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Abstract

We develop singular value techniques in the context of time inhomogeneous finite Markov chains

with the goal of obtaining quantitative results concerning the asymptotic behavior of such chains.

We introduce the notion of c-stability which can be viewed as a generalization of the case when

a time inhomogeneous chain admits an invariant measure. We describe a number of examples

where these techniques yield quantitative results concerning the merging of the distributions of

the time inhomogeneous chain started at two arbitrary points.
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1 Introduction

The quantitative study of time inhomogeneous Markov chains is a very broad and challenging task.

Time inhomogeneity introduces so much flexibility that a great variety of complex behaviors may

occur. For instance, in terms of ergodic properties, time inhomogeneity allows for the construction

of Markov chains that very efficiently and exactly attain a target distribution in finite time. An

example is the classical algorithm for picking a permutation at random. Thinking of a deck of n

cards, one way to describe this algorithm is as follows. At step i mod n, pick a card uniformly at

random among the bottom n− i + 1 cards and insert it in position i. After n− 1 steps, the deck is

distributed according to the uniform distribution. However, it is not possible to recognize this fact

by inspecting the properties of the individual steps. Indeed, changing the order of the steps destroys

the neat convergence result mentioned above.

In this article, we are interested in studying the the ergodic properties of a time inhomogeneous

chain through the individual ergodic properties of the one step Markov kernels. The works [4; 23;

25] consider similar problems. To illustrate what we have in mind, consider the following. Given a

sequence of irreducible Markov kernels (Ki)
∞
1 on a finite set V , let Kn

i
be the usual iterated kernel of

the chain driven by Ki alone, and let K0,n(x , ·) be the distribution of the chain (X t)
∞
1 driven by the

sequence (Ki)
∞
1 with X0 = x . Let πi be the invariant probability measure of the kernel Ki . Suppose

we understand well the convergence Kn
i
(x , ·) → πi(·) ∀x and that this convergence is, in some

sense, uniform over i. For instance, assume that there exists β ∈ (0,1) and T > 0 such that, for all i

and n≥ T +m, m> 0

max
x ,y

¨����
Kn

i
(x , y)

πi(y)
− 1

����

«
≤ βm. (1)

We would like to apply (1) to deduce results concerning the proximity of the measures

K0,n(x , ·), K0,n(y, ·), x , y ∈ V.

These are the distributions at time n for the chain started at two distinct points x ,y . To give a precise

version of the types of questions we would like to consider, we present the following open problem.

Problem 1.1. Let (Ki,πi)
∞
1 be a sequence of irreducible reversible Markov kernels on a finite set V

satisfying (1). Assume further that there exists a probability measure π and a constant c ≥ 1 such

that

∀i = 1,2, . . . , c−1π≤ πi ≤ cπ and min
x∈V
{Ki(x , x)} ≥ c−1. (2)

1. Prove (or disprove) that there exist B(T, V,π,β , c) and α = α(T, V,π,β) such that, for all

n≥ B(T, V,π,β) +m,

‖K0,n(x , ·)− K0,n(y, ·)‖TV ≤ α
m or max

x ,y,z

¨����
K0,n(x , z)

K0,n(y, z)
− 1

����

«
≤ αm.

2. Prove (or disprove) that there exists a constant A= A(c) such that, for all n≥ A(T +m),

‖K0,n(x , ·)− K0,n(y, ·)‖TV ≤ β
m or max

x ,y,z

¨����
K0,n(x , z)

K0,n(y, z)
− 1

����

«
≤ βm.
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3. Consider problems (1)-(2) above when Ki ∈ Q = {Q1,Q2} where Q1,Q2 are two irreducible

Markov kernels with reversible measures π1,π2 satisfying c−1π1 ≤ π2 ≤ cπ1, for all x ∈ V .

Concerning the formulation of these problems, let us point out that without the two hypotheses in

(2), there are examples showing that (1) is not sufficient to imply any of the desired conclusions in

item 1, even under the restrictive condition of item 3.

The questions presented in Problem 1.1 are actually quite challenging and, at the present time, we

are far from a general solution, even in the simplest context of item 3. In fact, one of our aims

is to highlight that these types of questions are not understood at all! We will only give partial

results for Problem 1.1 under very specific additional hypotheses. In this respect, item 3 offers a

very reasonable open problem for which evidence for a positive answer is still scarce but a counter

example would be quite surprising.

In Section 6 (Remark 6.17), we show that the strongest conclusion in (2) holds true on the two-

point space. The proof is quite subtle even in this simple setting. The best evidence supporting a

positive answer to Problem 1.1(1) is the fact that the conclusion

‖K0,n(x , )− K0,n(y, ·)‖TV ≤ (min
z
{π(z)})−1/2βn

holds if we assume that all πi = π are equal (a similar relative-sup result also holds true). This

means we can take B(T, V,π,β) = (logπ
−1/2
∗ )/(logβ−1), π∗ = minz{π(z)} and α = β . This result

follows, for instance, from [23] which provides further quantitative estimates but falls short of the

general statement

‖K0,n(x , ·)− K0,n(y, ·)‖TV ≤ β
m, n≥ A(T +m).

The very strong conclusion above is known only in the case when V is a group, the kernels Ki are

invariant, and T ≥ α−1 log V . See [23, Theorem 4.9].

In view of the difficulties mentioned above, the purpose of this paper (and of the companion papers

[25; 26]) is to develop techniques that apply to some instances of Problem 1.1 and some of its

variants. Namely, we show how to adapt tools that have been successfully applied to time homoge-

neous chains to the study of time inhomogeneous chains and provide a variety of examples where

these tools apply. The most successful techniques in the quantitative study of (time homogeneous)

finite Markov chains include: coupling, strong stationary time, spectral methods, and functional

inequalities such as Nash or log-Sobolev inequalities. This article focuses on spectral methods,

more precisely, singular values methods. The companion paper [25] develops Nash and log-Sobolev

inequalities techniques. Two papers that are close in spirit to the present work are [4; 11]. In

particular, the techniques developed in [4] are closely related to those we develop here and in [25].

We point out that the singular values and functional inequalities techniques discussed here and in

[4; 25] have the advantage of leading to results in distances such as ℓ2-distance (i.e., chi-square)

and relative-sup norm which are stronger than total variation.

The material in this paper is organized as follows. Section 2 introduces our basic notation and the

concept of merging (in total variation and relative-sup distances). See Definitions 2.1, 2.8, 2.11.

Section 3 shows how singular value decompositions can be used, theoretically, to obtain merging

bounds. The main result is Theorem 3.2. An application to time inhomogeneous constant rate birth

and death chains is presented. Section 4 introduces the fundamental concept of stability (Definition

4.1), a relaxation of the very restrictive hypothesis used in [23] that the kernels driving the time

inhomogeneous chain under investigation all share the same invariant distribution. If the stability
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hypothesis is satisfied then the singular value analysis becomes much easier to apply in practice.

See Theorems 4.10 and 4.11. Section 4.2 offers our first example of stability concerning end-point

perturbations of simple random walk on a stick. A general class of birth and death examples where

stability holds is studied in Section 5. Further examples of stability are described in [25; 26]. The

final section, Section 6, gives a complete analysis of time inhomogeneous chains on the two-point

space. We characterize total variation merging and study stability and relative-sup merging in this

simple but fundamental case.

We end this introduction with some brief comments regarding the coupling and strong stationary

time techniques. Since, typically, time inhomogeneous Markov chains do not converge to a fixed

distribution, adapting the technique of strong stationary time poses immediate difficulties. This

comment seems to apply also to the recent technique of evolving sets [17], which is somewhat

related to strong stationary times. In addition, effective constructions of strong stationary times

are usually not very robust and this is likely to pose further difficulties. An example of a strong

stationary time argument for a time inhomogeneous chain that admits a stationary measure can be

found in [18].

Concerning coupling, as far as theory goes, there is absolutely no difficulties in adapting the coupling

technique to time inhomogeneous Markov chains. Indeed, the usual coupling inequality

‖K0,n(x , ·)− K0,n(y, ·)‖TV ≤ P(T > n)

holds true (with the exact same proof) if T is the coupling time of a coupling (Xn, Yn) adapted to

the sequence (Ki)
∞
1 with starting points X0 = x and Y0 = y . See [11] for practical results in this

direction and related techniques. Coupling is certainly useful in the context of time inhomogeneous

chains but we would like to point out that time inhomogeneity introduces very serious difficulties

in the construction and analysis of couplings for specific examples. This seems related to the lack of

robustness of the coupling technique. For instance, in many coupling constructions, it is important

that past progress toward coupling is not destroyed at a later stage, yet, the necessary adaptation to

the changing steps of a time inhomogeneous chain makes this difficult to achieve.

2 Merging

2.1 Different notions of merging

Let V be a finite set equipped with a sequence of kernels (Kn)
∞
1 such that, for each n, Kn(x , y) ≥ 0

and
∑

y Kn(x , y) = 1. An associated Markov chain is a V -valued random process X = (Xn)
∞
0 such

that, for all n,

P(Xn = y |Xn−1 = x , . . . , X0 = x0) = P(Xn = y |Xn−1 = x)

= Kn(x , y).

The distribution µn of Xn is determined by the initial distribution µ0 by

µn(y) =
∑

x∈V

µ0(x)K0,n(x , y)

where Kn,m(x , y) is defined inductively for each n and each m> n by

Kn,m(x , y) =
∑

z∈V

Kn,m−1(x , z)Km(z, y)
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Figure 1: Illustration of merging (both in total variation and relative-sup) based on the binomial

example studied in Section 5.2. The first frame shows two particular initial distributions, one of

which is the binomial. The other frames show the evolution under a time inhomogeneous chain

driven by a deterministic sequence involving two kernels from the set QN (Q,ε) of Section 5.2, a set

consisting of perturbations of the Ehrenfest chain kernel. In the fourth frame, the distributions have

merged. The last two frames illustrate the evolution after merging and the absence of a limiting

distribution. Here N = 30 and the total number of points is n= 61.
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with Kn,n = I (the identity). If we view the Kn’s as matrices then this definition means that Kn,m =

Kn+1 · · ·Km. In the case of time homogeneous chains where all Ki =Q are equal, we write K0,n =Qn.

Our main interest is understanding mixing type properties of time inhomogeneous Markov chains.

However, in general, µn = µ0K0,n does not converge toward a limiting distribution. Instead, the

natural notion to consider is that of merging defined below. For a discussion of this property and its

variants, see, e.g., [3; 16; 19; 27].

Definition 2.1 (Total variation merging). Fix a sequence (Ki)
∞
1 of Markov kernels on a finite set V .

We say the sequence (Ki)
∞
1 is merging in total variation if for any x , y ∈ V ,

lim
n→∞
‖K0,n(x , ·)− K0,n(y, ·)‖TV = 0.

A rather trivial example that illustrates merging versus mixing is as follows.

Example 2.2. Fix two probability distributions πi , i = 1,2. LetQ = {Q1,Q2} with Q i(x , y) = πi(y).

Then for any sequence (Ki)
∞
1 with Ki ∈ Q, K0,n = πi(n) where i(n) = i if Kn =Q i , i = 1,2.

Remark 2.3. If the sequence (Ki)
∞
1 is merging then, for any two starting distributions µ0,ν0, the

measures µn = µ0K0,n and νn = ν0K0,n are merging, that is, ∀A⊂ V , µn(A)− νn(A)→ 0.

Our goal is to develop quantitative results for time inhomogeneous chains in the spirit of the work

concerning homogeneous chains of Aldous, Diaconis and others who obtain precise estimates on the

mixing time of ergodic chains that depend on size of the state space in an explicit way. In these

works, convergence to stationary is measured in terms of various distances between measures µ,ν

such as the total variation distance

‖µ− ν‖TV = sup
A⊂V

{µ(A)− ν(A)},

the chi-square distance w.r.t. ν and the relative-sup distance ‖
µ

ν
− 1‖∞. See, e.g., [1; 5; 6; 12; 21].

