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Abstract

We study the entropy of the distribution of the set Rn of vertices visited by a simple random walk

on a graph with bounded degrees in its first n steps. It is shown that this quantity grows linearly

in the expected size of Rn if the graph is uniformly transient, and sublinearly in the expected

size if the graph is uniformly recurrent with subexponential volume growth. This in particular

answers a question asked by Benjamini, Kozma, Yadin and Yehudayoff [1].
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1 Introduction

Let (Xn)n≥0 be a simple random walk on a graph G = (V, E) starting at some vertex o ∈ V . The

entropy of the distribution of Xn for large n has been studied on Cayley graphs and is known to

be related to other objects of interest, such as the rate of escape and the existence of non-trivial

bounded harmonic functions, see [5], [6], [10]. This work is devoted to the entropy of a similar

observable, to that of the range of the random walk. Let Rn = {X0, X1, . . . , Xn} be the set of vertices

visited by the random walk in its first n steps. The entropy of Rn is defined as

Ho(Rn) = Eo

�

log

�

1

po(Rn)

�

�

, (1.1)

where the random walk starts at o ∈ V , Po-a.s., po(A) = Po[Rn = A] for any finite connected set

A ⊆ V containing o, and 0 log(1/0) is defined to be 0 as usual. According to Shannon’s noiseless

coding theorem [9], Ho(Rn)/ log2 can be interpreted as the approximate number of 0-1-bits required

per realization in order to encode a large number of independent realizations of Rn with negligible

probability of error. Up to an additive constant, Ho(Rn)/ log2 can also be viewed as the expected

number of bits necessary and sufficient to encode Rn (see [3], Theorem 5.4.1), and as the expected

number of fair coin tosses required for the simulation of Rn (see [3], Theorem 5.12.3).

The entropy of Rn for random walk on Zd , d ≥ 1, is investigated in a recent work by Benjamini,

Kozma, Yadin and Yehudayoff [1]. There, the authors show that the large n behavior of Ho(Rn) is of

order n for d ≥ 3, of order n/ log2 n for d = 2 and of order log n for d = 1. Comparing this behavior

with that of the expected size 〈Rn〉o of Rn,

〈Rn〉o = Eo[|Rn|], (1.2)

known to be of order n for d ≥ 3, of order n/ log n for d = 2 and of order
p

n for d = 1 (cf. [8],

p. 221) , we observe that on Zd , Ho(Rn) grows linearly in 〈Rn〉o in the transient case and only

sublinearly in the recurrent case. On general graphs with bounded degrees, Ho(Rn) can grow at

most linearly in 〈Rn〉o (see Proposition 2.4), but the assumptions on recurrence and transience alone

do not allow us to conclusively compare Ho(Rn) with 〈Rn〉o. Under slightly stronger assumptions,

however, we can generalize the observation just made for Zd to large classes of graphs.

The graphs we consider in this work are characterized by strengthened transience and recurrence

conditions. Recall that a graph is transient if the escape probability Po[o /∈ {X1, X2, . . .}] is strictly

positive for any starting vertex o ∈ V . We call a graph G uniformly transient if such an estimate

holds uniformly in o, that is, if

inf
o∈V

Po[o /∈ {X1, X2, . . .}]> 0. (1.3)

Theorem 1.1 shows that Ho(Rn) grows linearly in 〈Rn〉o on uniformly transient graphs with bounded

degrees. Such a statement does not hold under the assumption of transience alone, see Remark 3.5

for a counterexample.

Theorem 1.1. Let G be a uniformly transient graph with bounded degrees. Then

lim inf
n→∞

inf
o∈V

Ho(Rn)

〈Rn〉o
> 0. (1.4)
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On the other hand, we call a graph G uniformly recurrent if

sup
o∈V

Po[o /∈ {X1, . . . , Xn}]−→ 0, as n→∞. (1.5)

In addition, let |∂eB(x , r)| be the number of vertices at distance r + 1 from x ∈ V with respect to

the usual graph distance. If the degrees of the graph are bounded by d ≥ 2, then |∂eB(x , r)| ≤ d r+1.

The following condition requires slightly more:

for any ε > 0, sup
x∈V

|∂eB(x , r)| ≤ eεr , for infinitely many r ∈ N. (1.6)

Under these conditions, we prove that Ho(Rn) grows only sublinearly in 〈Rn〉o. We note that recur-

rence alone does not imply such a statement, see Remark 4.1 and also Remark 5.4.

Theorem 1.2. Let G be any uniformly recurrent graph with bounded degrees satisfying (1.6). Then

sup
o∈V

Ho(Rn)

〈Rn〉o
−→ 0, as n→∞. (1.7)

The above results apply in particular to all vertex-transitive graphs. Recall that a graph G is vertex-

transitive, if for every pair of vertices (x , x ′), there is a bijection φ from V to V such that φ(x) = x ′

and d(y, y ′) = d(φ(y),φ(y ′)) for all y, y ′ ∈ V , where d(., .) denotes the usual graph distance. For

vertex-transitive graphs, Ho(Rn) and 〈Rn〉o do not depend on the starting vertex o of the random

walk, so we omit o from the notation. We can deduce the following dichotomy from the results

above:

Theorem 1.3. Let G be a vertex-transitive graph.

