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1 Introduction

In this article we are dealing with Wzl-theory of the stochastic partial differential systems (SPDSs)
of d; equations of divergent type:

duf = (Di(a]u’, + bl u" + F*)+ bl ul + " + fF)dt
+(O-§<r,mu;i + Vkr,mur + g,’;)dwln, t>0 (1.1)
uk(0) = ulg

with x € R4, Ri or 0, a bounded C' domain. Here, {fwi" : m =1,2,...} is a countable set of
independent one-dimensional Brownian motions defined on a probability space (2, %, P). Indices i
and j run from 1 to d while k, j = 1,2,---,d; and m = 1,2,---. To make expressions simple, we
are using the summation convention on i, j,r,m. The coefficients a,l(Jr, B,i(r, b,i(r,ckr, oir,m and v,
are measurable functions depending on w € Q,t,x. Detailed formulation of follows in the
subsequent sections.

Demand for a general theory of stochastic partial differential systems(SPDSs) arises when we model
the interactions among unknowns in a natural phenomenon with random behavior. For example,
the motion of a random string can be modeled by means of SPDSs(see [20] and [2]).

We note that, if d; = 1, then the system becomes a single stochastic partial differential equation
(SPDE) of divergence type. In this case L,-theory on RY was developed long ago and an account
of it can be found, for instance, in [21]] and [22] (even if d; # 1, L,-theory on R¢, Theorem ,
can be easily obtained by adopting the approaches in [21]] and [22]). Also, L,-theory(p > 2) of
such single equations on C!'-domains can be found in [4]], [6] and [23]] in which weighted Sobolev
spaces are used to allow derivatives of the solutions to blow up near the boundary. For comparison
with L,-theory of SPDEs of non-divergence type, we refer to [5], [8], [14], [12] and references
therein.

The main goal of this article is to extend the results [22]], [4]], [6], [23] for single equations to the
case of systems under no smoothness assumptions on the coefficients. We prove the uniqueness and
existence results of system in weighted Sobolev spaces so that we allow the derivatives of the
solutions to blow up near the boundary. The coefficients of the system are only measurable and are
allowed to blow up near the boundary (See (4.32)).

We declare that Wpl-theory, a desirable further result beyond Wzl-theory, is not successful yet even

under the assumption that the coefficients alljr and cr;'{r are constants. This is due to the difficulty
caused by considering SPDSs instead of SPDEs. For L,-theory, p > 2, one must overcome tremen-
dous mathematical difficulties rising in the general settings; one of the main difficulties in the case
p > 2 is that the arguments we are using in the proof of Lemma [3.3|below are not working since in
this case we get some extra terms which we simply can not control.

For previous works on certain non-linear stochastic systems such as Stochastic Navier-Stokes equa-
tions we refer the authors to [[1},[16, (18] [17, [19]] and references therein.

The organization of the article is as follows. Section[2|handles the Cauchy problem. In section [3|and
sectionwe develop our theory of the system defined on ]Ri and bounded domain &, respectively.

As usual, R? stands for the Euclidean space of points x = (x!,...,x%), B,(x)={y e R? : |x — y| <
r}, B, = B.(0) and ]Ri ={x eR¢:x!>0}. Fori=1,..,d, multi-indices a = (a,...,ay),
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a; €1{0,1,2,...}, and functions u(x) we set
_ du
T ok T

If we write ¢ = c(---), this means that the constant ¢ depends only on what are in parenthesis.

=D, D*u=D{'-..- ngu, o] =a; +... +ay.

The authors are sincerely grateful to the referee for giving the authors many helpful comments and
finding few errors in the earlier version of this article.

2 The systems on R¢

In this section we develop some solvability results of linear systems defined on space domain R9.
These results will be used later for systems defined on ]Rf7l|r or a bounded C! domain &.

Let (Q, %, P) be a complete probability space and {Z,} be a filtration such that %, contains all P-
null sets of ; the probability space (2, %, P) is rich so that we define independent one-dimensional
{Z,}-adapted Wiener processes {w;'}>>_, on it. We let & denote the predictable o-algebra on
Q x (0, 0).

The space C;° = C;° (RY; R%) denotes the set of all R%-valued infinitely differentiable functions
with compact support in R?. By 2 we mean the space of R%-valued distributions on Cy°; precisely,
foru € 9 and ¢ € C;° we define (u,¢) € R% with components (u, )< = (u¥, ¢*), k =1,...,d;.
Each u¥ is a usual R-valued distribution defined on C®(R%;R). We let L, = Lp(]Rd;IRdl) be the
space of all R%-valued functions u = (u?,...,u%) satisfying

d;
p ._ kP
lullf =D luklE < oo,
k=1

For p € [2,00) and y € (—00,00) we define the space of Bessel potential Hg = H;,’(Rd;IRdl) as the
space of all distributions u such that (1 — A)?u e L,, where
(1= A)Pu)f = (1 - A)2uk o= 77 (L + €Y (W)(E)].
Here, Z is the Fourier transform. Define
lullyy := 111 = A 2u],.
Then, H}; is a Banach space with the given norm and C{° is dense in Hg . Note that Hg are usual
Sobolev spaces for y = 0,1,2,.... It is well known that the first order differentiation operators,

0; : Hg(IE{d; R)— H;_l(]Rd; R) given by u — u,i (i =1,2,...,d), are bounded. On the other hand,
for u € H)(R%;R), if supp (w) € (a,b) x R~ with —oo < a < b < 0o, we have

”u”Hg(Rd,R) < C(d: Y,a, b)”ux”H;_l(]Rd;]R) (22)
(see, for instance, Remark 1.13 in [[13]]). Let ¢, be the set of all real-valued sequences e =
(eq,ez,...) with the inner product (e, f),, = 2?21 emfm and the norm lel,, := (e,e);z/z. For

g=(gl, g%, g%), where gk are ¢,-valued functions, we define
d;
P A2k P
1815y, = ; 2= A28k, 117 -
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Using the spaces mentioned above, for a fixed time T, we define the stochastic Banach spaces
H(T) = L(Q x (0,T], 2, HY), HI(T,0,):=L,(Qx (0,T],2,HI((,)),

L,(T):=H)(T), L,(T,€)=H)(T,{,)
with norms given by

T

T
p
Il ry = EJ laCOIf de, gl ., = Ef G

Lastly, we set U, = L,(<, gZ'O’Hg‘Z/P).