Given an irreducible aperiodic chain with kernel K on a finite set V , there exists a unique probability

measure π > 0 such that Kn(x , ·)→ π(·) as n→∞, for all x . This qualitative property can be stated

equivalently using total variation, the chi-square distance or relative-sup distance. However, if we

do not assume irreducibility, it is possible that there exists a unique probability measure π (with

perhaps π(y) = 0 for some y) such that, for all x , Kn(x , ·) → π(·) as n tends to infinity (this

happens when there is a unique absorbing class with no periodicity). In such a case, Kn(x , ·) does

converge to π in total variation but the chi-square and relative-sup distances are not well defined (or

are equal to +∞). This observation has consequences in the study of time inhomogeneous Markov

chains. Since there seems to be no simple natural property that would replace irreducibility in the

time inhomogeneous context, one must regard total variation merging and other notions of merging

as truly different properties.

Definition 2.4 (Relative-sup merging). Fix a sequence of (Ki)
∞
1 of Markov kernels. We say the

sequence is merging in relative-sup distance if

lim
n→∞

max
x ,y,z

¨����
K0,n(x , z)

K0,n(y, z)
− 1

����

«
= 0.

The techniques discussed in this paper are mostly related to the notion of merging in relative-sup

distance. A graphic illustration of merging is given in Figure 1.
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Remark 2.5. On the two-point space, consider the reversible irreducible aperiodic kernels

K1 =

�
0 1

1/2 1/2

�
, K2 =

�
1/2 1/2

1 0

�
.

Then the sequence K1, K2, K1, K2, . . . is merging in total variation but is not merging in relative-sup

distance. See Section 6 for details.

When focusing on the relation between ergodic properties of individual kernels Ki and the behavior

of an associated time inhomogeneous chain, it is intuitive to look at the Ki as a set instead of a

sequence. The following definition introduces a notion of merging for sets of kernels.

Definition 2.6. LetQ be a set of Markov kernels on a finite state space V . We say thatQ is merging

in total variation if, for any sequence (Ki)
∞
1 , Ki ∈ Q, we have

∀ x ∈ V, lim
n→∞
‖K0,n(x , ·)− K0,n(y, ·)‖TV = 0.

We say that Q is merging in relative-sup if, for any sequence (Ki)
∞
1 , Ki ∈ Q, we have

lim
n→∞

max
x ,y,z

¨����
K0,n(x , z)

K0,n(y, z)
− 1

����

«
= 0.

One of the goals of this work is to describe some non-trivial examples of merging families Q =

{Q1,Q2} where Q1 and Q2 have distinct invariant measures.

Example 2.7. Many examples (with all Q i ∈ Q sharing the same invariant distribution) are given

in [23], with quantitative bounds. For instance, let V = G be a finite group and S1,S2 be two

symmetric generating sets. Assume that the identity element e belongs to S1 ∩ S2. Assume further

that max{#S1,#S2} = N and that any element of G is the product of at most D elements of Si ,

i = 1,2. In other words, the Cayley graphs of G associated with S1 and S2 both have diameter at

most D. Let Q i(x , y) = (#Si)
−11Si

(x−1 y), i = 1,2. Then Q = {Q1,Q2} is merging. Moreover, for

any sequence (Ki)
∞
1 with Ki ∈ Q, we have

‖K0,n(x , ·)− K0,n(y, ·)‖TV ≤ |G|
1/2

�
1−

1

(N D)2

�n/2

where |G| = #G. In fact, K0,n(x , ·) → π where π is the uniform distribution on G and [23] gives

2‖K0,n(x , ·)−π‖TV ≤ |G|
1/2
�

1− 1

(N D)2

�n/2
.

2.2 Merging time

In the quantitative theory of ergodic time homogeneous Markov chains, the notion of mixing time

plays a crucial role. For time inhomogeneous chains, we propose to consider the following corre-

sponding definitions.

Definition 2.8. Fix ε ∈ (0,1). Given a sequence (Ki)
∞
1 of Markov kernels on a finite set V , we call

max total variation ε-merging time the quantity

TTV(ε) = inf

�
n : max

x ,y∈V
‖K0,n(x , ·)− K0,n(y, ·)‖TV < ε

�
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Definition 2.9. Fix ε ∈ (0,1). We say that a set Q of Markov kernels on V has max total variation

ε-merging time at most T if for any sequence (Ki)
∞
1 with Ki ∈ Q for all i, we have TTV(ε) ≤ T , that

is,

∀t > T, max
x ,y∈V

¦
‖K0,t(x , ·)− K0,t(y, ·)‖TV

©
≤ ε.

Example 2.10. If Q = {Q1,Q2} is as in Example 2.7 the total variation ε-merging time for Q is at

most (N D)2(log |G|+ 2 log 1/ε).

As noted earlier, merging can be defined and measured in ways other than total variation. One

very natural and much stronger notion than total variation distance is relative-sup distance used in

Definitions 2.4-2.6 and in the definitions below.

Definition 2.11. Fix ε ∈ (0,1). Given a sequence (Ki)
∞
1 of Markov kernels on a finite set V , we call

relative-sup ε-merging time the quantity

T∞(ε) = inf

¨
n : max

x ,y,z∈V

¨����
K0,n(x , z)

K0,n(y, z)
− 1

����

«
< ε

«
.

Definition 2.12. Fix ε ∈ (0,1). We say that a set Q of Markov kernels on V has relative-sup ε-

merging time at most T if for any sequence (Ki)
∞
1 with Ki ∈ Q for all i, we have T∞(ε) ≤ T , that

is,

∀t > T, max
x ,y,z∈V

¨����
K0,t(x , ·)

K0,t(y, ·)
− 1

����

«
< ε.

Remark 2.13. If the sequence (Ki)
∞
1 is merging in total variation or relative-sup then, for any initial

distribution µ0 the sequence µn = µ0K0,n must merge with the sequence νn where νn is the invariant

measure for K0,n. In total variation, we have

‖µn− νn‖TV ≤max
x ,y
‖K0,n(x , ·)− K0,n(y, ·)‖TV.

In relative-sup, for ε ∈ (0,1/2), inequality (4) below yields

max
x ,y,z

����
K0,n(x , z)

K0,n(y, z)
− 1

����≤ ε =⇒ max
x

����
µn(x)

νn(x)
− 1

����≤ 4ε.

Example 2.14. If Q = {Q1,Q2} is as in Example 2.7 the relative-sup ε-merging time for Q is at

most 2(N D)2(log |G|+ log 1/ε). This follows from [23].

The following simple example illustrates how the merging time of a family of kernels Q may differ

significantly form the merging time of a particular sequence (Ki)
∞
1 with Ki ∈ Q for all i ≥ 1.

Example 2.15. Let Q1 be the birth and death chain kernel on VN = {0, . . . , N} with constant rates

p,q, p+q = 1, p > q. This means here that Q1(x , x+1) = p, Q1(x , x−1) = q when these are well de-

fined and Q1(0,0) = q, Q1(N , N) = p. The reversible measure for Q1 is π1(x) = c(p,q, N)(q/p)N−x

with c(p,q, N) = (1− q/p)/(1− (q/p)N+1). The chain driven by this kernel is well understood. In

particular, the mixing time is of order N starting from the end where π1 attains its minimum.

Let Q2 be the birth and death chain with constant rates q, p. Hence, Q2(x , x+1) = q, Q2(x , x−1) = p

when these are well defined and Q2(0,0) = p, Q2(N , N) = q. The reversible measure for K2 is
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π2(x) = c(p,q, N)(q/p)x . It is an interesting problem to study the merging property of the set

Q = {Q1,Q2}. Here, we only make a simple observation concerning the behavior of the sequence

Ki = Q i mod 2. Let Q = K0,2 = Q1Q2. The graph structure of this kernel is a circle. As an example,

below we give the graph structure for N = 10.

0 2 4 6 8 10

1 3 5 7 9

Edges are drawn between points x and y if Q(x , y) > 0. Note that Q(x , y) > 0 if and only if

Q(y, x) > 0, so that all edges can be traversed in both directions (possibly with different probabili-

ties).

For the Markov chain driven by Q, there is equal probability of going from a point x to any of its

neighbors as long as x 6= 0, N . Using this fact, one can compute the invariant measure π of Q and

conclude that

max
VN

{π} ≤ (p/q)2 min
VN

{π}.

It follows that (q/p)2 ≤ (N + 1)π(x) ≤ (p/q)2. This and the comparison techniques of [8] show

that the sequence Q1,Q2,Q1,Q2, . . . , is merging in relative sup in time of order N2. Compare with

the fact that each kernel Ki in the sequence has a mixing time of order N .

3 Singular value analysis

3.1 Preliminaries

We say that a measure µ is positive if ∀x , µ(x) > 0. Given a positive probability measure µ on V

and a Markov kernel K , set µ′ = µK . If K satisfies

∀ y ∈ V,
∑

x∈V

K(x , y)> 0 (1)

then µ′ is also positive. Obviously, any irreducible kernel K satisfies (1).

Fix p ∈ [1,∞] and consider K as a linear operator

K : ℓp(µ′)→ ℓp(µ), K f (x) =
∑

y

K(x , y) f (y). (2)

It is important to note, and easy to check, that for any measure µ, the operator K : ℓp(µ′)→ ℓp(µ)

is a contraction.

Consider a sequence (Ki)
∞
1 of Markov kernels satisfying (1). Fix a positive probability measure µ0

and set µn = µ0K0,n. Observe that µn > 0 and set

dp(K0,n(x , ·),µn) =

 ∑

y

����
K0,n(x , y)

µn(y)
− 1

����
p

µn(y)

!1/p

.
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Note that 2‖K0,n(x , ·) − µn‖TV = d1(K0,n(x , ·),µn) and, if 1 ≤ p ≤ r ≤ ∞, dp(K0,n(x , ·),µn) ≤

dr(K0,n(x , ·),µn). Further, one easily checks the important fact that

n 7→ dp(K0,n(x , ·),µn)

is non-increasing.

It follows that we may control the total variation merging of a sequence (Ki)
∞
0 with Ki satisfying (1)

by

‖K0,n(x , ·)− K0,n(y, ·)‖TV ≤max
x∈V
{d2(K0,n(x , ·),µn)}. (3)

To control relative-sup merging we note that if

max
x ,y,z

¨����
K0,n(x , z)

µn(z)
− 1

����

«
≤ ε≤ 1/2 then max

x ,y,z

¨����
K0,n(x , z)

K0,n(y, z)
− 1

����

«
≤ 4ε.

The last inequality follows from the fact that if 1− ε≤ a/b, c/b ≤ 1+ ε with ε ∈ (0,1/2) then

1− 2ε≤
1− ε

1+ ε
≤

a

c
≤

1+ ε

1− ε
≤ 1+ 4ε. (4)

3.2 Singular value decomposition

The following material can be developed over the real or complex numbers with little change. Since

our operators are Markov operators, we work over the reals. Let H and G be (real) Hilbert spaces

equipped with inner products 〈·, ·〉H and 〈·, ·〉G respectively. If u :H ×G → R is a bounded bilinear

form, by the Riesz representation theorem, there are unique operators A :H → G and B : G →H

such that

u(h, k) = 〈Ah, k〉G = 〈h, Bk〉H . (5)

If A :H →G is given and we set u(h, k) = 〈Ah, k〉G then the unique operator B : G →H satisfying

(5) is called the adjoint of A and is denoted as B = A∗. The following classical result can be derived

from [20, Theorem 1.9.3].

Theorem 3.1 (Singular value decomposition). LetH and G be two Hilbert spaces of the same dimen-

sion, finite or countable. Let A :H → G be a compact operator. There exist orthonormal bases (φi) of

H and (ψi) of G and non-negative reals σi = σi(H ,G ,A) such that Aφi = σiψi and A∗ψi = σiφi .