If G is transient, then lim inf
n→∞

H(Rn)

〈Rn〉
> 0, (1.8)

if G is recurrent, then
H(Rn)

〈Rn〉
−→ 0, as n→∞. (1.9)

For uniformly transient graphs, 〈Rn〉 grows linearly in n (see Proposition 5.2). Hence, (1.8) in

particular shows that H(Rn) grows linearly in n on all vertex-transitive and transient graphs, thus

answering a question asked in [1], Section 3.3.

We now comment on the proofs, starting with the one of Theorem 1.1, given in Section 3. A simple

observation made in [1] shows that Ho(Rn) is bounded from below by a constant times the expected

size of the interior boundary ∂iRn of Rn. It thus suffices to prove a lower bound of order 〈Rn〉o on

Eo[|∂iRn|], or, equivalently, to prove that the fraction of the visited vertices belonging to ∂iRn is

non-degenerate. Note that a vertex belongs to ∂iRn if it is visited by the random walk, but at least

one of its neighbors is not. Not all visited vertices are equally likely to belong to ∂iRn. Indeed, a

vertex in the middle of a long path of vertices of degree 2 is very unlikely to end up in the boundary

of Rn, because the random walk typically returns many times and visits both of its neighbors before

escaping from it. In order to avoid such situations, we observe that on uniformly transient graphs,

vertices of degree at least 3 exist within a bounded distance of every vertex (cf. Lemma 3.3), and

use uniform transience to prove that whenever the random walk visits such a vertex x , there is a
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non-degenerate probability that the walk then escapes from the ball B(x , 1) of radius 1 around it

and leaves x in ∂iRn. This yields the lower bound on Eo[|∂iRn|] required to prove Theorem 1.1. In

order to show that transience alone is not a sufficient assumption for the conclusion of Theorem 1.1,

we consider a binary tree, where every edge at depth l is replaced by a path of length l + 3, and

show that this graph satisfies (1.7), see Remark 3.5 and Figure 1.

In the proof of Theorem 1.2 in Section 4, we cover every possible realization of Rn with one of at

most supx∈V |∂eB(x , r)|(const.)|Rn|/r different collections of balls of radius r ≥ 1. Uniform recurrence

implies that most of these balls are typically completely covered by Rn. We then consider the condi-

tional entropy of Rn, given the number K of such balls intersected by Rn and the number L of balls

that are not completely filled by Rn (the definition of conditional entropy is recalled in (2.4) below).

The conditional entropy can then be bounded by the expected logarithm of the number of possible

configurations Rn can belong to, given (K , L) (cf. (2.7)). By assumption (1.6), the expected loga-

rithm of the number of possible collections of covering balls can be made smaller than ε〈Rn〉o for any

fixed ε > 0 by choosing r appropriately, while the assumption of uniform recurrence yields a similar

bound on the expected logarithm of the number of possible choices of the exact configurations of

Rn in the few unfilled balls. This argument proves the required estimate on the conditional entropy

of Rn given (K , L). Since the entropy of (K , L) itself is only of order at most log n, this is sufficient

for Theorem 1.2. Theorem 1.2 cannot be proved for every recurrent graph. As a counterexample,

we consider a sequence of finite binary trees with rapidly increasing depths, connected together by

a half-infinite path, see Remark 4.1 and Figure 2.

The article is organized as follows: In Section 2, we introduce notation and preliminary results on

entropy, derive a general lower bound on 〈Rn〉o and show that Ho(Rn) grows at most linearly in

〈Rn〉o. Section 3 contains the proof of Theorem 1.1 and Section 4 proves Theorem 1.2. Finally, the

dichotomy for vertex-transitive graphs in Theorem 1.3 is deduced in Section 5.

Acknowledgement. The author is grateful to Itai Benjamini for helpful conversations and to an

anonymous referee for helpful remarks.

2 Notation and preliminaries

In this section, we introduce the notation and prove some preliminary results. These include a lower

bound of order
p

n on the expected size of Rn on a general infinite graph with bounded degrees,

obtained in Proposition 2.3 by adapting an argument in [7], as well as the observation that Ho(Rn)

grows at most as fast as the expected size 〈Rn〉o on any infinite connected graph with bounded

degrees.

Throughout this article, we let G = (V, E) be a graph. V denotes the set of vertices and E the set

of edges consisting of unordered pairs of vertices in V . Whenever {x , y} ∈ E, we write x ∼ y and

call the vertices x and y neighbors. The number of neighbors of a vertex x is always assumed

to be finite and referred to as the degree of x , denoted deg(x). A path of length l is a sequence

(x0, x1, . . . , x l) of vertices in V such that x i ∼ x i+1 for 0 ≤ i ≤ l − 1. The distance d(x , y) between

any two vertices x and y is defined as the length of the shortest path starting at x0 = x and ending

at xd(x ,y) = y , and defined to be∞ if no such path exists. G is said to be connected if d(x , y) <∞
for all x , y ∈ V . For any x ∈ V , r ≥ 0, we define the ball B(x , r) = {y ∈ V : d(x , y) ≤ r}. The
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graph G has bounded degrees if supx∈V deg(x) ≤ d for some d ≥ 1. For any set A of vertices, we

define the interior and exterior boundaries of A by ∂iA = {x ∈ A : x ∼ y for some y ∈ V \ A} and

∂eA = ∂i(V \ A). The subgraph G(A) = (A, E(A)) induced by A ⊆ V consists of the vertices in A and

the set of edges E(A) = {{x , y} ∈ E : {x , y} ⊆ A}. We say that A is connected if G(A) is connected in

the above sense. The cardinality of any set A is denoted by |A|, the largest integer less than a ∈ R by

[a] and the minimum of numbers a, b ∈ R by a∧ b. Throughout the text, c or c′ are used to denote

strictly positive constants with values changing from place to place. Dependence of constants on

additional parameters appears in the notation. For example, cd denotes a positive constant possibly

depending on d.

