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Abstract

A multitype Dawson-Watanabe process is conditioned, in subcritical and critical cases, on
non-extinction in the remote future. On every finite time interval, its distribution is abso-
lutely continuous with respect to the law of the unconditioned process. A martingale problem
characterization is also given. Several results on the long time behavior of the conditioned
mass process-the conditioned multitype Feller branching diffusion-are then proved. The gen-
eral case is first considered, where the mutation matrix which models the interaction between
the types, is irreducible. Several two-type models with decomposable mutation matrices are
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Introduction

The paper focuses on some conditioning of the measure-valued process called multitype Dawson-
Watanabe (MDW) process, and on its mass process, the well-known multitype Feller (MF)
diffusion. We consider the critical and subcritical cases, in which, for any finite initial condition,
the MF diffusion vanishes in finite time, that is the MDW process dies out a.s. In these cases,
it is interesting to condition the processes to stay alive forever - an event which we call remote
survival, see the exact definition in (3).
Such a study was initiated for the monotype Dawson-Watanabe process by A. Rouault and the
second author in [28] (see also [10], [9] and [8] for the study of various aspects of conditioned
monotype superprocesses). Their results were a generalization at the level of measure-valued
processes of the pioneer work of Lamperti and Ney ([20], Section 2), who studied the same
questions applied to Galton-Watson processes.
We are interested here in the multitype setting which is much different from the monotype one.
The mutation matrix D introduced in (2), which measures the quantitative interaction between
types, will play a crucial role.
We now briefly describe the contents of the paper. The model is precisely defined in the first
section. In the second section we define the conditioned MDW process, express its law as a
locally absolutely continuous measure with respect to the law of the unconditioned process, write
explicitly the martingale problem it satisfies and give the form of its Laplace functional; all this
in the case of an irreducible mutation matrix. Since D is irreducible, all the types communicate
and conditioning by remote survival is equivalent to conditioning by the non-extinction of only
one type (see Remark 2.5). The third section is devoted to the long time behavior of the mass
of the conditioned MDW process, which is then a conditioned MF diffusion. First the monotype
case is analyzed (it was not considered in [28]), and then the irreducible multitype case. We
also prove that both limits interchange: the long time limit and the conditioning by long time
survival (see Theorem 3.7). In the last section we treat the same questions as in Section 3 for
various reducible 2-types models. Since D is decomposable, both types can exhibit very different
behaviors, depending on the conditioning one considers (see Section 4.1).

1 The model

In this paper, we will assume for simplicity that the (physical) space is R. k is the number of
types. Any k-dimensional vector u ∈ R

k is denoted by (u1; · · · ; uk). 1 will denote the vector
(1; . . . ; 1) ∈ R

k. ‖u‖ is the euclidean norm of u ∈ R
k and (u, v) the scalar product between u

and v in R
k. If u ∈ R

k, |u| is the vector in R
k with coordinates |ui|, 1 ≤ i ≤ k.

We will use the notations u > v (resp. u ≥ v) when u and v are vectors or matrices such that
u − v has positive (resp. non-negative) entries.
Let Cb(R, Rk) denote the space of R

k-valued continuous bounded functions on R. By Cb(R, Rk)+
we denote the set of non-negative elements of Cb(R, Rk).
M(R) is the set of finite positive measures on R, and M(R)k the set of k-dimensional vectors of
finite positive measures.
The duality between measures and functions will be denoted by 〈·, ·〉 : 〈ν, f〉 :=

∫

fdν if ν ∈
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M(R) and f is defined on R, and in the vectorial case

〈(ν1; . . . ; νk), (f1; . . . ; fk)〉 :=
k

∑

i=1

∫

fidνi =
(

(〈ν1, f1〉; . . . ; 〈νk, fk〉),1
)

for ν = (ν1; . . . ; νk) ∈ M(R)k and f = (f1; . . . ; fk) ∈ Cb(R, Rk). For any λ ∈ R
k, the constant

function of Cb(R, Rk) equal to λ will be also denoted by λ.

A multitype Dawson-Watanabe process with mutation matrix D = (dij)1≤i,j≤k is a
continuous M(R)k-valued Markov process whose law P on the canonical space (Ω :=
C(R+, M(R)k), (Xt)t≥0, (Ft)t≥0) has as transition Laplace functional

∀f ∈ Cb(R, Rk)+, E(exp−〈Xt, f〉 | X0 = m) = exp−〈m, Utf〉 (1)

where Utf ∈ Cb(R, Rk)+, the so-called cumulant semigroup, is the unique solution of the non-
linear PDE







∂(Utf)

∂t
= ∆Utf + DUtf −

c

2
(Utf)⊙2

U0f = f.
(2)

Here, u⊙ v denotes the componentwise product (uivi)1≤i≤k of two k-dimensional vectors u and
v and u⊙2 = u ⊙ u. To avoid heavy notation, when no confusion is possible, we do not write
differently column and row vectors when multiplied by a matrix. In particular, in the previous
equation, Du actually stands for Du′.
The MDW process arises as the diffusion limit of a sequence of particle systems ( 1