The non-negative numbers σi are called the singular values of A and are equal to the square root of the

eigenvalues of the self-adjoint compact operator A∗A :H →H and also of AA∗ : G → G .

One important difference between eigenvalues and singular values is that the singular values depend

very much on the Hilbert structures carried by H ,G . For instance, a Markov operator K on a finite

set V may have singular values larger than 1 when viewed as an operator from ℓ2(ν) to ℓ2(µ) for

arbitrary positive probability measure ν ,µ (even with ν = µ).

We now apply the singular value decomposition above to obtain an expression of the ℓ2 distance

between µ′ = µK and K(x , ·) when K is a Markov kernel satisfying (1) and µ a positive probability
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measure on V . Consider the operator K = Kµ : ℓ2(µ′) → ℓ2(µ) defined by (2). Then the adjoint

K∗µ : ℓ2(µ)→ ℓ2(µ′) has kernel K∗µ(x , y) given by

K∗µ(y, x) =
K(x , y)µ(x)

µ′(y)
.

By Theorem 3.1, there are eigenbases (ϕi)
|V |−1
0 and (ψi)

|V |−1
0 of ℓ2(µ′) and ℓ2(µ) respectively such

that

Kµϕi = σiψi and K∗µψi = σiϕi

where σi = σi(K ,µ), i = 0, . . . |V | − 1 are the singular values of K , i.e., the square roots of the

eigenvalues of K∗µKµ (and KµK∗µ) given in non-increasing order, i.e.

1= σ0 ≥ σ1 ≥ · · · ≥ σ|V |−1

and ψ0 = ϕ0 ≡ 1. From this it follows that, for any x ∈ V ,

d2(K(x , ·),µ′)2 =

|V |−1∑

i=1

|ψi(x)|
2σ2

i . (6)

To see this, write

d2(K(x , ·),µ′)2 =

�
K(x , ·)

µ′
− 1,

K(x , ·)

µ′
− 1

�

µ′

=

�
K(x , ·)

µ′
,

K(x , ·)

µ′

�

µ′
− 1.

With δ̃y = δy/µ
′(y), we have K(x , y)/µ′(y) = Kδ̃y(x). Write

δ̃y =

|V |−1∑

0

aiϕi where ai = 〈δ̃y ,ϕi〉µ′ = ϕi(y)

so we get that

K(x , y)

µ′(y)
=

|V |−1∑

i=0

σiψi(x)ϕi(y).

Using this equality yields the desired result. This leads to the main result of this section. In what

follows we often write K for Kµ when the context makes it clear that we are considering K as an

operator from ℓ2(µ′) to ℓ2(µ) for some fixed µ.

Theorem 3.2. Let (Ki)
∞
1 be a sequence of Markov kernels on a finite set V , all satisfying (1). Fix a

positive starting measure µ0 and set µi = µ0K0,i . For each i = 0,1, . . . , let

σ j(Ki ,µi−1), j = 0,1, . . . , |V | − 1,

be the singular values of Ki : ℓ2(µi)→ ℓ
2(µi−1) in non-increasing order. Then

∑

x∈V

d2(K0,n(x , ·),µn)
2µ0(x)≤

|V |−1∑

j=1

n∏

i=1

σ j(Ki,µi−1)
2.
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and, for all x ∈ V ,

d2(K0,n(x , ·),µn)
2 ≤

�
1

µ0(x)
− 1

� n∏

i=1

σ1(Ki ,µi−1)
2.

Moreover, for all x , y ∈ V ,

����
K0,n(x , y)

µn(y)
− 1

����≤
�

1

µ0(x)
− 1

�1/2� 1

µn(y)
− 1

�1/2 n∏

i=1

σ1(Ki,µi−1).

Proof. Apply the discussion prior to Theorem 6 with µ = µ0, K = K0,n and µ′ = µn. Let

(ψi)
|V |−1
0 be the orthonormal basis of ℓ2(µ0) given by Theorem 3.1 and δ̃x = δx/µ0(x). Then

δ̃x =
∑|V |−1

0 ψi(x)ψi. This yields

|V |−1∑

i=0

|ψi(x)|
2 = ‖δ̃x‖

2
ℓ2(µ0)

= µ0(x)
−1.

Furthermore, Theorem 3.3.4 and Corollary 3.3.10 in [15] give the inequality

∀ k = 1, . . . , |V | − 1,

k∑

j=1

σ j(K0,n,µ0)
2 ≤

k∑

j=1

n∏

i=1

σ j(Ki,µi−1)
2.

Using this with k = |V | − 1 in (6) yields the first claimed inequality. The second inequality then

follows from the fact that σ1(K0,n,µ0) ≥ σ j(K0,n,µ0) for all j = 1 . . . |V | − 1. The last inequality

follows from writing ����
K0,n(x , y)

µn(y)
− 1

����≤ σ(K0,n,µ0)

|V |−1∑

1

|ψi(x)φi(y)|

and bounding
∑|V |−1

1 |ψi(x)φi(y)| by (µ0(x)
−1− 1)1/2(µn(y)

−1− 1)1/2.

Remark 3.3. The singular value σ1(Ki ,µi−1) =
p
β1(i) is the square root of the second largest

eigenvalue β1(i) of K∗i Ki : ℓ2(µi)→ ℓ
2(µi). The operator Pi = K∗i Ki has Markov kernel

Pi(x , y) =
1

µi(x)

∑

z∈V

µi−1(z)Ki(z, x)Ki(z, y) (7)

with reversible measure µi . Hence

1− β1(i) = min
f 6≡µi( f )

¨
EPi ,µi

( f , f )

Varµi
( f )

«

with

EPi ,µi
( f , f ) =

1

2

∑

x ,y∈V

| f (x)− f (y)|2Pi(x , y)µi(x).

The difficulty in applying Theorem 3.2 is that it usually requires some control on the sequence of

measures µi . Indeed, assume that each Ki is aperiodic irreducible with invariant probability measure
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πi . One natural way to put quantitative hypotheses on the ergodic behavior of the individual steps

(Ki,πi) is to consider the Markov kernel

ePi(x , y) =
1

πi(x)

∑

z∈V

πi(z)Ki(z, x)Ki(z, y)

which is the kernel of the operator K∗i Ki when Ki is understood as an operator acting on ℓ2(πi) (note

the difficulty of notation coming from the fact that we are using the same notation Ki to denote two

operators acting on different Hilbert spaces). For instance, let eβi be the second largest eigenvalue of

(ePi,πi). Given the extreme similarity between the definitions of Pi and ePi , one may hope to bound

βi using eβi . This however requires some control of

Mi =max
z

�
πi(z)

µi−1(z)
,
µi(z)

πi(z)

�
.

Indeed, by a simple comparison argument (see, e.g., [7; 9; 21]), we have

βi ≤ 1−M−2
i (1−

eβi).

One concludes that

d2(K0,n(x , ·),µn)
2 ≤

�
1

µ0(x)
− 1

� n∏

i=1

(1−M−2
i (1−

eβi)).

and ����
K0,n(x , y)

µn(y)
− 1

����≤
�

1

µ0(x)
− 1

�1/2� 1

µn(y)
− 1

�1/2 n∏

i=1

(1−M−2
i (1−

eβi))
1/2.

Remark 3.4. The paper [4] studies certain contraction properties of Markov operators. It contains, in

a more general context, the observation made above that a Markov operator is always a contraction

from ℓp(µK) to ℓp(µ) and that, in the case of ℓ2 spaces, the operator norm ‖K − µ′‖ℓ2(µK)→ℓ2(µ) is

given by the second largest singular value of Kµ : ℓ2(µK)→ ℓ2(µ) which is also the square root of

the second eigenvalue of the Markov operator P acting on ℓ2(µK) where P = K∗µKµ, K∗µ : ℓ2(µ)→

ℓ2(µK). This yields a slightly less precise version of the last inequality in Theorem 3.2. Namely,

writing

(K0,n−µn) = (K1−µ1)(K2−µ2) · · · (Kn−µn)

and using the contraction property above one gets

‖K0,n−µn‖ℓ2(µn)→ℓ
2(µ0)
≤

n∏

1

σ1(Ki ,µi−1).

As ‖I −µ0‖ℓ2(µ0)→ℓ
∞(µ0)

=maxx(µ0(x)
−1− 1)1/2, it follows that

max
x∈V

d2(K0,n(x , ·),µn)≤

�
1

minx{µ0(x)}
− 1

�1/2 n∏

1

σ1(Ki,µi−1).
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Example 3.5 (Doeblin’s condition). Assume that, for each i, there exists αi ∈ (0,1), and a probabil-

ity measure πi (which does not have to have full support) such that

∀ i, x , y ∈ V, Ki(x , y)≥ αiπi(y).

This is known as a Doeblin type condition. For any positive probability measure µ0, the kernel Pi

defined at (7) is then bounded below by

Pi(x , y)≥
αiπi(y)

µi(x)

∑

z

µi−1(z)Ki(z, x) = αiπi(y).

This implies that β1(i), the second largest eigenvalue of Pi , is bounded by β1(i)≤ 1−αi/2. Theorem

3.2 then yields

d2(K0,n(x , ·),µn)≤ µ0(x)
−1/2

n∏

i=1

(1−αi/2)
1/2.

Let us observe that the very classical coupling argument usually employed in relation to Doeblin’s

condition applies without change in the present context and yields

max
x ,y
{‖K0,n(x , ·)− K0,n(y, ·)‖TV} ≤

n∏

1

(1−αi).

See [11] for interesting developments in this direction.

Example 3.6. On a finite state space V , consider a sequence of edge sets Ei ⊂ V × V . For each i,

assume that

1. For all x ∈ V , (x , x) ∈ Ei .

2. For all x , y ∈ V , there exist k = k(i, x , y) and a sequence (x j)
k
0 of elements of V such that

x0 = x , xk = y and (x j , x j+1) ∈ Ei , j ∈ {0, . . . , k− 1}.

Consider a sequence (Ki)
∞
1 of Markov kernels on V such that

∀ i, ∀ x , y ∈ V, Ki(x , y)≥ ε1Ei
(x , y) (8)

for some ε > 0. We claim that the sequence (Ki)
∞
1 is merging, that is,

K0,n(x , ·)− K0,n(y, ·)→ 0 as n→∞.

This easily follows from Example 3.5 after one remarks that the hypotheses imply

∀m, ∀ x , y ∈ V, Km,m+|V |(x , y)≥ ε|V |−1.

To prove this, for any fixed m, let Ωm,i(x) = {y ∈ V : Km,m+i(x , y) > 0}. Note that {x} ⊂ Ωm,i(x) ⊂

Ωm,i+1(x) because of condition 1 above. Further, because of condition 2, no nonempty subset Ω ⊂ V ,

Ω 6= V , can have the property that ∀ x ∈ Ω, y ∈ V \Ω, Ki(x , y) = 0. Hence Ωm,i(x), i = 1,2, . . . is a

strictly increasing sequence of sets until, for some k, it reaches Ωm,k(x) = V . Of course, the integer

k is at most |V | − 1. Now, hypothesis (8) implies that Km,m+|V |(x , y) ≥ ε|V |−1 as desired. Of course,

this line of reasoning can only yield poor quantitative bounds in general.
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3.3 Application to constant rates birth and death chains

A constant rate birth and death chain Q on V = VN = {0,1 . . . , N} is determined by parameters

p,q, r ∈ [0,1], p + q + r = 1, and given by Q(0,0) = 1 − p, Q(N , N) = 1 − q, Q(x , x + 1) = p,

x ∈ {0, N−1}, Q(x , x−1) = q, x ∈ {1, N}, Q(x , x) = r, x ∈ {1, . . . , N−1}. It has reversible measure

(assuming q 6= p)

π(x) = c(p/q)x−N , c = c(N , p,q) = (1− (q/p))/(1− (q/p)N+1).

