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Abstract

In this paper we consider a class of one-dimensional interacting particle systems in equilibrium,
constituting a dynamic random environment, together with a nearest-neighbor random walk
that on occupied/vacant sites has a local drift to the right/left. We adapt a regeneration-time
argument originally developed by Comets and Zeitouni [8] for static random environments to
prove that, under a space-time mixing property for the dynamic random environment called
cone-mixing, the random walk has an a.s. constant global speed. In addition, we show that if
the dynamic random environment is exponentially mixing in space-time and the local drifts are
small, then the global speed can be written as a power series in the size of the local drifts. From
the first term in this series the sign of the global speed can be read off.
The results can be easily extended to higher dimensions .
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1 Introduction and main results

In Section 1 we give a brief introduction to the subject, we define the random walk in dynamic
random environment, introduce a space-time mixing property for the random environment called
cone-mixing, and state our law of large numbers for the random walk subject to cone-mixing. In
Section 2 we give the proof of the law of large numbers with the help of a space-time regeneration-
time argument. In Section 3 we assume a stronger space-time mixing property, namely, exponential
mixing, and derive a series expansion for the global speed of the random walk in powers of the size
of the local drifts. This series expansion converges for small enough local drifts and its first term
allows us to determine the sign of the global speed. (The perturbation argument underlying the
series expansion provides an alternative proof of the law of large numbers.) In Appendix A we give
examples of random environments that are cone-mixing. In Appendix B we compute the first three
terms in the expansion for an independent spin-flip dynamics.

1.1 Background and motivation

In the past forty years, models of Random Walk in Random Environment (RWRE) have been in-
tensively studied by the physics and the mathematics community, giving rise to an important and
still lively research area that is part of the field of disordered systems. RWRE on Zd is a Random
Walk (RW) evolving according to a random transition kernel, i.e., its transition probabilities depend
on a random field or a random process ξ on Zd called Random Environment (RE). The RE can be
either static or dynamic. We refer to static RE if ξ is chosen at random at time zero and is kept fixed
throughout the time evolution of the RW, while we refer to dynamic RE when ξ changes in time
according to some stochastic dynamics. For static RE, in one dimension the picture is fairly well
understood: recurrence criteria, laws of large numbers, invariance principles and refined large de-
viation estimates have been obtained in the literature. In higher dimensions many powerful results
have been obtained as well, while many questions still remain open. For a review on these results
and related questions we refer the reader to [21, 24, 25]. In dynamic RE the state of the art is rather
modest even in one dimension, in particular when the RE has dependencies in space and time.

RW in dynamic RE in dimension d can be viewed as RW in static RE in dimension d + 1, by con-
sidering time as an additional dimension. Consequently, we may expect to be able to adapt tools
developed for the static case to deal with the dynamic case as well. Indeed, the proof of our Law of
Large Numbers (LLN) in Theorem 1.2 below uses the regeneration technique developed by Comets
and Zeitouni for the static case [8] and adapts it to the dynamic case. A number of technicalities
become simpler, due to the directedness of time, while a number of other technicalities become
harder, due to the lack of ellipticity in the time direction.

Three classes of dynamic random environments have been studied in the literature so far:

(1) Independent in time: globally updated at each unit of time (see e.g. [6, 14, 19]);

(2) Independent in space: locally updated according to independent single-site Markov chains (see
e.g. [3, 5]);

(3) Dependent in space and time ([1, 2, 7, 9, 10, 12]).

For an extended list of references in classes (1) and (2), we refer the reader to [2]. Class (3) is
clearly the most challenging.
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In this paper we focus on models in which the RE are constituted by Interacting Particle Systems
(IPS’s). Indeed, IPS’s constitute a well-established research area (see e.g. [15]), and are natural
(and physically interesting) examples of RE belonging to class (3). Moreover, results and techniques
from IPS’s theory can be used in the present context as in our Theorem 1.3 (see also [2, 9]).

Most known results for dynamic RWRE (like LLN’s, annealed and quenched invariance principles,
decay of correlations) have been derived under suitable extra assumptions. Typically, it is assumed
either that the random environment has a strong space-time mixing property and/or that the tran-
sition probabilities of the random walk are close to constant, i.e., are small perturbation of a homo-
geneous RW. Our LLN in Theorem 1.2 is a successful attempt to move away from these restrictions.
Cone-mixing is one of the weakest mixing conditions under which we may expect to be able to de-
rive a LLN via regeneration times: no rate of mixing is imposed. Still, it is not optimal because it is a
uniform mixing condition (see (1.11)). For instance, the exclusion process, due to the conservation
of particles, is not cone-mixing.

Our expansion of the global speed in Theorem 1.3 below, which concerns a perturbation of a homo-
geneous RW falls into class (3), but, unlike what was done in previous works, it offers an explicit
control on the coefficients and on the domain of convergence of the expansion.

1.2 Model

Let Ω = {0,1}Z. Let C(Ω) be the set of continuous functions on Ω taking values in R, P (Ω) the
set of probability measures on Ω, and DΩ[0,∞) the path space, i.e., the set of càdlàg functions on
[0,∞) taking values in Ω. In what follows,

ξ= (ξt)t≥0 with ξt = {ξt(x): x ∈Z} (1.1)

is an interacting particle system taking values in Ω, i.e., a Feller process on Ω, with ξt(x) = 0
meaning that site x is vacant at time t and ξt(x) = 1 that it is occupied. The paths of ξ take values
in DΩ[0,∞). The law of ξ starting from ξ0 = η is denoted by Pη. The law of ξ when ξ0 is drawn
from µ ∈ P (Ω) is denoted by Pµ, and is given by

Pµ(·) =
∫

Ω
Pη(·)µ(dη). (1.2)

Through the sequel we will assume that

Pµ is stationary and ergodic under space-time shifts. (1.3)

Thus, in particular, µ is a homogeneous extremal equilibrium for ξ. The Markov semigroup associ-
ated with ξ is denoted by SIPS = (SIPS(t))t≥0. This semigroup acts from the left on C(Ω) as

�

SIPS(t) f
�

(·) = E(·)[ f (ξt)], f ∈ C(Ω), (1.4)

and acts from the right on P (Ω) as

�

νSIPS(t)
�

(·) = Pν(ξt ∈ · ), ν ∈ P (Ω). (1.5)

See Liggett [15], Chapter I, for a formal construction.
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Conditional on ξ, let
X = (X t)t≥0 (1.6)

be the random walk with local transition rates

x → x + 1 at rate αξt(x) + β [1− ξt(x)],

x → x − 1 at rate β ξt(x) +α [1− ξt(x)],
(1.7)

where w.l.o.g.
0< β < α <∞. (1.8)

Thus, on occupied sites the random walk has a local drift to the right while on vacant sites it has a
local drift to the left, of the same size. Note that the sum of the jump rates equals α+β and is thus
independent of ξ. Let Pξ0 denote the law of X starting from X0 = 0 conditional on ξ, which is the
quenched law of X . The annealed law of X is

Pµ,0(·) =
∫

DΩ[0,∞)
Pξ0 (·) P

µ(dξ). (1.9)

1.3 Cone-mixing and law of large numbers

In what follows we will need a mixing property for the law Pµ of ξ. Let (·, ·) and ‖ · ‖ denote the
inner product, respectively, the Euclidean norm on R2. Put `= (0, 1). For θ ∈ (0, 1

2
π) and t ≥ 0, let

Cθt =
�

u ∈Z× [0,∞): (u− t`,`)≥ ‖u− t`‖ cosθ
	

(1.10)

be the cone whose tip is at t` = (0, t) and whose wedge opens up in the direction ` with an angle
θ on either side (see Figure 1). Note that if θ = 1

2
π (θ = 1

4
π), then the cone is the half-plane

(quarter-plane) above t`.

(0, 0)

(0, t)

-

-

s s s s sssssss
θ θ Z× [0,∞)

Z

Cθt

time

space

Figure 1: The cone Cθt .

Definition 1.1. A probability measure Pµ on DΩ[0,∞) satisfying (1.3) is said to be cone-mixing if, for
all θ ∈ (0, 1

2
π),

lim
t→∞

sup
A∈F0, B∈Fθt
µ(A)>0

�

�

�Pµ(B | A)− Pµ(B)
�

�

�= 0, (1.11)
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where
F0 = σ

�

ξ0(x): x ∈Z
	

,

F θt = σ
�

ξs(x): (x , s) ∈ Cθt
	

.
(1.12)

In Appendix A we give examples of interacting particle systems that are cone-mixing.

We are now ready to formulate our law of large numbers (LLN).

Theorem 1.2. Assume (1.3). If Pµ is cone-mixing, then there exists a v ∈R such that

lim
t→∞

X t/t = v Pµ,0− a.s. (1.13)

The proof of Theorem 1.2 is given in Section 2, and is based on a regeneration-time argument origi-
nally developed by Comets and Zeitouni [8] for static random environments (based on earlier work
by Sznitman and Zerner [22]).

We have no criterion for when v < 0, v = 0 or v > 0. In view of (1.8), a naive guess would be
that these regimes correspond to ρ < 1

2
, ρ = 1

2
and ρ > 1

2
, respectively, with ρ = Pµ(ξ0(0) = 1)

the density of occupied sites. However, v = (2ρ̃− 1)(α−β), with ρ̃ the asymptotic fraction of time
spent by the walk on occupied sites, and the latter is a non-trivial function of Pµ, α and β . We do
not (!) expect that ρ̃ = 1

2
when ρ = 1

2
in general. Clearly, if Pµ is invariant under swapping the

states 0 and 1, then v = 0.

