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Abstract

A new diffusion process taking values in the space of all probability measures over [0,1] is
constructed through Dirichlet form theory in this paper. This process is reversible with respect
to the Ferguson-Dirichlet process (also called Poisson Dirichlet process), which is the reversible
measure of the Fleming-Viot process with parent independent mutation. The intrinsic distance
of this process is in the class of Wasserstein distances, so it’s also a kind of Wasserstein diffusion.
Moreover, this process satisfies the Log-Sobolev inequality.
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1 Introduction

This work is motivated by Von Renesse, M-K. and Sturm, K.T. [24] about Wasserstein diffusion on
one dimensional space. There they constructed a probability measure-valued stochastic process,
which is reversible with respect to (for short, w.r.t.) an “entropy measure". Let P ([0,1]) denote
the collection of all probability measures on [0,1]. Then under the entropy measure, almost surely
the measure µ ∈ P ([0, 1]) has no absolutely continuous part and no discrete part. The topological
support of µ is negligible w.r.t. Lebesgue measure.

In this paper we are interested in the Ferguson-Dirichlet process, which is also called Poisson Dirich-
let process. It is a probability measure on the space of all probability measures over a measurable
space. The concrete definition will be given in next section. Ferguson-Dirichlet process is an im-
portant probability measure on the space of probability measures. It plays important roles in many
research fields such as population genetics and Bayesian statistics. As proved in [7], it is the re-
versible measure of the Fleming-Viot processes with parent independent mutation. It was shown in
[7] and [8] that under the Ferguson-Dirichlet process, almost surely the measure µ ∈ P ([0,1]) is
discrete and has full topological support. This is very different to the “entropy measure". However,
[24, section 3] has pointed out some connection between the “entropy measure" and Ferguson-
Dirichlet process. Moreover, Stannat, W. [18] showed that the Fleming-Viot process doesn’t satisfies
the Log-Sobolev inequality unless the cardinality of the support of ν0 in the Ferguson-Dirichlet pro-
cess is finite (see the definition of Ferguson-Dirichlet process in (2.4)). Döring, M. and Stannat,
W. [3] showed that the Wasserstein diffusion satisfies the Log-Sobolev inequality. So based on the
works [24] and [3], it’s of great interest to ask whether there exists a probability measure-valued
stochastic process, which is reversible w.r.t. Ferguson-Dirichlet process and satisfies the Log-Sobolev
inequality at the same time. If it does, then it provides us a process which not only converges expo-
nentially in L2-norm to the Ferguson-Dirichlet process, but also converges exponentially in entropy
to the Ferguson-Dirichlet process. To be more precise, due to general results of functional inequali-
ties, for the semigroup (Pt)t≥0 determined by a Dirichlet form, which admits invariant measure π,
it’s known that the Poincaré inequality is equivalent to the L2-exponential convergence:

‖Pt f −π( f )‖2L2(π) ≤ Var( f )exp[−λt]

for some positive constant λ, where Var( f ) = π( f 2)−π( f )2. However, the Log-Sobolev inequality
can yield the Poincaré inequality and

Ent(Pt f )≤ Ent( f )exp[−σt]

for some positive constant σ, where Ent( f ) = π( f log f ) − π( f ) logπ( f ) for positive function f .
The well known exponential ergodicity for Markov process means that

‖Pt(x , ·)−π‖var ≤ C(x)e−αt for some α > 0,

where ‖·‖var is the total variation norm. According to Chen [2, Theorem 1.9], for reversible Markov
process the L2-exponential convergence is equivalent to π-a.e. exponential ergodicity. Refer to Chen
[2, Chapter 8] for a survey of the relation between functional inequalities and ergodic theory. Espe-
cially, Chen’s [2, Theorem 1.9] presents a diagram of nine types of ergodicity. If we are restricted
to the Fleming-Viot process with parent independent mutation, Ethier and Griffiths [4] estimated
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the rate of convergence in exponential ergodicity based on the explicit formula of the transition
semigroup.

In this paper, we consider the space of all probability measures on the interval [0,1]. On it, we
will construct a new probability measure-valued process, whose reversible measure is the Ferguson-
Dirichlet process. We shall show our new process satisfies the Log-Sobolev inequality, so, by the
theory of functional inequalities, its associated semigroup will converge in entropy to its equilibrium
with exponential rate. Our process is constructed through classical Dirichlet form theory. Moreover,
we show that the intrinsic metric of this Dirichlet form is in the class of Wasserstein distances. This
means that our new probability measure-valued process is also a kind of Wasserstein diffusion.

The structure of this paper is as follows: in next section we recall some facts about the Fleming-Viot
process, and via comparing with the Fleming-Viot process we sketch the idea of our construction of
the new process. In the third section we are concerned with constructing the Dirichlet form. In order
to prove the pre-defined bilinear form to be closable, we consider the quasi-invariance property of
Ferguson-Dirichlet measure (see Theorem 3.4) and establish the integration by parts formula (see
Theorem 3.6). Then we constructed a regular Dirichlet form with Ferguson-Dirichlet process to be
the reversible measure in Theorem 3.8. Furthermore, we discuss the intrinsic metric of this Dirichlet
form (see Theorem 3.11). The last section is devoted to establish the Log-Sobolev inequality for
our new probability measure-valued process. This is proved by the method of finite dimensional
approximation based on our construction of Dirichlet form and Döring, M. and Stannat, W.’s work
[3].

2 Comparison with Fleming-Viot process

Let’s first introduce the Fleming-Viot process. Let E be a Polish space, i.e. a complete separable
metric space. P (E) denotes the set of all probability measures on E, and P (P (E)) denotes the set
of all probability measures on P (E). The Fleming-Viot process is initially established as the scaling
limit of the measure-valued Moran model. The Fleming-Viot operator is defined as

�

Lφ
�

(µ) =
1

2

∫

E

∫

E

µ(dx)
�

δx(dy)−µ(dy)
� δ2φ(µ)
δµ(x)δµ(y)

+

∫

E

µ(dx)A
�δφ(µ)
δµ(·)

�

(x), φ ∈ Cyl(D(A)),
(2.1)

where
δφ(µ)
δµ(x)

=
d

dt

�

�

�

t=0
φ(µ+ tδx), δx denotes the Dirac measure at x and A is the generator of a

Feller semigroup on C(E) with domain D(A), which represents the random mutation. Here

Cyl(D(A)) = {φ : φ(µ) = F(〈 f1,µ〉, . . . , 〈 fn,µ〉), F ∈ C∞(Rn), fi ∈ D(A), n ∈ N}, (2.2)

where 〈 f ,µ〉=
∫

E
f dµ for f ∈B(E). When A is the parent independent mutation, i.e.

�

Af
�

(x) =
θ

2

∫

E

�

f (y)− f (x)
�

ν0(dy), (2.3)

where θ > 0 and ν0 ∈ P (E), Shiga, T. [17] showed that there is a unique reversible measure
Πθ ,ν0

∈ P (P (E)) which is characterized by the property that whenever k ≥ 2 and {Λ1, . . . ,Λk} is a
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partition of E into disjoint sets, the mapping µ 7→
�

µ(Λ1), . . . ,µ(Λk)
�

under Πθ ,ν0
has the Dirichlet

distribution with parameter θν0(Λ1), . . . ,θν0(Λk), i.e.