For any A ≥ a ≥ 1, let Q
↑
N (a,A) be the collection of all constant rate birth and death chains on VN

with p/q ∈ [a,A]. LetM
↑
N (a,A) be the set of all probability measures on VN such that

aµ(x)≤ µ(x + 1)≤ Aµ(x), x ∈ {0, . . . , N − 1}.

For such a probability measure, we have

µ(0)≥
A− 1

AN+1− 1
, µ(N)≥

1− 1/a

1− 1/aN+1
.

Lemma 3.7. Fix A≥ a ≥ 1. If µ ∈M
↑
N (a,A) and Q ∈ Q

↑
N (a,A) then

µ′ = µQ ∈M
↑
N (a,A).

Proof. This follows by inspection. The end-points are the more interesting case. Let us check for

instance that aµ′(0)≤ µ′(1)≤ Aµ′(0). We have

µ′(0) = (r + q)µ(0) + qµ(1), µ′(1) = pµ(0) + rµ(1) + qµ(2).

Hence aµ′(0)≤ µ′(1) because aµ(1)≤ µ(2) and aq ≤ p. We also have µ′(1)≤ Aµ′(0) because

µ′(1) = (p/q)qµ(0) + rµ(1) + qµ(2)

≤ max{p/q,A}((r + q)µ(0) + qµ(1))≤ Aµ′(0).

For η ∈ (0,1/2), letHN (η) be the set of all Markov kernels K with K(x , x) ∈ (η, 1−η), x ∈ VN .

Theorem 3.8. Fix A≥ a > 1 and η ∈ (0,1/2). Set

α= α(η, a,A) =
η2(1− a−1/2)2

A+ A2
.

Then, for any initial distribution µ0 ∈M
↑
N (a,A) and any sequence (Ki)

∞
1 with Ki ∈ Q

↑
M (a,A)∩HN (η),

we have

d2(K0,n(x , ·),µn)
2 ≤

AN+1− A

A− 1
(1−α)n,

and

max
x ,z

¨����
Kn,0(x , z)

µn(z)
− 1

����

«
≤

AN+1− 1

A− 1
(1−α)n/2.

In particular, the relative-sup ε-merging time of the family Q
↑
N (a,A)∩HN (η) is at most

2 log(4[(A− 1)ε]−1) + 2(N + 1) logA

− log(1−α)
.
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Remark 3.9. This is an example where one expects the starting point to have a huge influence

on the merging time between K0,n(x , ·) and µn(·). And indeed, the proof given below based on

the last two inequalities in Theorem 3.2 shows that the uniform upper bound given above can be

drastically improved if one starts from N (or close to N). This is because, if starting from N , the

factor µ0(N)
−1 − 1 is bounded above by 1/(a− 1). Using this, the proof below shows approximate

merging after a constant number of steps if starting from N . To obtain the uniform upper bound of

Theorem 3.8, we will use the complementary fact that µ0(0)
−1− 1≤ (AN+1− 1)/(A− 1).

Proof. To apply Theorem 3.2, we use Remark 3.3 and compute the kernel of Pi = K∗i Ki given by

Pi(x , y) =
1

µi(x)

∑

z

µi−1(z)Ki(z, x)Ki(z, y).

We will use that (Pi,µi) is reversible with

µi(x)Pi(x , x + 1)≥
η2

1+ A
µi(x), x ∈ {0, . . . , N − 1}. (9)

To obtain this, observe first that

µi(x) =
∑

z

µi−1(z)Ki(z, x)≤ (1+ A)µi−1(x).

Then write

µi(x)Pi(x , x + 1) ≥ µi−1(x)Ki(x , x)Ki(x , x + 1)

+µi−1(x + 1)Ki(x + 1, x)Ki(x + 1, x + 1)

≥
η

1+ A
(p+ q)µi(x)≥

η2

1+ A
µi(x).

The fact that µi(x)≥ aµi(x−1) is equivalent to saying that µi(x) = zia
hi(x) with hi(x+1)−hi(x)≥

1, x ∈ {0, N − 1}. In [10, Proposition 6.1], the Metropolis chain M = Mi for any such measure

µ = µi , with base simple random walk, is studied. There, it is proved that the second largest

eigenvalue of the Metropolis chain is bounded by

β1(Mi)≤ 1− (1− a1/2)2/2.

The Metropolis chain has

µi(x)Mi(x , x + 1) =
1

2
µi(x + 1).

Hence, (9) and µi ∈M
↑(a,A) give

µi(x)Pi(x , x + 1)≥
2η2

(1+ A)A
µi(x)Mi(x , x + 1).

Now, a simple comparison argument yields

β1(i)≤ 1−α, α=
η2(1− a−1/2)2

A+ A2
.
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Remark 3.10. The total variation merging of the chains studied above can be obtained by a coupling

argument. Indeed, for any staring points x < y , construct the obvious coupling that have the chains

move in parallel, except when one is at an end point. The order is preserved and the two copies

couple when the lowest chain hits N . A simple argument bounds the upper tail of this hitting time

and shows that order N suffices for total variation merging from any two starting states. For this

coupling argument (and thus for the total variation merging result) the upper bound p/q ≤ A is

irrelevant.

4 Stability

This section introduces a concept, c-stability, that plays a crucial role in some applications of the

singular values techniques used in this paper and in the functional inequalities techniques discussed

in [25].

In a sense, this property is a straightforward generalization of the property that a family of kernels

share the same invariant measure. We believe that understanding this property is also of indepen-

dent interest.

Definition 4.1. Fix c ≥ 1. A sequence of Markov kernels (Kn)
∞
1 on a finite set V is c-stable if there

exists a measure µ0 > 0 such that

∀n≥ 0, x ∈ V, c−1 ≤
µn(x)

µ0(x)
≤ c

where µn = µ0K0,n. If this holds, we say that (Kn)
∞
1 is c-stable with respect to the measure µ0.

Definition 4.2. A set Q of Markov kernels is c-stable with respect to a probability measure µ0 > 0

if any sequence (Ki)
∞
1 such that Ki ∈ Q is c-stable with respect to µ0 > 0.

Remark 4.3. If all Ki share the same invariant distribution π then (Ki)
∞
1 is 1-stable with respect to

π.

Remark 4.4. Suppose a set Q of Markov kernels is c-stable with respect to a measure µ0. Let π

be the invariant measure for some irreducible aperiodic Q ∈ Q. Then we must have (consider the

sequence (Ki)
∞
1 with Ki =Q for all i)

x ∈ V,
1

c
≤
π(x)

µ0(x)
≤ c.

Hence, Q is also c2-stable with respect to π and the invariant measures π,π′ for any two aperiodic

irreducible kernels Q,Q′ ∈ Q must satisfy

x ∈ V,
1

c2
≤
π(x)

π′(x)
≤ c2. (1)

Remark 4.5. It is not difficult to find two Markov kernels K1, K2 on a finite state space V that are

reversible, irreducible and aperiodic with reversible measures π1,π2 satisfying (1) so that {K1, K2}

is not c-stable. See, e.g., Remark 2.5. This shows that the necessary condition (1) for a set Q of

Markov kernels to be c-stable is not a sufficient condition.
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Example 4.6. On VN = {0, . . . , N}, consider two birth and death chains QN ,1,QN ,2 with QN ,i(x , x +

1) = pi , x ∈ {0, . . . , N − 1}, QN ,i(x , x − 1) = qi , x ∈ {1, . . . , N}, QN ,i(x , x) = ri , x ∈ {1, . . . , N − 1},

QN ,i(0,0) = 1− pi , QN ,i(N , N) = 1−qi, pi+qi+ ri = 1, i = 1,2. Assume that ri ∈ [1/4,3/4]. Recall

that the invariant (reversible) measure for QN ,i is

πN ,i(x) =




N∑

y=0

(pi/qi)
y



−1

(pi/qi)
x .

For any choice of the parameters pi ,qi with 1< p1/q1 < p2/q2 there are no constants c such that the

family QN = {QN ,1,QN ,2} is c-stable with respect to some measure µN ,0, uniformly over N because

lim
N→∞

πN ,1(0)

πN ,2(0)
=∞.

However, the sequence (Ki)
∞
1 defined by K2i+1 = Q1, K2i = Q2, is c-stable. Indeed, consider the

chain with kernel Q = Q1Q2. This chain is irreducible and aperiodic and thus has an invariant

measure µ0. Set µn = µ0K0,n. Then µ2n = µ0 and µ2n+1 = µ0Q1 = µ1. It is easy to check that

Q(x , x ± 1)≥ m=min{(p1+ p2)/4, (q1+ q2)/4}> 0.

Since ri > m, µi = µ0Q1 and µ0 = µ1Q2 it follows that

mµ0(x)≤ µ1(x)≤ m−1µ0(x).

Hence the sequence (Ki)
∞
1 is (1/m)-stable.

Theorem 4.7. Let VN = {0, . . . , N}. Let (Ki)
∞
1 be a sequence of birth and death Markov kernels on

VN . Assume that Ki(x , x), Ki(x , x ± 1) ∈ [1/4,3/4], x ∈ Vn, i = 1, . . . , and that (Ki)
∞
1 is c-stable with

respect to the uniform measure on VN , for some constant c ≥ 1 independent of N. Then there exists a

constant A= A(c) (in particular, independent of N) such that the relative-sup ε-merging time for (Ki)
∞
1

on VN is bounded by

T∞(ε)≤ AN2(log N + log+ 1/ε).

This will be proved later as a consequence of a more general theorem. The estimate can be improved

to T∞(ε)≤ AN2(1+ log+ 1/ε) with the help of the Nash inequality technique of [25].

We close this section by stating an open question that seems worth studying.

Problem 4.8. Let Q be a set of irreducible aperiodic Markov kernels on a finite set V . Assume that

there is a constant a ≥ 1 such that min{K(x , x) : x ∈ V, K ∈ Q} ≥ a−1, and that for any two kernels

K , K ′ in Q the associate invariant measures π,π′ satisfy a−1π ≤ π′ ≤ aπ. Prove or disprove that

this implies that Q is c-stable (ideally, with a constant c depending only on a).

Getting positive results in this direction under strong additional restrictions on the kernels in Q is

of interest. For instance, assume further that the kernels in Q are all birth and death kernels and

that for any two kernels K , K ′ ∈ Q, a−1K(x , y) ≤ K ′(x , y) ≤ aK(x , y). Prove (or disprove) that

c-stability holds in this case.

In this general direction, we only have the following (not very practical) simple result.
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Proposition 4.9. Assume that there is a constant a ≥ 1 such that for any two finite sequences Q1, . . . ,Q i

and Q′1, . . . ,Q′j of kernels from Q the stationary measures π,π′ of the products Q1 · · ·Q i , Q′1 · · ·Q
′
j

satisfy a−1π ≤ π′ ≤ aπ. Then Q is a2-stable with respect to the invariant measure πK of any kernel

K ∈ Q.

Proof. Let (Ki)
∞
1 be a sequence of kernels from Q. By hypothesis, for any fixed n, if π′n denotes the

invariant measure of K0,n = K1 · · ·Kn, we have a−1πK ≤ π
′
n ≤ aπK . Hence, a−1π′n ≤ πK K0,n ≤ aπ′n.

This implies a−2πK ≤ πK K0,n ≤ a2πK as desired.

4.1 Singular values and c-stability

Suppose Q has invariant measure π and second largest singular value σ1. Then d2(Qn(x , ·),π) ≤

π(x)−1/2σn
1. See, e.g., [12] or [23, Theorem 3.3]. The following two statements can be viewed as a

generalization of this inequality and illustrates the use of c-stability. The first one uses c-stability of

the sequence (Ki)
∞
1 whereas the second assumes the c-stability of a set of kernels. In both results,

the crucial point is that the unknown singular values σ(Ki ,µi−1) are replaced by expressions that

depend on singular values that can, in many cases, be estimated. Theorem 4.7 is a simple corollary

of the following theorem.

