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Abstract

In this paper, we consider a quasi-linear stochastic heat equation on [0, 1], with Dirichlet bound-
ary conditions and controlled by the space-time white noise. We formally replace the random
perturbation by a family of noisy inputs depending on a parameter n ∈ N that approximate
the white noise in some sense. Then, we provide sufficient conditions ensuring that the real-
valued mild solution of the SPDE perturbed by this family of noises converges in law, in the
space C ([0, T]×[0,1]) of continuous functions, to the solution of the white noise driven SPDE.
Making use of a suitable continuous functional of the stochastic convolution term, we show that
it suffices to tackle the linear problem. For this, we prove that the corresponding family of laws
is tight and we identify the limit law by showing the convergence of the finite dimensional distri-
butions. We have also considered two particular families of noises to that our result applies. The
first one involves a Poisson process in the plane and has been motivated by a one-dimensional
result of Stroock, which states that the family of processes n

∫ t

0
(−1)N(n

2s)ds, where N is a stan-
dard Poisson process, converges in law to a Brownian motion. The second one is constructed in
terms of the kernels associated to the extension of Donsker’s theorem to the plane.
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1 Introduction

In the almost last three decades, there have been enormous advances in the study of random field
solutions to stochastic partial differential equations (SPDEs) driven by general Brownian noises.
The starting point of this theory was the seminal work by Walsh [36], and most of the research
developed thereafter has been mainly focused on the analysis of heat and wave equations perturbed
by Gaussian white noises in time with a fairly general spatial correlation (see, for instance, [2, 9,
11, 13, 27]). Notice also that some effort has been made to deal with SPDEs driven by fractional
type noises (see, for instance, [19, 26, 29, 33]).

Indeed, the motivation to consider these type of models in the above mentioned references has
sometimes put together theoretical mathematical aspects and applications to some real situations.
Let us mention that, for instance, different type of SPDEs provide suitable models in the study
of growth population, some climate and oceanographical phenomenons, or some applications to
mathematical finance (see [14], [21], [1], [7], respectively).

However, real noisy inputs are only approximately white and Gaussian, and what one usually does
is to justify somehow that one can approximate the randomness acting on the system by a Gaussian
white noise. This fact has been illustrated by Walsh in [35], where a parabolic SPDE has been con-
sidered in order to model a discontinuous neurophysiological phenomenon. The noise considered
in this article is determined by a Poisson point process and the author shows that, whenever the
number of jumps increases and their size decreases, it approximates the so-called space-time white
noise in the sense of convergence of the finite dimensional distributions. Then, the author proves
that the solutions of the PDEs perturbed by these discrete noises converge in law (in the sense of
finite dimensional distribution convergence) to the solution of the PDE perturbed by the space-time
white noise.

Let us now consider the following one-dimensional quasi-linear stochastic heat equation:

∂ U

∂ t
(t, x)−

∂ 2U

∂ x2 (t, x) = b(U(t, x)) + Ẇ (t, x), (t, x) ∈ [0, T]× [0,1], (1)

where T > 0 stands for a fixed time horizon, b : R → R is a globally Lipschitz function and Ẇ is
the formal notation for the space-time white noise. We impose some initial condition and boundary
conditions of Dirichlet type, that is:

U(0, x) = u0(x), x ∈ [0,1],

U(t, 0) = U(t, 1) = 0, t ∈ [0, T],

where u0 : [0, 1] → R is a continuous function. The random field solution to Equation (1) will
be denoted by U = {U(t, x), (t, x) ∈ [0, T]× [0,1]} and it is interpreted in the mild sense. More
precisely, let {W (t, x), (t, x) ∈ [0, T]× [0,1]} denote a Brownian sheet on [0, T]× [0, 1], which
we suppose to be defined in some probability space (Ω,F , P). For 0 ≤ t ≤ T , let Ft be the σ-field
generated by the random variables {W (s, x), (s, x) ∈ [0, t] × [0, 1]}, which can be conveniently
completed, so that the resulting filtration {Ft , t ≥ 0} satisfies the usual conditions. Then, a process
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U is a solution of (1) if it is Ft -adapted and the following stochastic integral equation is satisfied:

U(t, x) =

∫ 1

0

Gt(x , y)u0(y)d y +

∫ t

0

∫ 1

0

Gt−s(x , y) b(U(s, y))d yds

+

∫ t

0

∫ 1

0

Gt−s(x , y)W (ds, d y), a.s. (2)

for all (t, x) ∈ (0, T]× (0, 1), where G denotes the Green function associated to the heat equation
in [0, 1] with Dirichlet boundary conditions. We should mention that the stochastic integral in the
right-hand side of Equation (2) is a Wiener integral, which can be understood either in the sense of
Walsh [36] or in the framework of Da Prato and Zabczyk [12]. Besides, existence, uniqueness and
pathwise continuity of the solution of (2) are a consequence of [36, Theorem 3.5].

The aim of our work is to prove that the mild solution of (1) –which is given by the solution of (2)–
can be approximated in law, in the space C ([0, T]× [0,1]) of continuous functions, by the solution
of

∂ Un

∂ t
(t, x)−

∂ 2Un

∂ x2 (t, x) = b(Un(t, x)) + θn(t, x), (t, x) ∈ [0, T]× [0,1], (3)

with initial condition u0 and Dirichlet boundary conditions, where n ∈ N. In this equation, θn will
be a noisy input that approximates the white noise Ẇ in the following sense:

Hypothesis 1.1. The finite dimensional distributions of the processes

ζn(t, x) =

∫ t

0

∫ x

0

θn(s, y)d yds, (t, x) ∈ [0, T]× [0,1],

converge in law to those of the Brownian sheet

Observe that, if the processes θn have square integrable paths, then the mild form of Equation (3)
is given by:

Un(t, x) =

∫ 1

0

Gt(x , y)u0(y)d y +

∫ t

0

∫ 1

0

Gt−s(x , y) b(Un(s, y))d yds

+

∫ t

0

∫ 1

0

Gt−s(x , y)θn(s, y)d yds. (4)

Standard arguments yield existence and uniqueness of solution for Equation (4) and, furthermore,
as it will be detailed later on (see Section 3), the solution Un has continuous trajectories a.s.

In order to state the main result of the paper, let us consider the following hypotheses which, as it
will be made explicit in the sequel, will play an essential role:

Hypothesis 1.2. For some q ∈ [2,3), there exists a positive constant Cq independent of n such that, for
any f ∈ Lq([0, T]× [0, 1]), it holds:

E

 

∫ T

0

∫ 1

0

f (t, x)θn(t, x) d xd t

!2

≤ Cq

 

∫ T

0

∫ 1

0

| f (t, x)|q d xd t

!
2
q

.
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Hypothesis 1.3. There exist m> 8 and a positive constant C independent of n such that the following is
satisfied: for all s0, s′0 ∈ [0, T] and x0, x ′0 ∈ [0,1] satisfying 0< s0 < s′0 < 2s0 and 0< x0 < x ′0 < 2x0,
and for any f ∈ L2([0, T]× [0, 1]), it holds:

sup
n≥1

E

�

�

�

�

�

∫ s′0

s0

∫ x ′0

x0

f (s, y)θn(s, y)d yds

�

�

�

�

�

m

≤ C

 

∫ s′0

s0

∫ x ′0

x0

f (s, y)2 d yds

!

m
2

.

We remark that, in Hypothesis 1.2, the restriction on the parameter q will be due to the integrability
properties of the Green function G. On the other hand, in the condition s′0 < 2s0 (resp. x ′0 < 2x0) of
Hypothesis 1.3, the number 2 could be replaced by any k > 1. We are now in position to state our
main result:

Theorem 1.4. Let {θn(t, x), (t, x) ∈ [0, T]× [0, 1]}, n ∈ N, be a family of stochastic processes such
that θn ∈ L2([0, T]× [0, 1]) a.s., and such that Hypothesis 1.1, 1.2 and 1.3 are satisfied. Moreover,
assume that u0 : [0,1]→ R is continuous and b : R→ R is Lipschitz.

Then, the family of stochastic processes {Un, n ≥ 1} defined as the mild solutions of Equation (3)
converges in law, in the space C ([0, T]× [0, 1]), to the mild solution U of Equation (1).