1.4 Global speed for small local drifts

For small α− β , X is a perturbation of simple random walk. In that case it is possible to derive an
expansion of v in powers of α−β , provided Pµ satisfies an exponential space-time mixing property
referred to as M < ε (Liggett [15], Section I.3). Under this mixing property, µ is even uniquely
ergodic.

Suppose that ξ has shift-invariant local transition rates

c(A,η), A⊂Z finite, η ∈ Ω, (1.14)

i.e., c(A,η) is the rate in the configuration η to change the states at the sites in A, and c(A,η) =
c(A+ x ,τxη) for all x ∈Z with τx the shift of space over x . Define

M =
∑

A30

∑

x 6=0

sup
η∈Ω
|c(A,η)− c(A,ηx)|,

ε= inf
η∈Ω

∑

A30

|c(A,η) + c(A,η0)|,
(1.15)

where ηx is the configuration obtained from x by changing the state at site x . The interpretation
of (1.15) is that M is a measure for the maximal dependence of the transition rates on the states of
single sites, while ε is a measure for the minimal rate at which the states of single sites change. See
Liggett [15], Section I.4, for examples.

Theorem 1.3. Assume (1.3) and suppose that M < ε. If α− β < 1
2
(ε−M), then

v =
∑

n∈N
cn (α− β)n ∈R with cn = cn(α+ β; Pµ), (1.16)

where c1 = 2ρ− 1 and cn ∈R, n ∈N\{1}, are given by a recursive formula (see Section 3.3).
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The proof of Theorem 1.3 is given in Section 3, and is based on an analysis of the semigroup
associated with the environment process, i.e., the environment as seen relative to the random walk.
The generator of this process turns out to be a sum of a large part and a small part, which allows
for a perturbation argument. In Appendix A we show that M < ε implies cone-mixing for spin-flip
systems, i.e., systems for which c(A,η) = 0 when |A| ≥ 2.

It follows from Theorem 1.3 that for α− β small enough the global speed v changes sign at ρ = 1
2
:

v = (2ρ− 1)(α− β) +O
�

(α− β)2
�

as α ↓ β for ρ fixed. (1.17)

We will see in Section 3.3 that c2 = 0 when µ is a reversible equilibrium, in which case the error
term in (1.17) is O((α− β)3).
In Appendix B we consider an independent spin-flip dynamics such that 0 changes to 1 at rate γ and
1 changes to 0 at rate δ, where 0< γ,δ <∞. By reversibility, c2 = 0. We show that

c3 =
4

U2 ρ(1−ρ)(2ρ− 1) f (U , V ), f (U , V ) =
2U + V

p

V 2+ 2UV
−

2U + 2V
p

V 2+ UV
+ 1, (1.18)

with U = α + β , V = γ + δ and ρ = γ/(γ + δ). Note that f (U , V ) < 0 for all U , V and
limV→∞ f (U , V ) = 0 for all U . Therefore (1.18) shows that

(1) c3 > 0 for ρ < 1
2
, c3 = 0 for ρ = 1

2
, c3 < 0 for ρ > 1

2
,

(2) c3→ 0 as γ+δ→∞ for fixed ρ 6= 1
2

and fixed α+ β .
(1.19)

If ρ = 1
2
, then the dynamics is invariant under swapping the states 0 and 1, so that v = 0. If ρ > 1

2
,

then v > 0 for α− β > 0 small enough, but v is smaller in the random environment than in the
average environment, for which v = (2ρ − 1)(α − β) (“slow-down phenomenon”). In the limit
γ+δ→∞ the walk sees the average environment.

1.5 Extensions

Both Theorem 1.2 and 1.3 are easily extended to higher dimensions (with the obvious generalization
of cone-mixing), and to random walks whose step rates are local functions of the environment, i.e.,
in (1.7) replace ξt(x) by R(τxξt), with τx the shift over x and R any cylinder function on Ω. It is
even possible to allow for steps with a finite range. All that is needed is that the total jump rate
is independent of the random environment. The reader is invited to take a look at the proofs in
Sections 2 and 3 to see why. In particular, in the context of Theorem 1.3, denote by {e1, . . . , ed} the
canonical basis of Zd . For any i = 1, . . . , d, let γi = αi −βi be the local drift in direction ei on top of
particles for the RW X in (1.6) extended on Zd . Denote by γ the d−dimensional vector (γ1, . . . ,γd)
and assume that on vacant sites X has local drifts −γi along each direction ei . Then Theorem 1.3
still holds under the condition that max{|γi| : i = 1, . . . , d} < (ε− M)/2 , with asymptotic speed
v = (2eρ− 1)γ ∈Rd .

Moreover, as shown in [1], the LLN in Theorem 1.2 can be extended to an annealed Central Limit
Theorem (CLT) under a stronger mixing assumption on the environment (see Chapter 3 therein).
In the perturbative regime of Theorem 1.3, a CLT follows easily without further assumptions, by a
martingale approximation argument (see [1], Section 3.3).
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2 Proof of Theorem 1.2

In this section we prove Theorem 1.2 by adapting the proof of the LLN for random walks in static
random environments developed by Comets and Zeitouni [8]. The proof proceeds in seven steps. In
Section 2.1 we look at a discrete-time random walk X on Z in a dynamic random environment and
show that it is equivalent to a discrete-time random walk Y on the half-plane

H=Z×N0 (2.1)

in a static random environment that is directed in the vertical direction. In Section 2.2 we show that
Y in turn is equivalent to a discrete-time random walk Z on H that suffers time lapses, i.e., random
times intervals during which it does not observe the random environment and does not move in the
horizontal direction. Because of the cone-mixing property of the random environment, these time
lapses have the effect of wiping out the memory. In Section 2.3 we introduce regeneration times at
which, roughly speaking, the future of Z becomes independent of its past. Because Z is directed,
these regeneration times are stopping times. In Section 2.4 we derive a bound on the moments
of the gaps between the regeneration times. In Section 2.5 we recall a basic coupling property for
sequences of random variables that are weakly dependent. In Section 2.6, we collect the various
ingredients and prove the LLN for Z , which will immediately imply the LLN for X . In Section 2.7,
finally, we show how the LLN for X can be extended from discrete time to continuous time.

The main ideas in the proof all come from [8]. In fact, by exploiting the directedness we are able to
simplify the argument in [8] considerably.

2.1 Space-time embedding

Conditional on ξ, we define a discrete-time random walk on Z

X = (Xn)n∈N0
(2.2)

with transition probabilities

Pξ0
�

Xn+1 = x + i | Xn = x
�

=







pξn+1(x) + q [1− ξn+1(x)] if i = 1,
qξn+1(x) + p [1− ξn+1(x)] if i =−1,
0 otherwise,

(2.3)

where x ∈ Z, p ∈ (1
2
, 1), q = 1− p, and Pξ0 denotes the law of X starting from X0 = 0 conditional

on ξ. This is the discrete-time version of the random walk defined in (1.6–1.7), with p and q taking
over the role of α/(α + β) and β/(α + β). Note that the walk observes the environment at the
moment when it jumps. As in Section 1.2, we write Pξ0 to denote the quenched law of X and Pµ,0 to
denote the annealed law of X .

Our interacting particle system ξ is assumed to start from an equilibrium measure µ such that the
path measure Pµ is stationary and ergodic under space-time shifts and is cone-mixing. Given a
realization of ξ, we observe the values of ξ at integer times n ∈Z, and introduce a random walk on
H

Y = (Yn)n∈N0
(2.4)
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with transition probabilities

Pξ(0,0)

�

Yn+1 = x + e | Yn = x
�

=







pξx2+1(x1) + q [1− ξx2+1(x1)] if e = `+,
qξx2+1(x1) + p [1− ξx2+1(x1)] if e = `−,
0 otherwise,

(2.5)

where x = (x1, x2) ∈H, `+ = (1,1), `− = (−1, 1), and Pξ(0,0) denotes the law of Y given Y0 = (0,0)
conditional on ξ. By construction, Y is the random walk on H that moves inside the cone with tip
at (0, 0) and angle 1

4
π, and jumps in the directions either l+ or l−, such that

Yn = (Xn, n), n ∈N0. (2.6)

We refer to Pξ(0,0) as the quenched law of Y and to

Pµ,(0,0)(·) =
∫

DΩ[0,∞)
Pξ(0,0)(·) P

µ(dξ) (2.7)

as the annealed law of Y . If we manage to prove that there exists a u= (u1, u2) ∈R2 such that

lim
n→∞

Yn/n= u Pµ,(0,0)− a.s., (2.8)

then, by (2.6), u2 = 1, and the LLN for the discrete-time process Y holds with v = u1. In Section 2.7
we show how to pass in continuous time to obtain Theorem 1.2.