Theorem 4.10. Fix c ∈ (1,∞). Let (Ki)
∞
1 be a sequence of irreducible Markov kernels on a finite set

V . Assume that (Ki)
∞
1 is c-stable with respect to a positive probability measure µ0. For each i, set

µi
0 = µ0Ki and let σ1(Ki,µ0) be the second largest singular value of Ki as an operator from ℓ2(µi

0) to

ℓ2(µ0). Then

d2(K0,n(x , ·),µn)≤ µ0(x)
−1/2

n∏

1

(1− c−2(1−σ1(Ki,µ0)
2))1/2.

In addition,
����
K0,n(x , y)

µn(y)
− 1

����≤ c1/2(µ0(x)µ0(y))
−1/2

n∏

1

(1− c−2(1−σ1(Ki ,µ0)
2))1/2.

Proof. First note that since µi−1/µ0 ∈ [1/c, c], we have µi
0/µi ∈ [1/c, c]. Consider the operator Pi

of Remark 3.3 and its kernel

Pi(x , y) =
1

µi(x)

∑

z

µi−1(z)Ki(z, x)Ki(z, y).

By assumption

µi(x)Pi(x , y)≥ c−1µi
0(x)


 1

µi
0(x)

∑

z

µ0(z)Ki(z, x)Ki(z, y)




where the term in brackets on the right-hand side is the kernel of K∗i Ki where Ki : ℓ2(µi
0)→ ℓ

2(µ0).

This kernel has second largest eigenvalue σ(Ki ,µ0)
2. A simple eigenvalue comparison argument

yields

1−σ1(Ki ,µi−1)
2 ≥

1

c2
(1−σ1(Ki,µ0)

2).

Together with Theorem 3.2, this gives the stated result. The last inequality in the theorem is simply

obtained by replacing µn by µ0 using c-stability.
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Theorem 4.11. Fix c ∈ (1,∞). Let Q be a family of irreducible aperiodic Markov kernels on a finite

set V . Assume that Q is c-stable with respect to some positive probability measure µ0. Let (Ki)
∞
1 be a

sequence of Markov kernels with Ki ∈ Q for all i. Let πi be the invariant measure of Ki . Let σ1(Ki) be

the second largest singular value of Ki as an operator on ℓ2(πi). Then, we have

d2(K0,n(x , ·),µn)≤ µ0(x)
−1/2

n∏

1

(1− c−4(1−σ1(Ki)
2))1/2.

In addition,

����
K0,n(x , y)

µn(y)
− 1

����≤ c1/2(µ0(x)µ0(y))
−1/2

n∏

1

(1− c−4(1−σ1(Ki)
2))1/2.

Proof. Recall that the hypothesis that Q is c-stable implies πi/µi ∈ [1/c
2, c2]. Consider again the

operator Pi of Remark 3.3 and its kernel

Pi(x , y) =
1

µi(x)

∑

z

µi−1(z)Ki(z, x)Ki(z, y).

By assumption

µi(x)Pi(x , y)≥ c−2πi(x)


 1

πi(x)

∑

z

πi(z)Ki(z, x)Ki(z, y)




where the term in brackets on the right-hand side is the kernel of K∗i Ki where Ki : ℓ2(πi)→ ℓ
2(πi).

As µi(x)≤ c2πi(x), a simple eigenvalue comparison argument yields

1−σ1(Ki,µi−1)
2 ≥

1

c4
(1−σ1(Ki)

2).

Together with Theorem 3.2, this gives the desired result.

The following result is an immediate corollary of Theorem 4.11. It gives a partial answer to Problem

1.1 stated in the introduction based on the notion of c-stability.

Corollary 4.12. Fix c ∈ (1,∞) and λ ∈ (0,1). Let Q be a family of irreducible aperiodic Markov

kernels on a finite set V . Assume thatQ is c-stable with respect to some positive probability measure µ0

and set µ∗0 =minx{µ0(x)}. For any K in Q, let πK be its invariant measure and σ1(K) be the singular

value of K on ℓ2(πK). Assume that, ∀K ∈ Q, σ1(K) ≤ 1− λ. Then, for any ε > 0, the relative-sup

ε-merging time of Q is bounded above by

2c4

λ(2−λ)
log

�
c1/2

εµ∗0

�
.

Remark 4.13. The kernels in Remark 2.5 are two reversible irreducible aperiodic kernels K1, K2 on

the 2-point space so that the sequence obtained by alternating K1, K2 is not merging in relative-sup

distance. While these two kernels satisfy max{σ1(K1),σ2(K2)}< 1,Q = {K1, K2} fails to be c-stable

for any c > 0. The family of kernels

Q =

¨
Mp =

�
p 1− p

p 1− p

�
, p ∈ (0,1)

«
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has relative-sup merging time bounded by 1 but is not c-stable for any c ≥ 1. To see that c-stability

fails for Q, note that we may choose a sequence (Kn)
∞
1 such that Kn = Mpn

where pn → 0. This

shows that the c-stability hypothesis is not a necessary hypothesis for the conclusion to hold for

certain Q.

The following proposition describes a relation of merging in total variation to merging in the relative-

max distance under c-stability. Note that we already noticed that without the hypothesis of c-stability

the properties listed below are not equivalent.

Proposition 4.14. Let V be a state space equipped with a finite familyQ of irreducible Markov kernels.

Assume that Q is c-stable and that either of the following conditions hold for each given K ∈ Q:

(i) K is reversible with respect to some positive probability measure π > 0.

(ii) There exists ε > 0 such that K satisfies K(x , x)> ε for all x.

Then the following properties are equivalent:

1. Each K ∈ Q is irreducible aperiodic (this is automatic under (ii)).

2. Q is merging in total variation.

3. Q is merging in relative-sup.

Proof. Clearly the third listed property implies the second which implies the first. We simply need to

show that the first property implies the third. Let (Kn)
∞
1 be a sequence with Kn ∈ Q for all n≥ 1. Let

πn be the invariant measure for Kn and σ1(Kn) be its second largest singular value as an operator

on ℓ2(πn).

Either of the conditions (i)-(ii) above implies that σ1(Kn) < 1. Indeed, if (i) holds, Kn = K∗n and

σ1(Kn) =max{β1(Kn),−β|V |−1(Kn)} where β1(Kn) and β|V |−1(Kn) are the second largest and small-

est eigenvalues of Kn respectively. It is well-known, for a reversible kernel Kn, the fact that Kn is

irreducible aperiodic is equivalent to

max{β1(Kn),−β|V |−1(Kn)}< 1.

If (ii) holds, Lemma 2.5 of [8] tells us that

σ1(Kn)≤ 1− ε(1− β1(K̃n))

where K̃n = 1/2(Kn + K∗n). If Kn is irreducible aperiodic, so is K̃n and it follows that β1(K̃n) < 1.

Hence σ1(Kn) < 1. Since Q is a finite family, the σ1(Kn) can be bounded uniformly away from 1.

Theorem 4.11 now yields that Q is merging in relative-sup.

4.2 End-point perturbations for random walk on a stick

This section provides the first non-trivial example of c-stability.
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Let p,q, r ≥ 0 be fixed with p+ q+ r = 1, p ≥ q and min{q, r} > 0. On VN = {0, . . . , N}, set

Q(x , y) =





p if y = x + 1 and x 6= N

1− p if y = x and x = 0

q if y = x − 1 and x 6= 0

1− q if y = x and x = N

r if y = x and x 6= 0, N ,

(2)

and let ν be the associated reversible probability measure given by

ν(x) = cN (p/q)
x−N , cN =

1− (q/p)

1− (q/p)N+1
if p 6= q,

and ν ≡ 1/(N + 1) if p = q.

Fix ε ∈ (0,1) and let Q(p,q, r,ε) be the set of all birth and death kernels Qa,b on VN = {0, . . . , N} of

the form

Qa,b(x , y) =





Q(x , y) if x 6= 0, N or |x − y | ≥ 2

a if x = 0 and y = 1

1− a if x = y = 0

b if x = N and y = N − 1

1− b if x = y = N ,

(3)

with

p ≤ a ≤ 1− ε, q ≤ b ≤ 1− ε.

Proposition 4.15. For any ε ∈ (0,1/2) and ε ≤ p,q, r ≤ 1− 2ε, the set Q(p,q, r,ε) is c-stable with

respect to the measure ν with c = 2+ 1/ε.

This example is interesting in that it seems quite difficult to handle by inspection and algebra.

Proving c-stability involves keeping track of huge amounts of cancellations, which appears to be

rather difficult. We will use an extremely strong coupling property to obtain the result.

Proof. Consider a sequence (Qk)
∞
1 such that Qk = Qak ,bk

∈ Q(p,q, r,ε). We construct a coupling

(W 1
t ,W 2

t )
∞
0 such that marginally W 1

t is driven by Q and W 2
t is driven by (Qk)

∞
1 .

For all t ≥ 0, let W 1
t be driven by Q. Set W 1

0 =W 2
0 and construct W 2

t with the property that

∀ t ≥ 0, |W 2
t −W 1

t | ≤ 1,

inductively as follows.

Case 1 W 1
t ,W 2

t ∈ [1, N − 1]. Then

W 2
t+1 =





W 2
t + 1 if W 1

t+1 =W 1
t + 1

W 2
t if W 1

t+1 =W 1
t

W 2
t − 1 if W 1

t+1 =W 1
t − 1.

Note that in this case |W 1
t+1−W 2

t+1|= |W
1
t −W 2

t |.
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Case 2 W 1
t =W 2

t ∈ {0, N}. Pick W 2
t+1 according to Q t(W

2
t , ·). Since W 1

t and W 2
t are at an end-point

then it follows that |W 1
t+1−W 2

t+1| ≤ 1.

Case 3(a) W 1
t = 1 and W 2

t = 0. Then

W 2
t+1 =

¨
1 if W 1

t+1 = 2

W 2
t + Zt otherwise

(4)

where Zt is the random variable with distribution (recall that at > p)

P(Zt = 1) =
at+1− p

1− p
and P(Zt = 0) =

1− at+1

1− p
.

Case 3(b) W 1
t = 0 and W 2

t = 1. Then

W 2
t+1 =

¨
2 if W 1

t+1 = 1

W 2
t + Yt otherwise

where Yt is a random variable with distribution

P(Yt =−1) =
q

1− p
and P(Yt = 0) =

r

1− p
.

Case 4(a) W 1
t = N − 1 and W 2

t = N . Then

W 2
t+1 =

¨
N − 1 if W 1

t+1 = N − 2

W 2
t +

eZt otherwise

where eZt is a random variable with distribution

P(eZt =−1) =
bt+1− q

1− q
and P(eZt = 0) =

1− bt+1

1− q
.

Case 4(b) W 1
t = N and W 2

t = N − 1. Then

W 2
t+1 =

¨
N − 2 if W 1

t+1 = N − 1

W 2
t +

eYt otherwise

where eYt has distribution

P(eYt = 1) =
p

1− q
and P(Yt = 0) =

r

1− q
.

One easily checks that, for all t > 0, given W 2
0 , . . . ,W 2

t−1,W 2
t = x , W 2

t+1 is distributed according to

Q t+1(x , ·) and that |W 2
t −W 1

t | ≤ 1.
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Armed with this coupling, we now prove the stated stability property. For x ∈ VN , set Ax = {z ∈ VN :

|z − x | ≤ 1}. We have

W 2
t ∈ AW 1

t
,W 1

t ∈ AW 2
t
.