For any x ∈ V , we denote by Px the law on VN (equipped with the canonical σ-algebra generated

by the coordinate projections) of the Markov chain on V starting at x with transition probability

p(x , y) =

¨

1/deg(x), if x ∼ y,

0, otherwise,

and write (Xn)n≥0 for the canonical coordinate process, referred to as the simple random walk on

G. The corresponding expectation is denoted by Ex , the canonical shift-operators on VN by (θn)n≥0.

Note that deg(x)p(x , y) = deg(y)p(y, x), meaning that the measure π : A 7→
∑

x∈A deg(x) on V is

a reversible measure for the simple random walk. The first entrance and hitting times of a set A of

vertices are defined as

τA = inf{n≥ 0 : Xn ∈ A}, τ+A = inf{n≥ 1 : Xn ∈ A}, (2.1)

where we write τx rather than τ{x} if A consists of a single element x . The capacity of a finite

nonempty subset A of V is defined as

cap(A) =
∑

x∈A

Px[τ
+
A =∞]deg(x). (2.2)

We will generally refer to the starting vertex of the random walk as o. It will be convenient to define

the collection Co as

Co = {A⊆ V : A is finite, connected, and o ∈ A}. (2.3)

Note that Rn ∈ Co, Po-a.s. The entropy of the range Rn of the random walk has been defined in

(1.1). More generally, for any random variable X taking values in a countable set X , we define the

entropy of X by

Ho(X ) = Eo

�

log

�

1

po(X )

��

, where po(x) = Po[X = x], for x ∈ X .

Given another random variable Y taking values in a countable set Y , the conditional entropy of X

given Y is defined by

Ho(X |Y ) = Ho

�

(X , Y )
�

− Ho(Y ). (2.4)

An application of Jensen’s inequality shows that

Ho(X )≤ log |X |, (2.5)
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while the following estimate is elementary:

Ho(X )≤ Ho(X |Y ) + Ho(Y ). (2.6)

Moreover, we have the following useful lemma:

Lemma 2.1. For random variables X and Y with values in countable sets X and Y ,

Ho(X |Y )≤ Eo[log |XY |], where (2.7)

Xy = {x ∈ X : Po[(X , Y ) = (x , y)]> 0}, for y ∈ Y .

Proof. Using Jensen’s inequality, we have

Ho(X |Y ) =
∑

(x ,y)∈X×Y :
Po[(X ,Y )=(x ,y)]>0

Po

�

(X , Y ) = (x , y)
�

log

�

Po[Y = y]

Po

�

(X , Y ) = (x , y)
�

�

=
∑

y∈Y
Po[Y = y]
∑

x∈Xy

Po[X = x |Y = y] log

�

1

Po[X = x |Y = y]

�

≤ Eo[log |XY |].

The following simple lemma, combined with a covering argument, will be instrumental in proving

the bound on Ho(Rn) in Theorem 1.2.

Lemma 2.2. Let G = (V, E) be any graph with bounded degrees, o ∈ V , and let A ∈ Co (cf. (2.3)).

Then there exists a nearest-neighbor path in G(A) starting at o, covering A, and of length at most 2|A|.

Proof. The standard depth-first search algorithm (see [2]) yields a spanning tree TA = (A, ET ) of

G(A) (i.e. a tree with vertices A and edges ET ⊆ E(A)), as well as a nearest-neighbor path in TA

covering A and traversing every edge in ET at most once in every direction. Since the length of such

a path is bounded from above by 2|ET |= 2(|A| − 1)< 2|A|, the statement follows.

We now prove a general lower bound on the expected range of random walk on an infinite connected

graph with bounded degrees. This lemma will allow us to disregard small errors when relating

Ho(Rn) to 〈Rn〉o.

Proposition 2.3. Let G = (V, E) be any infinite connected graph with bounded degrees. Then

lim inf
n→∞

inf
o∈V

〈Rn〉op
n
> 0. (2.8)

Proof. This proof is an adaptation of an argument appearing in [7] in the context of random walk

on Cayley graphs. Let (Nk)k≥1 be the successive times when the random walk visits a new vertex,

that is, N1 = 0, and for k ≥ 1, Nk = inf{n> Nk−1 : Xn /∈ {X0, . . . XNk−1
}}. Then we have for k ≥ 1 and

o ∈ V , by the Chebychev inequality,

Po[|Rn| ≤ k] = Po

h

�

�

�

0≤ l ≤ n : X l ∈ {XN1
, . . . , XNk

}
	

�

�= n+ 1
i

≤
1

n+ 1

∑

1≤i≤k

Eo

�

∑

0≤l≤n

1{X l = XNi
}
�

.
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Noting that X l 6= XNi
for l < Ni and applying the strong Markov property at time Ni , we deduce that

Po[|Rn| ≤ k]≤
k

n

∑

0≤l≤n

sup
x∈V

Px[X l = x].