K NK)K , where
NK is an appropriate rescaled multitype branching Brownian particle system (see e.g. [15] and
[16], or [32] for the monotype model): after an exponential lifetime with parameter K, each
Brownian particle splits or dies, in such a way that the number of offsprings of type j produced
by a particle of type i has as (nonnegative) mean δij + 1

K dij and as second factorial moment c (δij

denotes the Kronecker function, equal to 1 if i = j and to 0 otherwise). Therefore, the average
number of offsprings of each particle is asymptotically one and the matrix D measures the
(rescaled) discrepancy between the mean matrix and the identity matrix I, which corresponds
to the pure critical case of independent types.
For general literature on DW processes we refer the reader e.g. to the lectures of D. Dawson [3]
and E. Perkins [25] and the monographs [5] and [7].
Let us remark that we introduced a variance parameter c which is type-independent. In fact we
could replace it by a vector c = (c1; · · · ; ck), where ci corresponds to type i. If inf1≤i≤k ci > 0,
then all the results of this paper are still true. We decided to take c independent of the type to
simplify the notation.

When the mutation matrix D = (dij)1≤i,j≤k is not diagonal, it represents the interaction between
the types, which justifies its name. Its non diagonal elements are non-negative. These matrices
are sometimes called Metzler-Leontief matrices in financial mathematics (see [29] § 2.3 and the
bibliography therein). Since there exists a positive constant α such that D + αI ≥ 0, it follows
from Perron-Frobenius theory that D has a real eigenvalue µ such that no other eigenvalue of
D has its real part exceeding µ. Moreover, the matrix D has a non negative right eigenvector
associated to the eigenvalue µ (see e.g. [14], Satz 3 § 13.3 or [29] Exercise 2.11). The cases µ < 0,
µ = 0 and µ > 0 correspond respectively to a subcritical, critical and supercritical processes.
In the present paper, we only consider the case µ ≤ 0, in which the MDW dies out a.s. (see
Jirina [17]).
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2 (Sub)critical irreducible MDW process conditioned by remote
survival.

Let us recall the definition of irreducibility of a matrix.

Definition 2.1. A square matrix D is called irreducible if there is no permutation matrix Q
such that Q−1DQ is block triangular.

In all this section and in the next one, the mutation matrix D is assumed to be irreducible.
By Perron-Frobenius’ theorem (see e.g. [29] Theorem 1.5 or [14], Satz 2 §13.2, based on [27]
and [13]), the eigenspace associated to the maximal real eigenvalue µ of D is one-dimensional.
We will always denote its generating right (resp. left) eigenvector by ξ (resp. by η) with the
normalization conventions (ξ,1) = 1 and (ξ, η) = 1. All the coordinates of both vectors ξ and η
are positive.

2.1 The conditioned process as a h-process

The natural way to define the law P
∗ of the MDW process conditioned to never die out is by

∀B ∈ Ft, P
∗(B) := lim

θ→∞
P(B | 〈Xt+θ,1〉 > 0) (3)

if this limit exists.

In the following Theorem 2.2 we prove that P
∗ is a well-defined probability measure on Ft, which

is absolutely continuous with respect to P
∣

∣

Ft
. Furthermore, the density is a martingale, so that

P
∗ can be extended to ∨t≥0Ft, defining a Doob h-transform of P (see the seminal work [22] on

h-transforms and [24] for applications to monotype DW processes).

Theorem 2.2. Let P be the distribution of a critical or subcritical MDW process characterized
by (1), with an irreducible mutation matrix D and initial measure m ∈ M(R)k \ {0}. Then, the
limit in (3) exists and defines a probability measure P

∗ on ∨t≥0Ft such that, for any t > 0,

P
∗
∣

∣

Ft
=

〈Xt, ξ〉

〈m, ξ〉
e−µt

P
∣

∣

Ft
(4)

where ξ ∈ R
k is the unitary right eigenvector associated to the maximal real eigenvalue µ of D.

Proof of Theorem 2.2 By definition, for B ∈ Ft,

E(1IB | 〈Xt+θ,1〉 > 0) =
E

(

1IB(1 − P(〈Xt+θ,1〉 = 0 | Ft))
)

1 − P(〈Xt+θ,1〉 = 0)
.

For any time s > 0, xs := (〈Xs,1, 1〉; . . . ; 〈Xs,k, 1〉), the total mass at time s of the MDW
process, is a R

k
+-valued multitype Feller diffusion with initial value x = (〈m1, 1〉; . . . ; 〈mk, 1〉)

characterized by its transition Laplace transform

∀λ ∈ R
k
+, E(e−(xt,λ) | x0 = x) = e−(x,uλ

t ). (5)
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Here, uλ
t = (uλ

t,1; . . . ; u
λ
t,k) := Utλ satisfies the non-linear differential system







duλ
t

dt
= Duλ

t −
c

2
(uλ

t )⊙2

uλ
0 = λ,

(6)

or componentwise

∀i ∈ {1, . . . , k},
duλ

t,i

dt
=

k
∑

j=1

diju
λ
t,j −

c

2
(uλ

t,i)
2, uλ

0,i = λi.