If W 1
0 = W 2

0 have initial distribution ν then W 1
t has distribution νQt = ν and W 2

t has distribution

νt = νK0,t . Moreover

ν(x) = Pν(W
1
t = x)≤ P(W 2

t ∈ Ax) = νt(Ax),

νt(x) = Pν(W
2
t = x)≤ P(W 1

t ∈ Ax) = ν(Ax).

The second inequality and the explicit formula for ν gives

νt(x)≤ ((q/p) + 1+ (p/q))ν(x)≤ (2+ ε−1)ν(x).

Since Kt(y, z) =Qat ,bt
(y, z)≥ ε for all z and y ∈ Az , we also have

νt(x) = νt−1Kt(x)≥ ενt−1(Ax)≥ εν(x).

Hence

∀ t ≥ 0, ε≤
νt(x)

ν(x)
≤ (2+ ε−1).

Having proved Proposition 4.15, Theorem 4.11, together with well-known results concerning the

p, r,q simple random walk on the stick, yields the following result. The details are left to the reader.

Theorem 4.16. Fix ε ∈ (0,1/2) and ε≤ p, r,q ≤ 1− 2ε.

1. Assume that p/q ≥ 1+ ε. Then there is a constant D(ε) such that the family Q(p,q, r,ε) has a

total variation η-merging time bounded above by

D(ε)(N + log+ 1/η).

Furthermore, for any sequence Ki ∈ Q(p, r,q,ε), we have

n≥ D(ε)(N + log+ 1/η) =⇒max
x ,y,z

¨����
K0,n(x , z)

K0,n(y, z)
− 1

����

«
≤ η.

2. Assume that p = q. Then there is a constant D(ε) such that the family Q(p,q, r,ε) has a total

variation η-merging time bounded above by

D(ε)N2(log N + log+ 1/η).

Furthermore, for any sequence Ki ∈ Q(p, r,q,ε), we have

n≥ D(ε)N2(log N + log+ 1/η) =⇒max
x ,y,z

¨����
K0,n(x , z)

K0,n(y, z)
− 1

����

«
≤ η.
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Remark 4.17. In case 2, i.e., when p = q, the result stated above can be improved by using the Nash

inequality techniques developed in [25]. This leads to bounds on the merging times of order N2

instead N2 log N . Using singular values, we can get a hint that this is the case by considering the

average ℓ2 distance and the first inequality in Theorem 3.2. Indeed, in the case p = q, comparison

with the simple random walk on the stick yields control not only of the top singular value, but

of most singular values. Namely, if (Ki)
∞
1 is a sequence in Q(p, p, r,ε), p, r ∈ [ε, 1 − 2ε] and

µ0 = ν ≡ 1/(N + 1), µn = νK0,n, then the j-th singular value σ j(Ki ,µi−1) is bounded by

σ j(Ki ,µi−1)≤ 1− C(ε)−1

�
j

N

�2

.

Using this in the first inequality stated in Theorem 3.2 (together with stability) yields

1

(N + 1)2

∑

x ,y

����
K0,n(x , y)

µn(y)
− 1

����
2

≤ η if n≥ D(ε)N2(1+ log+(1/η)).

5 Stability of some inhomogeneous birth and death chains

Recall that a necessary condition for a familyQ of irreducible aperiodic Markov kernels to be c-stable

is that, for any pair of kernels inQ, the associated stationary measures π,π′ satisfy c−2 ≤ π/π′ ≤ c2.

In less precise terms, all the stationary measures must have a similar behavior which we refer to as

the stationary measure behavior of the family.

The goal of this section is to provide examples of c-stable families of Markov chains that allow for

a great variety of stationary measure behaviors. Because we lack techniques to study c-stability,

providing such examples is both important and not immediate. The examples presented in this

section are sets of “perturbations” of birth and death chains having a center of symmetry. Except for

this symmetry, the stationary measure of the birth and death chain that serves as the basis for the

family is arbitrary. Hence, this produces examples with a wide variety of behaviors.

5.1 Middle edge perturbation for birth and death chains with symmetry

For N ≥ 1, a general birth a death chain on [−N , N] is described by

Q(x , y) =





px if y = x + 1

qx if y = x − 1

rx if y = x and y 6= −N , N

0 otherwise

with pN = q−N = 0 and 1 = px + qx + rx for all x ∈ [−N , N]. We consider the case when for all

x ∈ [−N , N]

px = q−x and rx = r−x . (1)

This immediately implies that q0 = p0. The kernel Q has reversible stationary distribution,

ν(x) = c

x∏

y=−N+1

py−1

qy
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where c is the appropriate normalizing constant. Moreover, one checks that

ν(−x) = ν(x), x ∈ [−N , N].

For ε ∈ R, let ∆ε be the (non-Markovian) kernel defined by

∆ε(x , y) =




ε if (x , y) = (0,1)

−ε if (x , y) = (0,−1)

0 otherwise

(2)

For ε ∈ (−q0,q0), the perturbation Qε =Q+∆ε of Q is a Markov kernel and has stationary distribu-

tion

νε(x) =





cε
∏z

y=−N+1

py−1

qy

q0−ε

q0−ε
if z < 0

cε
∏0

y=−N+1

py−1

qy

q0

q0−ε
if z = 0

cε
∏z

y=−N+1

py−1

qy

q0+ε

q0−ε
if z > 0

(3)

where cε is a normalizing constant. Using the facts the
∑
νε(x) = 1 and (1) it follows that

q0

q0− ε
cε = c.

This implies that

νε(x) =





ν(z)−
εν(z)

q0
if z < 0

ν(0) if z = 0

ν(z) +
εν(z)

q0
if z > 0.

Definition 5.1. Fix ε ∈ [0,q0) and set QN (Q,ε) = {Qδ : δ ∈ [−ε,ε]}.

Definition 5.2. Fix ε ∈ [0,q0). Let SN (ν ,ε) be the set of probability measures µ on [−N , N]

satisfying the following two properties:

(1) for x ∈ [−N , N], there exist constants aµ,x such that aµ,x = aµ,−x and

µ(x) =




ν(x) + aµ,x if x > 0

ν(x)− aµ,x if x < 0

ν(0) if x = 0;

(2) for all x ∈ [0, N],

νε(x)≥ µ(x)≥ ν−ε(x) and νε(−x)≤ µ(−x)≤ ν−ε(−x).

where νε and ν−ε are defined in (3).

Theorem 5.3. Fix ε ∈ [0,q0). Let µ ∈ SN (ν ,ε). Then for any δ ∈ [−ε,ε] we have µQδ ⊆ SN (ν ,ε).
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Proof. Let µ ∈ SN (ν ,ε).

(1) Set a0 = 0, for any x ∈ [1, N − 1] we have that

µQ(x) = px−1µ(x − 1) + rxµ(x) + qx+1µ(x + 1)

= ν(x) + px−1ax−1+ rx ax + qx+1ax+1

and

µQ(−x) = p−x−1µ(−x − 1) + r−xµ(−x) + q−x+1µ(−x + 1)

= ν(−x)− p−x−1a−x−1− r−x a−x − q−x+1a−x+1

= ν(−x)−
�

px−1ax−1+ rx ax + qx+1ax+1

�
.

At the end-points −N and N we get that

µQ(N) = µ(N)(1− qN ) +µ(N − 1)pN−1

= ν(N) + aN (1− qN ) + aN−1pN−1

and

µQ(−N) = µ(−N)(1− p−N ) +µ(−N + 1)q−N+1

= ν(−N)− a−N (1− p−N )− a−N+1q−N+1

= ν(N)−
�
aN (1− qN ) + aN−1pN−1

�
.

Using similar arguments, it is easy to verify that µQ(0) = ν(0).

To check that µQδ satisfies (1) of Definition 5.2 we note that

µ∆δ(x) =




δµ(0) if x = 1

−δµ(0) if x = −1

0 otherwise.

The desired result now follows from the fact that for any x ∈ [−N , N]

µQδ(x) = µQ(x) +µ∆δ(x).

(2) For any δ ∈ [−ε,ε] we have that

Qδ =Qε−∆ε+∆δ =Qε−∆ε−δ.

It follows that νεQδ = νε− νε∆ε−δ. We get that

νεQδ(x) =




νε(1)− (ε−δ)νε(0) if x = 1

νε(−1) + (ε− δ)νε(0) if x = −1

νε(x) otherwise.
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and

ν−εQδ(x) =




ν−ε(1) + (ε+δ)ν−ε(0) if x = 1

ν−ε(−1)− (ε+δ)ν−ε(0) if x =−1

ν−ε(x) otherwise.

Since δ ∈ [−ε,ε], we have that for x ∈ [0, N]

νεQδ(x)≤ νε(x) and ν−εQδ(x)≥ ν−ε(x) (4)

and also that,

νεQδ(−x)≥ νε(−x) and ν−εQδ(−x)≤ ν−ε(−x). (5)

By property (2) of µ being in SN (ν ,ε) we get that for any x ∈ [1, N]

νεQδ(x)≥ µQδ(x)≥ ν−εQδ(x) and νεQδ(−x)≤ µQδ(−x)≤ ν−εQδ(−x).

Equations (5) and (4) imply that for x ∈ [1, N]

νε(x)≥ µQδ(x)≥ ν−ε(x) and νε(−x)≤ µQδ(−x)≤ ν−ε(−x).

The inequalities above, along with the first part of the proof give the desired result.

Theorem 5.4. Fix ε ∈ [0,q0). The set QN (Q,ε) is
q0+ε

q0−ε
-stable with respect to any measure µ0 ∈

SN (ε,ν).

Proof. Let µ0 ∈ SN (ν ,ε), and set µn = µ0K0,n. By Theorem 5.3 it follows that for any n≥ 0 and any

x ∈ [0, N]

νε(x)≥ µn(x)≥ ν−ε(x) and νε(−x)≤ µn(−x)≤ ν−ε(−x).

So we have that for any x ∈ [−N , N]

min
z

νε(z)

ν(z)
≤
µn(x)

ν(x)
≤max

z

νε(z)

ν(z)
.

Recall that

cε

�
q0

q0− ε

�
= c.

It follows that

max
z

νε(z)

ν(z)
=

cε

c

�
q0+ ε

q0− ε

�
=

q0+ ε

q0

, min
z

νε(z)

ν(z)
=

cε

c
=

q0− ε

q0

.

We get
q0− ε

q0

≤
µn(x)

ν(x)
≤

q0+ ε

q0

which implies,
q0− ε

q0+ ε
≤
µn(x)

µ0(x)
≤

q0+ ε

q0− ε
.
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5.2 Example: the binomial chain

We now illustrate the above construction on a classical example, the (centered) binomial distribution

π(x) = 2−2N
� 2N

N+x

�
on VN = {−N , . . . , N}. The birth and death chain Q given by

Q(x , x + 1) =
N − x

2N + 1
, Q(x , x − 1) =

N + x

2N + 1
, Q(x , x) =

1

2N + 1

admits the binomial distribution π as reversible measure. It is obviously symmetric with respect

to 0. Its second largest singular value(=eigenvalue) is 1 − 2/(2N + 1). By Theorem 5.4, the set

QN (ε) = QN (Q,ε) with ε ∈ [0,q0) is (q0 + ε)/(q0 − ε)-stable. Here, q0 = N/(2N + 1). Hence we

can apply Theorem 4.11 which yields a constant A (independent of N) such that, for any sequence

(Ki)
∞
1 with Ki ∈ QN (q0/2),

max
x ,y,z

¨����
K0,n(x , z)

K0,n(y, z)
− 1

����

«
≤ η if n≥ AN(N + log 1/η). (6)

This is a good example to point out that the present singular value technique is most precise when

applied to bound the average ℓ2-distance

 ∑

x ,y

����
K0,n(x , y)

µn(y)
− 1

����
2

µn(y)µ0(x)

!1/2

(here µ0 = π, µn = πK0,n which, by c-stability, is comparable to π). Indeed, to bound this quan-

tity, Theorem 3.2 allows us to use information on all singular values, not just the second largest.

