ∈ [tn, T] and
φ ∈ C∞0 (O ),

(vk
n(t),φ) = −

∫ t

tn

(ai j
kr vr

nx j + b̄i
kr vr

n + f̄ ik
n ,φx i )(s)ds+

∫ t

tn

(bi
kr vr

nx i + ckr vr
n + fn,φ)(s)ds

+

∫ t

tn

(σi
kr,mur

nx i + νkr,mvr
n + gk

n,m,φ)(s)dwm
s ,

where
f̄ ik
n := (ai j

kr −δ
i jδkr)ur

nx j + b̄i
kru

r
n+ f̄ ik, f k

n = bi
kru

r
nx i + ckru

r
m+ f k,

gk
n := σi

kru
r
nx i + νkru

r
n+ gk.

Next, instead of random processes on [0, T] we consider processes given on [tn, T] and introduces
spaces H

γ
p,θ (O , [tn, T]), Lp,θ (O , [tn, t]), Hγp,θ (O , [tn, T]) in a natural way. Then we get a counter-

part of the previous result and conclude that

E

∫ tn+1

tn

‖ψ−1(u− un)(s)‖2H1
2,θ (O )

ds

≤ NE

∫ tn+1

tn

(‖ f̄ i
n(s)‖

2
L2,θ (O )

+ ‖ψ fn(s)‖2H−1
2,θ (O )

+ ‖gn(s)‖2L2,θ (O )
)ds.
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Thus, by the induction hypothesis we get

E

∫ tn+1

0

‖ψ−1u(s)‖2
H1

2,θ (O )
ds

≤ NE

∫ T

0

‖ψ−1un(s)‖2H1
2,θ (O )

ds+ NE

∫ tn+1

tn

‖ψ−1(u− un)(s)‖2H1
2,θ (O )

ds

≤ N(‖ f̄ i‖2
L2,θ (O ,tn+1)

+ ‖ψ f ‖2
H−1

2,θ (O ,tn+1)
+ ‖g‖2

L2,θ (O ,tn+1,`2)
).

We see that the induction goes through and thus the theorem is proved.
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