2.2 Adding time lapses

Put Λ = {0,`+,`−}. Let ε = (εi)i∈N be an i.i.d. sequence of random variables taking values in Λ
according to the product law W = w⊗N with marginal

w(ε1 = ē) =

¨

r if ē ∈ {`+,`−},
p if ē = 0,

(2.9)

with r = 1
2
q. For fixed ξ and ε, introduce a second random walk on H

Z = (Zn)n∈N0
(2.10)

with transition probabilities

P̄ξ,ε
(0,0)

�

Zn+1 = x + e | Zn = x
�

= 1{εn+1=e}+
1

p
1{εn+1=0}

h

Pξ(0,0)

�

Yn+1 = x + e | Yn = x
�

− r
i

,
(2.11)

where x ∈H and e ∈ {`+,`−}, and P̄ξ,ε
(0,0) denotes the law of Z given Z0 = (0,0) conditional on ξ,ε.

In words, if εn+1 ∈ {`+,`−}, then Z takes step εn+1 at time n+ 1, while if εn+1 = 0, then Z copies
the step of Y (with appropriate probabilities).
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The quenched and annealed laws of Z defined by

P̄ξ(0,0)(·) =
∫

ΛN
P̄ξ,ε
(0,0)(·)W (dε), P̄µ,(0,0)(·) =

∫

DΩ[0,∞)
P̄ξ(0,0)(·) P

µ(dξ), (2.12)

coincide with those of Y , i.e.,

P̄ξ(0,0)(Z ∈ · ) = Pξ(0,0)(Y ∈ · ), P̄µ,(0,0)(Z ∈ · ) = Pµ,(0,0)(Y ∈ · ). (2.13)

In words, Z becomes Y when the average over ε is taken. The importance of (2.13) is two-fold.
First, to prove the LLN for Y in (2.8) it suffices to prove the LLN for Z . Second, Z suffers time lapses
during which its transitions are dictated by ε rather than ξ. By the cone-mixing property of ξ, these
time lapses will allow ξ to steadily lose memory, which will be a crucial element in the proof of the
LLN for Z .

2.3 Regeneration times

Fix L ∈ 2N and define the L-vector

ε(L) = (`+,`−, . . . ,`+,`−), (2.14)

where the pair `+,`− is alternated 1
2

L times. Given n ∈N0 and ε ∈ ΛN with (εn+1, . . . , εn+L) = ε(L),
we see from (2.11) that (because `++ `− = (0, 2) = 2`)

P̄ξ,ε
(0,0)

�

Zn+L = x + L` | Zn = x
�

= 1, x ∈H, (2.15)

which means that the stretch of walk Zn, . . . , Zn+L travels in the vertical direction ` irrespective of ξ.

Define regeneration times

τ
(L)
0 = 0, τ

(L)
k+1 = inf

�

n> τ(L)k + L : (εn−L , . . . ,εn−1) = ε
(L)	, k ∈N. (2.16)

Note that these are stopping times w.r.t. the filtration G = (Gn)n∈N given by

Gn = σ{εi : 1≤ i ≤ n}, n ∈N. (2.17)

Also note that, by the product structure of W = w⊗N defined in (2.9), we have τ(L)k <∞ P̄0-a.s. for
all k ∈N.

Recall Definition 1.1 and put

Φ(t) = sup
A∈F0, B∈Fθt

Pµ(A)>0

�

�

�Pµ(B | A)− Pµ(B)
�

�

�. (2.18)

Cone-mixing is the property that limt→∞Φ(t) = 0 (for all cone angles θ ∈ (0, 1
2
π), in particular, for

θ = 1
4
π needed here). Let

Hk = σ
�

(τ(L)i )
k
i=0, (Zi)

τ
(L)
k

i=0 , (εi)
τ
(L)
k −1

i=0 , {ξt : 0≤ t ≤ τ(L)k − L}
�

, k ∈N. (2.19)

This sequence of sigma-fields allows us to keep track of the walk, the time lapses and the environ-
ment up to each regeneration time. Our main result in the section is the following.
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Lemma 2.1. For all L ∈ 2N and k ∈N, P̄µ,(0,0)-a.s.,




 P̄µ,(0,0)

�

Z[k] ∈ · | Hk

�

− P̄µ,(0,0)
�

Z ∈ ·
�







tv
≤ Φ(L), (2.20)

where
Z[k] =

�

Z
τ
(L)
k +n− Z

τ
(L)
k

�

n∈N0

(2.21)

and ‖ · ‖tv is the total variation norm.

Proof. We give the proof for k = 1. Let A ∈ σ(HN0) be arbitrary, and abbreviate 1A = 1{Z∈A}. Let h
be anyH1-measurable non-negative random variable. Then, for all x ∈H and n ∈N, there exists a
random variable hx ,n, measurable w.r.t. the sigma-field

σ
�

(Zi)
n
i=0, (εi)

n−1
i=0 , {ξt : 0≤ t < n− L}

�

, (2.22)

such that h= hx ,n on the event {Zn = x ,τ(L)1 = n}. Let EPµ⊗W and CovPµ⊗W denote expectation and
covariance w.r.t. Pµ⊗W , and write θn to denote the shift of time over n. Then

Ēµ,(0,0)

�

h
�

1A ◦ θτ(L)1

��

=
∑

x∈H,n∈N
EPµ⊗W

�

Ēξ,ε
0

�

hx ,n [1A ◦ θn]1nZn=x ,τ(L)1 =n
o

��

=
∑

x∈H,n∈N
EPµ⊗W

�

fx ,n(ξ,ε) gx ,n(ξ,ε)
�

= Ēµ,(0,0)(h) P̄µ,(0,0)(A) +ρA,

(2.23)

where

fx ,n(ξ,ε) = Ēξ,ε
(0,0)

�

hx ,n 1n
Zn=x ,τ(L)1 =n

o

�

, gx ,n(ξ,ε) = P̄θnξ,θnε
x (A), (2.24)

and
ρA =

∑

x∈H,n∈N
CovPµ⊗W

�

fx ,n(ξ,ε), gx ,n(ξ,ε)
�

. (2.25)

By (1.11) and (2.18), we have

|ρA| ≤
∑

x∈H,n∈N

�

�CovPµ⊗W
�

fx ,n(ξ,ε), gx ,n(ξ,ε)
�

�

�

≤
∑

x∈H,n∈N
Φ(L) EPµ⊗W

�

fx ,n(ξ,ε)
�

sup
ξ,ε

gx ,n(ξ,ε)

≤ Φ(L)
∑

x∈H,n∈N
EPµ⊗W

�

fx ,n(ξ,ε)
�

= Φ(L) Ēµ,(0,0)(h).

(2.26)

Combining (2.23) and (2.26), we get
�

�

�

�

Ēµ,(0,0)

�

h
�

1A ◦ θτ(L)1

��

− Ēµ,(0,0)(h) P̄µ,(0,0)(A)

�

�

�

�

≤ Φ(L) Ēµ,(0,0)(h). (2.27)

Now pick h= 1B with B ∈H1 arbitrary. Then (2.27) yields
�

�

�P̄µ,(0,0)

�

Z[k] ∈ A | B
�

− P̄µ,(0,0) (Z ∈ A)
�

�

�≤ Φ(L) for all A∈ σ(HN0), B ∈H1. (2.28)
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Therefore, since (2.28) is uniform in B, (2.28) holds P̄µ,(0,0)-a.s. when B is replaced by H1. More-
over, (2.28) holds P̄µ,(0,0)-a.s. (with H1 in place of B), simultaneously for all measurable cylinder
sets A. Since the total variation norm is defined over cylinder sets, we can take the supremum over
A to get the claim for k = 1.

The extension to k ∈N is straightforward.

2.4 Gaps between regeneration times

Recall (2.16) and that r = 1
2
q. Define

T (L)k = r L
�

τ
(L)
k −τ

(L)
k−1

�

, k ∈N. (2.29)

Note that T (L)k , k ∈ N, are i.i.d. In this section we prove two lemmas that control the moments of
these increments.

Lemma 2.2. For every α > 1 there exists an M(α)<∞ such that

sup
L∈2N

Ēµ,(0,0)

�

[T (L)1 ]
α
�

≤ M(α). (2.30)

Proof. Fix α > 1. Since T (L)1 is independent of ξ, we have

Ēµ,(0,0)

�

[T (L)1 ]
α
�

= EW

�

[T (L)1 ]
α
�

≤ sup
L∈2N

EW

�

[T (L)1 ]
α
�

, (2.31)

where EW is expectation w.r.t. W . Moreover, for all a > 0, there exists a constant C = C(α, a) such
that

[aT (L)1 ]
α ≤ C eaT (L)1 , (2.32)

and hence

Ēµ,(0,0)

�

[T (L)1 ]
α
�

≤
C

aα
sup
L∈2N

EW

�

eaT (L)1

�

. (2.33)

Thus, to get the claim it suffices to show that, for a small enough,

sup
L∈2N

EW

�

eaT (L)1

�

<∞. (2.34)

To prove (2.34), let
I = inf

�

m ∈N: (εmL , . . . ,ε(m+1)L−1) = ε
(L)	. (2.35)

By (2.9), I is geometrically distributed with parameter r L . Moreover, τ(L)1 ≤ (I + 1)L. Therefore

EW

�

eaT (L)1

�

= EW

�

ear Lτ
(L)
1

�

≤ ear L L EW

�

ear L I L
�

= ear L L
∑

j∈N
(ear L L) j (1− r L) j−1 r L =

r Le2ar L L

ear L L(1− r L)
,

(2.36)

with the sum convergent for 0< a < (1/r L L) log[1/(1−r L)] and tending to zero as L→∞ (because
r < 1). Hence we can choose a small enough so that (2.34) holds.
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Lemma 2.3. lim infL→∞ Ēµ,(0,0)(T
(L)
1 )> 0.