Πθ ,ν0

�

µ(Λ1) ∈ dx1, . . . ,µ(Λk) ∈ dxk
�

=
Γ(θ)

Πk
i=1Γ(θν0(Λi))

xθν0(Λ1)−1
1 · · · xθν0(Λk)−1

k δ(1−
∑k−1

i=1 x i)
(dxk)dx1 · · ·dxk−1

(2.4)

on the (k− 1)-dimensional simplex {(x1, . . . , xk); x i ≥ 0,
∑k

i=1 x i = 1}. The measure Πθ ,ν0
is called

the Ferguson-Dirichlet process or Poisson Dirichlet process. Ferguson [8] and Ethier and Kurtz [5, 7]
showed that

Πθ ,ν0
(·) = P

�

∞
∑

i=1

ρiδξi
∈ ·
�

, (2.5)

where (ρ1,ρ2, . . .) has the Poisson-Dirichlet distribution with parameter θ , and ξ1,ξ2, . . . are i.i.d.
random variables distributed as ν0, independent of (ρ1,ρ2, . . .). From this, we obtain that Πθ ,ν0

-
almost everywhere µ ∈ P (E) is a purely atomic probability measure.

With the Fleming-Viot operatorL and Poisson Dirichlet processΠθ ,ν0
, one can associate a symmetric

Dirichlet form (E ,D(E )) as the closure of

E (u, v) =

∫

P (E)
u(µ)

�

L v
�

(µ)Πθ ,ν0
(dµ)

=

∫

P (E)
corµ

�δu(µ)
δµ(·)

,
δv(µ)
δµ(·)

�

Πθ ,ν0
(dµ), u, v ∈ Cyl(D(A)),

where corµ( f , g) = 〈 f g,µ〉 − 〈 f ,µ〉〈g,µ〉 for f , g ∈ C(E). When A is the parent independent mu-
tation, then D(A) =Bb(E). Refer to Overbeck, L. et al. [14] for Dirichlet form theory about more
general Fleming-Viot processes.

In the sequel of this paper, we only consider the Fleming-Viot process with parent independent
mutation A as in (2.3). Then the Fleming-Viot operator acting on the cylindrical function u(µ) =
F(〈 f1,µ〉, . . . , 〈 fn,µ〉) has the representation

�

L u
�

(µ) =
1

2

∫

E2

µ(dx)
�

δx(dy)−µ(dy)
� δ2u(µ)
δµ(x)δµ(y)

+
θ

2

∫

E

µ(dx)

∫

E

�δu(µ)
δµ(y)

−
δu(µ)
δµ(x)

�

ν0(dy)

=
1

2

∫

E2

µ(dx)
�

δx(dy)−µ(dy)
�

n
∑

i, j=1

∂i∂ j F(〈~f ,µ〉) fi(x) f j(y)

+
θ

2

∫

E

µ(dx)

∫

E

�

n
∑

i=1

∂i F(〈~f ,µ〉) fi(y)−
n
∑

i=1

∂i F(〈~f ,µ〉) fi(x)
�

ν0(dy),

where 〈~f ,µ〉 = (〈 f1,µ〉, . . . , 〈 fn,µ〉). However, in the definition of
δu(µ)
δµ(x)

, µ+ tδx is not in P (E)

for t 6= 0 any longer. When we look on P (E) as a space and consider to define the gradient for
functionals depending only on its values on P (E), it’s more appropriate to define

∇xu(µ) :=
d

dt

�

�

�

t=0
u
�

(1− t)µ+ tδx
�

. (2.6)
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It’s easy to check through direct calculation that the Fleming-Viot operatorL can also be represented
by

�

L u
�

(µ) =
1

2

∫

E

∇2
xu(µ)µ(dx) +

θ

2

∫

E

µ(dx)

∫

E

�

∇yu(µ)−∇xu(µ)
�

ν0(dy)

for u ∈ Cyl. Moreover, the associated Dirichlet form has the form

E (u, v) =−
∫

P (E)
uL vΠθ ,ν0

(dµ) =

∫

P (E)
〈∇·u(µ),∇·v(µ)〉µΠθ ,ν0

(dµ),

where 〈 f , g〉µ =
∫

E
f (x)g(x)µ(dx) for f , g ∈ C(E).

Recently there are many works looking on P (E) as an infinite dimensional Riemannian manifold.
For instance, Jordan, R. et al. [10] defined a Riemannian manifold structure on the space of all
probability measures on Rd and constructed the solution of Fokker-Planck equation in Rd through
establishing gradient flow of relative entropy functional. Otto, F. and Villani, C. [13] used it as a
guideline to find the interrelation between the transportation cost inequality and the Log-Sobolev
inequality. This kind of viewpoint also stimulate them to find the so called “HWI" inequality, which
includes three important quantities: “H" entropy, “W" Wasserstein distance, and “I" Fisher informa-
tion into one inequality. Sturm, K.T. [20, 21] and Lott, J. and Villani, C. [11] further established
the concept of lower bound of Ricci curvature on metric measure space E. Particularly, when E is
a Riemannian manifold, their lower bound of Ricci curvature coincides with the geometric lower
bound of Ricci curvature. Taking this viewpoint, as done in Schied [15], one can look on L2(µ)
as the tangent space at each point µ ∈ P (E), i.e. TµP (E) = L2(µ) and for any f , g ∈ TµP (E),
define its inner product by 〈 f , g〉µ. Then the function x 7→ ∇xu(µ) for some good functional u on
P (E) is a tangent vector at µ and the Carré du champs operator Γ(u, v) = 〈∇·u(µ),∇·v(µ)〉µ asso-
ciated to the Dirichlet form (E ,D(E )) is just the inner product of tangent vectors. Define a mapping
S f :P (E)→P (E) for f ∈Bb(E) by

d
�

S f µ
�

=
e f

〈e f ,µ〉
dµ. (2.7)

This mapping is called the exponential map of the “Riemannian manifold" P (E) since the map
t 7→ St f µ from R to P (E) generates a continuous curve in P (E) and

d

dt

�

�

�

t=0
u
�

St f µ
�

= 〈∇·u(µ), f 〉µ. (2.8)

Indeed, for u ∈ Cyl, for each f ∈ TµP (E) = L2(µ) we have

d

dt

�

�

t=0u
�

St f µ
�

= 〈∇·u(µ), f 〉µ =
n
∑

i=1

∂i F(〈~f ,µ〉)
�

〈 fi f ,µ〉 − 〈 fi ,µ〉〈 f ,µ〉
�

.