By a general heat-kernel upper bound, we have supx ,y∈V Px[X l = y]≤ cd/
p

l + 1, for some constant

cd > 0 depending on the uniform bound d on degrees (see, for example, [11], Corollary 14.6,

p. 149). Hence, we find

Po[|Rn| ≤ k]≤ cd

k
p

n
, for k ≥ 1.

This last inequality, applied with k = [
p

n/(2cd)], yields

Eo[|Rn|]≥
p

n

2cd

Po[|Rn|> [
p

n/(2cd)]]≥
p

n

4cd

.

Finally, we prove that on any infinite connected graph with bounded degrees, Ho(Rn) does not grow

faster than 〈Rn〉o.

Proposition 2.4. Let G = (V, E) be any infinite connected graph with degrees bounded by d. Then

lim sup
n→∞

sup
o∈V

Ho(Rn)

〈Rn〉o
≤ 2 log d.

Proof. Lemma 2.1 and Lemma 2.2 together imply that

Ho(Rn||Rn|)≤ 〈Rn〉o2 log d,

whereas it follows from (2.5) that

Ho(|Rn|)≤ log(n+ 1).

Hence by (2.6), Ho(Rn)≤ 〈Rn〉o2 log d + log(n+ 1). Proposition 2.3 completes the proof.

3 The transient case

In this section, we prove Theorem 1.1 asserting that the entropy of Rn grows at least linearly in its

expected size 〈Rn〉o on any uniformly transient graph.

Lemma 3.1 and Corollary 3.2 show that Ho(Rn) grows at least linearly in the expected size 〈∂iRn〉o
of ∂iRn. These two statements and their proofs are straightforward adaptations of Lemma 3 and

Corollary 4 in [1].

Lemma 3.1. For any graph G with degrees bounded by d ≥ 2,

Po[Rn = A]≤ (1− d−1)|∂iA|−1, for all o ∈ A⊆ V. (3.1)
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Proof. Fix A ⊆ V and define the successive entrance times to ∂iA by T1 = τ∂iA
and for k ≥ 2,

Tk = inf{n > Tk−1 : Xn ∈ ∂iA}. Then {Rn = A} ⊆ {T|∂iA| ≤ n} ⊆ {T|∂iA|−1 < n}. Note that on the event

{Tk < ∞}, we have PXTk
[XTk+1 ∈ A] ≤ 1− (1/d). An inductive application of the strong Markov

property at the times T|∂iA|−1, T|∂iA|−2, . . . , T1 therefore yields

Po[Rn = A]≤ Po

�

⋂

1≤k≤|∂iA|−1

{Tk < n, XTk+1 ∈ A}
�

≤
�

1−
1

d

�|∂iA|−1

.

Corollary 3.2. For any graph G with degrees bounded by d ≥ 2,

Ho(Rn)≥ (〈∂iRn〉o − 1) log
�

(1− d−1)−1
�

, (3.2)

where 〈∂iRn〉o = Eo[|∂iRn|].

Proof. By Lemma 3.1,

Ho(Rn)≥ log
�

(1− d−1)−1
�

∑

A∈Co

P[Rn = A]
�

|∂iA| − 1
�

.

By the last corollary, it suffices to control 〈∂iRn〉o in order to prove a lower bound on Ho(Rn). We

will eventually prove that many vertices of degree at least 3 typically belong to ∂iRn. To this end,

we prove in the following lemma that such vertices exist within constant distance of any vertex in

uniformly transient graphs. For notational convenience, we introduce the parameter

α= inf
x∈V

Px[τ
+
x =∞], (3.3)

which is strictly positive if G is uniformly transient (cf. (1.3)).

Lemma 3.3. Let G be a uniformly transient graph with α as in (3.3). Then for any x ∈ V , there is a

vertex y with deg(y)≥ 3 and d(x , y)≤ 1/α.

Proof. Let x ∈ V , and let r be the distance from x to the vertex of degree at least 3 closest to x .

Then

α≤ Px[τ
+
x =∞]≤ Px[τ∂i B(x ,r) < τ

+
x ] (3.4)

=
∑

y:y∼x

1

deg(x)
Py[τ∂i B(x ,r) < τx].

Consider any neighbor y of x and let I y be the set of vertices in B(x , r)\∂iB(x , r) that are connected

to y in (B(x , r) \ ∂iB(x , r)) \ {x}. Then I y is connected and consists of vertices of degree at most 2.

If no vertex in I y is a neighbor of a vertex in ∂iB(x , r), then the escape probability on the right-hand

side of (3.4) equals 0. Otherwise, the escape probability is equal to the probability that a simple

random walk on Z started at 1 reaches r before 0, hence to 1/r (see, for example, [4], Chapter 3,

Example 1.5, p. 179). It follows that α≤ 1/r.

We will also require the following simple consequence of monotonicity of the capacity (cf. (2.2)):
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Lemma 3.4. Let G be a uniformly transient graph. Then

inf
A⊆V,A6=;

cap(A)≥ α. (3.5)

Proof. By uniform transience, cap({x}) ≥ αdeg(x) ≥ α for all x ∈ V (see (1.3)). The statement

(3.5) thus follows immediately from monotonicity of cap:

for finite, non-empty sets A⊆ B ⊆ V, cap(A)≤ cap(B). (3.6)

Here is a direct proof of this well-known property: by summing over all possible times n and loca-

tions y of the last visit of the random walk to the set B and using the simple Markov property at

time n, we find that, for A, B as above,

cap(A) =
∑

x∈∂iA

∞
∑

n=0

∑

y∈∂i B

Px[τ
+
A > n, Xn = y,τ+B ◦ θn =∞]deg(x) (3.7)

=
∑

x∈∂iA

∞
∑

n=0

∑

y∈∂i B

Px[τ
+
A > n, Xn = y]Py[τ

+
B =∞]deg(x).