Then,

P(〈Xs,1〉 = 0) = lim
λ→֒∞

E(e−〈Xs,λ〉 | X0 = m) = e−(x,limλ→֒∞ uλ
s )

where λ →֒ ∞ means that all coordinates of λ go to +∞. Using the Markov property of the
MDW process, one obtains

E(1IB | 〈Xt+θ,1〉 > 0) =
E

(

1IB
(

1 − e−(xt,limλ→֒∞ uλ
θ )

)

)

1 − e−(x,limλ→֒∞ uλ
t+θ)

. (7)

In the monotype case (k = 1), uλ
t can be computed explicitly (see Section 3.1), but this is not

possible in the multitype case. Nevertheless, one can obtain upper and lower bounds for uλ
t .

This is the goal of the following two lemmas, the proofs of which are postponed after the end of
the proof of Theorem 2.2.

Lemma 2.3. Let uλ
t = (uλ

t,1; . . . ; u
λ
t,k) be the solution of (6).

(i) For any λ ∈ R
k
+ \ {0} and any t > 0, uλ

t > 0.

(ii) Let Cλ
t := sup

1≤i≤k

uλ
t,i

ξi
and ξ := infi ξi. For t > 0 and λ ∈ R

k
+,

- in the critical case (µ = 0)

Cλ
t ≤

Cλ
0

1 +
cξ

2 Cλ
0 t

and therefore sup
λ∈R

k
+

Cλ
t ≤

2

cξ t
(8)

- in the subcritical case (µ < 0)

Cλ
t ≤

Cλ
0 eµt

1 +
cξ

2|µ|C
λ
0 (1 − eµt)

and therefore sup
λ∈R

k
+

Cλ
t ≤

2|µ|eµt

cξ(1 − eµt)
(9)

(iii) Let Bλ
t := inf

1≤i≤k

uλ
t,i

ξi
and ξ̄ := supi ξi. Then

∀t ≥ 0, λ ∈ R
k
+, Bλ

t ≥























Bλ
0

1 + cξ̄
2 Bλ

0 t
if µ = 0

Bλ
0 eµt

1 + cξ̄
2|µ|B

λ
0 (1 − eµt)

if µ < 0.
(10)
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(iv) For any λ ∈ R
k
+ and t ≥ 0,

uλ
t ≥











(

1 +
cξ

2 Cλ
0 t

)−ξ̄/ξ
eDtλ if µ = 0

(

1 +
cξ

2|µ|C
λ
0 (1 − eµt)

)−ξ̄/ξ
eDtλ if µ < 0.

(11)

The main difficulty in the multitype setting comes from the non-commutativity of matrices. For

example (6) can be expressed as
duλ

t
dt = (D + At)u

λ
t where the matrix At is diagonal with i-th

diagonal element cuλ
t,i/2. However, since D and At do not commute, it is not possible to express

uλ
t in terms of the exponential of

∫ t
0 (D + As) ds. The following lemma gives the main tool we

use to solve this difficulty.

Lemma 2.4. Assume that t 7→ f(t) ∈ R is a continuous function on R+ and t 7→ ut ∈ R
k is a

differentiable function on R+. Then

dut

dt
≥ (D + f(t)I)ut, ∀t ≥ 0 =⇒ ut ≥ exp

(

∫ t

0
(D + f(s)I) ds

)

u0, ∀t ≥ 0

For any 1 ≤ i ≤ k, applying (5) with x = ei where ei
j = δij , 1 ≤ j ≤ k, one easily deduces the

existence of a limit in [0,∞] of uλ
t,i when λ →֒ ∞. Moreover, by Lemma 2.3 (ii) and (iii), for any

t > 0,

0 <
2f(θ)

cξ̄
≤ lim

λ→֒∞
uλ

θ ≤
2f(θ)

cξ
< +∞

where f(θ) = 1/θ if µ = 0 or f(θ) = |µ|eµθ/(1− eµθ) if µ < 0. Therefore limθ→∞ limλ→֒∞ uλ
θ = 0

and, for sufficiently large θ,

1 − e−(xt,limλ→֒∞ uλ
θ )

1 − e−(x,limλ→֒∞ uλ
t+θ)

≤ K
(xt,1)

(x,1)

for some constant K that may depend on t but is independent of θ. Since E〈Xt,1〉 < ∞ for any
t ≥ 0 (see [15] or [16]), Lebesgue’s dominated convergence theorem can be applied to make a
first-order expansion in θ in (7). This yields that the density with respect to P of P conditioned
on the non-extinction at time t + θ on Ft, converges in L1(P) when θ → ∞ to

(

xt, lim
θ→∞

limλ→֒∞ uλ
θ

(x, limλ→֒∞ uλ
t+θ)

)

(12)

if this limit exists.
We will actually prove that

lim
θ→∞

sup
λ6=0

‖
1

(x, uλ
t+θ)

uλ
θ −

e−µt

(x, ξ)
ξ‖ = 0. (13)

This will imply that the limits in θ and in λ can be exchanged in (12) and thus

lim
θ→∞

E(1IB | 〈Xt+θ,1〉 > 0) = e−µt
E

(

1IB
(xt, ξ)

(x, ξ)

)

= e−µt
E

(

1IB
〈Xt, ξ〉

〈m, ξ〉

)

,
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completing the proof of Theorem 2.2.

Subcritical case: µ < 0
As a preliminary result, observe that, since D has nonnegative nondiagonal entries, there exists
α > 0 such that D + αI ≥ 0, and then exp(Dt) ≥ 0.