Y+2

Definition 2.1. For a Z-valued function u € H) “(T), we write u € %f;,”z(T) if u(0,-) Ug+2 and

there exist f € ]H;(T), ge ]H;H(T,Q) such that
du=fdt+g"dw;', t<T

in the sense of distributions, that is, for any ¢ € C;° and k =1,2,---,d;, the equality

(uk(t, '): d)) = (uk(o’ ')3 ¢) + f (fk(s’ '): d))dS + Z J (g,];(s, '): (.b)dW;n (23)
0 m=1J0

holds (a.s.) for all t < T. We write f = Du, g = $u to denote the deterministic part, the stochastic
part of u, respectively. Also write D*u = f* $ku = gk and ]D’r‘nu = gr’;. The norm in %;,HZ(T) is
defined by

el 2y = gz + IMDulhggry + 18ty + 2Ol

Remark 2.2. Note that since the coefficients in system li are only measurable, the space %;,Hz(T)
is not appropriate for system (1.1) unless y = —1.

We set AV = (a ) ni= (ak )and .Y = (a ) where

d
11_1 (O.i oj) ol z(o.i ol o)
kr k> © 1r /o> kr kr,1>~ kr,2> .
l=1

AISOJ we set Bi = (B]i(r)JBi = (b]l(r)’ C= (Ckr)n/v = (Vkr)z where Vir = (Vkr,lyvkr,z; .- )

For any d; X d; matrix M = (my,.) we let

M| =[S mg 2 M= [ w2
k,r k,r

where the latter is the case that the elements are in £.

Throughout the article we assume the following.
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Assumption 2.3. (i) The coefficients a, , b, ., b;(r,ckr,a;(r’m and vy, are 2 x %8(IR")-measurable,

where %8(RRY) denotes Borel o-field in RY.
(ii) There exist finite constants 5§, K/(j =1,...,d), L > 0 so that

SIEP < &F (AV - )&, 2.4)

holds for any w € Q, t > 0, where £ is any (real) d; X d matrix, &; is the ith column of &; again
the summations on i,j are understood. Moreover, we assume that for any w, t > 0, x € R4,
i,j=1,...,d,

[AY(w,t,x)| <K, |AT(w,t,x)| SL(i#1), | (w,t,x) <L (2.5)

Our main theorem in this section is the following.

Theorem 2.4. Assume that there is a constant N, € (1,00) such that for any w, t > 0, x € RY,
i=1,...,d, 4 4
B[, IB], IC|, |-4'| <No. (2.6)

Then for any fl € Lo(T) (i=1,...,d), f € ]H;l(T), g € 1L,(T,¢5), and uy € Uzl, system ! has a
unique solution u € ﬁle(T), and for this solution we have
lelinyery < cCliullyery+ D MF ey + 1 o rry + Mellnycrey + luollo),  @7)
i

gy < e QI uaer + I1f ey + gl ey + luolluy), 2.8)
1

where ¢ =c(d, dy,6,K, L, Ny).

Proof. 1. We note that f* can be expressed as f* = FO%+div(Fk, F2¥, ... FI%), where FO € H1(T),
- . . d i .

F* € I,(T) with the estimate ||F0k||]H;(T) +d ||Flk||]L2(T) <c(d, d1)||fk||]H;1(T); this follows from

the observation fX = (1 — A)(1 — A) 'k = (1 = A LR+ div(—V((1 — A)TLFF)) (see, p.197 of

[13]). Hence, we may assume that f € ]H%(T) and show Il and || with ||f||]H%(T) in place of

”f“]Hz—l(T)-

2. By Theorem 4.10 and Theorem 5.1 in [[12]], for each k the equation

duf = (Dy(5 - 5;;61,ul, ; + F )+ fF) dt + gldw],

xixi

or equivalently, _.
du* = (5Au* + Fif + fOdt + grdwl,  u*(0) =ug,

2

has a solution u* and we have u := (u!,u?,--- ,u®)* as the unique solution of

du=(5Au+fl + f)dt + gudwl", u(0)=u,
in %”Zl(T) with estimates ll and ll For A € [0, 1] we define
El=(e),) = Q-2 (a7 —.a7)+25-5,1
= (Q-AT+25-8,51) — (1 - )V =AT — 77,
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where Ai/{ =(1-2)AY+ 25 - 0451, yf/{j :=(1—A)./Y. Then we have

Al <A, el <l sl < Y ErEl,
L,j

for any real d; x d-matrix £. Also, we define
Bl :=(1-2)B, Bi:=(1-M)B', Cp:=(1-2)C, A:=(1-1)A.

Then B;,B;, C,, M satisfy (2.6). Thus, having the method of continuity in mind, we only prove
that (2.7) and (2.8) hold given that a solution u already exists.