The singular values of Q not equal to 1 are the numbers |2N + 1 − 2i|/(2N + 1) with multiplic-

ity
�2N

i

�
+
� 2N

2N+1−i

�
, i = 1, . . . , N (this follows from the classical fact that the eigenvalues are

(2N + 1 − 2i)/(2N + 1) with multiplicity
�2N

i

�
, i = 0, . . . , 2N). The technique behind the proof

of Theorem 4.11 yields
∑

x ,y

����
K0,n(x , y)

µn(y)
− 1

����
2

µn(y)µ0(x)≤ η
2

for n ≥ AN(log N + log 1/η). This indicates merging after order N log N steps whereas the bound

(6) requires N2 steps. Singular values alone do not yield a bound of order N log N for the ℓ2-

distance from a fixed starting point or for the relative-sup merging time. In [25], such an improved

upper bound is obtained by using a logarithmic Sobolev inequality. Figure 1 in the introduction

illustrates the merging in time of order N log N of a time inhomogeneous chain of this type driven

by a sequence (Ki)
∞
1 with Ki ∈ {Qδ1

,Qδ2
} ⊂ QN (Q,δ1) with

δ1 =
N

2(2N + 1)
and δ2 =−

N

4(2N + 1)
.

In Figure 1, N = 30.

6 Two-point inhomogeneous Markov chains

This final section examines time inhomogeneous Markov chains on the two-point space. We charac-

terize total variation merging and discuss stability and relative-sup merging.
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6.1 Parametrization

Let V = {0,1} be the two-point space. Let 0≤ p ≤ 1, and set

Mp(x , y) =

¨
p if y = 0

1− p if y = 1.
(1)

Obviously, this chain has stationary measure

νp(z) =

¨
p if x = 0

1− p if x = 1.

In fact, for any probability measure µ, µMp = νp. Let I denote the 2×2 identity matrix and consider

the family of kernels

Mp =

�
K[α, p] : K[α, p] =

�
1

1+α

��
αI +Mp

�
: α ∈

�
−min{p, 1− p},∞

��
.

By convention we have that I = K[∞, p] for all 0≤ p ≤ 1. Any kernel inMp has invariant measure

νp and Mp is exactly the set of all Markov kernels on V with invariant measure νp. Indeed, if

q1,q2 ∈ [0,1] and

K =

�
q1 1− q1

q2 1− q2

�

then solving the equation (1+α)K = αI +Mp yields

α=
q1− q2

1+ q2− q1

and p =
q2

1+ q2− q1

.

Note that K[α, p] has no holding in at least one point in V when α=−min{p, 1− p}. Also, the only

non irreducible kernels are I and those with min{p, 1− p} = 0 whereas the only irreducible periodic

kernel is K[−1/2,1/2]. For later purpose, we note that the nontrivial eigenvalue β1(K[α, p]) of

K[α, p] is given by

β1(K[α, p]) =
α

1+α
. (2)

6.2 Total variation merging

Let (Ki)
∞
1 with Ki = K[αi , pi], pi ∈ [0,1], αi ∈ [−min{pi , 1− pi},∞) ⊂ [−1/2,∞). The following

statement identifies K0,n using the (α, p)-parametrization.

Lemma 6.1.

K0,n =

�
1

1+α0,n

��
α0,n I +Mp0,n

�
= K[α0,n, p0,n]

where

α0,n =

∏n

i=1αi∏n

i=1(1+αi)−
∏n

i=1αi

(3)

and

p0,n =

∑n

i=1

�∏i−1

j=1(1+α j)
��∏n

j=i+1α j

�
pi

∏n

i=1(1+αi)−
∏n

i=1αi

. (4)
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Proof. This can be shown by induction. Note that K0,2 = K1K2 is equal to

1

1+α0,2

(α0,2 I +Mp0,2
)

with

α0,2 =
α1α2

1+α1+α2

, p0,2 =
α2p1+ (1+α1)p2

1+α1+α2

.

Using the two step formula above for K0,n+1 = K0,nKn+1, we have

α0,n+1 =
α0,nαn+1

1+α0,n+αn+1

and p0,n+1 =
αn+1p0,n+ (1+α0,n)pn+1

1+α0,n+αn+1

. (5)

To see that α0,n+1 and p0,n+1 can be written in the forms of (3) and (4), we use the induction

hypothesis along with the equality

1+α0,n+αn+1 =

∏n+1

i=1 (1+αi)−
∏n+1

i=1 αi∏n

i=1(1+αi)−
∏n

i=1αi

.

To study the merging properties of (Ki)
∞
1 , observe that, for any two initial probability measures µ0

and ν0 on V , we have

µn− νn = µ0K0,n− ν0K0,n

=

�
1

1+α0,n

��
α0,n(µ0− ν0)I + (µ0− ν0)Mp0,n

�

=

�
α0,n

1+α0,n

�
(µ0− ν0) =

 
n∏

i=1

αi

1+αi

!
(µ0− ν0). (6)

This, together with elementary considerations, yields the following proposition.

Proposition 6.2. The sequence (Ki)
∞
1 is not merging in total variation if and only if the following three

conditions hold:

1. For all i, αi 6= 0;

2.
∑

i:αi<0(1+ 2αi)<∞;

3.
∑

i:αi>0(1+αi)
−1 <∞.

Remark 6.3. The meaning of this proposition is that, in order to avoid merging we must prevent

αi = 0 (i.e., Ki = Mpi
) for some i and have Ki approaching either I (no moves) or K[−1/2,1/2]

(periodic chain) at fast enough rates. For instance, for i = 1,2, . . . , take

K2i+1 =

�
1− i−2 i−2

(2i)−2 1− (2i)−2

�
, K2i =

�
i−2 1− i−2

1− (3i)−2 (3i)−2

�
.

Then α2i+1 = (4/5)i
2 − 1→∞ and α2i = −(1− 10i−2/9)/(2− 10i−2/9)→ −1/2 and there is no

merging.
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Proposition 6.4. Let Q = {K[α1, p1], . . . , K[αm, pm]} be a finite family of irreducible Markov kernels

on V = {0,1}. This family is merging in total variation if and only if K[−1/2,1/2] 6∈ Q, that is

(αi, pi) 6= (−1/2,1/2), i = 1, . . . , m.

Proof. Recall that, by definition, Q is merging if any sequence made of kernels from Q is merging.

If K[−1/2,1/2] 6∈ Q then for any infinite sequence from Q either condition 2 or condition 3 of

Proposition 6.2 is violated and we have merging.

Remark 6.5. The family Q considered in Proposition 6.4 may not be merging in relative-sup

distance even when K[−1/2,1/2] 6∈ Q. Indeed, Remark 6.9 gives an example of kernels

K[αi , pi], K[α j , p j] 6= K[−1/2,1/2] such that the product K[αi , pi]K[α j , p j] has an absorbing state

at 0 and 1 is not absorbing. For any measure µ0 > 0, the sequence (Kn)
∞
1 , with Kn = K[αi , pi] if n

is odd and Kn = K[α j , p j] otherwise, satisfies

lim
n→∞

µ2n(1) = 0.

Remark 6.6. Consider a sequence (Ki)
∞
1 of Markov kernels on the two-point space such that (1) is

satisfied. Write Ki = K[αi , pi]. Because the kernels are reversible, (1) and formula (2) yield

|αi |/(1+αi)≤ β < 1.

This implies that the αi ’s stay uniformly away from −1/2 and +∞. By Proposition 6.2 and (6) we

get

‖K0,n(0, ·)− K0,n(1, ·)‖TV ≤ β
n.

6.3 Stability

The study of stability on the 2-point space turns out to be quite interesting. We prove the following

result which readily follows from the more precise statement in Proposition 6.10 below.

Theorem 6.7. Fix 0 < ε ≤ η ≤ 1/2. Let Q(ε,η) be the set of all Markov kernels K[α, p] on {0,1}

with

p ∈ [η, 1−η] and α ∈ [−min(p, 1− p) + ε,∞).

Then Q(ε,η) is (ε2η)−1-stable with respect to any measure µ0 with µ0(0) ∈ [η, 1−η].

The special case in the following proposition is easy but important for the treatment of the general

case in Theorem 6.7.

Proposition 6.8. Fix η ∈ (0,1/2) and let

Q(+,η) = {K[α, p] : α≥ 0, p ∈ [η, 1−η]}.

Then Q(+,η) is η−1-stable with respect to any measure µ0 with µ0(0) ∈ [η, 1−η].

Proof. The crucial point is that when all αi are non-negative then p0,n is a convex combination of

the pi , 1≤ i ≤ n. Hence p0,n ∈ [η, 1−η] and µn(0) ∈ [η, 1−η]. This gives the stated result.
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When the αi are not all positive it is still possible to show c-stability but the proof is bit subtle. This

illustrates in this simple case the intrinsic difficulties related to the notion of stability.

Remark 6.9. Consider the product K[α1, p1]K[α2, p2] = K[α0,2, p0,2] when p1 6= p2, min(p1, 1 −

p1) = 1− p1, min(p2, 1− p2) = p2, α1 =−(1− p1) and α2 =−p2. Then

p0,2 =
α2p1+ (1+α1)p2

1+α1+α2

=
−p2p1+ p1p2

p2− p1

= 0.

Proposition 6.10. Let Ki = K[αi , pi], i = 1,2, . . . , be a sequence of Markov kernels on {0,1} with

Ki ∈ Q(ε,η). Then p0,n ∈ [ε
2η, 1− ε2η] for all n≥ 1.

In order to prove this proposition, we need the following technical lemma.

Lemma 6.11. Fix 0 ≤ ε ≤ η ≤ 1/2. Let K1 = K[α1, p1] and K2 = K[α2, p2] be two Markov kernels

on {0,1}. Assume that pi ∈ [η, 1−η], i = 1,2.

(1) If α1 ≥ 0 and α2 ≥ 0 then p0,2 ∈ [η, 1−η].

(2) If α1 ∈ [−min(p1, 1− p1) + ε, 0] and α2 ≥ 0 then

α0,2 ∈ [−min(p0,2, 1− p0,2) + ε, 0] and p0,2 ∈ [η, 1−η].

(3) If α1 ∈ [−min(p1, 1− p1)+ε,∞) and α2 ∈ [−min(p2, 1− p2)+ε, 0] then p0,2 ∈ [εη, 1−εη].

Proof. (1) The fact that p0,2 ∈ [η, 1−η] follows since p0,2 is a convex combination of p1 and p2 and

α0,2 ≥ 0 follows by Lemma 6.1.

(2) Since 1+ α1 ≥ 0 then p0,2 is a convex combination of p1 and p2 so we get p0,2 ∈ [η, 1− η].

To see that α0,2 ∈ [0,−min(p0,2, 1− p0,2) + ε], Lemma 6.1 implies that we just need to check the

following two inequalities:

(a) |α1α2| ≤ p1α2+ (1+α1)p2− ε(1+α1+α2). This inequality follows from

p1α2+ (1+α1)p2− ε(1+α1+α2) +α1α2

= α2(p1+α1) + (1+α1)p2− ε(1+α1+α2)

≥ εα2+ (1+α1)p2− ε(1+α1+α2)

= (1+α1)(p2− ε)≥ (1+α1)(η− ε)≥ 0.

(b) |α1α2| ≤ q1α2 + (1+ α1)q2 − ε(1+ α1 + α2) where qi = 1− pi . This inequality follows from

the same calculations as in part (a) and the facts that qi ∈ [η, 1−η] and αi ≥−qi + ε.