Since
duλ

t

dt
≤ Duλ

t , we first remark by Lemma 2.4 (applied to −uλ
t ), that

∀t ≥ 0, uλ
t ≤ eDtλ.

Second, it follows from Lemma 2.3 (iv) that

eDtλ − uλ
t ≤

(

1 −
(

1 +
cξ

2|µ|
Cλ

0 (1 − eµt)
)−ξ̄/ξ

)

eDtλ

≤
cξ̄

2|µ|
Cλ

0 (1 − eµt) eDtλ.

Therefore, since Cλ
0 = supi λi/ξi, there exists a constant K independent of λ such that

∀λ ≥ 0, ∀t ≥ 0, eDtλ − uλ
t ≤ K‖λ‖eDtλ. (14)

In particular,

‖λ‖ ≤
1

2K
⇒ uλ

t ≥
1

2
eDtλ ∀t ≥ 0.

Third, it follows from Lemma 2.3 (ii) that there exists t0 such that

∀t ≥ t0, ∀λ ≥ 0, ‖uλ
t ‖ ≤

1

2K
.

Fourth, as a consequence of Perron-Frobenius’ theorem, the exponential matrix eDt decreases
like eµt for t large in the following sense: as t → ∞,

∃γ > 0, eDt = eµtP + O(e(µ−γ)t) (15)

where P := (ξiηj)1≤i,j≤k (see [29] Theorem 2.7). Therefore, there exists θ0 such that

∀t ≥ θ0,
1

2
eµtP ≤ eDt ≤ 2eµtP.

Last, there exists a positive constant K ′ such that

∀u, v ∈ R
k
+, (v, Pu) = (u, η)(v, ξ) ≥ ξ η (u,1) (v,1) ≥ K ′‖u‖‖v‖.
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Combining all the above inequalities, we get for any a ∈ R
k
+, b, λ ∈ R

k
+ \ {0} and for any θ ≥ θ0,

∣

∣

∣

∣

∣

(a, uλ
t0+θ)

(b, uλ
t0+θ+t)

−
(a, eDθuλ

t0)

(b, eD(θ+t)uλ
t0

)

∣

∣

∣

∣

∣

≤
(a, |uλ

t0+θ − eDθuλ
t0 |)

(b, uλ
t0+θ+t)

+
(a, eDθuλ

t0)(b, |u
λ
t0+θ+t − eD(θ+t)uλ

t0 |)

(b, uλ
t0+θ+t)(b, e

D(θ+t)uλ
t0

)

≤
2K‖a‖‖uλ

t0‖‖e
Dθuλ

t0‖

(b, eD(θ+t)uλ
t0

)
+

2K‖a‖‖eDθuλ
t0‖‖b‖‖u

λ
t0‖‖e

D(θ+t)uλ
t0‖

(b, eD(θ+t)uλ
t0

)2

≤ K̄‖a‖‖uλ
t0‖e

−µt

(

‖Puλ
t0‖

(b, Puλ
t0

)
+

‖b‖‖Puλ
t0‖

2

(b, Puλ
t0

)2

)

≤ K̄e−µt ‖a‖

‖b‖
‖uλ

t0‖ (16)

where the constants K̄ may vary from line to line, but are independent of λ and t0.

Now, let t0(θ) be an increasing function of θ larger than t0 such that t0(θ) → ∞ when θ → ∞.
By Lemma 2.3 (ii), ‖uλ

t0(θ)‖ → 0 when θ → ∞, uniformly in λ ≥ 0. Then, by (16), uniformly in
λ ≥ 0,

lim
θ→∞

(a, uλ
t0(θ)+θ)

(b, uλ
t0(θ)+θ+t)

= lim
θ→∞

(a, eDθuλ
t0(θ))

(b, eD(θ+t)uλ
t0(θ))

= lim
θ→∞

(a, eµθPuλ
t0(θ))

(b, eµ(θ+t)Puλ
t0(θ))

= lim
θ→∞

e−µt
(η, uλ

t0(θ))(a, ξ)

(η, uλ
t0(θ))(b, ξ)

= e−µt (a, ξ)

(b, ξ)

which completes the proof of Theorem 2.2 in the case µ < 0.

Critical case: µ = 0
The above computation has to be slightly modified. Inequality (14) becomes

|uλ
t − eDtλ| ≤

(

1 −
(

1 +
cξ

2
Cλ

0 t
)−ξ̄/ξ

)

eDtλ

≤K‖λ‖teDtλ. (17)

Therefore, the right-hand side of (16) has to be replaced by

K
‖a‖

‖b‖
‖uλ

t0‖(θ + t). (18)

Now, using Lemma 2.3 (iii) again, it suffices to choose a function t0(θ) in such a way that
limθ→∞ θ supλ≥0 ‖u

λ
t0(θ)‖ = 0. One can now complete the proof of Theorem 2.2 as above. 2
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Proof of Lemma 2.3

(i) First, observe that, by (5), uλ
t ≥ 0 for any t ≥ 0. Next, since D is nonnegative outside the

diagonal,

duλ
t,i

dt
=

k
∑

j=1

diju
λ
t,j −

c

2
(uλ

t,i)
2 ≥ (dii −

c

2
uλ

t,i)u
λ
t,i. (19)

Therefore, for any i such that λi > 0, uλ
t,i > 0 for any t ≥ 0.