Proof. Note that Ēµ,(0,0)(T
(L)
1 ) < ∞ by Lemma 2.2. Let N = (Nn)n∈N0

be the Markov chain with
state space S = {0,1, . . . , L}, starting from N0 = 0, such that Nn = s when

s = 0 ∨ max
�

k ∈N: (εn−k, . . . ,εn−1) = (ε
(L)
1 , . . . ,ε(L)k )

	

. (2.37)

This Markov chain moves up one unit with probability r, drops to 0 with probability p+ r when it
is even, and drops to 0 or 1 with probability p, respectively, r when it is odd. Since τ(L)1 =min{n ∈
N0 : Nn = L}, it follows that τ(L)1 is bounded from below by a sum of independent random variables,
each bounded from below by 1, whose number is geometrically distributed with parameter r L−1.
Hence

P̄µ,(0,0)

�

τ
(L)
1 ≥ c r−L

�

≥ (1− r L−1)bcr−Lc. (2.38)

Since
Ēµ,(0,0)(T

(L)
1 ) = r L Ēµ,(0,0)(τ

(L)
1 )

≥ r L Ēµ,(0,0)

�

τ
(L)
1 1{τ(L)1 ≥cr−L}

�

≥ c P̄µ,(0,0)

�

τ
(L)
1 ≥ cr−L

�

,
(2.39)

it follows that
lim inf

L→∞
Ēµ,(0,0)(τ

(L)
1 )≥ c e−c/r . (2.40)

This proves the claim.

2.5 A coupling property for random sequences

In this section we recall a technical lemma that will be needed in Section 2.6. The proof of this
lemma is a standard coupling argument (see e.g. Berbee [4], Lemma 2.1).

Lemma 2.4. Let (Ui)i∈N be a sequence of random variables whose joint probability law P is such that,
for some marginal probability law µ,





P
�

Ui ∈ · | σ{U j : 1≤ j < i}
�

−µ(·)






tv
≤ a a.s. ∀ i ∈N. (2.41)

Then there exists a sequence of random variables (eUi ,∆i , bUi)i∈N satisfying

(a) (eUi ,∆i)i∈N are i.i.d.,
(b) eUi has probability law µ,
(c) P(∆i = 0) = 1− a, P(∆i = 1) = a,
(d) ∆i is independent of bUi ,

such that
Ui = (1−∆i)eUi +∆i bUi i ∈N, in distribution. (2.42)
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2.6 LLN for Y

Similarly as in (2.29), define

Z (L)k = r L
�

Z
τ
(L)
k
− Z

τ
(L)
k−1

�

, k ∈N. (2.43)

In this section we prove the LLN for these increments and this will imply the LLN in (2.8).

Proof. By Lemma 2.1, we have




P̄µ,(0,0)
�

(T (L)k , Z (L)k ) ∈ · | Hk−1
�

−µ(L)(·)






tv
≤ Φ(L) a.s. ∀ k ∈N, (2.44)

where
µ(L)(A× B) = P̄µ,(0,0)

�

T (L)1 ∈ A, Z (L)1 ∈ B
�

∀A⊂ r LN, B ⊂ r LH. (2.45)

Therefore, by Lemma 2.4, there exists an i.i.d. sequence of random variables

(eT (L)k , eZ (L)k ,∆(L)k )k∈N (2.46)

on r LN × r LH × {0, 1}, where (eT (L)k , eZ (L)k ) is distributed according to µ(L) and ∆(L)k is Bernoulli
distributed with parameter Φ(L), and also a sequence of random variables

(bT (L)k , bZ (L)k )k∈N, (2.47)

such that ∆(L)k is independent of (bT (L)k , bZ (L)k ) and

(T (L)k , Z (L)k ) = (1−∆
(L)
k ) (eT

(L)
k , eZ (L)k ) +∆

(L)
k (bT

(L)
k , bZ (L)k ). (2.48)

Let
zL = Ēµ,(0,0)(Z

(L)
1 ), (2.49)

which is finite by Lemma 2.2 because |Z (L)1 | ≤ T (L)1 .

Lemma 2.5. There exists a sequence of numbers (δL)L∈N0
, satisfying limL→∞δL = 0, such that

lim sup
n→∞

�

�

�

�

�

1

n

n
∑

k=1

Z (L)k − zL

�

�

�

�

�

< δL P̄µ,(0,0)− a.s. (2.50)

Proof. With the help of (2.48) we can write

1

n

n
∑

k=1

Z (L)k =
1

n

n
∑

k=1

eZ (L)k −
1

n

n
∑

k=1

∆(L)k
eZ (L)k +

1

n

n
∑

k=1

∆(L)k
bZ (L)k . (2.51)

By independence, the first term in the r.h.s. of (2.51) converges P̄µ,(0,0)-a.s. to zL as L→∞. Hölder’s
inequality applied to the second term gives, for α,α′ > 1 with α−1+α′−1 = 1,

�

�

�

�

�

1

n

n
∑

k=1

∆(L)k
eZ (L)k

�

�

�

�

�

≤

 

1

n

n
∑

k=1

�

�

�∆(L)k

�

�

�

α′
!

1
α′
 

1

n

n
∑

k=1

�

�

�

eZ (L)k

�

�

�

α
!

1
α

. (2.52)
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Hence, by Lemma 2.2 and the inequality |eZ (L)k | ≤ eT
(L)
k (compare (2.29) and (2.43)), we have

limsup
n→∞

�

�

�

�

�

1

n

n
∑

k=1

∆(L)k
eZ (L)k

�

�

�

�

�

≤ Φ(L)
1
α′ M(α)

1
α P̄µ,(0,0)− a.s. (2.53)

It remains to analyze the third term in the r.h.s. of (2.51). Define the filtration bGk =
σ
�

(∆(L)i , bZ (L)i ): i < k
	

. Since |∆(L)k
bZ (L)k | ≤ |Z

(L)
k |, it follows from Lemma 2.2 that

M(α)≥ Ēµ,(0,0)

�

|∆(L)k
bZ (L)k |

α | bGk

�

= Φ(L) Ēµ,(0,0)

�

|bZ (L)k |
α | bGk

�

a.s. (2.54)

Next, put bZ∗(L)k = Ēµ,(0,0)(bZ
(L)
k | bGk) and note that

Mn =
n
∑

k=1

∆(L)k

k

�

bZ (L)k − bZ∗(L)k

�

(2.55)

is a mean-zero martingale w.r.t. the filtration bGn. By the Burkholder-Davis-Gundy inequality
(Williams [23], (14.18)), it follows that, for β = α∧ 2,

Ēµ,(0,0)

�

�

�

� sup
n∈N

Mn

�

�

�

β
�

≤ C(β) Ēµ,(0,0)

�
∑

k∈N

[∆(L)k (bZ
(L)
k − bZ∗(L)k )]2

k2

�β/2

≤ C(β)
∑

k∈N
Ēµ,(0,0)

 

|∆(L)k (bZ
(L)
k − bZ∗(L)k )|β

kβ

!

≤ C ′(β),

(2.56)

for some constants C(β), C ′(β) <∞. Hence Mn a.s. converges to an integrable random variable as
n→∞, and by Kronecker’s lemma (Williams [23], (12.7)),

lim
n→∞

1

n

n
∑

k=1

∆(L)k

�

bZ (L)k − bZ∗(L)k

�

= 0 a.s. (2.57)

Moreover, if Φ(L)> 0, then by Jensen’s inequality and (2.54) we have

|bZ∗(L)k | ≤
h

Ēµ,(0,0)

�

�

�
bZ (L)k

�

�

α | bGk

�i
1
α ≤

�

M(α)
Φ(L)

�
1
α

a.s.

Hence
�

�

�

�

�

1

n

n
∑

k=1

∆(L)k
bZ∗(L)k

�

�

�

�

�

≤
�

M(α)
Φ(L)

�
1
α 1

n

n
∑

k=1

∆(L)k . (2.58)

As n → ∞, the r.h.s. converges P̄µ,(0,0)-a.s. to M(α)
1
αΦ(L)

1
α′ . Therefore, choosing δL =

2M(α)
1
αΦ(L)

1
α′ , we get the claim.

Finally, since eZ (L)k ≥ r L and

1

n

n
∑

k=1

T (L)k = tL = Ēµ,(0,0)(T
(L)
1 )> 0 P̄µ,(0,0)− a.s., (2.59)
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Lemma 2.5 yields

limsup
n→∞

�

�

�

�

�

�

1
n

∑n
k=1 Z (L)k

1
n

∑n
k=1 T (L)k

−
zL

tL

�

�

�

�

�

�

< C1δL P̄µ,(0,0)− a.s. (2.60)

for some constant C1 <∞ and L large enough. By (2.29) and (2.43), the quotient of sums in the
l.h.s. equals Z

τ
(L)
n
/τ(L)n . It therefore follows from a standard interpolation argument that

limsup
n→∞

�

�

�

�

Zn

n
−

zL

tL

�

�

�

�

< C2δL P̄µ,(0,0)− a.s. (2.61)

for some constant C2 <∞ and L large enough. This implies the existence of the limit limL→∞ zL/tL ,
as well as the fact that limn→∞ Zn/n = u P̄µ,(0,0)-a.s., which in view of (2.13) is equivalent to the
statement in (2.8) with u= (v, 1).