Let us point out that, as we will see in Section 3, Theorem 1.4 will be almost an immediate conse-
quence of the analogous result when taking null initial condition and nonlinear term (see Theorem
3.5). Thus, the essential part of the paper will be concerned to prove the convergence in law, in the
space C ([0, T]× [0,1]), of the solution of

∂ Xn

∂ t
(t, x)−

∂ 2Xn

∂ x2 (t, x) = θn(t, x), (t, x) ∈ [0, T]× [0,1], (5)

with vanishing initial data and Dirichlet boundary conditions, towards the solution of

∂ X

∂ t
(t, x)−

∂ 2X

∂ x2 (t, x) = Ẇ (t, x), (t, x) ∈ [0, T]× [0,1]. (6)

Observe that the mild solution of Equations (5) and (6) can be explicitly written as, respectively,

Xn(t, x) =

∫ t

0

∫ 1

0

Gt−s(x , y)θn(s, y) d yds, (t, x) ∈ [0, T]× [0, 1], (7)

and

X (t, x) =

∫ t

0

∫ 1

0

Gt−s(x , y)W (ds, d y), (t, x) ∈ [0, T]× [0, 1], (8)

where the latter defines a centered Gaussian process.

An important part of the work is also devoted to check that two interesting particular families of
noises verify the hypotheses of Theorem 1.4. More precisely, consider the following processes:

1. The Kac-Stroock processes on the plane:

θn(t, x) = n
p

t x (−1)Nn(t,x), (9)

where Nn(t, x) := N(
p

nt,
p

nx), and {N(t, x), (t, x) ∈ [0, T]× [0,1]} is a standard Poisson
process in the plane.
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2. The Donsker kernels: Let {Zk, k ∈ N2} be an independent family of identically distributed and
centered random variables, with E(Z2

k ) = 1 for all k ∈ N2, and such that E(|Zk|m) < +∞ for
all k ∈ N2 and some sufficiently large m ∈ N. For any n ∈ N, we define the kernels

θn(t, x) = n
∑

k=(k1,k2)∈N2

Zk · 1[k1−1,k1)×[k2−1,k2)(tn, xn), (t, x) ∈ [0, T]× [0,1]. (10)

In the case where θn are the Kac-Stroock processes, it has been proved in [5] that the family of
processes

ζn(t, x) =

∫ t

0

∫ x

0

θn(s, y) d y ds, n ∈ N,

converges in law, in the space of continuous functions C ([0,1]2), to the Brownian sheet. This result
has been inspired by its one-dimensional counterpart, which is due to Stroock [31] and states that
the family of processes

Yε(t) =
1

ε

∫ t

0

(−1)N(
s
ε2
)ds, t ∈ [0,1], ε > 0,

where N stands for a standard Poisson process, converges in law in C ([0, 1]) , as ε tends to 0, to the
standard Brownian motion. Moreover, it is worth mentioning that Kac (see [22]) already considered
this kind of processes in order to write the solution of the telegrapher’s equation in terms of a Poisson
process.

On the other hand, when θn are the Donsker kernels, the convergence in law, in the space of contin-
uous functions, of the processes

ζn(t, x) =

∫ t

0

∫ x

0

θn(s, y) d y ds, n ∈ N,

to the Brownian sheet is a consequence of the extension of Donsker’s theorem to the plane (see, for
instance, [37]).

We should mention at this point that the motivation behind our results has also been considered by
Manthey in [24] and [25]. Indeed, in the former paper, the author considers Equation (5) with a
family of correlated noises {θn, n ∈ N} whose integral processes

∫ t

0

∫ x

0

θn(s, y) d yds,

converge in law (in the sense of finite dimensional distribution convergence) to the Brownian sheet.
Then, sufficient conditions on the noise processes are specified under which the solution Xn of (5)
converges in law, in the sense of the finite dimensional distribution convergence, to the solution
of (6). Moreover, it has also been proved that, whenever the noisy processes are Gaussian, the
convergence in law holds in the space of continuous functions too; these results have been extended
to the quasi-linear equation (3) in [25]. In this sense, let us mention that, in an Appendix and for
the sake of completeness, we have added a brief explanation of Manthey’s method and showed that
his results do not apply to the examples of noisy inputs that we are considering in the paper.

Let us also remark that recently there has been an increasing interest in the study of weak approx-
imation for several classes of SPDEs (see [15, 16]). In these references, the methods for obtaining
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the corresponding approximation sequences are based on discretisation schemes for the differential
operator driving the equation, and the rate of convergence of the weak approximations is analysed.
Hence, this latter framework differs significantly from the setting that we have described above. On
the other hand, we notice that weak convergence for some classes of SPDEs driven by the Donsker
kernels has been considered in the literature; namely, a reduced hyperbolic equation on R2

+ –which
is essentially equivalent to a one-dimensional stochastic wave equation– has been considered in
[8, 17], while in [32], the author deals with a stochastic elliptic equation with non-linear drift.
Furthermore, in [34], weak convergence of Wong-Zakai approximations for stochastic evolution
equations driven by a finite-dimensional Wiener process has been studied. Eventually, it is worth
commenting that other type of problems concerning SPDEs driven by Poisson-type noises have been
considered e.g. in [18, 20, 23, 28, 30].

The paper is organised as follows. In Section 2, we will present some preliminaries on Equation
(1), its linear form (6) and some general results on weak convergence. In Section 3, we prove the
results of convergence for equations (6) and (1), so that we end up with the proof of Theorem 1.4.
The proof of the fact that the Kac-Stroock processes satisfy the hypotheses of Theorem 1.4 will be
carried out in Section 4, while the analysis in the case of the Donsker kernels will be performed at
Section 5. Finally, we add an Appendix where we give the proof of Lemma 2.3 and relate our results
with those of Manthey ([24], [25]).

2 Preliminaries

As it has been explained in the Introduction, we are concerned with the mild solution of the formally-
written quasi-linear stochastic heat equation (1). That is, we consider a real-valued stochastic pro-
cess {U(t, x), (t, x) ∈ [0, T]× [0,1]}, which we assume to be adapted with respect to the natural
filtration generated by the Brownian sheet on [0, T]× [0,1], such that the following integral equa-
tion is satisfied (see (2)): for all (t, x) ∈ [0, T]× [0,1],

U(t, x) =

∫ 1

0

Gt(x , y)u0(y)d y +

∫ t

0

∫ 1

0

Gt−s(x , y) b(U(s, y))d yds

+

∫ t

0

∫ 1

0

Gt−s(x , y)W (ds, d y), a.s., (11)

where we recall that Gt(x , y), (t, x , y) ∈ R+× (0, 1)2, denotes the Green function associated to the
heat equation on [0,1] with Dirichlet boundary conditions. Explicit formulas for G are well-known,
namely:

Gt(x , y) =
1
p

2πt

+∞
∑

n=−∞

�

e−
(x−y−2n)2

4t − e−
(x+y−2n)2

4t

�

or

Gt(x , y) = 2
∞
∑

n=1

sin(nπx) sin(nπy)e−n2π2 t .

Moreover, it holds that

0≤ Gt(x , y)≤
1
p

2πt
e−

(x−y)2

4t , t > 0, x , y ∈ [0, 1].
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We have already commented in the Introduction that, in order to prove Theorem 1.4, we will restrict
our analysis to the linear version of Equation (1), which is given by (6). Hence, let us consider for
the moment X = {X (t, x), (t, x) ∈ [0, T] × [0,1]} to be the mild solution of Equation (6) with
vanishing initial conditions and Dirichlet boundary conditions. This can be explicitly written as (8).
Notice that, for any (t, x) ∈ (0, T]×(0,1), X (t, x) defines a centered Gaussian random variable with
variance

E(X (t, x)2) =

∫ t

0

∫ 1

0

Gt−s(x , y)2d yds.

Indeed, by (iii) in Lemma 2.1 below, it holds that E(X (t, x)2)≤ C t
1
2 , where the constant C > 0 does

not depend on x .

In the sequel, we will make use of the following result, which is a quotation of [3, Lemma B.1]:

Lemma 2.1. (i) Let α1 ∈ (
3
2
, 3). Then, for all t ∈ [0, T] and x , y ∈ [0,1],

∫ t

0

∫ 1

0

|Gt−s(x , z)− Gt−s(y, z)|α1 dzds ≤ C |x − y|3−α1 .

(ii) Let α2 ∈ (1,3). Then, for all s, t ∈ [0, T] such that s ≤ t and x ∈ [0,1],

∫ s

0

∫ 1

0

|Gt−r(x , y)− Gs−r(x , y)|α2 d ydr ≤ C(t − s)
3−α2

2 .

(iii) Under the same hypothesis as (ii),

∫ t

s

∫ 1

0

|Gt−r(x , y)|α2 d ydr ≤ C(t − s)
3−α2

2 .