Reversibility of the simple random walk implies that

deg(x)Px[τ
+
A > n, Xn = y] = deg(y)Py[τA = n, Xn = x],

hence by (3.7) that

cap(A) =
∑

y∈∂i B

deg(y)Py[τA <∞]Py[τ
+
B =∞] ≤ cap(B),

proving (3.6).

We now come to the main objective of this section.

Proof of Theorem 1.1. We will prove that

lim inf
n→∞

inf
o∈V

〈∂iRn〉o
〈Rn〉o

> 0. (3.8)

The desired statement then follows by Corollary 3.2 and the fact that

inf
o∈V
〈Rn〉o→∞,

proved in Proposition 2.3 (indeed, all connected components of a transient graph are infinite).

Denote the set of vertices with degree at least 3 by V≥3 and the uniform bound on the degrees by d.

Observe that any vertex x in V≥3 belongs to ∂iRn if it is visited by the random walk, but at least one

of its neighbors is not. Hence, for any x ∈ V≥3, the probability of {x ∈ ∂iRn} is bounded from below

by the probability that the random walk first reaches B(x , 1) at some vertex y ∼ x , then follows

the path (y, x , z), where z is the neighbor of x maximizing Pz[τ
+
B(x ,1)

=∞], and does not return to
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B(x , 1) until time n. By the strong Markov property applied at time τB(x ,1) + 2 and at time τB(x ,1),

we hence obtain that for any o ∈ V ,

Po[x ∈ ∂iRn]≥ (3.9)

Po[τB(x ,1) ≤ n− 2, (X1, X2) ◦ θτB(x ,1)
= (x , z),τ+

B(x ,1)
◦ θτB(x ,1)+2

=∞]

≥ Po[τB(x ,1) ≤ n− 2]
1

d2

α

d2
, for any x ∈ V≥3,

where we have applied Lemma 3.4 with A = B(x , 1) in order to bound the escape probability

Pz[τ
+
B(x ,1)

= ∞] from below by α/d2. For any r ≥ 1, the random walk reaches B(x , 1) if it en-

ters B(x , r) and then follows the shortest path to B(x , 1), hence,

Po[τB(x ,1) ≤ n− 2]≥ Po[τB(x ,r) ≤ n− 1− r]d−(r−1).

Using this estimate in (3.9), we obtain

〈∂iRn〉o ≥
∑

x∈V≥3

Po[x ∈ ∂iRn] (3.10)

≥
∑

x∈V≥3

Po[τB(x ,r) ≤ n− 1− r]
α

d3+r

We now fix r = [1/α] + 1 and note that, by Lemma 3.3, ∪x∈V≥3
B(x , r) = V . In particular, the

random walk is in one of the balls B(x , r), x ∈ V≥3, at every step, and therefore visits at least

[|Rk|/ supx |B(x , r)|] of them in its first k ≥ 0 steps. Hence, we can deduce from (3.10) that

〈∂iRn〉o ≥
�

Eo[|Rn−1−r |]
supx∈V |B(x , r)| − 1

�

α

d3+r

≥
�〈Rn〉o − 1− r

d1+r
− 1

�

α

d3+r
, for any o ∈ V.

Using again that info∈V 〈Rn〉o→∞ by Proposition 2.3, we obtain (3.8).

Remark 3.5. The conclusion (1.4) of Theorem 1.1 does not hold for every transient graph with

bounded degrees. For a counterexample, consider a binary tree Tb = (Vb, Eb) and denote by Sl =

{x ∈ Vb : dTb
(o, x) = l} the set of vertices at distance l from the root. We now split every edge

connecting a vertex in Sl−1 to a vertex in Sl into a path of length l + 2, for l ≥ 1, and thereby

obtain the stretched tree G = (V, E), illustrated in Figure 1. Let now (σn)n≥1 be the successive

displacements of the random walk in Vb, that is, σ1 = τ
+
Vb

and for i ≥ 2, σi = inf{n > σi−1 : Xn ∈
τVb
}. Then elementary computations using the simple Markov property at time 1 (cf. [4], Chapter 4,

Example 7.1, p. 271-272) show that for any vertex x in Sl ,

Px[dTb
(Xσ1

, o)> l] =
2

2+ (l + 3)/(l + 2)
≥

6

10
>

1

2
, for l ≥ 1. (3.11)

Hence, the process (Xσk
)k≥1 is transient. In particular, the stretched graph G remains transient.

Denote by R′n = Rn∩Vb the intersection of Rn with the vertices in the original tree. Then from (2.6),

we obtain that

Ho(Rn)≤ Ho(Rn|R′n) + Ho(R
′
n). (3.12)
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S1

S2

o

Figure 1: The stretched binary tree constructed in Remark 3.5. The filled vertices are the ones present in the

original binary tree Tb, the stretched tree G is obtained by adding the unfilled ones.