About the exponential map S f we should mention the work of Handa [9]. There he provided a
characterization of a probability measure Π ∈ P (P (E)) to be reversible w.r.t. a general Fleming-
Viot operator L through the quasi-invariance property of the probability measure Π under the
exponential map S f for f ∈ D(A). Recall that A represents mutation in the Fleming-Viot operator.
For more details on this topic refer to [9].
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In this paper, we mainly consider a special case of E, that is, E = [0,1]. Compared with the
Fleming-Viot process on P ([0, 1]), we define the tangent space at µ as a subspace of L2((gµ)∗Leb),
where gµ denotes the cumulative distribution function of µ, Leb denotes the Lebesgue measure and
(gµ)∗Leb := Leb◦ g−1

µ denotes the push forward measure of Leb under the map gµ : [0,1]→ [0,1].
We will introduce a new exponential map eS f :P ([0,1])→P ([0, 1]) for f ∈ TµP ([0, 1]). Precisely,
let G0 denote the space of all right continuous nondecreasing maps g : [0, 1]→ [0, 1] with g(0) = 0,
g(1) = 1. A C2-isomorphism h ∈ G0 means that h : [0,1] → [0, 1] is increasing homeomorphism
such that h and h−1 are bounded in C2([0,1]). For each C2-isomorphism h ∈ G0, define a mapping
τ̃h : P ([0, 1]) → P ([0, 1]) as: for each µ ∈ P ([0, 1]) with cumulative distribution function gµ,
τ̃h(µ) is defined to be an absolutely continuous probability measure w.r.t. µ with density function
h̄gµ , namely,

dτ̃h(µ)
dµ

(x) = h̄gµ(x), (2.9)

where

h̄g(x) =

∫ 1

0

h′(r g(x+) + (1− r)g(x−))dr, g(x+) = lim
y→x+

g(y), g(x−) = lim
y→x−

g(y).

When g is a continuous function, h̄g(x) = h′(g(x)). When g is of bounded variation, dh(g(x)) =
h̄g(x)dg(x) (refer to [1, Section 3.10] for chain rule of bounded variation functions).

Given a function φ ∈ C∞([0,1],R) satisfying φ(0) = φ(1) = 0, let t 7→ X (t, x) be the unique
solution of the following ODE:

dX t

dt
= φ(X t), X0 = x . (2.10)

Put etφ(x) = X (t, x), then etφ(x) = eφ(t, x) = etφ(1, x) and e(t+s)φ = etφ ◦ esφ for t, s ∈ R and
x ∈ [0, 1]. The assumption φ(0) = φ(1) = 0 yields that etφ(0) = 0, etφ(1) = 1 for all t ∈ R. Hence,
etφ is a C2-isomorphism in G0. Set

H0 =
�

φ ∈ C∞([0, 1],R); φ(0) = φ(1) = 0
	

. (2.11)

Now we define eSφ :P ([0,1])→P ([0, 1]) by

deSφ(µ) = dτ̃eφ (µ), where φ ∈H0, (2.12)

then it holds eS(t+s)φ = eStφ ◦ eSsφ for t, s ∈ R. For a function u : P ([0,1])→ R, define its directional
derivative along φ ∈H0 by

Dφu(µ) = lim
t→0

1

t
�

u(τ̃etφ
(µ))− u(µ)

�

(2.13)

provided the limit exists. The tangent space of P ([0,1]) at a point µ is now defined to be the
closure of H0 in the norm of L2((gµ)∗Leb), denoted by TµP . We say that a function u has
a gradient at µ if there exists a function x 7→ ∇xu(µ) such that Dφu(µ) = 〈∇·u(µ),φ〉TµP :=
∫

[0,1]
∇gµ(x)u(µ)φ(gµ(x))dx for each φ ∈H0. Define a symmetric bilinear form by

E (u, v) =

∫

P ([0,1])
〈∇·u(µ),∇·v(µ)〉TµP Πθ ,ν0

(dµ), (2.14)
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for u, v ∈ Cyl, where Cyl is defined in (3.4) below. We shall prove that (E , Cyl) is closable and by
classical Dirichlet form theory, we can obtain a probability measure-valued process. This process is
reversible w.r.t. the Ferguson-Dirichlet process Πθ ,ν0

. Moreover, we will show this process satisfies
the Log-Sobolev inequality.

3 Construction of the Dirichlet form

3.1 Quasi-invariance property

In order to prove the symmetric bilinear form E defined in (2.14) is closable, we need to consider
first the quasi-invariance of Πθ ,ν0

under the map eS f for f ∈ H0. From now on for simplicity of
notation, we set P =P ([0,1]) and Πθ = Πθ ,Leb (that is, the Ferguson-Dirichlet measure Πθ ,ν0

with
ν0 = Lebesgue measure). It’s known that P is compact and complete under the weak topology, and
its weak topology coincides with the topology determined by Lp-Wasserstein distance dw,p, p ≥ 1,
where

dw,p(µ,ν) = inf
π∈C (µ,ν)

�

∫

[0,1]2
|x − y|pπ(dx , dy)

�1/p
.

Here and in the sequel, C (µ,ν) stands for the collection of all probability measures on [0, 1]×[0, 1]
with marginals µ and ν respectively. Set dw = dw,2. Refer to [23] for these fundamental results on
probability measure space.

Recall that G0 denotes the space of all right continuous nondecreasing maps g : [0, 1]→ [0, 1]. Each
g ∈ G0 can be extended to the full interval by setting g(1) = 1. G0 is equipped with L2-distance

‖g1− g2‖L2 =
�

∫ 1

0

|g1(t)− g2(t)|2 dt
�1/2

.

Definition 3.1 For θ > 0, there exists a unique probability measure Qθ0 on G0, called Dirichlet process,
with the property that for each n ∈ N, and each family 0= t0 < t1 < . . .< tn < tn+1 = 1,

Qθ0(gt1
∈dx1, . . . , gtn

∈dxn) =
Γ(θ)

Πn
i=1Γ(θ(t i+1− t i))

n
∏

i=1

(x i+1− x i)
θ(t i+1−t i)−1dx1 · · ·dxn,

with xn+1 = 1.

The measure Qθ0 is sometimes called entropy measure, but as in [24], in this paper we use the
entropy measure to only denote the push forward measure of Qθ0 under the map g 7→ g∗Leb. Define
the map ζ : G0 → P , g 7→ dg. It’s easy to see that (ζ)∗Qθ0 := Qθ0 ◦ ζ

−1 = Πθ . Its inverse ζ−1

assigns to each probability measure its distribution function. In the following we will study the
quasi-invariance property of Πθ ,ν0

through Qθ0 and ζ. Von Renesse, M-K. and Sturm, K.T. [24] has
studied the quasi-invariance property of Qθ0 on G0 and under the map χ : G0 → P , g 7→ g∗Leb,
Qθ0 is pushed forward to a probability measure on P , which is called entropy measure there. Then
through Dirichlet form theory, a stochastic process is constructed on P . Since its intrinsic metric of
this Dirichlet form is just the L2-Wasserstein distance onP , this process is usually called Wasserstein
diffusion. Our present work also depends on the knowledge of Qθ0 . Let’s recall the quasi-invariance
property of Qθ0 .

277



Theorem 3.2 ([24] Theorem 4.3 ) Each C2-isomorphism h ∈ G0 induces a bijection map τh : G0→
G0, g 7→ h ◦ g, which leaves Qθ0 quasi-invariant:

dQθ0(h ◦ g) = Y θh,0(g)dQθ0(g),

and Y θh,0 is bounded from above and below. Here

Y θh,0(g) = X θh (g)Yh,0(g), (3.1)

where

Yh,0(g) =
1

p

h′(0)h′(1)

∏

a∈Jg

p

h′(g(a−))− h′(g(a+))
δ(h◦g)
δg
(a)

,

Xh(g) = exp
�

θ

∫ 1

0

log h′(g(s))ds
�

,

Jg =
�

x ∈ [0,1]; g(x+) 6= g(x−)
	

,
δ(h ◦ g)
δg

(a) =
h(g(a+))− h(g(a−))

g(a+)− g(a−)
.