2.7 From discrete to continuous time

It remains to show that the LLN derived in Sections 2.1–2.6 for the discrete-time random walk
defined in (2.2–2.3) can be extended to the continuous-time random walk defined in (1.6–1.7).

Let χ = (χn)n∈N0
denote the jump times of the continuous-time random walk X = (X t)t≥0 (with

χ0 = 0). Let Q denote the law of χ. The increments of χ are i.i.d. random variables, independent
of ξ, whose distribution is exponential with mean 1/(α+ β). Define

ξ∗ = (ξ∗n)n∈N0
with ξ∗n = ξχn

,
X ∗ = (X ∗n)n∈N0

with X ∗n = Xχn
.

(2.62)

Then X ∗ is a discrete-time random walk in a discrete-time random environment of the type consid-
ered in Sections 2.1–2.6, with p = α/(α+ β) and q = β/(α+ β). Lemma 2.6 below shows that the
cone-mixing property of ξ carries over to ξ∗ under the joint law Pµ ×Q. Therefore we have (recall
(1.9))

lim
n→∞

X ∗n/n= v∗ exists (Pµ,0×Q)− a.s. (2.63)

Since limn→∞χn/n= 1/(α+ β) Q-a.s., it follows that

lim
n→∞

Xχn
/χn = (α+ β)v

∗ exists (Pµ,0×Q)− a.s. (2.64)

A standard interpolation argument now yields (1.13) with v = (α+ β)v∗.

Lemma 2.6. If ξ is cone-mixing with angle θ > arctan(α+β), then ξ∗ is cone-mixing with angle 1
4
π.

Proof. Fix θ > arctan(α+ β), and put c = c(θ) = cotθ < 1/(α+ β). Recall from (1.10) that Cθt is
the cone with angle θ whose tip is at (0, t). For M ∈ N, let Cθt,M be the cone obtained from Cθt by
extending the tip to a rectangle with base M , i.e.,

Cθt,M = Cθt ∪ {([−M , M]∩Z)× [t,∞)}. (2.65)

Because ξ is cone-mixing with angle θ , and

Cθt,M ⊂ Cθt−cM , M ∈N, (2.66)
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ξ is cone-mixing with angle θ and base M , i.e., (1.11) holds with Cθt replaced by Cθt,M . This is true
for every M ∈N.

Define, for t ≥ 0 and M ∈N,

F θt = σ
�

ξs(x): (x , s) ∈ Cθt
	

,

F θt,M = σ
�

ξs(x): (x , s) ∈ Cθt,M
	

,
(2.67)

and, for n ∈N,

F ∗n = σ
�

ξ∗m(x): (x , m) ∈ C
1
4
π

n
	

,

Gn = σ
�

χm : m≥ n
	

,
(2.68)

where C
1
4
π

n is the discrete-time cone with tip (0, n) and angle 1
4
π.

Fix δ > 0. Then there exists an M = M(δ) ∈N such that Q(D[M]) ≥ 1− δ with D[M] = {χn/n ≥
c ∀n≥ M}. For n ∈N, define

Dn =
�

χn/n≥ c
	

∩σnD[M], (2.69)

where σ is the left-shift acting on χ. Since c < 1/(α + β), we have P(χn/n ≥ c) ≥ 1 − δ for
n≥ N = N(δ), and hence P(Dn)≥ (1−δ)2 ≥ 1− 2δ for n≥ N = N(δ),. Next, observe that

B ∈ F ∗n =⇒ B ∩ Dn ∈ F θcn,M ⊗Gn (2.70)

(the r.h.s. is the product sigma-algebra). Indeed, on the event Dn we have χm ≥ cm for m≥ n+M ,
which implies that, for m≥ M ,

(x , m) ∈ C
1
4
π

n =⇒ |x |+m≥ n=⇒ c|x |+χn ≥ cn=⇒ (x ,χm) ∈ Cθcn,M . (2.71)

Now put P̄µ = Pµ⊗Q and, for A∈ F0 with Pµ(A)> 0 and B ∈ F ∗n estimate

|P̄µ(B | A)− P̄µ(B)| ≤ I + I I + I I I (2.72)

with
I = |P̄µ(B | A)− P̄µ(B ∩ Dn | A)|,

I I = |P̄µ(B ∩ Dn | A)− P̄µ(B ∩ Dn)|,
I I I = |P̄µ(B ∩ Dn)− P̄µ(B)|.

(2.73)

Since Dn is independent of A, B and P(Dn) ≥ 1− 2δ, it follows that I ≤ 2δ and I I I ≤ 2δ uniformly
in A and B. To bound I I , we use (2.70) to estimate

I I ≤ sup
A∈F0, B′∈Fθcn,M⊗Gn

Pµ(A)>0

|P̄µ(B′ | A)− P̄µ(B′)|. (2.74)

But the r.h.s. is bounded from above by

sup
A∈F0, B′′∈Fθcn,M

Pµ(A)>0

|Pµ(B′′ | A)− Pµ(B′′)| (2.75)
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because, for every B′′ ∈ F θcn,M and C ∈ Gn,

|P̄µ(B′′× C | A)− P̄µ(B′′× C)|= |[Pµ(B′′ | A)− Pµ(B′′)]Q(C)| ≤ |Pµ(B′′ | A)− Pµ(B′′)|, (2.76)

where we use that C is independent of A, B′′.

Finally, because ξ is cone-mixing with angle θ and base M , (2.75) tends to zero as n→∞, and so
by combining (2.72–2.75) we get

limsup
n→∞

sup
A∈F0, B∈F∗n

Pµ(A)>0

|P̄µ(B | A)− P̄µ(B)| ≤ 4δ. (2.77)

Now let δ ↓ 0 to obtain that ξ∗ is cone-mixing with angle 1
4
π.

2.8 Remark on the cone-mixing assumption

We could have tried to follow a shorter approach to deriving the strong LLN in Theorem 1.2, avoid-
ing the technicalities of Sections 2.5 and 2.6. Indeed, with the help of the cone-mixing assumption
and the auxiliary random process Z introduced in Section 2.2, it seems possible to deduce that
the environment process, i.e., the environment as seen relative to the random walk (see Defini-
tion 3.1), admits a mixing equilibrium measure µe. Consequently, a weak law of large numbers,
L2-convergence, as well as almost-sure convergence with respect to µe can be inferred. If we could
subsequently show that the equilibrium measure µ is absolutely continuous with respect to µe, then
Theorem 1.2 would follow. A similar approach has been successfully used in several papers for
static and dynamic environments under somewhat stronger assumptions than cone-mixing (see e.g.
[18, 10]). In the present generality it is not trivial to show the absolutely continuity of µe with
respect to µ.

3 Series expansion for M < ε

Throughout this section we assume that the dynamic random environment ξ falls in the regime for
which M < ε (recall (1.15)). In Section 3.1 we define the environment process, i.e., the environment
as seen relative to the position of the random walk. In Section 3.2 we prove that this environment
process has a unique ergodic equilibrium µe, and we derive a series expansion for µe in powers of
α− β that converges when α− β < 1

2
(ε− M). In Section 3.3 we use the latter to derive a series

expansion for the global speed v of the random walk.

3.1 Definition of the environment process

Let X = (X t)t≥0 be the random walk defined in (1.6–1.7). For x ∈Z, let τx denote the shift of space
over x .

Definition 3.1. The environment process is the Markov process ζ= (ζt)t≥0 with state space Ω given by

ζt = τX t
ξt , t ≥ 0, (3.1)
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where
(τX t

ξt)(x) = ξt(x + X t), x ∈Z, t ≥ 0. (3.2)

Equivalently, if ξ has generator LIPS, then ζ has generator L given by

(L f )(η) = c+(η)
�

f (τ1η)− f (η)
�

+ c−(η)
�

f (τ−1η)− f (η)
�

+ (LIPS f )(η), η ∈ Ω, (3.3)

where f is an arbitrary cylinder function on Ω and

c+(η) = αη(0) + β [1−η(0)],
c−(η) = β η(0) +α [1−η(0)].

(3.4)

Let S = (S(t))t≥0 be the semigroup associated with the generator L. Suppose that we manage to
prove that ζ is ergodic, i.e., there exists a unique probability measure µe on Ω such that, for any
cylinder function f on Ω,

lim
t→∞
(S(t) f )(η) = 〈 f 〉µe

∀η ∈ Ω, (3.5)

where 〈·〉µe
denotes expectation w.r.t. µe. Then, picking f = φ0 with φ0(η) = η(0), η ∈ Ω, we have

lim
t→∞
(S(t)φ0)(η) = 〈φ0〉µe

= eρ ∀η ∈ Ω (3.6)

for some eρ ∈ [0, 1], which represents the limiting probability that X is on an occupied site given
that ξ0 = ζ0 = η (note that (S(t)φ0)(η) = Eη(ζt(0)) = Eη(ξt(X t))).