For any fixed realization of R′n of diameter m with respect to the original tree Tb, the set Rn is

determined up to the precise location of at most 2|R′n| boundary vertices on paths of length at most

m+3. Hence, for any such realization, there are at most (m+3)2|R
′
n| ≤ (c|Rn|)2|R

′
n| choices for Rn. It

therefore follows from Lemma 2.1 that

Ho(Rn|R′n)≤ cEo[|R′n|] log n.

The amount of time the process Xσ.
spends in any given set Sk is by (3.11) and an elementary

estimate on biased random walk stochastically dominated by a geometrically distributed random

variable with success probability 1/5 (cf. [4], Chapter 4, Example 7.1 (b), p. 271-272). It follows

that

Eo[|R′n|]≤ 1+ 5Eo

�

∑

1≤k≤n

1{τSk
≤n}

�

(3.13)

≤ cEo

h

max
0≤k≤n

d(o, Xk)
1/2
i

≤ cEo[
p

|Rn|].

Applying Jensen’s inequality on the right-hand side, we deduce that

Ho(Rn|R′n)≤ c〈Rn〉1/2o log n.

Regarding the other term on the right-hand side of (3.12), we have by the same argument as in the

proof of Proposition 2.4,

Ho(R
′
n)≤ cEo[|R′n|]≤ c〈Rn〉1/2o , by (3.13).

Upon inserting the last two estimates into (3.12), it follows from Proposition 2.3 that

supo∈V Ho(Rn)/〈Rn〉o tends to 0 as n→∞, although G is transient.
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4 The recurrent case

In this section we prove Theorem 1.2, showing that supo∈V Ho(Rn)/〈Rn〉o tends to zero as n → ∞
on uniformly recurrent graphs satisfying the growth condition (1.6).

Recall that any realization of Rn belongs to Co, P-a.s. (cf. (2.3)). Our argument is based on

Lemma 2.2 showing that any set A ∈ Co can be explored by a path not longer than 2|A|. We

will use this fact in the proof of Theorem 1.2 in order to show that any realization of Rn can be

covered by one of at most supx∈V |∂eB(x , r)|d|Rn|/r different collections of balls of radius r. The sec-

ond key observation will be that due to uniform recurrence, most of these balls of radius r visited

are typically completely covered by the random walk. This will show that the distribution of Rn is

sufficiently concentrated to admit a bound on Ho(Rn) sublinear in 〈Rn〉o.

Proof of Theorem 1.2. We denote the uniform bound on degrees by d. Note that we can assume

without loss of generality that G is connected, for we may otherwise only consider the component

of G containing the starting vertex o of the random walk. If G is finite, then (1.7) immediately

follows from the fact that limn Po[Rn = V ] = 1. Hence, we can from now on assume that G is

connected and infinite. In particular, Proposition 2.3 is available for application.

Consider any o ∈ V and r ≥ 1. For any A∈ Co (cf. (2.3)), we define the finite sequence of vertices

Fr(A) = (x1, . . . , xk) (4.1)

such that the balls with radius r centered at x1, . . . , xk cover A, trying to keep k as small as pos-

sible. We define Fk(A) inductively as follows: by Lemma 2.2, there is a nearest-neighbor path

pA = (p(0), . . . , p(l)) in G(A) starting at o = pA(0) and visiting all vertices in A in l ≤ 2|A| steps. Set

x1 = o, t1 = 0, and for i ≥ 2 such that t i−1 <∞, define t i as

t i =

¨

inf{t > t i−1 : pA(t) /∈ B(x i−1, r)}, if ∪1≤ j≤i−1 B(x j , r)+ A,

∞, otherwise,

and, provided t i <∞, define x i = pA(t i). Since pA is of length at most 2|A| and covers all of A, this

yields a finite sequence as in (4.1), where k is the largest index such that tk <∞ and satisfies

k ≤ 1+ [2|A|/r]. (4.2)

Finally, the construction implies that

∪k
i=1B(x i , r)⊇ A. (4.3)

We now partition the collectionCo according to the cardinality of Fr(A) and the number of vertices x

in Fr(A) with the property that B(x , r) is not completely filled by A: we have Co = ∪∞k=1
∪k

l=0
C (k, l),

where the disjoint collections C (k, l) are defined as

C (k, l) = {A∈ Co : |Fr(A)|= k, |{x ∈ Fr(A) : A+ B(x , r)}|= l}. (4.4)

We introduce the random variables K and L, defined as

K = |Fr(Rn)|, L = |{x ∈ Fr(Rn) : Rn + B(x , r)}|. (4.5)
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Observe that since |Rn| ≤ n+ 1, (4.2) implies that

0≤ L ≤ K ≤ [2(n+ 1)/r] + 1, Po-a.s.

Using the elementary estimate (2.6) together with (2.5) and Lemma 2.1, we obtain the following

bound on the entropy of Rn:

Ho(Rn)≤ Ho

�

(K , L)
�

+ Ho

�

Rn|(K , L)
�

(4.6)

≤ cd log n+ Eo

�

log |C (K , L)|
�

.

In order to bound the cardinality of C (k, l) for k ≥ 1, l ≥ 0, we denote the maximal size of the ball

and of the sphere of radius r ≥ 1 by

br = sup
x∈V

|B(x , r)| ≤ d1+r and sr = sup
x∈V

|∂eB(x , r)|. (4.7)

We now bound the number of choices we have when selecting a set A from the collection C (k, l).