Let I := {i : λi > 0} and J := {j : λj = 0}. By the irreducibility of the matrix D, there exist
i ∈ I and j ∈ J such that dji > 0. Therefore, for sufficiently small t > 0,

duλ
t,j

dt
=

k
∑

l=1

djlu
λ
t,l −

c

2
(uλ

t,j)
2 >

dji

2
uλ

t,i

and thus uλ
t,j > 0 for t > 0 in a neighborhood of 0. Moreover, as long as uλ

t,i > 0, for the same

reason, uλ
t,j cannot reach 0.

Defining I ′ = I ∪ {j} and J ′ = J \ {j}, there exists i′ ∈ I ′ and j′ ∈ J ′ such that dj′i′ > 0. For
sufficiently small ε > 0, uλ

ε,i′ > 0 and the previous argument shows that uλ
ε+t,j′ > 0 for t > 0 as

long as uλ
ε+t,i′ > 0. Letting ε go to 0 yields that uλ

t,j′ > 0 for sufficiently small t > 0.

Applying the same argument inductively shows that uλ
t > 0 for t > 0 in a neighborhood of 0.

Using (19) again, this property can be extended to all t > 0.

(ii) and (iii) As the supremum of finitely many continuously differentiable functions, t 7→ Cλ
t

is differentiable except at at most countably many points. Indeed, it is not differentiable at time
t if and only if there exist two types i and j such that uλ

t,i/ξi = uλ
t,j/ξj and d(uλ

t,i/ξi)/dt 6=

d(uλ
t,j/ξj)/dt. For fixed i and j, such points are necessarily isolated, and hence are at most

denumerable.
Fix a time t at which Cλ

t is differentiable and fix i such that uλ
t,i = Cλ

t ξi. Then

dCλ
t

dt
ξi =

duλ
t,i

dt
=

k
∑

j=1

diju
λ
t,j −

c

2
(uλ

t,i)
2

≤ Cλ
t

∑

j 6=i

dijξj + diiu
λ
t,i −

c

2
(uλ

t,i)
2

= Cλ
t (Dξ)i −

c

2
(uλ

t,i)
2 = µCλ

t ξi −
c

2
ξ2
i (Cλ

t )2

where the inequality comes from the fact that D is nonnegative outside of the diagonal and
where the third line comes from the specific choice of the subscript i. Therefore,

dCλ
t

dt
≤ µCλ

t −
c

2
ξ (Cλ

t )2. (20)

Assume µ = 0.
By Point (i), if λ 6= 0, Cλ

t > 0 for any t ≥ 0 (the case λ = 0 is trivial). Then, for any t ≥ 0,
except at at most countably many points,

−
dCλ

t /dt

(Cλ
t )2

≥
c

2
ξ.
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Integrating this inequality between 0 and t, we get

1

Cλ
t

≥
1

Cλ
0

+
c

2
ξt ⇒ Cλ

t ≤
Cλ

0

1 +
cCλ

0
2 ξt

.

The proof of the case µ < 0 can be done by the same argument applied to t 7→ e−µtCλ
t .

Inequalities (iii) are obtained in a similar way too.

(iv) By definition of Cλ
t , (6) implies that

duλ
t

dt
≥

(

D −
c

2
ξ̄ Cλ

t I
)

uλ
t .

Then, (iv) follows from (ii) and Lemma 2.4. 2

Proof of Lemma 2.4 Fix ε > 0 and let

u
(ε)
t := exp

(

∫ t

0
(D + f(s)I)ds

)

(u0 − ε).

Then
dut

dt
−

du
(ε)
t

dt
≥ (D + f(t)I)(ut − u

(ε)
t ).

Let t0 := inf{t ≥ 0 : ∃i ∈ {1, . . . , k}, ut,i < u
(ε)
t,i }. For any t ≤ t0, since D is nonnegative outside

of the diagonal,

∀i ∈ {1, . . . , k},
d

dt
(ut,i − u

(ε)
t,i ) ≥ (dii + f(t))(ut,i − u

(ε)
t,i ).

Since u0 > u
(ε)
0 , this implies that ut − u

(ε)
t > 0 for any t ≤ t0 and thus t0 = +∞. Letting ε go

to 0 completes the proof of Lemma 2.4. 2

Remark 2.5. Since the limit in (13) is uniform in λ, one can choose in particular λ = λi, 1 ≤
i ≤ k, where λi

j = 0 for j 6= i. Thus, for each type i,

lim
θ→∞

limλi
i→∞ uλi

θ

(x, limλi
i→∞ uλi

t+θ)
=

e−µt

(x, ξ)
ξ

which implies as in (7) that, for B ∈ Ft,

lim
θ→∞

P(B | 〈Xt+θ,i, 1〉 > 0) = lim
θ→∞

P(B | 〈Xt+θ,1〉 > 0) = P
∗(B).

Therefore, Theorem 2.2 remains valid if the conditioning by the non-extinction of the whole
population is replaced by the non-extinction of type i only. This property relies strongly on the
irreducibility of the mutation matrix D. In Section 4, we will show that it does not always hold
true when D is reducible (see for example Theorem 4.1 or Theorem 4.4). ♦
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2.2 Laplace functional of P
∗ and Martingale Problem

To better understand the properties of P
∗, its Laplace functional provides a very useful tool.