Due to the compactness of the interval [0, 1] and P , several well known topologies on G0 and P
coincide. More precisely, for each sequence (gn) ⊂ G0, and each g ∈ G0, the following types of
convergence are equivalent:

• gn(t)→ g(t) for each t ∈ [0, 1] in which g is continuous;

• gn→ g in Lp([0,1]) for each p ≥ 1;

• µgn
→ µg weakly;

• µgn
→ µt in the Lp-Wasserstein distance for each p ≥ 1.

Refer to [24] for a sketch of the idea of the argument.

Lemma 3.3 For each C2-isomorphism h ∈ G0, τ̃h :P →P defined by (2.9) is continuous.

Proof. Let µn ∈ P , n ≥ 1 and µn converges to µ as n → ∞. gµn
and gµ denote the corre-

sponding cumulative distribution functions of µn and µ. Then gµn
converges to gµ in Lp([0,1])

for each p ≥ 1. Set νn = τ̃h(µn), ν = τ̃h(µ). Then the cumulative function of νn and ν
are h ◦ gµn

and h ◦ gµ respectively. We denote by dw,1 the L1-Wasserstein distance, that is,

dw,1(µ,ν) = infπ∈C (µ,ν)

n

∫

[0,1]2
|x − y|π(dx , dy)

o

. Then according to [22, Theorem 2.18] about
optimal transport on R, we have

dw,1(νn,ν) =

∫ 1

0

|g−1
νn
(t)− g−1

ν (t)|dt =

∫ 1

0

|gνn
(t)− gν(t)|dt

=

∫ 1

0

|h ◦ gµn
(t)− h ◦ gµ(t)|dt ≤ max

s∈[0,1]
|h′(s)|

∫ 1

0

|gµn
(t)− gµ(t)|dt,

which yields that as µn weakly converges to µ, νn converges to ν as well. This is the desired result.
In particular, τ̃h is measurable from P to P for C2-isomorphism h ∈ G0.
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Theorem 3.4 (Quasi-invariance) Let ν0 be the Lebesgue measure on [0, 1]. For each C2-isomorphism
h ∈ G0, the Ferguson-Dirichlet measure Πθ ,ν0

is quasi-invariant under the transformation τ̃h, and

dΠθ ,ν0

�

τ̃h(µ)
�

= Y θh,0(gµ)dΠθ ,ν0
(µ), (3.2)

where Y θh,0(gµ) is defined as (3.1), and gµ denotes the cumulative distribution function of µ.

Proof. For any bounded measurable function u on P , it can induce a bounded measurable function
ū on G0 by

ū(g) := u(ζ(g)).

Note that for C2-isomorphism h ∈ G0, τ−1
h = τh−1 (see Theorem 3.2 for the definition), and

ζ ◦τh ◦ ζ−1 = τ̃h. (3.3)

So τ̃h is a bijection map and τ̃−1
h = τ̃h−1 . To see this, noting that gµ = ζ−1(µ), we have for any

f ∈B([0,1]), for any µ ∈ P ,

∫ 1

0

f (x)d
�

ζ ◦τh
�

(gµ) =

∫ 1

0

f (x)dτh(gµ) =

∫ 1

0

h̄(gµ(x))dgµ(x) =

∫ 1

0

f (x)dτ̃h(µ).

According to Theorem 3.2, we obtain
∫

P
u(µ)dΠθ ,ν0

(τ̃h(µ)) =

∫

P
u(τ̃−1

h (µ))dΠθ ,ν0
(µ) =

∫

G0

ū(τ−1
h (g))dQθ0(g)

=

∫

G0

ū(g)dQθ0(τh(g)) =

∫

G0

ū(g)Y θh,0(g)dQθ0(g)

=

∫

P
u(µ)Y θh,0(gµ)dΠθ ,ν0

(µ),

which concludes the proof.

3.2 Integration by parts formula

In section 2, we have defined the map etφ : [0, 1]→ [0, 1] and the derivative of a function u :P → R
by

Dφu(µ) = lim
t→0

1

t
�

u(τ̃etφ
)(µ)− u(µ)

�

along φ ∈H0, provided the limit exists. Let Cyl be the set of all functions on P in the form

u(µ) = F(〈 f1,µ〉, . . . , 〈 fn,µ〉), (3.4)

where F ∈ C1(Rn), fi ∈ C1([0, 1]) for i = 1, . . . , n and n ∈ N. Let Cyl(G0) be the set of all functions
w : G0→ R in the form

w(g) = F
�

∫

f1dg, . . . ,

∫

fndg
�

(3.5)
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where F ∈ C1(Rn), fi ∈ C1([0, 1]) and n ∈ N. For a function w : G0 → R, define its directional
derivative along φ ∈H0 by

Dφw(g) =
d

dt

�

�

�

t=0
w(τetφ

(g)) =
d

dt

�

�

�

t=0
w(etφ ◦ g) (3.6)

provided the limit exists.

Lemma 3.5 (i) For each w ∈ Cyl(G0) in the form (3.5), Dφw(g) exists for each φ ∈H0 at every point
g ∈ G0, and

Dφw(g) =
n
∑

i=1

∂i F
�

∫

~f dg
�

·
∫ 1

0

fi φ̄g dg, (3.7)

where
∫

~f dg = (
∫

f1dg, . . . ,
∫

fndg) and φ̄g(x) =
∫ 1

0
φ′
�

r g(x+) + (1− r)g(x−)
�

dr for g ∈ G0.

(ii) For each u ∈ Cyl on P in the form (3.4), Dφu(µ) exists for each direction φ ∈H0 at every µ ∈ P ,
and

Dφu(µ) =
n
∑

i=1

∂i F(〈~f ,µ〉) ·
∫ 1

0

fi(x)φ̄gµ(x)dµ(x), (3.8)

where 〈~f ,µ〉= (〈 f1,µ〉, . . . , 〈 fn,µ〉) and φ̄gµ defined as in (i).

Proof. (i) By virtue of integration by parts formula on [0,1], we have

∫ 1

0

fi(x)dg(x) = fi(1)g(1)− fi(0)g(0)−
∫ 1

0

f ′i (x)g(x)dx .

Using the chain rule for bounded variation function in Vol’pert average form (cf. [1, Therem 3.96,
Remark 3.98]), it holds

d

dt

�

�

�

t=0

∫ 1

0

fi(x)d
�

etφ ◦ g
�

(x) =−
∫ 1

0

f ′i (x)φ(g(x))dx

=

∫ 1

0

fi(x)φ̄g(x)dg(x)

by noting that φ(0) = φ(1) = 0 for φ ∈H0. Therefore,

d

dt

�

�

�

t=0
u(τetφ

◦ g) =
d

dt

�

�

�

t=0
u(etφ ◦ g) =

d

dt

�

�

�

t=0
F
�

∫

~f (x)d
�

etφ ◦ g
�

(x)
�

=
n
∑

i=1

∂i F
�

∫

~f (x)dg(x)
�

·
∫ 1

0

fi(x)φ̄g(x)dg(x).