Let us recall that we aim to prove that the process X can be approximated in law, in the space
C ([0, T]× [0,1]), by the family of stochastic processes

Xn(t, x) =

∫ t

0

∫ 1

0

Gt−s(x , y)θn(s, y) d yds, (t, x) ∈ [0, T]× [0,1], n≥ 1, (12)

where the processes θn satisfy certain conditions.

In order to prove this convergence in law, we will make use of the following two general results.
The first one (Theorem 2.2) is a tightness criterium on the plane that generalizes a well-known the-
orem of Billingsley; it can be found in [38, Proposition 2.3], where it is proved that the hypotheses
considered in the result are stronger than those of the commonly-used criterium of Centsov [10].
The second one (Lemma 2.3) will be used to prove the convergence of the finite dimensional dis-
tributions of Xn; though it can be found around in the literature, we have not been able to find an
explicit proof, so that, for the sake of completeness, we will sketch it in the Appendix.
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Theorem 2.2. Let {Xn, n ∈ N} be a family of random variables taking values in C ([0, T]× [0,1]).
The family of the laws of {Xn, n ∈ N} is tight if there exist p′, p > 0, δ > 2 and a constant C such that

sup
n≥1

E|Xn(0,0)|p
′
<∞

and, for every t, t ′ ∈ [0, T] and x , x ′ ∈ [0,1],

sup
n≥1

E
�

�Xn(t
′, x ′)− Xn(t, x)

�

�

p ≤ C
�

|x ′− x |+ |t ′− t|
�δ .

Lemma 2.3. Let (F,‖ · ‖) be a normed space and {Jn, n ∈ N} and J linear maps defined on F and
taking values in the space L1(Ω). Assume that there exists a positive constant C such that, for any
f ∈ F,

sup
n≥1

E|Jn( f )| ≤ C‖ f ‖ and (13)

E|J( f )| ≤ C‖ f ‖, (14)

and that, for some dense subspace D of F, it holds that Jn( f ) converges in law to J( f ), as n tends to
infinity, for all f ∈ D.

Then, the sequence of random variables {Jn( f ), n ∈ N} converges in law to J( f ), for any f ∈ F.

Eventually, for any real function X defined on R2
+, and (t, x), (t ′, x ′) ∈ R2

+ such that t ≤ t ′ and x ≤
x ′, we will use the notation ∆t,x X (t ′, x ′) for the increment of X over the rectangle (t, t ′]× (x , x ′]:

∆t,x X (t ′, x ′) = X (t ′, x ′)− X (t, x ′)− X (t ′, x) + X (t, x).

3 Proof of the general result

This section is devoted to prove Theorem 1.4. For this, as we have already mentioned, it is conve-
nient to consider, first, the linear equation (6) together with its mild solution (8).

The first step consists in establishing sufficient conditions for a family of processes {θn, n ∈ N} in
order that the approximation processes Xn (see (12)) converge, in the sense of finite dimensional
distributions, to X , the solution of (8):

X (t, x) =

∫ t

0

∫ 1

0

Gt−s(x , y)W (ds, d y). (15)

Proposition 3.1. Let {θn(t, x), (t, x) ∈ [0, T]×[0,1]}, n ∈ N, be a family of stochastic processes such
that θn ∈ L2([0, T]× [0, 1]) a.s. and such that Hypothesis 1.1 and 1.2 are satisfied.

Then, the finite dimensional distributions of the processes Xn given by (12) converge, as n tends to
infinity, to those of the process defined by (15).

Proof: We will apply Lemma 2.3 to the following setting: let q ∈ [2,3) as in Hypothesis 1.2 and
consider the normed space (F := Lq([0, T]× [0, 1]),‖ · ‖q), where ‖ · ‖q denotes the standard norm
in Lq([0, T]× [0, 1]). Set

Jn( f ) :=

∫ T

0

∫ 1

0

f (s, y)θn(s, y) d yds, and
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J( f ) :=

∫ T

0

∫ 1

0

f (s, y)W (ds, d y), f ∈ F.

Then, Jn and J define linear applications on F and, by Hypothesis 1.2, it holds that

sup
n≥1

E|Jn( f )| ≤ C‖ f ‖q,

for all f ∈ Lq([0, T]× [0, 1]). The isometry of the Wiener integral gives also that

E|J( f )| ≤ C‖ f ‖q,

for all f ∈ Lq([0, T]× [0, 1]). Moreover, the set D of elementary functions of the form

f (t, x) =
k−1
∑

i=0

fi 1(t i ,t i+1](t)1(x i ,x i+1](x), (16)

with k ≥ 1, fi ∈ R, 0= t0 < t1 < · · ·< tk = T and 0= x0 < x1 < · · ·< xk = 1, is dense in (F,‖ · ‖q).
On the other hand, the finite dimensional distributions of Xn converge to those of X if, and only if,
for all m ≥ 1, a1, . . . , am ∈ R, (s1, y1), . . . , (sm, ym) ∈ [0, T]× [0, 1], the following convergence in
law holds:

m
∑

j=1

a jXn(s j , y j)
L−→

n→∞

m
∑

j=1

a jX (s j , y j). (17)

This is equivalent to have that Jn(K) =
∫ T

0

∫ 1

0
K(s, y)θn(s, y) d yds converges in law, as n tends to

infinity, to
∫ T

0

∫ 1

0
K(s, y)W (ds, d y), where

K(s, y) :=
m
∑

j=1

a j1[0,s j](s)Gs j−s(y j , y).

By Lemma 2.1 (iii), the function K belongs to Lq([0, T]× [0, 1]). Hence, owing to Lemma 2.3, in
order to obtain the convergence (17), it suffices to prove that Jn( f ) converges in law to J( f ) =
∫ T

0

∫ 1

0
f (s, y)W (ds, d y), for every elementary function f of the form (16). In fact, if f is such a

function, observe that we have

Jn( f ) =
k−1
∑

i=0

fi

∫ t i+1

t i

∫ x i+1

x i

θn(s, y) d yds,

and this random variable converges in law, as n tends to infinity, to

k−1
∑

i=0

fi

∫ t i+1

t i

∫ x i+1

x i

W (ds, d y) =

∫ T

0

∫ 1

0

f (s, y)W (ds, d y),

because the finite dimensional distributions of ζn converge to those of the Brownian sheet. �

Let us now provide sufficient conditions on θn in order that the family of laws of the processes Xn is
tight in C ([0, T]× [0,1]).
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Proposition 3.2. Let {θn(t, x), (t, x) ∈ [0, T]×[0,1]}, n ∈ N, be a family of stochastic processes such
that θn ∈ L2([0, T]× [0, 1]) a.s. Suppose that Hypothesis 1.3 is satisfied.

Then, the process Xn defined in (12) possesses a version with continuous paths and the family of the
laws of {Xn, n ∈ N} is tight in C ([0, T]× [0,1]).

Proof: It suffices to prove that

sup
n≥1

E
�

Xn(t
′, x ′)− Xn(t, x)

�m ≤ C[|x ′− x |mα+ |t ′− t|
mα
2 ], (18)

for all α ∈ (0, 1
2
), t, t ′ ∈ [0, T] and x , x ′ ∈ [0, 1]. Indeed, if m > 8, then it can be found α ∈ (0, 1

2
)

such that mα
2
> 2 and we obtain the existence of a continuous version of each Xn from Kolmogorov’s

continuity criterium in the plane. Furthermore, by Theorem 2.2, we also obtain the tightness of the
laws of Xn in C ([0, T]× [0, 1]).

Set H(t, x; s, y) := 1[0,t](s)Gt−s(x , y). We will need to estimate the moment of order m, for some
m> 8, of the quantity

Xn(t
′, x ′)− Xn(t, x) =

∫ T

0

∫ 1

0

[H(t ′, x ′; s, y)−H(t, x; s, y)]θn(s, y) d yds,

for t, t ′ ∈ [0, T] and x , x ′ ∈ [0,1]. Moreover, the right-hand side of the above equality can be written
in the form ∆0,0Yn(T, 1), where the process Yn, which indeed depends on t, t ′, x , x ′, is defined by

Yn(s0, x0) :=

∫ s0

0

∫ x0

0

[H(t ′, x ′; s, y)−H(t, x; s, y)]θn(s, y) d yds, (s0, x0) ∈ [0, T]× [0,1].