Next, let N+t and N−t be the number of shifts to the right, respectively, left up to time t in the

environment process. Then X t = N+t −N−t . Since M j
t = N j

t −
∫ t

0
c j(ηs)ds, j ∈ {+,−}, are martingales

with stationary and ergodic increments, we have

X t = Mt + (α− β)
∫ t

0

�

2ηs(0)− 1
�

ds (3.7)

with Mt = M+t −M−t a martingle with stationary and ergodic bounded increments. It follows from
(3.6–3.7) that

lim
t→∞

X t/t = (2eρ− 1)(α− β) µ− a.s. (3.8)

In Section 3.2 we prove the existence of µe, and show that it can be expanded in powers of α− β
when α− β < 1

2
(ε− M). In particular, it follows from this expansion (see e.g. (3.40)) that µe is

absolutely continuous with respect to µ. In Section 3.3 we use this expansion to obtain an expansion
of eρ.

3.2 Unique ergodic equilibrium measure for the environment process

In Section 3.2.1 we prove four lemmas controlling the evolution of ζ. In Section 3.2.2 we use these
lemmas to show that ζ has a unique ergodic equilibrium measure µe that can be expanded in powers
of α− β , provided α− β < 1

2
(ε−M).

We need some notation. Let ‖ · ‖∞ be the sup-norm on C(Ω). Let 9 · 9 be the triple norm on Ω
defined as follows. For x ∈Z and a cylinder function f on Ω, let

∆ f (x) = sup
η∈Ω
| f (ηx)− f (η)| (3.9)
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be the maximum variation of f at x , where ηx is the configuration obtained from η by flipping the
state at site x , and put

9 f 9=
∑

x∈Z
∆ f (x). (3.10)

It is easy to check that, for arbitrary cylinder functions f and g on Ω,

9 f g9≤ ‖ f ‖∞9g9+ ‖g‖∞9 f 9. (3.11)

3.2.1 Decomposition of the generator of the environment process

Lemma 3.2. Assume (1.3) and suppose that M < ε. Write the generator of the environment process ζ
defined in (3.3) as

L = L0+ L∗ = (LSRW+ LIPS) + L∗, (3.12)

where
(LSRW f )(η) = 1

2
(α+ β)

h

f (τ1η) + f (τ−1η)− 2 f (η)
i

,

(L∗ f )(η) = 1
2
(α− β)

h

f (τ1η)− f (τ−1η)
i

�

2η(0)− 1
�

.
(3.13)

Then L0 is the generator of a Markov process that still has µ as an equilibrium, and that satisfies

9S0(t) f 9≤ e−c t 9 f 9 (3.14)

and
‖S0(t) f − 〈 f 〉µ‖∞ ≤ C e−c t 9 f 9, (3.15)

where S0 = (S0(t))t≥0 is the semigroup associated with the generator L0, c = ε−M, and C <∞ is a
positive constant.

Proof. Note that LSRW and LIPS commute. Therefore, for an arbitrary cylinder function f on Ω, we
have

9S0(t) f 9= 9et LSRW
�

et LIPS f
�

9≤ 9et LIPS f 9≤ e−c t 9 f 9, (3.16)

where the first inequality uses that et LSRW is a contraction semigroup, and the second inequality
follows from the fact that ξ falls in the regime M < ε (see Liggett [15], Theorem I.3.9). The
inequality in (3.15) follows by a similar argument. Indeed,

‖S0(t) f − 〈 f 〉µ‖∞ = ‖et LSRW
�

et LIPS f
�

− 〈 f 〉µ‖∞ ≤ ‖et LIPS f − 〈 f 〉µ‖∞ ≤ C e−c t 9 f 9, (3.17)

where the last inequality again uses that ξ falls in the regime M < ε (see Liggett [15], Theorem
I.4.1). The fact that µ is an equilibrium measure is trivial, since LSRW only acts on η by shifting it.

Note that LSRW is the generator of simple random walk on Z jumping at rate α+ β . We view L0
as the generator of an unperturbed Markov process and L∗ as a perturbation of L0. The following
lemma gives us control of the latter.

Lemma 3.3. For any cylinder function f on Ω,

‖L∗ f ‖∞ ≤ (α− β)‖ f ‖∞ (3.18)

and
9L∗ f 9≤ 2(α− β)9 f 9 if 〈 f 〉µ = 0. (3.19)
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Proof. To prove (3.18), estimate

‖L∗ f ‖∞ =
1
2
(α− β)‖

�

f (τ1 ·)− f (τ−1 ·)
��

2φ0(·)− 1
�

‖∞
≤ 1

2
(α− β)‖ f (τ1 ·) + f (τ−1 ·)‖∞ ≤ (α− β)‖ f ‖∞.

(3.20)

To prove (3.19), recall (3.13) and estimate

9L∗ f 9= 1
2
(α− β)9

�

f (τ1 ·)− f (τ−1 ·)
��

2φ0(·)− 1
�

9

≤ 1
2
(α− β)

n

9 f (τ1·)(2φ0(·)− 1)9+9 f (τ−1·)(2φ0(·)− 1)9
o

≤ (α− β)
�

‖ f ‖∞9 (2φ0− 1)9+9 f 9‖(2φ0− 1)‖∞
�

= (α− β)
�

‖ f ‖∞+9 f 9
�

≤ 2(α− β)9 f 9,

(3.21)

where the second inequality uses (3.11) and the third inequality follows from the fact that ‖ f ‖∞ ≤
9 f 9 for any f such that 〈 f 〉µ = 0.

We are now ready to expand the semigroup S of ζ. Henceforth abbreviate

c = ε−M . (3.22)

Lemma 3.4. Let S0 = (S0(t))t≥0 be the semigroup associated with the generator L0 defined in (3.13).
Then, for any t ≥ 0 and any cylinder function f on Ω,

S(t) f =
∑

n∈N
gn(t, f ), (3.23)

where

g1(t, f ) = S0(t) f and gn+1(t, f ) =

∫ t

0

S0(t − s) L∗ gn(s, f )ds, n ∈N. (3.24)

Moreover, for all n ∈N,

‖gn(t, f )‖∞ ≤ 9 f 9
�2(α− β)

c

�n−1
(3.25)

and

9gn(t, f )9≤ e−c t [2(α− β)t]
n−1

(n− 1)!
9 f 9, (3.26)

where 0!= 1. In particular, for all t > 0 and α−β < 1
2
c the series in (3.23) converges uniformly in η.

Proof. Since L = L0+ L∗, Dyson’s formula gives

et L f = et L0 f +

∫ t

0

e(t−s)L0 L∗ esL f ds, (3.27)

which, in terms of semigroups, reads

S(t) f = S0(t) f +

∫ t

0

S0(t − s)L∗ S(s) f ds. (3.28)
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The expansion in (3.23–3.24) follows from (3.28) by induction on n.

We next prove (3.26) by induction on n. For n = 1 the claim is immediate. Indeed, by Lemma 3.2
we have the exponential bound

9g1(t, f )9= 9S0(t) f 9≤ e−c t 9 f 9. (3.29)

Suppose that the statement in (3.26) is true up to n. Then

9gn+1(t, f )9= 9
∫ t

0

S0(t − s) L∗ gn(s, f )ds 9

≤
∫ t

0

9S0(t − s) L∗ gn(s, f )9ds

≤
∫ t

0

e−c(t−s)9L∗ gn(s, f )9ds

=

∫ t

0

e−c(t−s)9L∗
�

gn(s, f )− 〈gn(s, f )〉µ
�

9ds

≤ 2(α− β)
∫ t

0

e−c(t−s)9gn(s, f )9ds,

≤ 9 f 9e−c t [2(α− β)]n
∫ t

0

sn−1

(n− 1)!
ds

= 9 f 9e−c t [2(α− β)t]
n

n!
,

(3.30)

where the third inequality uses (3.19), and the fourth inequality relies on the induction hypothesis.

Using (3.26), we can now prove (3.25). Estimate

‖gn+1(t, f )‖∞ =











∫ t

0

S0(t − s) L∗ gn(s, f )ds











∞

≤
∫ t

0

‖L∗ gn(s, f )‖∞ ds

=

∫ t

0



L∗
�

gn(s, f )− 〈gn(s, f )〉µ
�





∞ ds

≤ (α− β)
∫ t

0



gn(s, f )− 〈gn(s, f )〉µ




∞ ds

≤ (α− β)
∫ t

0

9gn(s, f )9ds

≤ (α− β)9 f 9
∫ t

0

e−cs [2(α− β)s]
n−1

(n− 1)!
ds

≤ 9 f 9
�2(α− β)

c

�n
,

(3.31)
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where the first inequality uses that S0(t) is a contraction semigroup, while the second and fourth
inequality rely on (3.18) and (3.26).

We next show that the functions in (3.23) are uniformly close to their average value.

Lemma 3.5. Let
hn(t, f ) = gn(t, f )− 〈gn(t, f )〉µ, t ≥ 0, n ∈N. (3.32)

Then

‖hn(t, f )‖∞ ≤ C e−c t [2(α− β)t]
n−1

(n− 1)!
9 f 9, (3.33)

for some C <∞ (0!= 1).

Proof. Note that 9hn(t, f )9= 9gn(t, f )9 for t ≥ 0 and n ∈N, and estimate

‖hn+1(t, f )‖∞ =











∫ t

0

�

S0(t − s) L∗ gn(s, f )− 〈L∗ gn(s, f )〉µ
�

ds











∞

≤ C

∫ t

0

e−c(t−s)9L∗ gn(s, f )9ds

= C

∫ t

0

e−c(t−s)9L∗ hn(s, f )9ds

≤ C 2(α− β)
∫ t

0

e−c(t−s)9hn(s, f )9ds

≤ C 9 f 9e−c t [2(α− β)]n
∫ t

0

sn−1

(n− 1)!
ds

= C 9 f 9e−c t [2(α− β)t]
n

n!
,

(3.34)

where the first inequality uses (3.15), while the second and third inequality rely on (3.19) and
(3.26).