(ii) Define ū(g) = u ◦ ζ(g), then ū is in the form

ū(g) = F
�

∫

f1dg, . . . ,

∫

fndg
�

.
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Invoking (3.3),

d

dt

�

�

�

t=0
u(τ̃etφ

(µ)) =
d

dt

�

�

�

t=0
u
�

ζ(τetφ
(gµ))

�

=
d

dt

�

�

�

t=0
ū(τetφ

(gµ))

=
n
∑

i=1

∂i F
�

∫

~f dgµ
�

·
∫ 1

0

fi(x)φ̄gµ(x)dgµ(x)

=
n
∑

i=1

∂i F(〈~f ,µ〉) ·
∫ 1

0

fi(x)φ̄gµ(x)dµ(x).

which concludes the proof.

Before stating the integration by parts formula, we recall a result on the derivative of g 7→ Y θh,0(g)
appeared in the quasi-invariance formula. According to [24, Lemma 5.7], for φ ∈ C2([0, 1]) with
φ(0) = φ(1) = 0 and θ ≥ 0,

∂

∂ t
Y θetφ ,0(g) =

∑

a∈Jg

hφ′(g(a+)) +φ′(g(a−))
2

−
φ(g(a+))−φ(g(a−))

g(a+)− g(a−)

i

+ θ

∫ 1

0

φ′(g(x))dx −
φ′(0) +φ′(1)

2

=: V θφ (g),

(3.9)

where Jg = {x ∈ [0, 1]; g(x+) 6= g(x−)}.

Theorem 3.6 (Integration by parts formula) (i) For each φ ∈H0, u ∈ Cyl(G0), it holds that
∫

G0

v(g)Dφu(g)dQθ0(g) =

∫

G0

u(g)D∗φv(g)dQθ0(g) (3.10)

for any v ∈ Cyl(G0), where
D∗φv(g) =−Dφv(g)− V θφ (g)v(g). (3.11)

(ii) For each φ ∈H0, u ∈ Cyl, it holds that
∫

P
v(µ)Dφu(µ)dΠθ (µ) =

∫

P
u(µ)D∗φv(µ)dΠθ (µ) (3.12)

for any v ∈ Cyl, where
D∗φv(µ) =−Dφv(µ)− V θφ (gµ)v(µ). (3.13)

Proof. We shall only prove (i), and (ii) can be proved by the similar method used in the previous
lemma. By the quasi-invariance of Qθ0 , one has

∫

G0

v(g)Dφu(g)dQθ0(g) = lim
t→0

1

t

∫

G0

v(g)(u(etφ ◦ g)− u(g))dQθ0(g)

= lim
t→0

1

t

∫

G0

u(g)
�

v(e−tφ ◦ g)Y θetφ
(g)− 1

�

dQθ0(g)

=

∫

G0

u(g)
�

− Dφv(g)− V θφ (g)v(g)
�

dQθ0(g),
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which concludes (i).

3.3 Tangent space and Dirichlet form

The goal of this subsection is to obtain our stochastic process through establishing a Dirichlet form
on P . The key point is how to specify a suitable pre-Hilbert norm ‖ · ‖µ on TµP such that the
direction derivative Dφu(µ) of a nice function u on P could determine a bounded linear function
φ 7→ Dφu(µ) on H0. Then Riesz representation theorem yields that there exists a unique element
Du(µ) ∈ TµP with

Dφu(µ) = 〈Du(µ),φ〉TµP , ∀ φ ∈ TµP .

Here TµP is the completion ofH0 w.r.t. the pre-Hilbert norm ‖ · ‖µ.

Naturally, the nice functions are cylindrical functions. Let u ∈ Cyl in the form (3.4). For φ ∈H0,

Dφu(µ) =
n
∑

i=1

∂i F(〈~f ,µ〉) ·
∫ 1

0

fi(x)φ̄gµ(x)dgµ(x)

=−
n
∑

i=1

∂i F(〈~f ,µ〉) ·
∫ 1

0

f ′i (x)φ(gµ(x))dx

=−
n
∑

i=1

∂i F(〈~f ,µ〉) ·
∫ 1

0

f ′i (g
−1
µ (x))φ(x)d(gµ)∗Leb

=

∫ 1

0

�

−
n
∑

i=1

∂i F(〈~f ,µ〉) · f ′i (g
−1
µ (x))

�

φ(x)d(gµ)∗Leb,

(3.14)

where 〈~f ,µ〉 = (〈 f1,µ〉, . . . , 〈 fn,µ〉),
∫ 1

0
f (x)d(gµ)∗Leb =

∫ 1

0
f (gµ(x))dx for f ∈ Bb([0,1]). Ac-

cording to this expression, we choose the pre-Hilbert norm to be the norm of L2((gµ)∗Leb) at
µ ∈ P . Then φ 7→ Dφu(µ) is a bounded linear function on H0. So it can be extended to be a
bounded linear functional on the completion ofH0 w.r.t. the norm of L2((gµ)∗Leb). Therefore, the
tangent space TµP is defined to be the completion ofH0 w.r.t. the norm of L2((gµ)∗Leb).

Definition 3.7 The gradient of function u : P → R is said to exist at µ ∈ P , if there exists a function
ψ : [0,1]→ R such that for any φ ∈H0,

Dφu(µ) =

∫ 1

0

ψ(x)φ(x)d(gµ)∗Leb =

∫ 1

0

ψ(gµ(x))φ(gµ(x))dx .

Then the gradient ψ(·) at µ is denoted by ∇·u(µ).
Similarly, for a function u : G0→ R, if there exists a function ψ : [0, 1]→ R such that

Dφu(g) =

∫ 1

0

φ(x)ψ(x)dg∗Leb, ∀φ ∈H0,

then its gradient is said to exist at g ∈ G0 and is denoted by ∇·u(g).
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Due to the calculation (3.14), we know that for a cylindrical function u in the form (3.4), its gradient
exists at every µ ∈ P and

∇xu(µ) =−
n
∑

i=1

∂i F(〈~f ,µ〉) · f ′i (g
−1
µ (x)). (3.15)

Next, we define a symmetric bilinear form by

E (u, v) =

∫

P
〈∇u(µ),∇v(µ)〉TµP Πθ (dµ), for u, v ∈ Cyl, (3.16)

where Πθ = Πθ ,Leb, 〈 f1, f2〉TµP =
∫ 1

0
f1(x) f2(x)d(gµ)∗Leb for any f1, f2 ∈Bb([0, 1]).

Let Cyl0 be the set of all cylindrical functions in the form u(µ) = F(〈 f1,µ〉, . . . , 〈 fn,µ〉) with F ∈
C∞(Rn), fi ∈ C∞([0, 1]) satisfying f ′i (0) = f ′i (1) = 0, i = 1, . . . , n, and n ∈ N.