Hence, inequality (18) is equivalent to prove that

E(∆0,0Yn(T, 1))m ≤ C[|x ′− x |mα+ |t ′− t|
mα
2 ],

for all α ∈ (0, 1
2
) and n≥ 1. By [6, Lemma 3.2] (in the statement of this lemma, it is supposed that m

is an even integer number, but this assumption is not used in its proof), it suffices to prove that there
exist γ > 0 and C > 0 such that, for all s0, s′0 ∈ [0, T] and x0, x ′0 ∈ [0,1] satisfying 0 < s0 < s′0 < 2s0
and 0< x0 < x ′0 < 2x0, then

sup
n≥1

E(∆s0,x0
Yn(s

′
0, x ′0))

m ≤ C
h

|t ′− t|mα+ |x ′− x |
mα
2

i

(s′0− s0)
mγ(x ′0− x0)

mγ. (19)

By Hypothesis 1.3 for the particular case of f (s, y) = H(t ′, x ′; s, y)−H(t, x; s, y), we obtain

sup
n≥1

E(∆s0,x0
Yn(s

′
0, x ′0))

m

≤ C

 

∫ T

0

∫ 1

0

1[s0,s′0]
(s)1[x0,x ′0]

(y)|H(t ′, x ′; s, y)−H(t, x; s, y)|2 d yds

!
m
2

.
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Let p ∈ (1, 3
2
) and q > 1 such that 1

p
+ 1

q
= 1. Then, by Hölder’s inequality and the definition of H,

sup
n≥1

E(∆s0,x0
Yn(s

′
0, x ′0))

m

≤ C

 

∫ T

0

∫ 1

0

1[s0,s′0]
(s)1[x0,x ′0]

(y) d yds

!
m
2q
 

∫ T

0

∫ 1

0

|H(t ′, x ′; s, y)−H(t, x; s, y)|2p d yds

!
m
2p

≤ C(x ′0− x0)
m
2q (s′0− s0)

m
2q

×

 

∫ t

0

∫ 1

0

|Gt ′−s(x
′, y)− Gt−s(x , y)|2p d yds+

∫ t ′

t

∫ 1

0

|Gt ′−s(x
′, y)|2p d yds

!

m
2p

. (20)

By Lemma 2.1, the last term in the right-hand side of (20) can be bounded, up to some constant, by

�

|x − x ′|3−2p + |t − t ′|
3−2p

2

�
m
2p ≤ C

�

|x − x ′|
m(3−2p)

2p + |t − t ′|
m(3−2p)

4p

�

.

Therefore, if we plug this bound in (20) and we take α = 3−2p
2p

and γ = 1
2q

, then we have proved

(19), because p ∈ (1, 3
2
) is arbitrary. �

Remark 3.3. As it can be deduced from the first part of the proof of Proposition 3.2, the restriction
m > 8 has to be considered in order to be able to apply Theorem 2.2 and Kolmogorov’s continuity
criterium.

As a consequence of Propositions 3.1 and 3.2, we can state the following result on convergence in
law for the processes Xn:

Theorem 3.4. Let {θn(t, x), (t, x) ∈ [0, T]× [0, 1]}, n ∈ N, be a family of stochastic processes such
that θn ∈ L2([0, T]× [0, 1]) a.s. Assume that Hypotheses 1.1, 1.2 and 1.3 are satisfied.

Then, the family of stochastic processes {Xn, n ≥ 1} defined in (12) converges in law, as n tends to
infinity in the space C ([0, T]× [0,1]), to the Gaussian process X given by (15).

We can eventually extend the above result to the quasi-linear Equation (1), so that we end up with
the proof of Theorem 1.4. This will be an immediate consequence of the above theorem and the
next general result:

Theorem 3.5. Let {θn(t, x), (t, x) ∈ [0, T]× [0, 1]}, n ∈ N, be a family of stochastic processes such
that θn ∈ L2([0, T]× [0,1]) a.s. Assume that u0 : [0,1]→ R is a continuous function and b : R→ R
is Lipschitz. Moreover, suppose that the family of stochastic processes {Xn, n ≥ 1} defined in (12)
converges in law, as n tends to infinity in the space C ([0, T]× [0, 1]), to the Gaussian process X given
by (15).

Then, the family of stochastic processes {Un, n ≥ 1} defined as the mild solutions of Equation (3)
converges in law, in the space C ([0, T]× [0, 1]), to the mild solution U of Equation (1).

Proof: Let us first recall that we denote by U = {U(t, x), (t, x) ∈ [0, T]× [0,1]} the unique mild
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solution of Equation (1), which means that U fulfils

U(t, x) =

∫ 1

0

Gt(x , y)u0(y)d y +

∫ t

0

∫ 1

0

Gt−s(x , y) b(U(s, y))d yds

+

∫ t

0

∫ 1

0

Gt−s(x , y)W (ds, d y), a.s.

The approximation sequence is denoted by {Un, n ∈ N}, where Un = {Un(t, x), (t, x) ∈ [0, T]×
[0, 1]} is a stochastic process satisfying

Un(t, x) =

∫ 1

0

Gt(x , y)u0(y)d y +

∫ t

0

∫ 1

0

Gt−s(x , y) b(Un(s, y))d yds

+

∫ t

0

∫ 1

0

Gt−s(x , y)θn(s, y)d yds, a.s.

where the noisy input θn has square integrable paths, a.s.

Using the properties of the Green function (see Lemma 2.1), the fact that θn ∈ L2([0, T]× [0, 1])
a.s., together with a Gronwall-type argument, we obtain that Un has continuous paths a.s., for all
n ∈ N.

Next, for each continuous function η : [0, T]× [0, 1] −→ R, consider the following (deterministic)
integral equation:

zη(t, s) =

∫ 1

0

Gt(x , y)u0(y)d y +

∫ t

0

∫ 1

0

Gt−s(x , y) b(zη(s, y))d yds+η(t, x).

As before, by the properties of G and the assumptions on u0 and b, it can be checked that this
equation possesses a unique continuous solution.

Now, we will prove that the map

ψ :C ([0, T]× [0,1])−→C ([0, T]× [0, 1])

η −→ zη

is continuous with respect to the usual topology on this space. Indeed, given η1, η2 ∈ C ([0, T]×
[0, 1]), we have that

|z
η1
(t, x)− z

η2
(t, x)|

≤
∫ t

0

∫ 1

0

Gt−s(x , y)
�

�

�b(z
η1
(s, y))− b(z

η2
(s, y))

�

�

� d yds+ |η1(t, x)−η2(t, x)|

≤ L

∫ t

0

∫ 1

0

Gt−s(x , y)
�

�

�z
η1
(s, y)− z

η2
(s, y)

�

�

� d yds+ |η1(t, x)−η2(t, x)|, (21)

where L is the Lipschitz constant of the function b.

For a given f ∈ C ([0, T]× [0, 1]), we introduce the following norms:

‖ f ‖t = max
s∈[0, t], x∈[0, 1]

| f (s, x)|.
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By using this notation, we deduce that inequality (21) implies that, for any t ∈ [0, T],

‖z
η1
− z

η2
‖t ≤ L

∫ t

0

G(t − s) ‖z
η1
− z

η2
‖s ds+ ‖η1−η2‖T

,

where

G(s) := sup
x∈[0,1]

∫ 1

0

Gs(x , y)d y ≤ sup
x∈[0, 1]

∫ 1

0

1
p

2πs
e−

(x−y)2

4s d y ≤ C .

Applying now Gronwall’s lemma, we obtain that there exists a finite constant A> 0 such that

‖z
η1
− z

η2
‖

T
≤ A‖η1−η2‖T

,

and, therefore, the map ψ is continuous.

Consider now

Xn(t, x) =

∫ t

0

∫ 1

0

Gt−s(x , y)θn(s, y)d yds

and

X (t, x) =

∫ t

0

∫ 1

0

Gt−s(x , y)W (ds, d y).

By hypothesis, we have that Xn converges in law in C ([0, T]× [0,1]) to X , as n goes to infinity. On
the other hand, we have

Un =ψ(Xn) and U =ψ(X ),

and hence the continuity of ψ implies the convergence in law of Un to U in C ([0, T]× [0, 1]). �

4 Convergence in law for the Kac-Stroock processes

This section is devoted to prove that the hypotheses of Theorem 1.4 are satisfied in the case where
the approximation family is defined in terms of the Kac-Stroock process θn set up in (9). That is,

Xn(t, x) = n

∫ t

0

∫ 1

0

Gt−s(x , y)
p

s y(−1)Nn(s,y) d yds. (22)

First, we notice that Hypothesis 1.1 has been proved in [5].