(3) Write

p0,2 =
α2p1+ (1+α1)p2

1+α1+α2

= p2− |α2|
(p1− p2)

1+α1+α2

(7)

and observe that ����
p1− p2

1+α1+α2

����=
|p1− p2|

1+α1+α2

≤
|p1− p2|

|p1− p2|+ 2ε
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The last inequality follows from 1+ α1 + α2 ≥ p1 − p2 + 2ε and 1+ α1 + α2 ≥ p2 − p1 + 2ε. Note

that x/(x + 2ε) is an increasing function for x ≥ 0, since |p1− p2| ≤ 1 we get that
����

p1− p2

1+α1+α2

����≤
1

1+ 2ε
≤ 1− ε.

If p1 ≤ p2 then (7) implies p0,2 ≥ p2 ≥ η≥ εη. With q2 = 1− p2, we get

p0,2 ≤ 1− q2+ q2

p2− p1

1+α1+α2

≤ 1− q2+ q2(1− ε)≤ 1− εq2 ≤ 1− εη.

If p2 ≤ p1 then (7) implies p0,2 ≤ p2 ≤ 1−η≤ 1− εη. For the lower bound we note that

p0,2 ≥ p2− p2

p1− p2

1+α1+α2

≥ p2− p2(1− ε)≥ εp2 ≥ εη.

Proof of Proposition 6.10. To introduce convenient notation, if K[α, p] ∈Mp we say that α = α(K)

and p = p(K). Let (Ki)
∞
1 be the sequence of kernels considered in Proposition 6.10. Fix n ≥ 1, and

let {i j}
m
j=1 be the set of numbers 1≤ i j ≤ n such that α(Ki j

)< 0. Set i0 = 0 and consider the kernels

Q j = Ki j ,i j+1−1 for 0≤ j ≤ m

Note that for any j ∈ [1, m] and l ∈ [i j , i j+1 − 1] we have that α(Kl) ≥ 0 and p(Kl) ∈ [η, 1− η].

Note that either Q j = I or by Lemma 6.11 we have that α(Q j) ≥ 0 and p(Q j) ∈ [η, 1−η]. Now we

write,

K0,n =Q0Ki1
Q1 . . . Ki j

Q j . . . Kim
Qm.

For any j ∈ [1, m], consider the kernel M j = Ki j
Q j . Since

α(K j) ∈ [−min(pi , 1− pi) + ε, 0] and α(Q j)≥ 0 or Q j = I ,

it follows by Lemma 6.11 that

α(M j) ∈ [−min(p(M j), 1− p(M j)) + ε, 0] and p(M j) ∈ [η, 1−η]. (8)

So now we write

K0,n =Q0M1M2 . . . Mm.

Consider the kernels eMi = M2i−1M2i . It follows by Lemma 6.11 and (8) that α( eMi)≥ 0 and p( eM j) ∈

[εη, 1− εη]. Let B = Q0
ÝM1. Since Q0 = I or α(Q0) ≥ 0 and p(Q0) ∈ [η, 1−η] by Lemma 6.11 we

have that α(B)≥ 0 and p(B) ∈ [εη, 1− εη]. If m= 2k then we write

K0,n = B eM2 . . . eMk.

For any K ∈ {B, eM2, . . . , eMk} we have that α(K) ≥ 0 and p(K) ∈ [εη, 1− εη], so by Lemma 6.11 we

get α(K0,n)≥ 0 and p(K0,n) ∈ [εη, 1− εη].

If m= 2k+ 1 the we write

K0,n = B eM2 . . . eMkMm = M ′Mm

where M ′ = B eM2 . . . eMk. By the same arguments as above we have α(M ′)≥ 0 and p(M ′) ∈ [εη, 1−

εη]. Lemma 6.11 and (8) we get that

p(K0,n) ∈ [ε
2η, 1− ε2η]

as desired.
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6.4 Stability and relative-sup merging

Given a sequence Ki = K[αi , pi] of Markov kernel on the two-point space, Lemma 6.1 indicates that

relative-sup merging is equivalent to

lim
n→∞

������

n∑

i=1

i−1∏

j=1

�
1+

1

α j

�
pi

αi

������
=∞ and lim

n→∞

������

n∑

i=1

i−1∏

j=1

�
1+

1

α j

�
1− pi

αi

������
=∞. (9)

Indeed, with the convention that these expressions are∞ if αi = 0 for some i ≤ n, this is the same

as saying that

max

¨
|α0,n|

p0,n

,
|α0,n|

1− p0,n

«
→ 0.

It does not appear easy to decide when (9) holds. Hence, even on the two-point space, c-stability

is useful when studying relative-sup merging. This is illustrated by the results obtained below.

The reader should note that this section falls short of providing statement analogous to the clean

definitive result – Proposition 6.2 – obtained for merging in total variation.

Theorem 6.12. Fix 0< ε < η≤ 1/2. The set eQ(ε,η) of all Markov kernels K[α, p] on {0,1} with

p ∈ [η, 1−η] and α ∈ [−min(p, 1− p) + ε,ε−1).

is merging in relative-sup distance.

Proof. Fix 0 < ε < η ≤ 1/2. The assumptions above imply that the α1’s are bounded uniformly

away from both −1/2 and +∞. Proposition 6.2 implies that eQ(ε,η) is merging in total variation.

Proposition 4.14 and Theorem 6.7 now yield the desired result.

Next, we address the case of sequences drawn from a finite family of kernels. We will need the

following two simple results.

Lemma 6.13. Let Q = {K[α1, p1], . . . , K[αm, pm]} be a finite set of irreducible Markov kernels on

V = {0,1}. Then Q is c-stable with respect to a positive probability measure µ0 for some c ∈ [1,∞) if

and only if
eQ = {eK = KK ′ : K , K ′ ∈ Q}

is ec-stable with respect to µ0 for some ec ∈ [1,∞).

Proof. Obviously, c-stability of Q implies c-stability of eQ. In the other direction, fix a sequence

(Ki)
∞
1 from kernels in Q and consider the sequence (eKi)

∞
1 with eKi = K2i−1K2i ∈ eQ. By hypothesis,

this sequence is ec-stable with respect µ0. Because the K ′i s are irreducible and drawn from a finite set

of kernels, this implies that the sequence (Ki)
∞
1 is c-stable with respect to µ0 for some c ∈ [1,∞).

Lemma 6.14. Let K = K[α, p], K ′ = K[α′, p′] be two irreducible Markov kernels on V = {0,1} and

set KK ′ = eK. Then one of the following three alternatives is satisfied:

1. eK = I , which happens if and only if K = K ′ = K[−1/2,1/2].
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2. eK has a unique absorbing state, which happens if and only if K 6= K ′ and either α = −p,α′ =

−(1− p′) or α=−(1− p),α′ =−p′.

3. eK = K[eα,ep] is irreducible with ep ∈ (0,1) and eα > −min{ep, 1− ep}.

Proof. The condition ep ∈ (0,1) and eα > −min{ep, 1 − ep} is equivalent to saying that eK has only

strictly positive entries. Since K , K ′ 6= I , eK = I can only occur when K = K ′ = K[−1/2,1/2]. Further,
eK(0,1) > 0 unless K(0,1) = K ′(1,0) = 1. Similarly, eK(1,0) > 0 unless K(1,0) = K ′(0,1) = 1. This

implies condition 2. If eK does not have absorbing states then condition 3 must hold.

Theorem 6.15. Let Q = {K[α1, p1], . . . , K[αm, pm]} be a finite set of irreducible Markov kernels on

V = {0,1}. This finite set is c-stable if and only if there are no pairs of distinct indices i, j ∈ {1, . . . , m}

such that

αi = −pi and α j = −(1− p j). (10)

Note that the set Q in Theorem 6.15 might very well contained the kernel K[−1/2,1/2]. Note also

that (10) implies that max{pi , 1− p j} ≤ 1/2.

Proof of Theorem 6.15. The fact that there are no pairs of distinct i, j ∈ {1, . . . , m} such that for

K[αi , pi], K[α j , p j] ∈ Q condition (10) is satisfied is necessary for c-stability. Indeed, if there is such

a pair, consider the sequence (Kn)
∞
1 with Kn = K[αi , pi] if n is odd and Kn = K[α j , p j] otherwise.

Note that K0,2n =Qn where Q = K[αi , pi]K[α j , p j]. Equation (5) yields Q = K[α̃, p̃] with

α̃=
pi(1− p j)

p j − pi

and p̃ = 1.

Since Q has a unique absorbing state at 0, for any µ0 > 0 we have that

lim
n→∞

µ2n(1) = lim
n→∞

µ0K0,2n(1) = lim
n→∞

µ0Qn(1) = 0.

Hence, the family Q cannot by c-stable according to Definition 4.2.

Assume now that there are no pairs of distinct i, j ∈ {1, . . . , m} such that (10) is satisfied. By Lemma

6.13, to prove stability with respect to the uniform measure (or any positive probability), it suffices

to prove the stability of eQ = {KiK j : Ki , K j ∈ Q}. By Lemma 6.14 the kernels in eQ are either equal

to I or are in the set Q(ε,η) of Theorem 6.7. Hence, Theorem 6.7 yields the c-stability of Q̃.

Corollary 6.16. Let Q = {K[α1, p1], . . . , K[αm, pm]} be a finite set of irreducible Markov kernels on

V = {0,1}. Q is merging in the relative-sup distance if and only if the following two conditions are

satisfied.

(1) K[−1/2,1/2] /∈ Q.

(2) There are no pairs of distinct indicies i, j,∈ {1, . . . , m} satisfying (10).

Proof. Assume that K[−1/2,1/2] ∈ Q and consider the sequence (Kn)
∞
1 with Kn = K[−1/2,1/2]

for all n≥ 1. For any n≥ 1, K[−1/2,1/2]n is the either the identity or K[−1/2,1/2] depending on

the parity of n. This chain clearly does not merge in the relative-sup distance according to Definition

2.4.
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Assume that condition 2 above is not satisfied and there exists a pair of distinct indicies i, j such

that (10) holds. By the proof of Theorem 6.15 we get that the kernel Q = K[αi , pi]K[α j , p j] has

an absorbing state at 0. Consider the sequence (Kn)
∞
1 where Kn = K[αi , pi] if n is odd and Kn =

K[α j , p j] otherwise. It follows that the family Q is not merging in relative-sup distance since, for

any n≥ 1, Qn(1,1)> 0 and

max
x ,y,z

¨����
K0,2n(x , z)

K0,2n(y, z)
− 1

����

«
=max

x ,y,z

¨����
Qn(x , z)

Qn(y, z)
− 1

����

«
=

����
Qn(1,1)

Qn(0,1)
− 1

����=∞.

If a familyQ satisfies both conditions 1 and 2 above, Propositions 4.14 and 6.4 along with Theorem

6.15 yield the desired relative-sup merging.

Remark 6.17 (Solution of Problem 1.1(2) on the 2-point space). In Problem 1.1, we make three

main hypotheses:

• (H1) All reversible measure πi are comparable (with comparison constant c ≥ 1). In the case

of the 2-point space, this means there exists η(c) ∈ (0,1/2) such that p ∈ [η(c), 1−η(c)].

• (H2) Inequality (1) holds. Because all the kernels involved are reversible, this implies that the

second largest eigenvalue in modulus, σ1(Ki ,πi) = σ1(Ki), satisfies σ1(Ki) ≤ β . Formula (2)

shows that β1(K[α, p]) = |α|/(1+ α). So, on the 2-point space, (1) yields α ∈ [−1

2
+ ε,ε−1]

for some ε ∈ (0,1).

• (H3) Uniform holding, i.e., minx{K(x , x)} ≥ c−1. One the 2-point space,

min
x
{K[α, p](x , x)} =

α+min(p, 1− p)

1+α
.

Hence, we get that α≥−min(p, 1− p) + (2c)−1.

The discussion above shows that the hypotheses (H1)-(H2)-(H3) imply that each Ki in (Ki)
∞
1 belongs

to the setQ(η(c), (2c)−1) of Theorem 6.7 which provides the stability of the family in question. Thus

Theorem 6.7 and 4.12 yield the desired relative-sup merging property.
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