3. Applying the stochastic product rule d|u*|? = 2u*du* + du*du* for each k (see Remark
below), we have

W (OP = Jugl?
rt
+ Zuk(D~(aijur-+f_ik)+bi u" +c ur+fk)ds
J UNTker T xd kr = xt kr
0
rt
+ | o U +vien” + gklids
0
rt
+J 2uk(0';<r’mu;i + Vit + gr’;)dws’", t>0. (2.9)
0

Note that, making the summation on r,i appeared, we get

2
i k
S| ot S v
1,1 r ‘,

k
= ZZ(uxi)*vdijuxj +Z U(‘/Vu)kﬁz T |gk|?2j|
ij k

+2° {(Z(ziuxi)k, g5, + (N, g8y, + O (Fu )k, (),
k i i

By taking expectation, integrating with respect to x, and using integrating by parts in turn on (2.9)),
we obtain

t
JEJ Iu(t)lzdx+2lEfJ Z(uxi)*(Aif — ' Nu,;dxds
R 0 JRY i
= ]EJ |u0|2dx
Rd
t t
+2 EJJ [—Zuiifl+u*(Biuxi)] dxds+2]EJJ [Cu+u*f]dxds
i 0 JRd 0 JRd
t
2
+ZEJJ [|(ﬂu)k|e2+|gk|?2] dxds
K 0 JRA

+221Efj [(Z(Ziuxi)k,gk)ez+((</Vu)k,gk)z2+(Z(Ziuxf)k,(</‘/u)k)e2 dx@10)
k 0 JRE

i i
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Note that we have

2> Q) g, < 2D ] D ok, 18k,
k i k 1l
. 2
SDNEIRIREN
k i
. 2
< SwPY okl + =Dl
k,r,i k
= elu? ) |al 2+§Z|g’<|§2 (2.11)
r,i k
for any ¢ > 0; similarly, we get
2wk gy, | < TNl + D18 E (2.12)
k k
2O =)k (Hw)h),,| < s|ux|22|afr)2+§|m|u|. (2.13)
k i 1,1

Hence, it follows that

t
IEJ lu(t)|?dx + 26 IE)J J |u, |2dxds
R4 0 JRA
t t
IEJ lup|2dx + ce EJ j |ux|2dxds—l—cIEf J lu(s)|>dxds
R4 0 JRA 0 JRA

t t t
+CZEJ Jdlfi|2dxds+Ef fd|f|2dxds+cEZJ Jd|g’<|§2dxds
i 0 JR 0 JR I 0 JR

t t
ce EJ j |ux|2dxds—l—cIEf J lu(s)|>dxds
0 JRA 0 JRA

e DI UR oy A IR sy + lgh ey + luoll
1

IA

IA

Choosing small ¢, we obtain

el ry = eQullE ey +UFIE oy + DI UE ) + 80T ey + ol .
1

t
IEJ lu(t)*dx CEJJ lu(s)|?dxds
R4 0 JRA
el IR,y + DIy 181 gy + 2,
A

IA

where ¢ does not depend on T. Now we recall the remark in step 1, and see that the first inequality
implies (2.7). Also the second inequality and Gronwall’s inequality lead us to (2.8)). The theorem is
proved. O
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Remark 2.5. In (2.9) we assumed that u*(t, x) has It differential for each x, however It&’s formula
works even when u¥ has Itd’s differential in the sense of distributions (see Theorem 2.1 [10]).
Alternatively, one can proceed as follows: Take a nonnegative function v € C;°(B;(0)) with unit
integral, and for € > 0 define v,(x) = £ %4p(x/¢). For any generalized function v, define v(*)(x) =
v (x) := (v(), Y. (x —-)), then v (x) is infinitely differentiable function of x. By plugging
Y ,(x — ) instead of ¢ in (2.3),

t t
ukE(t, x) = k€0, x) + f (D) (s, x)dt + f Sk uw) @ dwm.
0 0
Considering It®’s formula, integrating over RY and taking the expectation, for each k we get
t
Ell (0l = Ellug I, + E f f [ 20K (*)@ + ()2 | dixds. (2.14)
0 JR4

Since u'®) -y in %‘;}(T) as ¢ — 0 (see the proof of Theorem 3.7 in [12]]), |l leads to (2.10),
ie.

t
IE||uk(t)||%2 = IE1||u’(§||%2 + EJ J [Zuk]Dku + ISkuIi] dxds.
0 JRA

3 The system on ]R,jlr

In this section we present some results for the systems defined on Ri. In the next section, these
results will be modified and be used to develop our theory of the systems defined on C!-domains.

Here we use the Banach spaces introduced in [13]]. Let { € C°((a, b)), where (a,b) C R, be a
function satisfying

o0
D) >c>0, VxeR, (3.15)
n=—o00

where c is a constant. Note that any nonnegative function £, { > 0 on [1, ], satisfies (3.15]). For
0,y € R, we let H; , denote the set of all distributions u = (u',u?,---u™) on RY such that

p n6 n P
u = e Ju(e™ < 00. 3.16
Il ZZ [4OTCDI (3.16)
Here {(x) := Z(x'). Since {(x)u(e"x) = 0 for x! € (0,a), by extending {(x)u(e™x) as zero for
x! < 0 one can regard it as a distribution defined on RY. If g = (g',g2,...,g%) and each g¥ is an
{,-valued function, then we define

p _ n6 . n_y|P
”g”Hle“ﬂ_nZZ:e [OHI DI

It is known (see [[13]]) that up to equivalent norms the space H; o 1s independent of the choice of .
Also, for any n € Cj°(R.), we have

o0 o0

2 Pl i, <c 37 e lutem eI, (3.17)

n=—oo n=—oo
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where ¢ depends only on d,d;, 7y, 0, p,n,{. Furthermore, if y is a nonnegative integer, then

b,

Y
lullfy ~>5 > JRd |(x?)" D ()P (x1)° 4 dix. (3.18)

n=0|a|=n

Below we collect some other properties of spaces H;,e' Let M“ be the operator of multiplying by
(xH*and M = M.
Lemma 3.1. ([I3])Letd—1<08<d—1+p.