The following proposition states that Hypothesis 1.2 is satisfied in this particular situation.

Proposition 4.1. Let θn be the Kac-Strock processes. Then, for all p > 1, there exists a positive constant
Cp such that

E

 

∫ T

0

∫ 1

0

f (t, x)θn(t, x) d xd t

!2

≤ Cp

 

∫ T

0

∫ 1

0

| f (t, x)|2p d xd t

!
1
p

, (23)

for any f ∈ L2p([0, T]× [0,1]) and all n≥ 1.

The proof of this proposition is based on the following technical lemma:
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Lemma 4.2. Let f ∈ L2([0, T] × [0,1]) and α ≥ 1. Then, for any u, u′ ∈ (0,1) satisfying that
0< u< u′ ≤ 2αu,

E

 

∫ T

0

∫ u′

u

f (t, x)θn(t, x) d xd t

!2

≤
3

4

�

2α+1− 1
�

∫ T

0

∫ u′

u

f 2(t, x) d xd t,

for all n≥ 1.

Proof: First, we observe that

E

 

∫ T

0

∫ u′

u

f (t, x)θn(t, x) d xd t

!2

=2n2

∫ T

0

∫ u′

u

∫ T

0

∫ u′

u

f (t1, x1) f (t2, x2)
p

t1 t2 x1 x2

× E
�

(−1)Nn(t1,x1)+Nn(t2,x2)
�

1{t1≤t2}d x2d t2d x1d t1. (24)

The expectation appearing in (24) can be computed as it has been done in the proof of [6, Lemma
3.1] (see also [5, Lemma 3.2]). More precisely, one writes the sum Nn(t1, x1) + Nn(t2, x2) as a
suitable sum of rectangular increments of Nn and applies that, if Z has a Poisson distribution with
parameter λ, then E

�

(−1)Z
�

= exp(−2λ). Hence, the term in the right-hand side of (24) admits a
decomposition of the form I1+ I2, where

I1 =2n2

∫ T

0

∫ u′

u

∫ T

0

∫ u′

u

f (t1, x1) f (t2, x2)
p

t1 t2 x1 x2

× exp
�

−2n[(t2− t1)x2+ (x2− x1)t1]
	

1{t1≤t2}1{x1≤x2}d x2d t2d x1d t1,

I2 =2n2

∫ T

0

∫ u′

u

∫ T

0

∫ u′

u

f (t1, x1) f (t2, x2)
p

t1 t2 x1 x2

× exp
�

−2n[(t2− t1)x2+ (x1− x2)t1]
	

1{t1≤t2}1{x2≤x1}d x2d t2d x1d t1.

Let us apply the inequality ab ≤ 1
2
(a2+ b2), a, b ∈ R, so that we have I1 ≤ I11+ I12, where the latter

terms are defined by

I11 =n2

∫ T

0

∫ u′

u

∫ T

0

∫ u′

u

f 2(t1, x1) t1 x1

× exp
�

−2n[(t2− t1)x2+ (x2− x1)t1]
	

1{t1≤t2}1{x1≤x2}d x2d t2d x1d t1,

I12 =n2

∫ T

0

∫ u′

u

∫ T

0

∫ u′

u

f 2(t2, x2) t2 x2

× exp
�

−2n[(t2− t1)x2+ (x2− x1)t1]
	

1{t1≤t2}1{x1≤x2}d x2d t2d x1d t1.
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In order to deal with the term I11, we will use the fact that exp{−2n(t2 − t1)x2} ≤ exp{−2n(t2 −
t1)x1}, for x1 ≤ x2, and then integrate with respect to t2, x2. Thus

I11 ≤ n2

∫ T

0

∫ u′

u

∫ T

0

∫ u′

u

f 2(t1, x1) t1 x1

× exp
�

−2n[(t2− t1)x1+ (x2− x1)t1]
	

1{t1≤t2}1{x1≤x2}d x2d t2d x1d t1

≤
1

4

∫ T

0

∫ u′

u

f 2(t1, x1) d x1d t1. (25)

Concerning the term I12, we use similar arguments as before and, moreover, we apply the fact that,
for x1, x2 ∈ [u, u′), then x2 < 2αx1. Hence

I12 ≤ n2

∫ T

0

∫ u′

u

∫ T

0

∫ u′

u

f 2(t2, x2) t2 x2

× exp
�

−2n[(t2− t1)x1+ (x2− x1)t2]
	

1{t1≤t2}1{x1≤x2}d x2d t2d x1d t1

≤ 2αn2

∫ T

0

∫ u′

u

∫ T

0

∫ u′

u

f 2(t2, x2) t2 x1

× exp
�

−2n[(t2− t1)x1+ (x2− x1)t2]
	

1{t1≤t2}1{x1≤x2}d x2d t2d x1d t1

≤ 2α−2

∫ T

0

∫ u′

u

f 2(t2, x2) d x2d t2. (26)

The analysis of the term I2 is slightly more involved. Namely, notice first that I2 ≤ I21+ I22, where

I21 =n2

∫ T

0

∫ u′

u

∫ T

0

∫ u′

u

f 2(t1, x1) t1 x1

× exp
�

−2n[(t2− t1)x2+ (x1− x2)t1]
	

1{t1≤t2}1{x2≤x1}d x2d t2d x1d t1,

I22 =n2

∫ T

0

∫ u′

u

∫ T

0

∫ u′

u

f 2(t2, x2) t2 x2

× exp
�

−2n[(t2− t1)x2+ (x1− x2)t1]
	

1{t1≤t2}1{x2≤x1}d x2d t2d x1d t1.

For the term I12, we simply use that, by hypothesis, x1 ≤ 2αx2, and we integrate with respect to
t2, x2, so that we end up with

I21 ≤ 2αn2

∫ T

0

∫ u′

u

∫ T

0

∫ u′

u

f 2(t1, x1) t1 x2

× exp
�

−2n[(t2− t1)x2+ (x1− x2)t1]
	

1{t1≤t2}1{x2≤x1}d x2d t2d x1d t1

≤ 2α−2

∫ T

0

∫ u′

u

f 2(t1, x1) d x1d t1. (27)
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The term I22 is much more delicate. Namely, taking into account the integration’s region in I22 as
well as the fact that x1− x2 ≤ (2α− 1)x2 (because x1 ≤ 2αx2), it holds

2(t2− t1)x2+ 2(x1− x2)t1 ≥ (t2− t1)x2+
1

2α− 1
(t2− t1)(x1− x2) +

1

2α− 1
(x1− x2)t1

= (t2− t1)x2+
1

2α− 1
(x1− x2)t2.

Therefore,

I22 ≤ n2

∫ T

0

∫ u′

u

∫ T

0

∫ u′

u

f 2(t2, x2) t2 x2

× exp
�

−n[(t2− t1)x2+
1

2α− 1
(x1− x2)t2]

�

1{t1≤t2}1{x2≤x1}d x2d t2d x1d t1

≤ (2α− 1)

∫ T

0

∫ u′

u

f 2(t2, x2) d x2d t2, (28)

where the latter expression has been obtained after integrating with respect to t1, x1.

We conclude the proof by putting together (25)-(28). �

Proof of Proposition 4.1: Let us consider the following dyadic-type partition of (0,1]:

(0,1] =
∞
⋃

k=0

(ak+1, ak],

with ak =
1

2kα , for some α ≥ 1. In particular, observe that ak − ak+1 =
2α−1

2(k+1)α and we are in position
to apply Lemma 4.2: for all k ≥ 0,

E

 

∫ T

0

∫ ak

ak+1

f (t, x)θn(t, x) d xd t

!2

≤
3

4
(2α+1− 1)

∫ T

0

∫ ak

ak+1

f (t, x)2 d xd t.