Theorem 2.6. P
∗ is characterized by: ∀f ∈ Cb(R, Rk)+

E
∗(exp−〈Xt, f〉 | X0 = m) =

〈m, Vtf〉

〈m, ξ〉
e−µte−〈m,Utf〉 (21)

where the semigroup Vtf is the unique solution of the PDE

∂Vtf

∂t
= ∆Vtf + DVtf − cUtf ⊙ Vtf, V0f = ξ. (22)

Proof From Theorem 2.2 and (1) we get

E
∗(e−〈Xt,f〉 | X0 = m) = E

(

〈Xt, ξ〉

〈m, ξ〉
e−µte−〈Xt,f〉 | X0 = m

)

=
e−µt

〈m, ξ〉

∂

∂ε
E

(

e−〈Xt,f+εξ〉
)

∣

∣

ε=0

=
e−µt

〈m, ξ〉
e−〈m,Utf〉 ∂

∂ε
〈m, Ut(f + εξ)〉

∣

∣

ε=0
.

Let Vtf := ∂
∂εUt(f + εξ)

∣

∣

ε=0
. Then Vtf is solution of

∂Vtf

∂t
=

∂

∂ε

(

∆Uf (f + εξ) + DUt(f + εξ) −
c

2
Ut(f + εξ)⊙2

)∣

∣

∣

ε=0

= (∆ + D)Vtf − cUtf ⊙ Vtf

and V0f = ∂
∂ε(f + εξ)

∣

∣

ε=0
= ξ. 2

Comparing with the Laplace functional of P, the multiplicative term 〈m,Vtf〉
〈m,ξ〉 e−µt appears in the

Laplace functional of P
∗. In particular, the multitype Feller diffusion xt is characterized under

P
∗ by

E
∗(exp−(xt, λ) | x0 = x) =

(x, vλ
t )

(x, ξ)
e−µte−(x,uλ

t ), λ ∈ R
k
+ (23)

where vλ
t := Vtλ satisfies the differential system

dvλ
t

dt
= Dvλ

t − cuλ
t ⊙ vλ

t , vλ
0 = ξ. (24)

The following theorem gives the martingale problem satisfied by the conditioned MDW process.
This formulation also allows one to interpret P

∗ as an unconditioned MDW process with im-
migration (see Remark 2.8 below). The term with Laplace functional 〈m,Vtf〉

〈m,ξ〉 e−µt that we just
mentioned is another way to interpret this immigration.
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Theorem 2.7. P
∗ is the unique solution of the following martingale problem: for all f ∈

C2
b (R, Rk)+,

exp(−〈Xt, f〉) − exp(−〈m, f〉)

+

∫ t

0

(

〈Xs, (∆ + D)f〉 + c
〈Xs, f ⊙ ξ〉

〈Xs, ξ〉
−

c

2
〈Xs, f

⊙2〉
)

exp(−〈Xs, f〉) ds (25)

is a P
∗-local martingale.

Proof According to [15] (see also [6] for the monotype case), P is the unique solution of the
following martingale problem : for any function F : M(R)k → R of the form ϕ(〈·, f〉) with
ϕ ∈ C2(R, R) and f ∈ C2

b (R, Rk)+,

F (Xt) − F (X0) −

∫ t

0
AF (Xs) ds is a P-local martingale. (26)

Here the infinitesimal generator A is given by

AF (m) = 〈m, (∆ + D)
∂F

∂m
〉 +

c

2
〈m, ∂2F/∂m2〉

=
k

∑

i=1

〈mi, ∆
∂F

∂mi
+

k
∑

j=1

dij
∂F

∂mj
〉 +

c

2

k
∑

i=1

〈mi,
∂2F

∂m2
i

〉.

where we use the notation ∂F/∂m = (∂F/∂mi)1≤i≤k and ∂2F/∂m2 = (∂2F/∂m2
i )1≤i≤k with

∂F

∂mi
(x) := lim

ε→0

1

ε

(

F (m1, . . . , mi + εδx, . . . , mk) − F (m)
)

, x ∈ R.

Applying this to the time-dependent function

F (s, m) := 〈m, ξ〉e−µse−〈m,f〉 with f ∈ C2
b (R, Rk)+

for which

∂F (s, m)

∂m
(x) = −f(x)F (s, m) + ξe−µs−〈m,f〉

and
∂2F (s, m)

∂m2
(x) = f⊙2(x)F (s, m) − 2f(x) ⊙ ξe−µs−〈m,f〉,

one gets

∂F

∂s
(s, m) + A(F (s, ·))(m)

= −〈m, (∆ + D)f〉F +
c

2
〈m, f⊙2〉F − c

〈m, f ⊙ ξ〉

〈m, ξ〉
F.

Therefore,

〈Xt, ξ〉e
−µt−〈Xt,f〉 − 〈m, ξ〉e−〈m,f〉

+

∫ t

0
〈Xs, ξ〉e

−µs
(

〈Xs, (∆ + D)f〉 + c
〈Xs, f ⊙ ξ〉

〈Xs, ξ〉
−

c

2
〈Xs, f

⊙2〉
)

e−〈Xs,f〉ds
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is a P-local martingale, which implies that (25) is a P
∗-local martingale.