() Assume that y —d/p = m+v for some m = 0,1,--- and v € (0,1]. Then for any u € H;’Q and
i€{0,1,---,m}, we have

|Mi+9/pDiu|C + [Mm+v+9/pou]Cv < c||u||H;9.

(i) Let a € R, then M®H} o, . =H] ,,

< —a <
ey, < cIM ™ ullyr,  <cllulyr

(iii) MD,DM : H; 0= H;_Ql are bounded linear operators.

(iv) There is a constant ¢ = c¢(d, p, 0,y) > 0 so that

-1 -1 < < -1
Il < telros < eIl

(v) Foranyye€ Rand v € M‘ng o there exists vi ..o vle H;;l so that
diDvi=v, Y Vil <Myl .
i i Pe P

Proof. All results are taken from [[13]]. We only give a short comment on (v), since the statement
may look different. By Remark 2.15 of [[13]], for any u € H; 0> there exist u®,u?,---ud e ngl so that

u= Zle MD;u' and Zi ||ui||Hy+1 < N||u||Hr9. Thus it is enough to apply this result with u = Mv
. p,0 . D,
(note ), MD;v' = Mv implies ). D;v' =v). O

We define the following stochastic Banach spaces.
) (T)=L,(@x[0,T],2,H] ;), H (T,6,)=L,(2x[0,T],2,H] ,({,))
- -2
Lpo(T) =M 4(T), W, o(T,£) =S (T, ), ULy =1L,(Q,Fo, M "2PHP),

Definition 3.2. We write u € ﬁ;EZ(T) if u € MIH;EZ(T), u(0) € Uggz and for some f €
_ 1
M~ (1), g €TI0 H(T, ),
du=fdt + gndw"

holds in the sense of the distributions. The norm in ﬁ;zz(T) is defined by

lelyry = Mgz + 1M S gy + Dl iy + @l
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Let us denote

= /Z(Kj)2_
J

19) 19)
— 1
Ge(d 2K—6’d+2K+5)’ (3.19)

bl = bl =c=0and v = 0. Also assume that u € MH]! e(T) is a solution of system on

[0,T] x IR‘}r and u vanishes when x' is near zero or infinity, i.e. there exists a compact set G C ]R+ so
that u(t,x) =0 if x' &€ G. Then we have

Lemma 3.3. Let

M7y oy < PR, oy + IMF I )+ IR ey ol ) 320
where c =c(d,dy,6,0,K,L).

Proof. 1. By Lemma (iv), f* has the following representation:
d
C= > DiF R IF g, oy < clIMF g
i=1 i ’

Also since ||M_1u||H;9 < clluyll,, (see Lemma (iv) ), it is enough to assume f* = 0 and prove

el 9 < €O ey )+ IR,y + ol

2. Again, as in the proof of Theorem applying the stochastic product rule d|u*|? = 2ufdu* +
dukduF for each k (see Remark [2.5), we get

t

lWk(O))? = |u’(§|2 —|—J 2uk [Di(ali(];ﬂu;j +f_ik)] ds
0
t

IG};ru;i + gklgzds + f 2uk(0'§<r’mu;i + g,]jl)dw;",
0

where the summations on i, j, r are understood. Denote ¢ = 6 — d. For each k, we have

0 < ]Ef luk (T, x)|2(x1)dx
Rd
= IEJ 11k (0, ) |P(xh)°dx
+2EJ J u*D; (a U )(xl)cdxds-i-ZEJ f rflk(xl)cdxds
R4 R4
—I-EJJ |O'kr |e (x1)dxds
+2E J (Zu,)f, k)gz(xl)cdxds+]EJ J g7 (x")edxds.  (3.21)
0 JRrY
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Note that, by integration by parts, we get
ZEJ‘.f rf*@@fdxds——aﬁif J‘ l%xUC+cnfluqﬂHx1y]dxds
RY ]Rd
< elluy 2 oy + el o+ c@IFIE, oy
Also, the second term in the right hand side of (3.21) is

f f 2al]u u —2c(alg ;J)(M 1uk)] (x))edxds.
Rd

Thus, by summing up the terms in (3.21) over k and rearranging the terms, we obtain

T
Z]Ej J u AV — ﬁij) u, (x1)°dxds
0o JRY
< el (lluglZ, oy + K2 TIM Tl )
-1 2 2
+Ne (IMll? o+ Dl o)
+ee) (IFUE,cry + 81, e,y ) + ICODE, (3.22)
for any x, € > 0. This is because for any vectors v,w € R" and k > 0
1j 1j j 1 2 -1 \2 2
| <AYv,w > | < AYvliwl < Killlw] < S (elvl? 4k (KD 2wl)

and consequently,

J f 2aUu u —2c(a1] r )(M 1uk)] (xHedxds
]Rd

E{[ J;d—Zazu;u;dxds+ld(fHuﬂ| S HETIM T ) (3.23)

Now, Assumption (2.4)), inequality (3.22)), the inequality

IM~ g, < (3.24)

2
Sdr1-op
(see Corollary 6.2 in [[13]])), and Lemma 3.1] (iv) lead us to

4K?
2 2
25||ux||]L2,9(T) - |C| (K + K(d + 1 _ 9)2) ||ux||]L2,9(T)

< Nellwel, cpy + NIFIE, vy + NI,y + (O, .