3.2.2 Expansion of the equilibrium measure of the environment process

We are finally ready to state the main result of this section.

Theorem 3.6. For α − β < 1
2
c, the environment process ζ has a unique invariant measure µe. In

particular, for any cylinder function f on Ω,

〈 f 〉µe
= lim

t→∞
〈S(t) f 〉µ =

∑

n∈N
lim
t→∞
〈gn(t, f )〉µ. (3.35)
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Proof. By Lemma 3.5, we have





S(t) f −



S(t) f
�

µ







∞
=











∑

n∈N
gn(t, f )− 〈

∑

n∈N
gn(t, f )〉µ











∞

=











∑

n∈N
hn(t, f )











∞

≤
∑

n∈N
‖hn(t, f )‖∞ ≤ C e−c t 9 f 9

∑

n∈N

[2(α− β)t]n

n!

= C9 f 9e−t[c−2(α−β)].

(3.36)

Since α − β < 1
2
c, we see that the r.h.s. of (3.36) tends to zero as t → ∞. Consequently, the

l.h.s. tends to zero uniformly in η, and this is sufficient to conclude that the set I of equilibrium
measures of the environment process is a singleton, i.e., I = {µe}. Indeed, suppose that there are
two equilibrium measures ν ,ν ′ ∈ I . Then

|〈 f 〉ν − 〈 f 〉ν ′ |= |〈S(t) f 〉ν − 〈S(t) f 〉ν ′ |
≤ |〈S(t) f 〉ν − 〈S(t) f 〉µ|+ |〈S(t) f 〉ν ′ − 〈S(t) f 〉µ|
= |〈
�

S(t) f − 〈S(t) f 〉µ]〉ν |+ |〈
�

S(t) f − 〈S(t) f 〉µ]〉ν ′ |

≤ 2


S(t) f − 〈S(t) f 〉µ




∞ .

(3.37)

Since the l.h.s. of (3.37) does not depend on t, and the r.h.s. tends to zero as t → ∞, we have
ν = ν ′ = µe. Next, µe is the unique ergodic measure, meaning that the environment process
converges to µe as t →∞ no matter what its starting distribution is. Indeed, for any µ′,

|〈S(t) f 〉µ′ − 〈S(t) f 〉µ|= |〈
�

S(t) f − 〈S(t) f 〉µ]〉µ′ | ≤


S(t) f − 〈S(t) f 〉µ




∞ , (3.38)

and therefore

〈 f 〉µe
= lim

t→∞
S(t) f = lim

t→∞
〈S(t) f 〉µ = lim

t→∞

*

∑

n∈N
gn(t, f )

+

µ

= lim
t→∞

∑

n∈N
〈gn(t, f )〉µ =

∑

n∈N
lim
t→∞
〈gn(t, f )〉µ,

(3.39)

where the last equality is justified by the bound in (3.25) in combination with the dominated con-
vergence theorem.

We close this section by giving a more transparent description of µe, more suitable for explicit
computation.

Theorem 3.7. For α− β < 1
2
c,

〈 f 〉µe
=
∑

n∈N
〈Ψn〉µ (3.40)

with
Ψ1 = f and Ψn+1 = L∗L

−1
0 (Ψn− 〈Ψn〉µ), n ∈N, (3.41)

where L−1
0 =

∫∞
0

S0(t)dt (whose domain is the set of all f ∈ C(Ω) with 〈 f 〉µ = 0).
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Proof. By (3.39), the claim is equivalent to showing that

lim
t→∞
〈gn(t, f )〉µ = 〈Ψn〉µ. (3.42)

First consider the case n= 2. Then

lim
t→∞
〈g2(t, f )〉µ = lim

t→∞

®
∫ t

0

ds S0(t − s) L∗ g1(s, f )

¸

µ

= lim
t→∞

®
∫ t

0

ds L∗ g1(s, f )

¸

µ

= lim
t→∞

®
∫ t

0

ds L∗S0(s) f

¸

µ

= lim
t→∞

®
∫ t

0

ds L∗
�

S0(s)( f − 〈 f 〉µ)
�

¸

µ

=

®

lim
t→∞

L∗

∫ t

0

ds S0(s)( f − 〈 f 〉µ)
¸

µ

= 〈L∗L−1
0 ( f − 〈 f 〉µ)〉µ,

(3.43)

where the second equality uses that µ is invariant w.r.t. S0, while the fifth equality uses the linearity
and continuity of L∗ in combination with the bound in (3.25).

For general n, the argument runs as follows. First write

〈gn(t, f )〉µ

=

®
∫ t

0

ds S0(t − t1) L∗ gn−1(t1, f )

¸

µ

=

®
∫ t

0

dt1 L∗ gn−1(t1, f )

¸

µ

=

®
∫ t

0

dt1

∫ t1

0

dt2 · · ·
∫ tn−1

0

dtn
�

L∗S0(t1− t2) · · · L∗S0(tn−1− tn)L∗S0(tn)
�

f

¸

µ

=

*

∫ t

0

dtn

∫ t−tn

0

dtn−1 · · ·
∫ t−t2

0

dt1
�

L∗S0(t1)L∗S0(t2) · · · L∗S0(tn−1)L∗S0(tn)
�

f

+

µ

.

(3.44)
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Next let t →∞ to obtain

lim
t→∞
〈gn(t, f )〉µ

=

®
∫ ∞

0

dtn

∫ ∞

0

dtn−1 · · ·
∫ ∞

0

dt1
�

L∗S0(t1)L∗S0(t2) · · · L∗S0(tn−1)L∗S0(tn)
�

f

¸

µ

=

®

L∗

∫ ∞

0

dt1 S0(t1) L∗

∫ ∞

0

dt2 S0(t2) · · · L∗

∫ ∞

0

dtn S0(tn) ( f − 〈 f 〉µ)
¸

µ

=

®

L∗

∫ ∞

0

dt1 S0(t1) L∗

∫ ∞

0

dt2 S0(t2) · · · L∗L−1
0 ( f − 〈 f 〉µ)

¸

µ

=

®

L∗

∫ ∞

0

dt1 S0(t1) L∗

∫ ∞

0

dt2 S0(t2) · · · L∗

∫ ∞

0

dtn−1 S0(tn−1)Ψ2

¸

µ

,

(3.45)

where we insert L∗L
−1
0 ( f − 〈 f 〉µ) = Ψ2. Iteration shows that the latter expression is equal to

®

L∗

∫ ∞

0

dt1 S0(t1)Ψn−1

¸

µ

=

®

L∗

∫ ∞

0

dt1 S0(t1)(Ψn−1− 〈Ψn−1〉µ)
¸

µ

=
¬

L∗L
−1
0 (Ψn−1− 〈Ψn−1〉µ)

¶

µ
= 〈Ψn〉µ.

(3.46)

3.3 Expansion of the global speed

As we argued in (3.8), the global speed of X is given by

v = (2eρ− 1)(α− β) (3.47)

with eρ = 〈φ0〉µe
. By using Theorem 3.7, we can now expand eρ.

First, if 〈φ0〉µ = ρ is the particle density, then

eρ = 〈φ0〉µe
= ρ+

∞
∑

n=2

〈Ψn〉µ, (3.48)

where Ψn is constructed recursively via (3.41) with f = φ0. We have

〈Ψn〉µ = dn (α− β)n−1, n ∈N, (3.49)

where dn = dn(α+ β; Pµ), and the factor (α− β)n−1 comes from the fact that the operator L∗ is
applied n− 1 times to compute Ψn, as is seen from (3.41). Recall that, in (3.13), LSRW carries the
prefactor α+ β , while L∗ carries the prefactor α− β . Combining (3.47–3.48), we have

v =
∑

n∈N
cn (α− β)n, (3.50)

with c1 = 2ρ− 1 and cn = 2dn, n ∈N\{1}.
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For n= 2,3 we have

c2 = 2



φ0 L−1
0

�

φ1−φ−1
��

µ

c3 =
1
2

¬

ψ0 L−1
0

�

ψ−1 L−1
0 φ̄−2−ψ1 L−1

0 φ̄0−ψ−1 L−1
0 φ̄0+ψ1 L−1

0 φ̄2
�

¶

µ
,

(3.51)

where φi(η) = η(i), η ∈ Ω, φ̄i = φi − 〈φi〉µ and ψi = 2φi − 1. It is possible to compute c2 and c3
for appropriate choices of ξ.

If the law of ξ is invariant under reflection w.r.t. the origin, then ξ has the same distribution as ξ′

defined by ξ′(x) = ξ(−x), x ∈ Z. In that case c2 = 0, and consequently v = (2ρ − 1)(α− β) +
O((α− β)3). For examples of interacting particle systems with M < ε, see Liggett [15], Section I.4.
Some of these examples have the reflection symmetry property.