The uniqueness of the solution P
∗ to the martingale problem (25) comes from the uniqueness of

the solution of the martingale problem (26). 2

Remark 2.8. Due to the form of the martingale problem (25), the probability measure P
∗ can

be interpreted as the law of a MDW process with interactive immigration whose rate at time s,
if conditioned by Xs, is a random measure with Laplace functional exp−c 〈Xs,f⊙ξ〉

〈Xs,ξ〉 . Monotype

DW processes with deterministic immigration rate were introduced by Dawson in [2]. The first
interpretation of conditioned branching processes as branching processes with immigration goes
back to Kawazu and Watanabe in [18], Example 2.1. See also [28] and [10] for further properties
in the monotype case. ♦

3 Long time behavior of conditioned multitype Feller diffusions

We are now interested in the long time behavior of the MDW process conditioned on non-
extinction in the remote future. Unfortunately, because of the Laplacian term in (22), there is
no hope to obtain a limit of Xt under P

∗ at the level of measure (however, see [10] for the long
time behavior of critical monotype conditioned Dawson-Watanabe processes with ergodic spatial
motion). Therefore, we will restrict our attention to the multitype Feller diffusion xt. As a first
step in our study, we begin this section with the monotype case.

3.1 Monotype case

In this subsection, we first study the asymptotic behavior of xt under P
∗ (Proposition 3.1). This

result is already known, but we give a proof which will be useful in the following section. We
also give a new result about the exchange of limits (Proposition 3.3).

Let us first introduce some notation for the monotype case.
The matrix D is reduced to its eigenvalue µ, the vector ξ is equal to the number 1. Since we
only consider the critical and subcritical cases, one has µ ≤ 0. The law P

∗ of the MDW process
conditioned on non-extinction in the remote future is locally absolutely continuous with respect
to P (monotype version of Theorem 2.2, already proved in [28], Proposition 1). More precisely

P
∗
∣

∣

Ft
=

〈Xt, 1〉

〈m, 1〉
e−µt

P
∣

∣

Ft
. (27)

Furthermore the Laplace functional of P
∗ satisfies (see [28], Theorem 3):

E
∗(exp−〈Xt, f〉 | X0 = m) =

〈m, Vtf〉

〈m, 1〉
e−µte−〈m,Utf〉 =

〈m, Ṽtf〉

〈m, 1〉
e−〈m,Utf〉 (28)

where
∂Ṽtf

∂t
= ∆Ṽtf − c UtfṼtf, Ṽ0f = 1. (29)
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The total mass process xt = 〈Xt, 1〉 is a (sub)critical Feller branching diffusion under P. By (28)
its Laplace transform under P

∗ is

E
∗(exp−λxt | x0 = x) = ṽλ

t e−xuλ
t , λ ∈ R+, (30)

with
dṽλ

t

dt
= −cuλ

t ṽλ
t , ṽλ

0 = 1.

Recall that the cumulant uλ
t satisfies

duλ
t

dt
= µ uλ

t −
c

2
(uλ

t )2, uλ
0 = λ. (31)

This yields in the subcritical case the explicit formulas

uλ
t =

λ eµt

1 + c
2|µ|λ(1 − eµt)

, λ ≥ 0, (32)

and ṽλ
t = exp

(

−c

∫ t

0
uλ

sds

)

=
1

(

1 + c
2|µ|λ(1 − eµt)

)2 . (33)

In the critical case (µ = 0) one obtains (see [20] Equation (2.14))

uλ
t =

λ

1 + c
2λt

and vλ
t = ṽλ

t =
1

(

1 + c
2λt

)2 . (34)

We are now ready to state the following asymptotic result.

Proposition 3.1.

(a) In the critical case (µ = 0), the process xt explodes in P
∗-probability when t → ∞, i.e. for

any M > 0,
lim

t→+∞
P
∗(xt ≤ M) = 0.

(b) In the subcritical case (µ < 0),

lim
t→+∞

P
∗(xt ∈ ·)

(d)
= Γ(2,

2|µ|

c
)

where this notation means that xt converges in P
∗-distribution to a Gamma distribution

with parameters 2 and 2|µ|/c.

One can find in [19] Theorem 4.2 a proof of this theorem for a more general model, based on a
pathwise approach. We propose here a different proof, based on the behavior of the cumulant
semigroup and moment properties, which will be useful in the sequel.

790



Proof For µ = 0, by (34), uλ
t → 0 and vλ

t → 0 when t → ∞ for any λ 6= 0. This implies by
(30) the asymptotic explosion of xt in P

∗-probability. Actually, the rate of explosion is also
known: in [10] Lemma 2.1, the authors have proved that xt

t converges in distribution as t → ∞

to a Gamma-distribution. This can also be deduced from (34), since u
λ/t
t and v

λ/t
t converge to

0 and 1/(1 + cλ/2)2 respectively, as t → ∞.

For µ < 0, by (30), (32) and (33), the process xt has the same law as the sum of two independent

random variables, the first one with distribution Γ(2, 2|µ|
c(1−eµt)) and the second one vanishing for

t → ∞. The conclusion is now clear. 2

Remark 3.2. The presence of a Gamma-distribution in the above Proposition is not surprising.