Now, it is enough to take k = 2K /(d + 1 — 6) and observe that (3.19) is equivalent to the condition

ol [x+ 4K? Py 4|c|K -0
N d+1-02) "% d+1-0

The lemma is proved. O]
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Here is the main result of this section.

Theorem 3.4. Suppose (3.19) holds and
|MEll<r| + |Mbll<r| + |M2Ckr| + |kar|l2 < /3 (3.25)

Then there exists constant 3, = Po(d,dy, 8,5,K,L) > 0 so that if B < By, then for any f' € L, o(T),
fe M_lng’é(T), g €Ly 9(T,Ly), and ug € Uzl,g, system l has a unique solution u € Sﬁie(T), and
furthermore

el cry < NPl )+ ClMF Ny + ellglng ey + clluoll, (3.26)
where c =c(d,6,K,L,T).

Proof. As before, we only prove that the a priori estimate (3.26) holds given that a solution u already
exists.

Step 1. Assume that u vanishes when x! is near zero or infinity, and b’ = b’ = ¢ = 0 and v = 0.
Then in this case, the a priori estimate follows from Lemma (3.3

Step 2. Only assume u vanishes when x! is near zero or infinity. Then, by Step 1,
||M_1u||]H%,9(T) < clMbj M7 "+ F¥|ly, 1y + clIMbjul, + M7, M~ u" + Mfkllle_’é(T)
+cllMvi, M~ u" + gk”]Lz,@(T,ez) + c||u0||U219.

Since || - ||H;(19 <||- ||L2’9, we easily see that the above is less than

BIM ullgy 7+l o+ UMl ) + Ny e +cllutgll

Now it is enough to take [, so that ¢ < 1/2 for any 8 < f3,.
Step 3. General case. Let f3, be from Step 2. Take a sequence of smooth function 1,,(x) = n,(x!) €
Cy°(R4) so that n,(x) — 1, MDn,, are bounded uniformly in n, and n,v — v in ﬁg’e(T) asn— oo
forany v € ﬁg, o(T) (see for instance the proof of Theorem 2.9 in [[14]]). Note that u, := n,u satisfies
duﬁ = (Di(a;{jru;xj + B;{ru; +fnik) + b,i(ru:lxi + cprtty +fnk)dt
—l—(afmmu;xi + Virmlly, + gs,m)dw;”,
where

Fik _ Fik ij k _ o T r rik ki T k
fn _nnf _nnx‘akruﬂ fn __nnxf(akruxi+bkru +f )a gn’m_o-kr,mnnx‘u +nngm'

Then by the result of Step 2,

1Ml < € (1l o)+ Ml + gl e )

Finally one gets the desired estimate by taking n — oco. Indeed, for instance, since u € Jﬁé o(T) and
Mmn,, are bounded uniformly in n, by DCT

||Mnnxj(a;<]ruri + Bkrur)”]Hz"lg(T) S ||Mnnxj(alj uri + Bkrur)”]Lz’@(T) - 0;

x kr—x

and hence ||M fn||ngé T~ ||M f ”]H;}9 (r)- The other terms are treated similarly and hence the lemma
is proved. ’ ’
O]
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Remark 3.5. We do not know how sharp is. However, if 0 ¢ (d —1,d + 1) then Theorem
is false even for the heat equation u; = Au+ f (see [13]]). We also mention that if the coefficients
are sufficiently smooth in x, then one can get quite wider range of 6. This will be shown in the
subsequent article [[7].

4 The system on ¢ C R?

In this section we assume the following.

Assumption 4.1. The domain & is of class CL}. In other words, for any x, € d 0, there exist constants
r0,Ko € (0,00) and a one-to-one continuously differentiable mapping ¥ of B, (x,) onto a domain
J € RY such that

(D) Jy :=¥(B, (xo)N0O) C R‘i and ¥(xy) = 0;
(i) W(B, (xg)Ndo)=JNn{y€ RY: y! =0};
GiD) [Wlle1(s,, (xo) = Ko and W™ (1) = ¥ (y2)] < Kolyy — yal for any y; € J;

(iv) ¥, is uniformly continuous in B, (x).

To proceed further we introduce some well known results from [[3]] and [9].

Lemma 4.2. Let the domain O be of class Cl}. Then

(i) there is a bounded real-valued function 1) defined in @ such that the functions 1 (x) and p(x) :=
dist(x, @ 0) are comparable in the part of a neighborhood of 9 0 lying in 0. In other words, if p(x) is
sufficiently small, say p(x) < 1, then N~ !p(x) < (x) < Np(x) with some constant N independent
of x,

(ii) for any multi-index a it holds that

sup ()| D%, (x)] < oo. (4.27)
7

To describe the assumptions of f's, f, and g in (1.1) with space domain @ we use the Banach spaces
introduced in 9] and [15]. Let { € C°(IR) be a nonnegative function satisfying (3.15). For x € 0
and n € Z := {0, £1, ...} we define

Calx) = C(e"P(x)).
Then we have ), ¢, >cin 0 and

CheCy(0), |ID"E,(x)| < N(m)e™.
For O,y € R, let H; o (0) denote the set of all distributions u = (u!,u?,---u?) on @ such that

lllly gy = D€ IE (e (eI, < oo. (4.28)

p nez

If g =(g', g% ...,g%) and each g¥ is an ¢,-valued function, then we define

p _ n6 n, n P
1818y (0.0 = 22" NEn(e™R(E Iy,

nez
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It is known (see, for instance, [15]]) that up to equivalent norms the space H; (0) is independent
of the choice of ¢ and . Moreover, if y = n is a non-negative integer, then it holds that