Therefore, we have the following estimations:

E

 

∫ T

0

∫ 1

0

f (t, x)θn(t, x) d xd t

!2

= E

 

∞
∑

k=0

∫ T

0

∫ ak

ak+1

f (t, x)θn(t, x) d xd t

!2

≤
∞
∑

k=0

2k+1E

 

∫ T

0

∫ ak

ak+1

f (t, x)θn(t, x) d xd t

!2

≤
3

4
(2α+1− 1)

∞
∑

k=0

2k+1

∫ T

0

∫ ak

ak+1

f (t, x)2 d xd t. (29)

Let p, q > 1 be such that 1
p
+ 1

q
= 1. Then, applying Hölder’s inequality, the last term of (29) can be
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bounded by

3

4
(2α+1− 1)

∞
∑

k=0

2k+1

 

∫ T

0

∫ ak

ak+1

| f (t, x)|2p d xd t

!
1
p

(ak − ak+1)
1
q

≤
3

4
(2α+1− 1)

 

∫ T

0

∫ 1

0

| f (t, x)|2p d xd t

!
1
p ∞
∑

k=0

2k+1 (2
α− 1)

1
q

2(k+1) αq

≤
3

4
(2α+1− 1)(2α− 1)

1
q

 

∫ T

0

∫ 1

0

| f (t, x)|2p d xd t

!
1
p ∞
∑

k=0

1

2(k+1)
�

α
q−1

� (30)

and this series is convergent whenever we take α such that α > q. Hence, expression (30) may be
bounded by

3

2
(2α+1− 1)

(2α− 1)
1
q

2
α
q−2

 

∫ T

0

∫ 1

0

| f (t, x)|2p d xd t

!
1
p

,

which implies that the proof is complete. �

Remark 4.3. It is worth noticing that, in the statement of Proposition 4.1, we have not been able to
obtain the validity of the result for p = 1. Indeed, as it can be deduced from its proof, the constant Cp
in (23) blows up when p→ 1 (because q→∞, so α→∞).

By Proposition 3.1, a consequence of Proposition 4.1 is that the finite dimensional distributions of
Xn (see (22)) converge, as n tends to infinity, to those of

X (t, x) =

∫ t

0

∫ 1

0

Gt−s(x , y)W (ds, d y).

In order to prove that Theorem 1.4 applies for the Kac-Stroock processes, it only remains to verify
that Hypothesis 1.3 is satisfied. In fact, this is given by the following result:

Proposition 4.4. Let θn be the Kac-Stroock kernels. Then, for any even m ∈ N, there exists a positive
constant Cm such that, for all s0, s′0 ∈ [0, T] and x0, x ′0 ∈ [0, 1] satisfying 0 < s0 < s′0 < 2s0 and
0< x0 < x ′0 < 2x0, we have that

sup
n≥1

E

 

∫ s′0

s0

∫ x ′0

x0

f (s, y)θn(s, y)d yds

!m

≤ Cm

 

∫ s′0

s0

∫ x ′0

x0

f (s, y)2 d yds

!

m
2

,

for any f ∈ L2([0, T]× [0, 1]).

Proof: To begin with, define

Zn(s0, x0) :=

∫ s0

0

∫ x0

0

f (s, y)θn(s, y) d yds
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and observe that we can apply the same arguments as in the proof of [6, Lemma 3.3] (see p. 324
therein) in order to obtain the following estimate:

E(∆s0,x0
Zn(s

′
0, x ′0))

m ≤m!nm

∫

[0,T]m×[0,1]m

m
∏

i=1

�

1[s0,s′0]
(si)1[x0,x ′0]

(yi) f (si , yi)
p

si yi

�

× exp
¦

−n[(sm− sm−1)y(m−1)+ · · ·+ (s2− s1)y(1)]
©

× exp
¦

−n[(y(m)− y(m−1))sm−1+ · · ·+ (y(2)− y(1))s1]
©

× 1{s1≤···≤sm}ds1 · · · dsmd y1 · · · d ym,

where y(1), . . . , y(m) denote the variables y1, . . . , ym ordered increasingly. Hence

E(∆s0,x0
Zn(s

′
0, x ′0))

m ≤2m(s0 x0)
m
2 m!nm

∫

[0,T]m×[0,1]m

m
∏

i=1

�

1[s0,s′0]
(si)1[x0,x ′0]

(yi) f (si , yi)
�

× exp
�

−nx0[(sm− sm−1) + · · ·+ (s2− s1)]
	

× exp
¦

−ns0[(y(m)− y(m−1)) + · · ·+ (y(2)− y(1))]
©

× 1{s1≤···≤sm}ds1 · · · dsmd y1 · · · d ym. (31)

Notice that in (31) we have not been able to order the variables y1, . . . , ym, because neither the
function (s, y) 7→ f (s, y) factorizes nor (y1 . . . , ym) 7→ f (s1, y1) · · · f (sm, ym) is symmetric. However,
the fact that the variables si are ordered determines m

2
couples (s1, s2), (s3, s4) . . . , (sm−1, sm), such

that the second element in each couple is greater than or equal to the first one. Concerning the
variables yi , we also have m

2
couples (y(1), y(2)), . . . , (y(m−1), y(m)) satisfying the same property.

The key point of the proof relies in factorizing the product in the first part of the right-hand side of
(31) into two convenient products:

m
2
∏

j=1

�

1[s0,s′0]
(si j
)1[x0,x ′0]

(yi j
) f (si j

, yi j
)
�

m
2
∏

k=1

�

1[s0,s′0]
(srk
)1[x0,x ′0]

(yrk
) f (srk

, yrk
)
�

,

where I = {i j , j = 1, . . . , m
2
} andR = {rk, k = 1, . . . , m

2
} are two disjoint subsequences of {1, . . . , m}.

In particular, it holds that I]R = {1, . . . , m}. These subsequences will be chosen using the following
rule: any couple (si , si+1) will contain an element of the form si j

and one of the form srk
, and any

couple (y(i), y(i+1)) will contain an element of the form yi j
and one of the form yrk

. For this, we will
split the m elements f (s1, y1), . . . , f (sm, ym) in two groups of m

2
elements:

A= { f (si1 , yi1), . . . , f (si m
2

, yi m
2
)},

B = { f (sr1
, yr1
), . . . , f (sr m

2
, yr m

2
)}.

In order to determine the elements of each group, and such that the above condition is satisfied, we
proceed by an iterative method: we will start with an element of A and we will associate to it an
element of B satisfying what we want; then, to the latter element of B we will associate a suitable
element of A, and so on. More precisely, we start, say, with f (si1 , yi1) = f (s1, y1). Then, if at any
step of the iteration procedure we have an element f (si j

, yi j
) ∈ A, we will associate to it an element

f (srk
, yrk
) ∈ B in such a way that {si j

, srk
} forms one of the couples (si , si+1). On the other hand,

1285



if at any step of the iteration procedure we have an element f (srk
, yrk
) ∈ B, then we will associate

to it f (si j
, yi j
) ∈ A such that {yi j

, yrk
} determines one of the couples (y(i), y(i+1)). The only thing

that remains to be clarified is what we are going to do in case that, at some step, we end up with
and element of A or B which has already appeared before. In this case, we do not take the latter
element, but another one which has not been chosen by now.

Let us illustrate the above-described procedure by considering a particular example: let m = 8 and
assume that we fix y1, . . . , y8 in such a way that

y8 < y5 < y4 < y7 < y1 < y6 < y2 < y3,

that is:
y(1) = y8, y(2) = y5, y(3) = y4, y(4) = y7,

y(5) = y1, y(6) = y6, y(7) = y2, y(8) = y3.

Recall that we assume that s1 ≤ · · · ≤ s8. We start with f (s1, y1) ∈ A. Then, the iteration sequence
will be the following:

f (s1, y1)−→ f (s2, y2)−→ f (s3, y3)−→ f (s4, y4)

−→ f (s7, y7)−→ f (s8, y8)−→ f (s5, y5)−→ f (s6, y6)

Thus, A= { f (s1, y1), f (s3, y3), f (s7, y7), f (s5, y5)} and B = { f (s2, y2), f (s4, y4), f (s8, y8),
f (s6, y6)}. In particular, any couple (si , si+1) (resp. (y(i), y(i+1))) contains one s (resp. y) of the
group A and one of B.

We can now come back to the analysis of the right-hand side of (31) and we can use the above
detailed procedure to estimate it by 2m−1(s0 x0)

m
2 m! (J1+ J2), with

J1 = nm

∫

[0,T]m×[0,1]m

∏

i j∈I

�

1[s0,s′0]
(si j
)1[x0,x ′0]

(yi j
) f (si j

, yi j
)2
�

× exp
�

−nx0[(sm− sm−1) + · · ·+ (s2− s1)]
	

× exp
¦

−ns0[(y(m)− y(m−1)) + · · ·+ (y(2)− y(1))]
©

× 1{s1≤···≤sm}ds1 · · · dsmd y1 · · · d ym.

J2 = nm

∫

[0,T]m×[0,1]m

∏

rk∈R

�

1[s0,s′0]
(srk
)1[x0,x ′0]

(yrk
) f (srk

, yrk
)2
�

× exp
�

−nx0[(sm− sm−1) + · · ·+ (s2− s1)]
	

× exp
¦

−ns0[(y(m)− y(m−1)) + · · ·+ (y(2)− y(1))]
©

× 1{s1≤···≤sm}ds1 · · · dsmd y1 · · · d ym.