For a set A to belong to C (k, l), Fr(A) must consist of k vertices. The initial vertex x1 must be o

and each successive vertex must be at distance r + 1 from the previous one. Hence, Fr(A) can take

at most sk
r different values. For every choice of Fr(A) = (x1, . . . , xk), there are at most

�k

l

�

≤ 2k

different choices of size-l subsets of vertices x i with the property that B(x i , r) is not completely

filled by A. After selecting Fr(A) and such a subset, A is by (4.3) determined up to the at most (2br )l

possible configurations in the balls with centers x i that are not subsets of A. Hence, we have

log |C (k, l)| ≤ k(log sr + log 2) + br l log 2. (4.8)

Inserting this estimate into the above bound (4.6) on Ho(Rn), we obtain

Ho(Rn)≤Eo[K](log sr + log 2) + Eo[L]br log 2+ cd log n. (4.9)

By (4.2), Fr(Rn) is of cardinality at most (2|Rn|/r) + 1, hence

Eo[K] ≤
2

r
〈Rn〉o + 1. (4.10)

We now write P(r, n) = supx∈V Px[R[n1/4] + B(x , r)] and bound the other expectation on the right-

hand side of (4.9). Since Fr(Rn)⊆ Rn,

Eo[L] ≤
∑

x∈V

Po[τx ≤ n,Rn + B(x , r)] (4.11)

=
∑

x∈V

n
∑

m=0

Po[τx = m]Px[Rn−m + B(x , r)] (Markov prop.)

≤
∑

x∈V

�n−[n1/4]
∑

m=0

Po[τx = m]P(r, n) +

n
∑

m=n−[n1/4]+1

Po[τx = m]

�

≤ 〈Rn〉oP(r, n) + n1/4.

In order to bound P(r, n), fix any x ∈ V . Denote the successive return times to x by (Tk)k≥1, that is,

T1 = τ
+
x , and for k ≥ 2, Tk = inf{n> Tk−1 : Xn = x}. Since any y ∈ B(x , r) is within distance r of x ,
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a1

a2

o1 o2 o3

Figure 2: The graph constructed in Remark 4.1.

we have Px[τy ≤ τ+x ] ≥ d−r for any such y . With the strong Markov property applied at the times

Tk, we infer that for any m≥ 1,

P(r, n)≤ sup
x∈V

∑

y∈B(x ,r)

Px[τy > n1/4] (4.12)

≤ sup
x∈V

∑

y∈B(x ,r)

�

Px[τy > Tm] + Px[Tm > n1/4]
�

≤ sup
x∈V

|B(x , r)|
�

(1− d−r)m+mPx[τ
+
x ≥ n1/4/m]
�

.

Inserting the above estimates into (4.9), we deduce that

Ho(Rn)

〈Rn〉o
≤ c

2 log sr

r
+ cb2

r (1− d−r)m+ cb2
r m sup

x∈V

Px

h

τ+x >
n1/4

m

i

+ cd br

n1/4

〈Rn〉o
,

for any r, m, n ≥ 1 and o ∈ V . By assumption (1.5) and Proposition 2.3, applied to the last two

terms, the supremum over o ∈ V of right-hand side converges as n tends to infinity to (c(log sr)/r)+

cb2
r (1− cd,r)

m. Letting m tend to infinity, then using (1.6), we obtain (1.7).

Remark 4.1. The conclusion (1.7) of Theorem 1.2 does not hold for every recurrent graph with

bounded degrees, not even without the supremum over o ∈ V . As a counterexample, consider an

infinite sequence of binary trees of finite depths a1 < a2 < · · · , with roots o = o1, o2, . . .. Regardless

of the choice of a1, a2, . . ., after addition of edges

{o1, o2}, {o2, o3}, . . .

one obtains a connected and recurrent graph, illustrated in Figure 2. The sequence of depths can be

chosen recursively such that

Po[τon
≥pan− 1]≤ 1/2 (4.13)
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(observe that the distribution of τon
depends on a1, . . . , an−1, but not on an). Denote the set of

vertices in the n-th tree at distance l from on by Sl , l ≥ 1. Observe that by an elementary estimate

on one-dimensional biased random walk, whenever the random walk reaches a previously unvisited

level Sl at some vertex x ∈ Sl , the probability that the random walk never returns to Sl until time

an and thereby leaves x in ∂iRan
is at least 1/3 (see, for example, [4], Chapter 4, Example 7.1,

p. 271-272). Hence,

Eo[|∂iRan
|]≥

1

3

an
∑

l=0

Po[τSl
≤ an]

≥ c

an
∑

l=0

Po[τS1
≤pan]PS1

[τSl
≤ an−

p
an] (Markov prop.)

≥ c

an
∑

l=0

PS1
[τSl
≤ an−

p
an] (by (4.13))

≥ cES1
[d(on, X[an−

p
an]∧τon

)].

Since
�

d(on, Xk∧τon
)− (k∧τon

)/3
�

k≥0 is a martingale (see again [4], p. 272), the right-hand side is

bounded from below by

cES1
[(an−

p
an)∧τon

]≥ c(an−
p

an)PS1
[τon

> an]≥ c′an ≥ c′〈Ran
〉,

using again an elementary estimate on one-dimensional biased random walk for the second in-

equality. Hence, Corollary 3.2 shows that Ho(Rn)/〈Rn〉o does not tend to 0 for the recurrent graph

G defined above.