[[ull? j [ D% u(x) P~ (x) dox. (4.29)

HY (0)
O|a| k

By comparing (|3.18l) and q4.29|), one finds that two spaces Hg,g(Ri) and H;, o are different since v

is bounded. Also, it is easy to see that, for any nonnegative function & = £(x!) € Cy° (RY) satisfying
& =1 near x! =0, we have

lullg ety ~ (el + 10— )l ). (4.30)
In particular, if u(x) = 0 for x* > r, then for any a € R we get
-1
¢ IM ullyr, < I ullyr ey < M ullyy (431

where ¢ = c(r,a,y,p, 8). We also mention that the space H; o can be defined on the basis of ll
by formally taking +)(x) = x! so that {_,(e"x) = {(x) and ll becomes

) =" e flu(e™ )P, < oo.
H] , ¢ H}

nez

We place the following lemma similar to Lemma

Lemma 4.3. ([I3])Letd—1<08<d—1+p.
Assertions (i)-(iii) in Lemma hold true with v and H;’ o(0) in place of M and H;’ o» Tespectively.

We define
I (0, T)=L,(2x[0,T],2,H] ,(0)), M ,(0,T,;)=L,(2x[0,T],2,H] ,(0,(,)),
UL o(0) = ' 2P L(Q, Fo, HI 2P (0)), Lyp(0,T) =T ,(0,T).

Definition 4.4. We define 5Y+2(0 T) as the space of all functions u = (u?,--- ,u®) € 1,Lr]HY 2(0,T)
such that u(0,-) € UY+2(0’) and for some f €~ 'H’ 9(0 T), ge ]HYH(ﬁ T, 52)

du= f dt + g, dwy",
in the sense of distributions. The norm in ﬁy (0 T) is introduced by
||u||~6;:;2(ﬁ,T) = ||’lp_1u”]H;:;2(ﬁ’T) + ||¢f ||]H;’9(0,T) + ”g”]H;:;l(ﬁ,T,lz) + ||u(07 )”U;";z(ﬁ)

The following result is due to N.VKrylov (see, for instance, [[11]]).
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Lemma 4.5. Let p > 2. Then there exists a constant ¢ = c(d, p, 0,7y, T) such that

p
Bsup (Ol < €l

In particular, forany t < T,

<
Il = € f Il 2, 85

Assumption 4.6. There is control on the behavior of b! b]i(r, ¢k and vy, near d 0, namely,

kr?

plirriostUP[p(X)lb (6, + p ()b}, (£, )] + p? ()l (£, )] + p () Wi (£, )], ] = 0. (4.32)
XE€E0

Note that Assumption[4.6|allows the coefficients to be unbounded and to blow up near the boundary.
(4.32) holds if, for instance,

|bi., (£, 5] + b}, (O] + [vie (0], < cp™(x), e (6,201 < p72F (),

for some c, & > 0.

Here is the main result of this section.

Theorem 4.7. Let 0 = ]Ri or O be bounded. Suppose D and Assumption n hold Then for any
fie Ly(0,T) (i=1,...,d), f € 1/)‘111-12_19(0, T), g € Ly9(0,T,L,), and uy € Ule(ﬁ) the system
D admits a unique solution u € .6; (0, T), and for this solution we have

e, 0,1 < €lF g0, + el Fllicd o, + ellgley oomen + clitolloz oy (4:33)
where c =c¢(d, 6,0,K,L).

Remark 4.8. By carefully inspecting our arguments below one can check that Theorem holds
even if the C!-domain @ is not bounded.

To prove Theorem [4.7|we need the following a priori estimate near the boundary when 8 0 € C*.

Lemma 4.9. Assume that u € YJ% p(0,T) is a solution of system such that u(t,x) = 0 for any
x € O\B,(xq), where xo € 0 and r > 0. Then there exists constant r; € (0, 1), independent of x,
and u, such that if r < rq, then a priori estimate (4.33) holds.

Proof. Let xo € 0 and ¥ be a function from Assumption We claim that ¥ can be chosen in
such a way that
POV, (x) =0 as p(x)—0 (4.34)

where the convergence in is independent of x;. Indeed, by Theorem 2.12 of [9](iv), there
exists a C*-domain ¢’ C ¢ and C*-diffeomorphism ¥; : & — 0’ so that for any multi-index a,
p"’"(x)Da(D\IJl)(x) — 0 as p(x) — 0. Thus it is enough to take ¥(x) = ¥;(¥,(x)), where ¥, is
a C™-function chosen as in Assumption [4.1] near W,(x,) € 0’ (remember ¢’ € C® and D*¥, is
bounded for any multi-index a).
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Define r = ry/K, and fix smooth functions n € C;°(B,), ¢ € C*(R) such that 0 < n,¢ < 1, and
n=1inB, ), ¢(t)=1for t < -3, and ¢(t) = 0 for t > —1 and 0 > ¢’ > —1. We observe that
W(B, (xo)) contains B,. Forn=1,2,..., t >0, x € R% we introduce ¢,(x) := ¢(n ' Inx?),

d
al(t,x) = n(x) ( > dm(e, v (1)) g (e (x))- 3m‘Pj(‘P_1(X))) +87(1 = (I,

I,m=1

b (t,x) = m()ea() DB ) A (Y (X)),
l

B(e,x) 1= (e = D a™(E, W) (G - 3 BT (x)) - 3(8 1) (x)