An alternative formula for c2 is (recall (3.13))

c2 = 2

∫ ∞

0

dt
�

ESRW,1[K(Yt , t)]− ESRW,−1[K(Yt , t)]
�

, (3.52)

where
K(i, t) = EPµ[ξ0(0)ξt(i)] = 〈φ0 (SIPS(t)φi)〉µ, i ∈Z, t ≥ 0, (3.53)

is the space-time correlation function of the interacting particle system (with generator LIPS), and
ESRW,i is the expectation over simple random walk Y = (Yt)t≥0 jumping at rate α+β (with generator
LSRW) starting from i. If µ is a reversible equilibrium, then (recall (1.3))

K(i, t) = 〈φ0 (SIPS(t)φi)〉µ = 〈(SIPS(t)φ0)φi〉µ = 〈(SIPS(t)φ−i)φ0〉µ = K(−i, t), (3.54)

implying that c2 = 0.

In Appendix B we compute c3 for the independent spin-flip dynamics, for which c2 = 0.

A Examples of cone-mixing

A.1 Spin-flip systems in the regime M < ε

Let ξ be a spin-flip system for which M < ε. We recall that in a spin-flip system only one coordinate
changes in a single transition. The rate to flip the spin at site x ∈Z in configuration η ∈ Ω is c(x ,η).
As shown in Steif [20] and in Maes and Shlosman [16], two copies ξ,ξ′ of the spin-flip system
starting from configurations η,η′ can be coupled such that, uniformly in t and η,η′,

bPη,η′
�

∃ s ≥ t : ξs(x) 6= ξ′s(x)
�

≤
∑

y∈Z:
η(y)6=η′(y)

e−εt �eΓt�(y, x)≤ e−(ε−M)t , (A.1)

where bPη,η′ is the Vasershtein coupling (or basic coupling), and Γ is the matrix Γ = (γ(u, v))u,v∈Z
with elements

γ(u, v) = sup
η∈Ω
|c(u,η)− c(u,ηv)|. (A.2)

Recall (1.15) to see that Γ is a bounded operator on `1(Z) with norm M (see also Liggett [15],
Section I.3).
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Define
ρ(t) = sup

η,η′∈Ω
bPη,η′

�

∃ s ≥ t : ξs(0) 6= ξ′s(0)
�

, t ≥ 0. (A.3)

Recall Definition 1.1, fix θ ∈ (0, 1
2
π) and put c = c(θ) = cotθ . For B ∈ F θt , estimate

|Pη(B)− Pη′(B)| ≤ bPη,η′
�

∃ x ∈Z ∃ s ≥ t + c|x |: ξs(x) 6= ξ′s(x)
�

≤
∑

x∈Z

bPη,η′
�

∃ s ≥ t + c|x |: ξs(x) 6= ξ′s(x)
�

≤
∑

x∈Z
ρ(t + c|x |)

≤ ρ(t) + 2

∫ ∞

0

ρ(t + cu)du

= ρ(t) +
2

c

∫ ∞

0

ρ(t + v)dv.

(A.4)

Since this estimate is uniform in B and η,η′, it follows that for the cone-mixing property to hold it
suffices that

∫ ∞

0

ρ(v)dv <∞. (A.5)

It follows from (A.1) that ρ(t)≤ e−(ε−M)t , which indeed is integrable.

Note that if the supremum in (A.3) is attained at the same pair of starting configurations η,η′ for
all t ≥ 0, then (A.5) amounts to the condition that the average coupling time at the origin for this
pair is finite.

A.2 Attractive spin-flip dynamics

An attractive spin-flip system ξ has rates c(x ,η) satisfying

c(x ,η)≤ c(x ,η′) if η(x) = η′(x) = 0,

c(x ,η)≥ c(x ,η′) if η(x) = η′(x) = 1,
(A.6)

whenever η ≤ η′ (see Liggett [15], Chapter III). If c(x ,η) = c(x + y,τyη) for all y ∈ Z, then
attractivity implies that, for any pair of configurations η,η′,

bPη,η′
�

∃ s ≥ t : ξs(x) 6= ξ′s(x)
�

≤ bP[0],[1]
�

∃ s ≥ t : ξs(0) 6= ξ′s(0)
�

, (A.7)

where [0] and [1] are the configurations with all 0’s and all 1’s, respectively. Proceeding as in (A.4),
we find that for the cone-mixing property to hold it suffices that

∫ ∞

0

ρ∗(v)dv <∞, ρ∗(t) = bP[0],[1]
�

∃ s ≥ t : ξs(0) 6= ξ′s(0)
�

. (A.8)

Examples of attractive spin-flip systems are the (ferromagnetic) Stochastic Ising Model, the Contact
Process, the Voter Model, and the Majority Vote Process (see Liggett [15], Chapter III). For the
one-dimensional Stochastic Ising Model, t 7→ ρ∗(t) decays exponentially fast at any temperature

613



(see Holley [13]). The same is true for the one-dimensional Majority Vote Process (Liggett [15],
Example III.2.12). Hence both are cone-mixing. The one-dimensional Voter Model has equilibria
pδ[0] + (1 − p)δ[1], p ∈ [0,1], and therefore is not interesting for us. The Contact Process has
equilibria pδ[0]+ (1− p)ν , p ∈ [0, 1], but ν is not cone-mixing.

In view of the remark made at the end of Section 1.1, we note the following. For the Stochastic
Ising Model in dimensions d ≥ 2 exponentially fast decay occurs only at high enough temperature
(Martinelli [17], Theorem 4.1). The Voter Model in dimensions d ≥ 3 has non-trivial ergodic
equilibria, but none of these is cone-mixing. The same is true for the Contact Process in dimensions
d ≥ 2.

A.3 Space-time Gibbs measures

We next give an example of a discrete-time dynamic random environment that is cone-mixing but
not Markovian. Accordingly, in (1.12) we must replace F0 by F−N0

= {ξt(x): x ∈ Z, t ∈ (−N0)}.
Let σ = {σ(x , y): (x , y) ∈ Z2} be a two-dimensional Gibbsian random field in the Dobrushin
regime (see Georgii [11], Section 8.2). We can define a discrete-time dynamic random environment
ξ on Ω by putting

ξt(x) = σ(x , t) (x , t) ∈Z2. (A.9)

The cone-mixing condition for ξ follows from the mixing condition of σ in the Dobrushin regime.
In particular, the decay of the mixing function Φ in (2.18) is like the decay of the Dobrushin matrix,
which can be polynomial.

B Independent spin-flips

Let ξ be the Markov process with generator LISF given by

(LISF f )(η) =
∑

x∈Z
c(x ,η)

�

f (ηx)− f (η)
�

, η ∈ Ω, (B.1)

where
c(x ,η) = γ[1−η(x)] +δη(x), (B.2)

i.e., 0’s flip to 1’s at rate γ and 1’s flip to 0’s at rate δ, independently of each other. Such a ξ is an
example of a dynamics with M < ε, for which Theorem 3.7 holds. From the expansion of the global
speed in (3.50) we see that c2 = 0, because the dynamics is invariant under reflection in the origin.
We explain the main ingredients that are needed to compute c3 in (1.18).

The equilibrium measure of ξ is the Bernoulli product measure νρ with parameter ρ = γ/(γ+ δ).
We therefore see from (3.51) that we must compute expressions of the form

I( j, i) =
¬

(2η(0)− 1)L−1
0

�

(2η( j)− 1)L−1
0 (η(i)−ρ)

�

¶

νρ
, (B.3)

where η is a typical configuration of the environment process ζ = (ζt)t≥0 = (τX t
ξt)t≥0 (recall

Definition 3.1), and
( j, i) ∈ A= {(−1,−2), (−1, 0), (1,0), (1,2)}. (B.4)
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By Lemma 3.2 we have L0 = LSRW + LISF, with LSRW the generator of simple random walk on Z
jumping at rate U = α+ β . Hence

(S0(t)η)(i) = EηR [ηt(i)] =
∑

y∈Z
pU t(0, y) E

τyη

ISF [ηt(i)] =
∑

y∈Z
pU t(0, y) EηISF[ηt(i− y)], (B.5)

where τy is the shift of space over x ,

EηISF[ηt(i)] = η(i)e
−V t +ρ(1− e−V t) (B.6)

with V = γ+δ, and pt(0, y) is the transition kernel of simple random walk on Z jumping at rate 1.
Therefore, by (B.5–B.6), we have

L−1
0 (η(i)−ρ) =

∫ ∞

0

S0(t)(η(i)−ρ)dt =
∑

y∈Z
η(i− y)GV (y)−ρ

1

V
(B.7)

with

GV (y) =

∫ ∞

0

e−V t pU t(0, y)dt. (B.8)

With these ingredients we can compute (B.3), ending up with

c3 =
∑

( j,i)∈A

I( j, i) =
4

U
ρ(2ρ− 1)(1−ρ)

�

2U + V

U
GV (0)−

3U + 2V

U
G2V (0)− G2V (1)

�

. (B.9)

The expression between square brackets can be worked out, because

GV (0) =

∫ ∞

0

e−V t pU t(0, 0)dt =
1

2π

∫ π

−π

dθ

(U + V )− U cosθ
=

1
p

(U + V )2− U2
(B.10)

and

GV (1) =
U + V

U
GV (0)−

1

U
, (B.11)

where the latter is derived by using that

∂

∂ t
pU t(0, 0) = 1

2
U
�

pU t(0, 1) + pU t(0,−1)− 2pU t(0,0)
�

(B.12)

and pU t(0,1) = pU t(0,−1). This leads to (1.18).
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