5 Vertex-transitive graphs

This final section contains the proof of Theorem 1.3 on the dichotomy for vertex-transitive graphs.

Note that, due to vertex-transitivity, Ho(Rn), and 〈Rn〉o do not depend on o, so o can be omitted

from the notation. We first deduce the estimate in the recurrent case.

Corollary 5.1. Let G be any vertex-transitive and recurrent graph. Then

H(Rn)

〈Rn〉
−→ 0, as n→∞. (5.1)

Proof. By Theorem 1.2, we only need to check conditions (1.5) and (1.6). Due to vertex-transitivity,

the suprema become superfluous in both conditions. The assertion (1.5) is thus a consequence of

recurrence and monotone convergence. Simple random walk on a vertex-transitive graph is quasi-

homogeneous, see [11], Theorem 4.18, p. 47. As a consequence, if lim infr |B(o, r)|/r3 > 0, then

G satisfies a three-dimensional isoperimetric inequality, which implies in particular that the random

walk is transient (we refer to [11], Corollary 4.16, p. 47, and Theorem 5.2, p. 49, for the proofs

of these claims). Hence, we must have lim infr |B(o, r)|/r3 = 0, from which (1.6) immediately

follows.

Theorem 1.3 follows:
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Proof of Theorem 1.3. Since the infimum in condition (1.3) is superfluous for vertex-transitive

graphs, every vertex-transitive and transient graph is uniformly transient. Theorem 1.1 hence shows

that

lim inf
n→∞

H(Rn)/〈Rn〉> 0

in the transient case. Corollary 5.1 shows that H(Rn)/〈Rn〉 tends to 0 for vertex-transitive recurrent

graphs. Since every vertex-transitive graph is either transient or recurrent, this proves Theorem 1.3.

In order to answer the question from [1] mentioned after Theorem 1.3, it remains to prove that

〈Rn〉 grows linearly in n for vertex-transitive transient graphs. This is surely well-known, but we

could not find a proof in the literature, so we give a proof here. We denote the Green function of

the simple random walk (evaluated on the diagonal) by

g(x) = Ex

� ∞
∑

k=0

1{Xk=x}

�

, for x ∈ V,

and the Green function of the random walk killed after n steps by

gn(x) = Ex

�

n
∑

k=0

1{Xk=x}

�

, for x ∈ V.

Proposition 5.2. Let G be any transient graph and let

e(x) = Px[τ
+
x =∞] ∈ (0,1)

be the escape probability from vertex x ∈ V . Then

inf
o∈V

e(o)≤ lim inf
n→∞

inf
o∈V

〈Rn〉o
n

. (5.2)

Moreover, if G is vertex-transitive and transient, then

〈Rn〉
n
−→ e(o)> 0, as n→∞. (5.3)

Proof. Let G be any transient graph and o ∈ V . By the Markov property applied at time 1, g(x) =

1+ (1− e(x))g(x), hence

g(x) = 1/e(x), for any x ∈ V. (5.4)

For n≥ 1 and x ∈ V , we denote by N n
x the total number of visits to x in the first n steps,

N n
x =
∑

0≤k≤n

1{Xk=x}.

Summation over all vertices yields the total number of steps:

n+ 1=
∑

x∈V

N n
x . (5.5)
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Taking expectations in this equation and applying the strong Markov property at time τx , we obtain

that

n+ 1=
∑

x∈V

Eo[N
n
x ] (5.6)

≤
∑

x∈V

Po[τx ≤ n]g(x)

≤ 〈Rn〉o sup
x∈V

g(x).

The estimate (5.2) is trivial if info∈V e(o) = 0 and follows from (5.4) and (5.6) otherwise.

Let now G be a vertex-transitive transient graph. In particular, (5.2) holds without the infimum on

either side. Replacing n by [λn] with λ > 1 in (5.5), we have for n≥ cλ,

[λn] + 1≥
∑

x∈V

Eo[N
[λn]
x 1{τx≤n}]

≥
∑

x∈V

Po[τx ≤ n]g[λn]−n(o)

= 〈Rn〉o g[λn]−n(o).

Letting n tend to infinity and using (5.4), it follows that for any λ > 1,

lim sup
n→∞

〈Rn〉o
n
≤ λe(o).

We now let λ tend to 1 and together with (5.2) obtain (5.3).

Remark 5.3. Theorem 1.1 and (5.2) prove that Ho(Rn) grows linearly in n for all uniformly tran-

sient graphs with bounded degrees, while Theorem 1.2 in particular proves that Ho(Rn) grows

sublinearly in n on uniformly recurrent graphs satisfying the growth condition (1.6).

Remark 5.4. The example presented in Remark 4.1 does not satisfy the volume growth assumption

(1.6) and hence does not show that (1.6) is actually necessary in Theorem 1.2. We do not know of

an example showing necessity of (1.6), or indeed if there even exists a graph satisfying (1.5) but

not (1.6).

Remark 5.5. Given the results of the present work, it is natural to wonder whether one can ob-

tain more precise estimates on Ho(Rn) on vertex-transitive graphs or even prove an analogue of

Shannon’s theorem on the almost-sure behavior of log(po(Rn)).
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