I,m,r,j
NAA NI ACIEN]E
[
&"(t,x) = n(x)p,(x)e(t, ¥H(x)),
5itx) = n(x)> ol (6, v (x)- e (x),
]

P(t,x) = n0)ea(x)v (e, x)(t, T (x)).
Then (a, 6" satisfies (2.4) and . We take f3, from Theorem corresponding to d,dq, 6,9, L
and K. We observe that ¢, (x) = 0 for x! > e™. Also, note that (4.34) implies x' W, (¥"(x)) =0

as x! — 0. Using these facts and (4.32)), one can fix n > 0 which is sufficiently large, independent
of x,, and

by (e, 01+ B! (6, 2] + Gt leg, (6,3 + X7 (6, 01, < Bo, V@, 8,

Now, we fix r; < rg so that
W(B, (x0)) CByjpNix: xt<e™}. (4.35)

Next, we observe that, by Lemma and Theorem 3.2 in [[15] (or see [9]), for any v,a € R and
he w‘“H; (0) with support in B, (x,) we have

1 *hlly o) ~ IM*RCE ™Dl . (4.36)
p, p,
Thus, for v(t,x) := u(t, ¥~ '(x)) we have v € ) ,(T) and v satisfies

dvk = (D@ v+ by + FR) + BV e v + FRde

X

+(é-li<r,mv;i + f/lrclr,mvr + g:;)dw;n, (4.37)
where

Fl= 3 (FR w1 (x)),  fF = —F R (x0)3, W (e ()3 (e () + FR e ().
1

Hence, the a priori estimate follows from Theorem 3.4 and (4.36). The lemma is proved.
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Remark 4.10. Let 0 = ]Ri. Then, in fact, Lemma holds if u(t,x) = 0 for x* > r; for some r;.
Indeed, by (4.32) there is r; > 0 so that

IMb| +|MDb'| + |M?c| + Mv],, < o (4.38)

for x! < ry. Now, if u(t, x) = 0 for x! > r;, then without affecting the system we may put b’ = b’ =
¢ =0and v =0 for x! > r; so that (4.38) holds for all x. Consequently the assertion follows from

Theorem and (4.31).

Next, we prove the a priori estimate for small T.

Lemma 4.11. Let assumptions in Theorem be satisfied. Then there exists a constant € € (0,1) so

that if T < g, then a priori estimate I holds for any solution u € 5"3% o(0,T) of system P with
Uy = 0.

Proof. We prove the lemma only when & is bounded. The case ¢ = Ri is treated similarly. Take
a partition of unity {{, : n = 0,1,2,...,Np}, where Ny < oo, such that {, € C°(0) and {, €
Co°(By, j2(xp)) with x,, € 00 forn=1,...,Ny. Also, we fix functions ¢, such that {, € C;°(0),{, €
Co° (B, (xp)) forn=1,...,Np, and ¢.C, = ¢, for each n. We note that v, := u(,, satisfies

dvi = (D-(aij +bkr v+ )+ bl v '+Ckrvr’;+fk_akru Cnxi)dt
+(‘7krm i VirmVr, +gm)th: (4.39)
where
£ = =B’ + F 4 b u" )yt + R,
fik:=—qa urCnxj+flka gn=—0"u,i + 8",

Also, we note that {yu € % (T) and ||y~ 1Cou||]Hl J(0.T)™ ||§Ou||]H1(T) By TheoremHand Lemma
, we have

Il (o) < an vallty o) (4.40)

<NZ(||f 12, 0,19 F I 5l g+ Gl N8l 1) (44D

Actually relations like (4.40) hold even if Ny = oo and this is why the theorem is true even when &
is not bounded.

Since a'/ is only measurable, at most we get
2
Z @it iy 1) < Z @it I, o, my < Nellg, o my S NIl 4

and consequently (4.41)) only leads us to the useless inequality

||1,b u“]Hl (ﬁ T) NHQ)L’ u”IHl (ﬁ T)+ o

Hence, to avoid estimating the norm ||1pakr o Oy ||]H 1(0,1) We proceed as in [|6]]. We note that for

each k we have
Y- lallcjruxfgnxi < 1/)‘11112’9(0, T).
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Thus, by Theorem 2.9 in [[5]], for each k the solution v € 55 9(0’ T) of the single equation

dv=_(Av—y~ 1a,l<Jr Xanxi)dt, v(0)=0
satisfies
||V ||52 o1 = N||Clkr i Cnxilln, g(0.1) S NllweCnxlln, oco,1) (4.42)
and, by Lemma[4.5] for each t < T we have

NI

[ < Ntlloxl? < Ntluenlli, 0,00 (4.43)

]Hl 0(0,0) = 5'2 o(0,0) —

where N is independent of T since we assume T < 1. Now, we denote a’;l = vr’fzpf . and i, =
1 d .
(@l,-,ay"). Then i, satisfies

da* = (Adk + fF —a u' {oi)dt, @5(0)=0
where fnk = —Zﬁ:xi(fntp)xi — vsA(fnzp). Finally, as we denote u, := v, —1,, we find that u,, satisfies
duk = (D, (a” o DU HF) bl ul 4 ul + Fr)de

+ (O-;(r,mu;xi + Vkr,mu; + Gs,m) dW;n’ (4.44)
where )
Frlzk = fr:k + (a}lclr _ 51]5kr)l—l 4 bkr_n,