Theorem 3.8 (i) (E , Cyl) is closable. Its closure (E ,D(E )) is a regular recurrent Dirichlet form with
reversible measure Πθ = Ferguson-Dirichlet measure.
(ii) The set Cyl0 is a core for (E ,D(E )).
(iii) The generator ( fL ,D( fL )) of (E ,D(E )) is the Friedrichs extension of the operator ( fL , Cyl) given
by

�

fL u
�

(µ) =−
n
∑

i=1

�

D f ′i ◦g
−1
µ
∂i F(〈~f , ·〉)

�

(µ)

=−
n
∑

i=1

n
∑

j=1

∂ j∂i F(〈~f ,µ〉) ·
∫ 1

0

f ′i (x) f
′
j (x)dx +

n
∑

i=1

V θf ′i ◦g−1
µ
(gµ)∂i F(〈~f ,µ〉),

(3.17)

where V θφ (g) for φ ∈H0, g ∈ G0 is defined in (3.9).

Proof. a) Let u(µ) = F(〈 f1,µ〉, . . . , 〈 fn,µ〉) ∈ Cyl, v(µ) = G(〈g1,µ〉, . . . , 〈gm,µ〉) ∈ Cyl. It’s not
restrictive by assuming n = m. Since if not, for instance, n > m, one can set gm+1 = · · · = gn = 0,
and Ḡ(x1, . . . , xn) = G(x1, . . . , xm) to get v(µ) = Ḡ(〈g1,µ〉, . . . , 〈gn,µ〉). By (3.15),

E (u, v) =

∫

P
〈∇u(µ),∇v(µ)〉TµP Πθ (dµ)

=

∫

P

�

∫ 1

0

n
∑

i=1

∂i F(〈~f ,µ〉) f ′i (g
−1
µ (x)) ·

n
∑

j=1

∂ jG(〈~g,µ〉)g ′j(g
−1
µ (x))d(gµ)∗Leb

�

Πθ (dµ)

=

∫

P

�
n
∑

i=1

∂i F(〈~f ,µ〉) ·
∫ 1

0

f ′i (x)
�

n
∑

j=1

∂ jG(〈~g,µ〉)g ′j(x)
�

dx
�

Πθ (dµ)

=

∫

P

n
∑

j=1

∂ jG(〈~g,µ〉)Dg ′j◦g
−1
µ

u(µ)Πθ (dµ).
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By the integration by parts formula (3.12), previous equality

=

∫

P

n
∑

j=1

D∗g ′j◦g−1
µ
∂ jG(〈~g,µ〉)u(µ)Πθ (dµ)

=−
∫

P

fL v(µ) · u(µ)Πθ (dµ).

This proves that ( fL , Cyl0) is a symmetric operator, and (E , Cyl0) is closable, its generator coincides
with the Friedrichs extension of fL .

b) Now let’s prove that Cyl0 is dense in Cyl. For simplicity, assume that u is of form u(µ) = F(〈 f ,µ〉),
F ∈ C1(R), and f ∈ C1([0, 1]), that is, for simplicity, consider n = 1. Let Fε ∈ C∞(R), for ε > 0
be smooth approximation of F with ‖F − Fε‖∞ + ‖F ′ − F ′ε‖∞ → 0, as ε → 0. Let fε ∈ C∞ with
f ′ε (0) = f ′ε (1) = 0 be smooth approximation of f with ‖ f − fε‖∞ → 0 and f ′ε (t) → f ′(t) for all
t ∈ (0, 1) as ε → 0. Moreover, assume that supε ‖ f ′ε‖∞ < ∞. Define uε(µ) = Fε(〈 fε,µ〉). Then
uε ∈ Cyl0 and uε → u in L2(Πθ ) as ε→ 0 by dominated convergence theorem. Since

sup
ε

sup
µ∈P

∫ 1

0

F ′ε(〈 fε,µ〉)
2 f ′ε (x)

2 dx ≤ C ,

∫ 1

0

F ′ε(〈 fε,µ〉)
2 f ′ε (x)

2dx →
∫ 1

0

F ′(〈 f ,µ〉)2 f ′(x)2 dx ,

we obtain

E (uε, uε) =

∫

P

�

∫ 1

0

F ′ε(〈 fε,µ〉)
2 f ′ε (x)

2dx
�

Πθ (dµ)

−→
∫

P

�

∫ 1

0

F ′(〈 f ,µ〉)2 f ′(x)2 dx
�

Πθ (dµ)

as ε→ 0 by dominated convergence theorem in L2(Πθ ). This implies that (uε)ε constitutes a Cauchy
sequence relative to the norm

‖v‖2E ,1 := ‖v‖2L2 + E (v, v).

In fact, since (uε)ε is uniformly bounded w.r.t. ‖ · ‖E ,1, by weak compactness there exists a subse-
quence converging weakly in (D(E ),‖ · ‖E ,1). Since the associated norm converges,

‖uε − u‖2E ,1 = ‖uε‖
2
E ,1− 2〈uε, u〉L2 − 2E (uε, u) + ‖u‖2E ,1 −→ 0.

Moreover, as uε → u in L2(Πθ ), the limit is unique. Hence the entire sequence converges to u ∈
(D(E ),‖ · ‖E ,1). Particularly, E (uε, uε)→ E (u, u). This proves Cyl0 is dense in Cyl. Combining with
(E , Cyl0) is closable proved in a), we get (E , Cyl) is closable and that the closures of Cyl0 and Cyl
coincide.

c) Obviously (E ,D(E )) has the Markovian property. Hence it’s a Dirichlet form. Since constant
functions belong to D(E ), (E ,D(E )) is recurrent. Furthermore, by Stone-Weierstrass theorem, the
fact that Cyl separates the points in P yields Cyl is dense in (C(P ),‖ · ‖∞). Hence, (E ,D(E )) is
regular.
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According to the theory of Dirichlet form (refer to [12]), any regular Dirichlet form possessing local
property, i.e.

E (u, v) = 0, for all u, v ∈ D(E ) with supp[u]∩supp[v]= ;,

where supp[u] denotes the support of u, admits a diffusion process, that is, a strong Markov process
with continuous sample paths with probability 1. It’s clear that Dirichlet form (E ,D(E )) possesses
the local property, so it admits a diffusion process. Note that here sample paths are continuous in
the weak topology of P . Is this process still continuous in the topology determined by the total
variation norm? We tend to believe the negative answer, but we can’t prove it now.

Remark 3.9 In the argument of Theorem 3.8, we know that operator fL is symmetric w.r.t. Πθ , i.e.
∫

P
u(µ)

�

fL v
�

(µ)dΠθ (µ) =

∫

P
v(µ)

�

fL u
�

(µ)dΠθ (µ), u, v ∈ D( fL ).

So the diffusion process associated (E ,D(E )) is reversible w.r.t. Πθ .

Our next goal is to give a description of the intrinsic metric associated to our Dirichlet form. In [24],
they constructed a Dirichlet form on P whose intrinsic metric is the L2-Wasserstein distance on P .
This result is obtained based on Rademacher theorem ([24, Theorem 7.9, Theorem 7.11]) on the
space G0. There they considered different kinds of cylindrical functions. Using their idea, we can
establish Rademacher theorem in our setting on G0.

Proposition 3.10 It holds that

‖g1− g0‖L2 = sup
�

u(g1)− u(g0); u ∈ Cyl(G0), ‖∇u(g)‖TgG0
≤ 1, Qθ0 − a.e. on G0

	

(3.18)

for all g0, g1 ∈ G0, where ‖g1− g0‖2L2 =
∫ 1

0
|g1(x)− g0(x)|2dx.