We will only deal with the term J1, since J2 can be treated using exactly the same arguments. The
idea is to integrate in J1 with respect to srk

, yrk
, with rk ∈ R , for k = 1, . . . , m

2
. Recall that the

variables srk
(resp. yrk

) have been chosen in such a way that they only appear once in each couple
(si , si+1) (resp. (y(i), y(i+1))). Observe that we have, for any k = 1, . . . , m

2
,

∫ s′0

s0

exp
¦

−nx0(srk
− si)

©

1{si≤srk
}dsrk

≤ C
1

n
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or
∫ s′0

s0

exp
¦

−nx0(si+1− srk
)
©

1{srk
≤si+1}dsrk

≤ C
1

n
,

for some si and si+1, depending on which position occupies srk
in the corresponding couple. For the

integrals with respect to yrk
one obtains the same type of bound. Therefore,

J1 ≤ Cm

∫

[0,T]
m
2 ×[0,1]

m
2

m
2
∏

j=1

�

1[s0,s′0]
(si j
)1[x0,x ′0]

(yi j
) f (si j

, yi j
)2
�

dsi1 · · · dsi m
2

d yi1 · · · d yi m
2

= Cm

 

∫ T

0

∫ 1

0

1[s0,s′0]
(s)1[x0,x ′0]

(y) f (s, y)2 d yds

!
m
2

. (32)

As it has been mentioned, one can use the same arguments to get the same upper bound for J2.
Hence, the right-hand side of (31) can be estimated by (32), and this concludes the proof.

�

5 Convergence in law for the Donsker kernels

In this section, we aim to prove that the hypotheses of Theorem 1.4 are satisfied in the case where
the approximation sequence is constructed in terms of the Donsker kernels. Namely, we consider
{Zk, k ∈ N2} an independent family of identically distributed and centered random variables, with
E(Z2

k ) = 1 for all k ∈ N2, and such that E(|Zk|m) < +∞ for all k ∈ N2, and some even number
m≥ 10. Then, for all n≥ 1 and (t, x) ∈ [0, T]× [0,1], we define the kernels

θn(t, x) = n
∑

k=(k1,k2)∈N2

Zk 1[k1−1,k1)×[k2−1,k2)(tn, xn).

Let us remind that the approximation sequence is given by

Xn(t, x) =

∫ t

0

∫ 1

0

Gt−s(x , y)θn(s, y)d yds, (t, x) ∈ [0, T]× [0, 1]. (33)

Recall that Hypothesis 1.1 is a consequence of the extension of Donsker’s theorem to the plane (see,
for instance, [37]). On the other hand, we have the following result:

Lemma 5.1. Let θn be the above defined Donsker kernels. Then, there exists a positive constant Cm
such that, for any f ∈ L2([0, T]× [0, 1]), we have

E

 

∫ T

0

∫ 1

0

f (t, x)θn(t, x)d xd t

!m

≤ Cm

 

∫ T

0

∫ 1

0

f 2(t, x) d xd t

!
m
2

, (34)

for all n≥ 1.

Remark 5.2. Notice that, taking into account that m ≥ 10, inequality (34) implies both Hypothesis
1.2 and 1.3, so that the hypotheses of Theorem 1.4 are satisfied for the Donsker kernels.
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Proof of Lemma 5.1:

First, we observe that we can write

E

 

∫ T

0

∫ 1

0

f (t, x)θn(t, x)d xd t

!m

(35)

=

∫

[0,T]m×[0,1]m
f (t1, x1) · · · f (tm, xm)E







m
∏

j=1

θn(t j , x j)






d t1 · · · d tmd x1 · · · d xm

By definition of θn,

E







m
∏

j=1

θn(t j , x j)







= nmE







m
∏

j=1







∑

k=(k1,k2)∈N2

Zk 1[k1−1,k1)(t jn)1[k2−1,k2)(x jn)













= nm
∑

k1,...,km∈N2

E(Zk1
· · · Zkm

)
m
∏

j=1

�

1[k1
j−1,k1

j )
(t jn)1[k2

j−1,k2
j )
(x jn)

�

.

Notice that, by hypothesis, E(Zk1
· · · Zkm

) = 0 if, for some j ∈ {1, . . . , m}, we have that k j 6= kl for all
l ∈ {1, . . . , m} \ { j}; that is, if some variable Zk j

appears only once in the product Zk1
· · · Zkm

.

On the other hand, since E(|Zk|m) < ∞ for all k ∈ N2, then E(Zk1
· · · Zkm

) is bounded for all
k1, . . . , km ∈ N2 . Hence,

E







m
∏

j=1

θn(t j , x j)






≤ nmCm

∑

(k1,...,km)∈Am

m
∏

j=1

�

1[k1
j−1,k1

j )
(t jn)1[k2

j−1,k2
j )
(x jn)

�

,

with

Am = {(k1, . . . , km) ∈ N2m; for all l ∈ {1, . . . , m}, kl = k j for some j ∈ {1, . . . , m} \ {l}}.

Notice that we have the following estimation:

∑

(k1,...,km)∈Am

m
∏

j=1

�

1[k1
j−1,k1

j )
(t jn)1[k2

j−1,k2
j )
(x jn)

�

≤ 1Dm(t1, . . . , tm; x1, . . . , xm),

where Dm denotes the set of (t1, . . . , tm; x1, . . . , xm) ∈ [0, T]m × [0, 1]m satisfying the following
property: for all l ∈ {1, . . . , m}, there exists j ∈ {1, . . . , m}\{l} such that |t j− t l |<

1
n

and |x j−x l |<
1
n

and, moreover, if there is some r 6= j, l verifying |t l − tr | <
1
n

and |x l − xr | <
1
n
, then |t j − tr | <

1
n

and |x j − xr |<
1
n
.

Next, observe that we can bound IDm(t1, . . . , tm; x1, . . . , xm) by a finite sum of products of indicators,
where in each product of indicators there appear all the m variables t1, . . . , tm and all the m variables
x1, . . . , xm, but each indicator concerns only two or three of them. Moreover, each variable only
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appears in one of the indicators of each product and, whenever we have some indicator concerning
two variables t j and t l , (respectively three variables t j , t l and tr), we have the same indicator for
the variables x j and x l , (respectively for the variables x j , x l and xr). Therefore, expression (35)
can be bounded by a finite sum of products of the following two kinds of terms:

(i) For some l, j ∈ {1, . . . , m} such that l 6= j,

Cmn2

∫

[0,T]2×[0,1]2
| f (t l , x l)|| f (t j , x j)|1[0, 1

n )
(|t j − t l |)1[0, 1

n )
(|x j − x l |)d t jd t l d x jd x l . (36)

(ii) For some l, j, r ∈ {1, . . . , m} such that l 6= j, l 6= r and r 6= j,

Cmn3

∫

[0,T]3×[0,1]3
| f (t l , x l)|| f (t j , x j)|| f (tr , xr)|

×1[0, 1
n )
(|t j − t l |)1[0, 1

n )
(|t l − tr |)1[0, 1

n )
(|t j − tr |)

×1[0, 1
n )
(|x j − x l |)1[0, 1

n )
(|x l − xr |)1[0, 1

n )
(|x j − xr |)d t jd t l d tr d x jd x l d xr .

Then, it turns out that, in order to conclude the proof, it suffices to bound the first type of term (i)

by Cm

∫ T

0

∫ 1

0
f 2(t, x) d xd t and the second one (ii) by Cm

�

∫ T

0

∫ 1

0
f 2(t, x) d xd t

�
3
2 .

Let us use first the fact that, for all a, b ∈ R, 2ab ≤ a2 + b2, so that a term of the form (36) can be
bounded, up to some constant, by

Cmn2

∫

[0,T]2×[0,1]2
f 2(t l , x l)1[0, 1

n )
(|t j − t l |)1[0, 1

n )
(|x j − x l |)d t jd t l d x jd x l

≤ Cm

∫ T

0

∫ 1

0

f 2(t, x) d xd t.