= fnk +fnk + b}(rﬁ;xi + Cip il Gk = okr o H Vel + gn
Then, by Lemma[4.9] for any n > 1 and t < T we have

2 2
0 s oy SNIEE, 00+ NIV EE s ) o +NIGHI, 0 (4.45)

Also, since ul, has compact support in &, (4.45) holds for n = 0 by Theorem As we recall that
wb: T/)b; "(/JZC; ,l/)x, lp’(/)xx: (Cn,llj)x: wA(an) are bounded) || . ||H2_(19(ﬁ) < || : ”Lz’g(ﬁ)z and

Ip_lan = gn‘_jn: ﬂnx = 5n¢ﬁnx + ‘_}n(gnd))x:
we get

Ip(Ff + b, net T )l (0,0

IA

N (”wvnx”]Lz’g(ﬁ,t) + ||‘_}n||]L2’9(0’,t) + ”anx”]LZ’g(ﬁ,t) + ”lp_lﬂn”iz’g(ﬁ’t))

N (11 Pnelli, 0.0 + Il 0,0

< N”flnllﬁ{;e(ﬁ,f)

IA

and it leads to
IWEER sy S NI FlE s o F NI

Also, by (4.43) we have
”V ”]Hl S0, = NtHuanx”]Lw(ﬁ t)

1313



and consequently

2
Xn]nwnnmzlg o

NZ (nwfnu]H . t||uxcnx||ip,9m,t))

2 £112 2
NlullE, g,0 Nl o0 FNIFIE, 0.0+ NS ;10,00

£ )2 2
Z ”F;”]Lz,e(ﬁ,f)’ Z ”Gn“]Lz,e(ﬁ,f)'
n n
are estimated similarly. Then for each t < T one gets
Wl o S NZ 1l o)

2 2 2
NIFIR, o, + NI I3 gy + VB, )

N ull2, e+ N - el

IA

IA

The sums

A

]H1 o(0,8)

Now, we choose € €(0,1] such thatfort < T <¢
Nl o0 < 17207,

Then, by Lemma [4.5] for each ¢t < T we obtain

Il o S f Il o4 +NIFIR, o1
NS s gy + VI (4.46)
This and Gronwall’s inequality lead to the a priori estimate for T < ¢. O

For the case T > ¢ we need the following lemma, which is proved in [[6] for d; = 1.

Lemma 4.12. Letd —1<0 <d+1+p, t,<T, andue.\”jY (0, t,) satisfy

du*(t) = fH(t)dt + gk (DdwP, u(0)=0
Then there exists a unique it € ﬁ;j(;z(ﬁ, T) such that ii(t) = u(t) for t < ty(a.s) and on (0,T)

dii* = (AT + FR(e)dt + g5 <, dw, (4.47)
where f =(fkt) - Auk(t))ltgto. Furthermore, we have

sz g,y < Nl ) (4.48)

o (0,T) =

where N is independent of u and t.
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Proof. We note that for each k, f* e w_llHY 9(0’ T) and gk1t<t € ]HYH(ﬁ T). Thus, by Theorem

2.9 in [5]], equation (4.47) has a unique (real-valued) solution ii* € ﬁy (0 T) and we have

”ﬂk”.gjz:;z(ﬁ’]“) N”u ||5§Y+2(ﬁt ) (449)

We define @t = (@i}, a2, ---,i%). To show ii(t) = u(t) for t < to we notice that, for t < t,, the
function v¥(t) = ii*(t) — u*(t) satisfies the equation

dvk(t) = Aavkde, v(0,)=0
Thus, by Theorem 2.9 in [5]], v(t) = 0 for t < ty(a.e). The lemma is proved. O

We finish the proof of Theorem

Proof of Theorem As usual, we only prove that estimate (4.33) holds given that a solution
u already exists. For simplicity, we assume uy, = 0. See the proof of Theorem 5.1 in [[12] for the
general case.

Take an integer M > 2 such that T/M < ¢ and we denote t, = Tn/M. Assume that, for
n=1,2,..,M — 1, we have the estimate (4.33) with ¢, in place of T (and N depending only
ond,d;,08,6,K,L and T). We use the induction on n.

Let u, € $; , be the continuation of u on [t,, T], which exists by Lemma with y = —1 and
to = t,. As we denote v, := u —u,, we have v,(t) =0 for t < t,(a.s) and, for any t € [t,, T] and
¢ €C5o(0),

WE),9) = J (v + B v+ F, )(s)ds+f (b V! o+ oVl + Fr $)(s)ds

+f (O] VeVl A 8 s 9IS,
tTl

where N - 3 B . .
filk= (a) - 5”5”)11’” Jt b,l(rur +f*, fk=bl RIS T + K,
k.
8y 1= O UL Vil +g".

Next, instead of random processes on [0, T] we con51der processes given on [t,, T] and introduces
spaces 53;’9(0’, [tn, T]), Ly 6(0, [ty t]), ]H;)e(ﬁ, [t,, T]) in a natural way. Then we get a counter-
part of the previous result and conclude that

EJ ™ = )OI, s

n

S
< NE J UFIOIE, o) + IS ) 110 @IE, s
¢ > X >

n
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Thus, by the induction hypothesis we get

tht1
E “1u(s)|? ds
JO ey )

tht1

T
-1 2 1y — 2
NE JO [l un(s)||Hi9(mds+N1EJt RGOl MR

n

IA

IA

Fip2 2 2
N(llf ”Ez,e(ﬁ,tm) +lpf ||H£}9(ﬁ,tn+1) + ”gllle,@(ﬁ,th,ez))'

We see that the induction goes through and thus the theorem is proved.
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