Sketch of the proof. Note Cyl(G0) can be proved to be a core of a Dirichlet form on G0 in the
same method to construct (E ,D(E )) on P , so (3.18) equals to the intrinsic metric of this Dirichlet
form on G0. Almost following the same argument of [24] Theorems 7.9 and 7.11, we can establish
Rademacher theorem, then this proposition corresponds to [24, Corollary 7.14].

Theorem 3.11 Let dess denote the intrinsic metric associated with the Dirichlet form (E ,D(E )) on P ,
that is,

dess(µ1,µ0) = sup
�

u(µ1)− u(µ0); u ∈ Cyl, ‖∇u(µ)‖TµP ≤ 1, Πθ -a.e. onP
	

for all µ0, µ1 ∈ P . Then dess(µ1,µ0) = ‖gµ1
− gµ0

‖L2 , and

dw,1(µ1,µ0)≤ dess(µ1,µ0)≤
p

dw,1(µ1,µ0), (3.19)

where dw,1(µ1,µ0) denotes the L1-Wasserstein distance on P .

Proof. Let u ∈ Cyl such that ‖∇u(µ)‖TµP ≤ 1, Πθ -a.e. on P . Set ū(g) = u(ζ(g)), then ū ∈ Cyl(G0).
By (3.3), we get

Dφ ū(g) = Dφu(ζ(g)) for all φ ∈H0,
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which yields ∇ū(g) =∇u(ζ(g)) and ‖∇ū(g)‖TgG0
= ‖∇u(ζ(g))‖Tζ(g)P . It follows that

‖∇ū(g)‖TgG0
≤ 1, Qθ0 − a.e. in P .

As ζ is reversible, for each ū ∈ Cyl(G0) with ‖∇ū(g)‖TgG0
≤ 1, Qθ0 -a.e. in G0, define u(µ) =

ū(ζ−1(µ)). After similar deduction as above, we obtain u ∈ Cyl and ‖∇u(µ)‖TµP ≤ 1, Πθ -a.e.
on P . Due to Proposition 3.10, for µ0, µ1 ∈ P ,

‖gµ1
− gµ0

‖L2

= sup{ū(gµ1
)− ū(gµ0

); ū ∈ Cyl(G0), ‖∇ū(g)‖TgG0
≤ 1, Qθ0 -a.e. on P }

= sup{u(µ1)− u(µ0); u ∈ Cyl, ‖∇u(µ)‖TµP ≤ 1, Πθ -a.e. on P }.

Hence,
dess(µ1,µ0) = ‖gµ1

− gµ0
‖L2 . (3.20)

It holds

‖gµ1
− gµ0

‖L1 =

∫ 1

0

|gµ1
(x)− gµ0

(x)|dx =

∫ 1

0

|g−1
µ1
(x)− g−1

µ0
(x)|dx = dw,1(µ1,µ0),

where the second equality is easily verified by seeing the area between graphs and the last inequality
follows from [22, Theorem 2.18]. By Hölder’s inequality,

dw,1(µ1,µ0) = ‖gµ1
− gµ0

‖L1 ≤ ‖gµ1
− gµ0

‖L2 = dess(µ1,µ0).

On the other hand, as |gµ1
(x)− gµ0

(x)| ≤ 1 at each x ∈ [0, 1],

‖gµ1
− gµ0

‖L2 ≤
�

∫ 1

0

|gµ1
(x)− gµ0

(x)|dx
�1/2

=
�

‖gµ1
− gµ0

‖L1
�1/2.

Therefore, dess(µ1,µ0)≤
p

dw,1(µ1,µ0), and we get the desired results.

4 Log-Sobolev inequalities for the process

In this section, we shall establish the Log-Sobolev inequality for (E ,D(E )). Döring, M. and Stannat,
W. [3] established the Log-Sobolev inequality for the Wasserstein diffusion constructed by [24] on
P . There they have done lots of calculation on finite dimensional approximation, especially they
established the Log-Sobolev inequality for the Dirichlet distribution on finite simplex. We shall take
advantage of their work and to establish the Log-Sobolev inequality for (E ,D(E )) on P again by
finite dimensional approximation. But to deal with our Dirichlet form, we should take different
approximation sequence.

First let’s recall the definition of Dirichlet process Qθ0 on G0 for θ > 0. Qθ0 is the unique probability
measure on G0 such that for any n ∈ N, 0= t0 < t1 < . . .< tn−1 < tn = 1,

Qθ0(gt1
∈ dx1, . . . , gtn−1

∈ dxn−1)

= νθ(t1,t2−t1,...,tn−1−tn−2,tn−tn−1)(dx1, . . . , dxn−1)
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where for q= (q1, . . . , qn) ∈ Rn
+

νq(dx) = νq(dx1, . . . , dxn−1)

=
Γ(|q|)
Πn

i=1Γ(qi)

n
∏

i=1

(x i − x i−1)
qi−1dx1 . . . dxn−1

on the space
∑

n = {(x1, . . . , xn−1, xn) ∈ [0, 1]n; 0 = x0 < x1 < . . . < xn−1 < xn = 1}. Here
|q|= q1+ · · ·+ qn.

We now include a result proved in [3, Proposition 2.3] as follows:

Proposition 4.1 Let q ∈ Rn
+ and q∗ =min1≤i≤n qi . Then

Aq( f ) :=
n−1
∑

i=1

∫

∑

n

x i
�

∂i f )2 dνq, f ∈ C1
b (R

n
+)

satisfies the Log-Sobolev inequality with constant less than 4c1/q
∗, that is,

∫

∑

n

f 2 log f 2 dνq ≤ 4
c1

q∗
Aq( f ), f ∈ C1

b (R
n
+). (4.1)

Here c1 can be taken to be 160.

Theorem 4.2 (Log-Sobolev inequality) There exists a universal constant C > 0 such that (E ,D(E ))
on P satisfies the Log-Sobolev inequality with constant less than C/θ , i.e.

∫

P
u2 log u2 dΠθ −

∫

P
u2dΠθ log

∫

P
u2 dΠθ ≤

C

θ
E (u, u), u ∈ D(E ). (4.2)

Proof. We will use the idea of [3] to establish the Log-Sobolev inequality through finite dimensional
approximation. But compared with [3], we use different type of approximation sequence. In order
to use the calculation results of [3], we first make our calculations on G0, then obtain the desired
results under the help of map ζ.

Let u ∈ Cyl(G0) in the form u(g) = F(
∫

f1dg, . . . ,
∫

fmdg) for F ∈ C1(Rm) and fi ∈ C1([0,1]),
i = 1, . . . , m. By Lemma 3.5 (i) and (3.15), its gradient in L2(g∗Leb) equals to

∇·u(g) =−
m
∑

i=1

∂i F
�

∫

~f dg
�

f ′i (g
−1(·)).

Then

Ē (u, u) :=

∫

G0

‖∇u(g)‖2L2(g∗Leb) dQθ0(g)

=

∫

G0

�
m
∑

i, j=1

∂i F
�

∫

~f dg
�

∂ j F
�

∫

~f dg
�

∫ 1

0

f ′i (x) f
′
j (x)dx

�

dQθ0(g).
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Hence we choose the approximation sequence by

Ēn(u, u) :=

∫

G0

m
∑

i, j=1

∂i F(sn(~f , g))∂ j F(sn(~f , g))sn( f
′
i , f j)dQθ0(g), (4.3)

where sn(~f , g) := (sn( f1, g), . . . , sn( fm, g)) and

sn( f , g) :=
n
∑

k=1

f
�k

n

��

g
�k

n
�

− g
�k− 1

n
�

�

.