On the other hand, using that for all a, b, c ∈ R+, 2abc ≤ (ab2 + ac2), we can study the terms of
type (ii) in the following way:

Cmn3

∫

[0,T]3×[0,1]3
| f (t l , x l)|| f (t j , x j)|| f (tr , xr)|

×1[0, 1
n )
(|t j − t l |)1[0, 1

n )
(|t l − tr |)1[0, 1

n )
(|t j − tr |)

×1[0, 1
n )
(|x j − x l |)1[0, 1

n )
(|x l − xr |)1[0, 1

n )
(|x j − xr |)d t jd t l d tr d x jd x l d xr

≤ Cmn3

∫

[0,T]3×[0,1]3
| f (t l , x l)| f 2(t j , x j)

×1[0, 1
n )
(|t j − t l |)1[0, 1

n )
(|t l − tr |)1[0, 1

n )
(|t j − tr |)

×1[0, 1
n )
(|x j − x l |)1[0, 1

n )
(|x l − xr |)1[0, 1

n )
(|x j − xr |)d t jd t l d tr d x jd x l d xr

≤ Cmn

∫

[0,T]2×[0,1]2
| f (t l , x l)| f 2(t j , x j)1[0, 1

n )
(|t j − t l |)1[0, 1

n )
(|x j − x l |)d t jd t l d x jd x l

= Cmn

∫ T

0

∫ 1

0

| f (t l , x l)|

 

∫ T

0

∫ 1

0

f 2(t j , x j)1[0, 1
n )
(|t j − t l |)1[0, 1

n )
(|x j − x l |)d t jd x j

!

d t l d x l .

1289



At this point, we apply Cauchy-Schwarz inequality, so that the latter expression can be estimated by

Cmn

 

∫ T

0

∫ 1

0

f 2(t l , x l) d t l d x l

!
1
2

×







∫ T

0

∫ 1

0

 

∫ T

0

∫ 1

0

f 2(t j , x j)1[0, 1
n )
(|t j − t l |)1[0, 1

n )
(|x j − x l |)d t jd x j

!2

d t l d x l







1
2

= Cmn

 

∫ T

0

∫ 1

0

f 2(t l , x l) d t l d x l

!
1
2

×

 

∫

[0,T]3×[0,1]3
f 2(t j , x j) f (tp, xp)

21[0, 1
n )
(|t j − t l |)1[0, 1

n )
(|x j − x l |)

×1[0, 1
n )
(|tp − t l |)1[0, 1

n )
(|xp − x l |)d t jd tpd t l d x jd xpd x l

�
1
2

≤ Cm

 

∫ T

0

∫ 1

0

f 2(t, x)d xd t

!
3
2

.

This finishes the proof of the lemma. �

A Appendix

In this appendix, we give a sketch of the proof of Lemma 2.3 and discuss the relation between our
results and those of Manthey in [24] (see also [25]).

Proof of Lemma 2.3: As we have already pointed out, we will only give the main lines of the proof.

Let f ∈ F and h ∈ C 1(R) having a bounded derivative. We aim to prove that, for any η > 0, it holds
�

�E[h(Jn( f ))]− E[h(J( f ))]
�

�< η, (37)

for sufficiently big n. For this, the idea is to consider an element g in D which is close to f with
respect to the norm ‖ · ‖. Then, one splits the left-hand side of (37) in several terms, which can be
easily treated using the following facts:

1. When f is replaced by g, we have that the left-hand side of (37) converges to zero, by hy-
pothesis.

2. One keeps control of the remaining terms using that h defines a Lipschitz function and that
(13) and (14) hold.

�

Relation with Manthey results

1290



In [24], the author considers the family of processes {Xn, n ∈ N} such that each Xn is the mild
solution of the equation

∂ Xn

∂ t
(t, x)−

∂ 2Xn

∂ x2 (t, x) = θn(t, x), (t, x) ∈ [0, T]× [0,1],

with null initial condition and Dirichlet boundary conditions. The processes θn are correlated noises
satisfying the following conditions:

(i) For all (t, x) ∈ [0, T]× [0, 1],
∫ t

0

∫ x

0

θn(s, y)2d yds <∞, a.s.

(ii) For each m ∈ N and (t1, x1), . . . , (tm, xm) ∈ [0, T]× [0, 1], the random vector
�
∫ t1

0

∫ x1

0

θn(s, y)d yds, . . . ,

∫ tm

0

∫ xm

0

θn(s, y)d y

�

converges weakly to (W (t1, x1), . . . , W (tm, xm)), where we recall that {W (t, x), (t, x)
∈ [0, T]× [0,1]} denotes a Brownian sheet.

(iii) For all (t, x) ∈ [0, T]× [0, 1], E[θn(t, x)] = 0.

(iv) There exists n0 ∈ N such that

sup
n≥n0

(t,x)∈[0,T]×[0,1]

∫ t

0

∫ x

0

�

�E
�

θn(s, y)θn(t, x)
�

�

� d yds <∞.

Under these hypotheses, it has been proved that Xn converges weakly, in the sense of the conver-
gence of finite dimensional distributions, to the process X which is the mild solution of

∂ X

∂ t
(t, x)−

∂ 2X

∂ x2 (t, x) = Ẇ (t, x), (t, x) ∈ [0, T]× [0,1].

Furthermore, it is showed that, if the processes θn are Gaussian, the convergence also holds in
C ([0, T]× [0,1]). These results are extended to the quasi-linear equation (2) in [25].

First, it is worth pointing out that one can easily see that condition (iii) is not essential in the proof.
Moreover, in Manthey’s result, condition (iv) is stated in a weaker form, though we believe that, in
his proof, the statement which has been used is indeed condition (iv) as stated above (see the last
inequality in p. 163 of [24]).

Secondly, one can easily see that condition (iv) stated above implies Hypothesis 1.2 with q = 2.
Therefore, the hypotheses assumed in Proposition 3.1 (which assures the convergence of the finite
dimensional distributions) are weaker than (i)-(iv).

Eventually, processes θn given by the Kac-Stroock processes and the Donsker kernels are not Gaus-
sian so that, if conditions (i)-(iv) were satisfied, using Manthey’s result only convergence of the
finite dimensional distributions could be obtained. In fact, it is straightforward to check that the
Donsker kernels satisfy these conditions, but condition (iv) fails for the Kac-Stroock processes. This
is proved in the following lemma:
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Lemma A.1. Assume that {θn(t, x), (t, x) ∈ [0, T]× [0, 1]}, n ≥ 1, is the Kac-Stroock process (9).
Then, the family {θn, n ∈ N} does not satisfy condition (iv) above.

Proof: We will show that, when

θn(s, y) = n
p

s y (−1)Nn(s,y),

then the quantity
∫ T

0

∫ 1

0

�

�E[θn(s, y)θn(t, x)]
�

� d yds

is not uniformly bounded in n, t and x . Indeed, it holds
∫ T

0

∫ 1

0

|E(θn(s, y)θn(t, x))| d yds =

∫ T

0

∫ 1

0

n2
p

s y t x E
�

(−1)Nn(s,y)+Nn(t,x)
�

d yds. (38)

Owing to the proof of [6, Lemma 3.1] (see also [5, Lemma 3.2]), we have that

E
�

(−1)Nn(s,y)+Nn(t,x)
�

= e−2n[(t−s)x+(x−y)s] 1{s≤t,y≤x} + e−2n[(t−s)x+(y−x)s] 1{s≤t,y≥x}

+e−2n[(s−t)y+(x−y)t] 1{s≥t,y≤x} + e−2n[(s−t)y+(y−x)t] 1{s≥t,y≥x}.

Then, expression (38) is the sum of four positive integrals. It is clear that one of them is given by

I(n, t, x) =

∫ t

0

∫ 1

x

n2
p

s y t x e−2n[(t−s)x+(y−x)s]d yds.

We will check that this integral is not uniformly bounded. In fact,

sup
n, t, x

I(n, t, x) ≥ sup
n

I
�

n, T,
1

n

�

= sup
n

p
T

∫ T

0

∫ 1

1
n

n2
p

s y
p

n
e−2n[(T−s) 1

n+(y−
1
n )s]d yds

=
p

T e−2T sup
n

∫ T

0

∫ 1

1
n

n
3
2
p

s y e4se−2nysd yds

=
p

T e−2T sup
n

∫ T

0

∫ n

1

p
sz e4se−2zsdzds

=
p

T e−2T

∫ T

0

∫ ∞

1

p
sz e4se−2zsdzds. (39)

Let us apply the change of coordinates v = sz, for any fixed s, and then Fubini Theorem in the last
integral of (39), so that we end up with

sup
n, t, x

I(n, t, x)≥
p

T e−2T

∫ +∞

0

p
v e−2v

 

∫ v∧T

0

1

s
e4sds

!

dv,

and the latter is clearly divergent. This fact concludes the proof. �
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