Note that this is different to Döring, M. and Stannat, W. [3]. There they used the approximation
induced by

s′n( f , g) :=
1

n

n−1
∑

`=1

f (
`

n
)g(
`

n
).

When f , g are both continuous or f is continuous, g is of bounded variation, one has

lim
n→∞

sn( f , g) =

∫ 1

0

f (x)dg(x).

Let un(g) = F(sn(~f , g)). By the dominated convergence theorem, one has

lim
n→∞

un(g) = u(g), lim
n→∞

Ēn(u, u) = Ē (u, u),

lim
n→∞

∫

G0

|un(g)− u(g)|2 dQθ0(g) = 0.

Formula (4.3) can be written more explicitly and take projection onto finite dimensional space. Put

Σn = {(x1, . . . , xn) ∈ [0, 1]n; 0< x1 < · · ·< xn < 1}.

Then we have

Ēn(u, u) =

∫

G0

m
∑

i, j=1

∂i F
�

n
∑

k=1

f
�k

n
��

g
�k

n
�

− g
�k− 1

n
��

�

× ∂ j F
�

n
∑

k=1

f
�k

n
��

g
�k

n
�

− g
�k− 1

n
��

�
n
∑

k=1

f ′i
�k

n
�

�

f j
�k

n
�

− f j
�k− 1

n
�

�

dQθ0(g)

=

∫

Σn

n
∑

i, j=1

∂i F
�

n
∑

k=1

f
�k

n
�

(xk − xk−1)
�

∂ j F
�

n
∑

k=1

f
�k

n
�

(xk − xk−1)
�

×
n
∑

k=1

f ′i
�k

n
�

�

f j(
k

n
�

− f j
�k− 1

n
�

�

dνq(x1, . . . , xn−1)

(4.4)

Set s̃n( f ,x) =
∑n

k=1 f
� k

n

�

(xk − xk−1) for f ∈ C([0,1]) on Σn. Define

En(φ,φ) = n
n−1
∑

i=1

∫

Σn

�

∂iφ
�2 dνq, φ ∈ C(Rn−1). (4.5)
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Put ũn(x) = F(s̃n(~f ,x)) on Σn, then

En(ũn, ũn) = n
n−1
∑

i=1

∫

Σn

�

∂i ũn(x)
�2 dνq(x)

= n
n−1
∑

i=1

∫

Σn

�
m
∑

r=1

∂r F
�

s̃n(~f ,x)
��

fr
� i

n
�

− fr
� i+ 1

n
��

�2
dνq(x)

=

∫

Σn

m
∑

r,`=1

∂r F(s̃n(~f ,x))∂`F(s̃n(~f ,x))

× n
n−1
∑

i=1

�

fr
� i

n
�

− fr
� i+ 1

n
�

��

f`
� i

n
�

− f`
� i− 1

n
�

�

dνq(x).

Since

n
n−1
∑

i=1

�

fr
� i

n
�

− fr
� i+ 1

n
�

��

f`
� i

n
�

− f`
� i− 1

n
�

�

=
n−1
∑

i=1

f ′r
� i+ 1

n
�

�

f`
� i

n
�

− f`
� i− 1

n
�

�

+ o(1),

where o(1)→ 0 as n→∞, combining this with (4.4), we obtain

lim
n→∞

En(un, un) = lim
n→∞

Ēn(u, u) = Ē (u, u). (4.6)

By Proposition 4.1,
∫

Σn

ũ2
n log ũ2

n dνq−
∫

Σn

ũ2
ndνq log

∫

Σn

ũ2
ndνq

≤ 4
nc1

θ
Aq(ũn) = 4

nc1

θ

n−1
∑

i=1

∫

Σn

x i(∂i ũn)
2 dνq(x)

≤ 4
c1

θ
En(ũn, ũn),

where the last inequality is due to 0 < x i < 1. Passing to the limit as n → ∞ in the previous
equation, we obtain

∫

G0

u2 log u2 dQθ0 −
∫

G0

u2dQθ0 log

∫

G0

u2dQθ0 ≤ 4
c1

θ
Ē (u, u), u ∈ Cyl(G0). (4.7)

Due to the 1-1 correspondence between functions in Cyl(G0) and in Cyl, and (ζ)∗Qθ0 = Πθ , the
inequality (4.7) implies

∫

P
u2 log u2 dΠθ −

∫

P
u2dΠθ log

∫

P
u2Πθ ≤ 4

c1

θ
E (u, u), u ∈ Cyl. (4.8)

Since Cyl is a core of (E ,D(E )), we get (4.8) holds for all u ∈ D(E ), and complete the proof.
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Remark 4.3 It’s well known that inequality (4.2) implies that the semigroup (et fL )t≥0 is hyper-
contractive, i.e. ‖et fL ‖2→4 ≤ 1 for some t > 0, where ‖ · ‖2→4 denotes the operator norm from
L2(Πθ ) to L4(Πθ ). The contraction properties of Markov semigroups including hypercontractivity,
supercontractivity and ultracontractivity are closely related to various functional inequalities. To be
more precise, given a complete, connected, noncompact Riemannian manifold M , let (Pt)t≥0 be the
semigroup of a diffusion process generated by L =∆+ Z for some C1-vector field Z satisfying

Ric(X , X )− 〈∇X Z , Z〉 ≥ −KZ |X |, X ∈ T M

for some KZ ∈ R, where Ric denotes the Ricci curvature of M . Assume Pt admits an invariant
measure µ which is positive and Radon. Then, according to [25, Theorem 5.7.1], if there exist
C , t > 0, and q > p > 1 such that ‖Pt‖p→q ≤ C , then

µ( f 2 log f 2)≤ βKZ ,p,qµ(|∇ f |2) +
pq

q− p
log C , ∀ f ∈ C∞0 (M), µ( f

2) = 1,

for some positive constant βKZ ,p,q. Conversely, if there exist C1, C2 > 0 such that

µ( f 2 log f 2)≤ C1µ(|∇ f |2) + C2, f ∈ C∞0 (M), µ( f
2) = 1,

then

‖Pt‖p→q ≤ exp
h

4C2
�1

p
−

1

q
�

i

for t > 0 and q > p > 1 satisfying exp(4t/C1) ≥ (q − 1)/(p − 1). Refer to Wang’s book [25] for
more properties associated with Log-Sobolev inequalities and general discussion about functional
inequalities including F -Sobolev inequalities, Harnack inequalities, and super and weak Poincaré
inequalities.

Remark 4.4 In [19], the same Dirichlet form and Log-Sobolev inequality as this work have been
obtained, but the generator and the intrinsic distance of the Dirichlet form haven’t been given there.
Moreover, the explicit form of the intrinsic metric enable us to establish the transportation cost
inequalities for Wasserstein diffusions, which will be done in our forthcoming work [16].

Acknowledgement: The author would like to express his thankfulness to the referees for pointing
out to him Stannat, W.’s work [19].
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