• As we already mentioned it appears in the critical case as the limit law of xt/t [10].

• It also goes along with the fact that these distributions are the equilibrium distributions
for subcritical Feller branching diffusions with constant immigration. (See [1], and Lemma
6.2.2 in [4]). We are grateful to A. Wakolbinger for proposing this interpretation.

• Another interpretation is given in [19]. The Yaglom distribution of the process xt, defined
as the limit law as t → ∞ of xt conditioned on xt > 0, is the exponential distribution with
parameter 2|µ|/c (see Proposition 3.3 below, with θ = 0). The Gamma distribution appears
as the size-biased distribution of the Yaglom limit (P∗(x∞ ∈ dr) = rP(Y ∈ dr)/E(Y ),

where Y ∼ Exp(2|µ|
c )), which is actually a general fact ([19, Th.4.2(ii)(b)]). ♦

We have just proved that, for µ < 0, the law of xt conditioned on xt+θ > 0 converges to a
Gamma distribution when taking first the limit θ → ∞ and next the limit t → ∞. It is then
natural to ask whether the order of the two limits can be exchanged: what happens if one first
fix θ and let t tend to infinity, and then let θ increase? We obtain the following answer.

Proposition 3.3. When µ < 0, conditionally on xt+θ > 0, xt converges in distribution when

t → ∞ to the sum of two independent exponential r.v. with respective parameters 2|µ|
c and

2|µ|
c (1 − eµθ).

Therefore, one can interchange both limits in time:

lim
θ→∞

lim
t→∞

P(xt ∈ · | xt+θ > 0)
(d)
= lim

t→∞
lim

θ→∞
P(xt ∈ · | xt+θ > 0)

(d)
= Γ(2,

2|µ|

c
).

Proof First, observe that, by (32),

lim
λ̄→∞

uλ̄
t =

2|µ|

c

eµt

1 − eµt
and lim

t→∞

uλ
t

eµt
=

λ

1 − c
2µλ

.
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As in (7), it holds

E(e−λxt | xt+θ > 0) =
E

(

e−λxt(1 − P(xt+θ = 0 | Ft))
)

1 − P(xt+θ = 0)

=
E

(

e−λxt(1 − e−xt limλ̄→∞ uλ̄
θ )

)

1 − e−x limλ̄→∞ uλ̄
t+θ

=
e−xuλ

t − e−xu
λ+limλ̄→∞

uλ̄
θ

t

1 − e−x limλ̄→∞ uλ̄
t+θ

=
e−xuλ

t − e−xu
λ+limλ̄→∞

uλ̄
θ

t

1 − exp(−x2|µ|
c

eµ(t+θ)

1−eµ(t+θ) )

Thus

lim
t→∞

E(e−λxt | xt+θ > 0) =
c

2|µ|
e−µθ lim

t→∞
e|µ|t

(

u
λ+limλ̄→∞ uλ̄

θ
t − uλ

t

)

=
c

2|µ|
e−µθ

( λ + limλ̄→∞ uλ̄
θ

1 − c
2µ(λ + limλ̄→∞ uλ̄

θ )
−

λ

1 − c
2µλ

)

=
1

1 + c
2|µ|λ

·
1

1 + c
2|µ|(1 − eµθ)λ

where the first (resp. the second) factor is equal to the Laplace transform of an exponential r.v.

with parameter 2|µ|/c (resp. with parameter 2|µ|
c (1 − eµθ)). This means that

lim
t→∞

P(xt ∈ · | xt+θ > 0)
(d)
= Exp(

2|µ|

c
) ⊗ Exp(

2|µ|

c
(1 − eµθ)).

It is now clear that

lim
θ→∞

lim
t→∞

P(xt ∈ · | xt+θ > 0)
(d)
= Exp(

2|µ|

c
) ⊗ Exp(

2|µ|

c
) = Γ(2,

2|µ|

c
).

Thus, the limits in time interchange. 2

Remark 3.4. The previous computation is also possible in the critical case and gives a similar
interchangeability result. More precisely, for any θ > 0, xt explodes conditionally on xt+θ > 0
in P-probability when t → +∞. In particular, for any M > 0,

lim
θ→∞

lim
t→∞

P(xt ≤ M | xt+θ > 0) = lim
t→∞

lim
θ→∞

P(xt ≤ M | xt+θ > 0) = 0.

♦

Remark 3.5. One can develop the same ideas as before when the branching mechanism with
finite variance c is replaced by a β-stable branching mechanism, 0 < β < 1, with infinite
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variance (see [2] Section 5 for a precise definition). In this case, equation (31) has to be replaced

by
duλ

t
dt = µ uλ

t − c(uλ
t )1+β which implies that

uλ
t =

λ eµt

(

1 + cλβ

|µ| (1 − eβµt)
)1/β

.

Therefore, with a similar calculation as above, one can easily compute the Laplace transform of
the limit conditional law of xt when t → ∞ and prove the exchangeability of limits:

lim
θ→∞

lim
t→∞

E(e−λxt | xt+θ > 0) = lim
t→∞

lim
θ→∞

E(e−λxt | xt+θ > 0) =
1

(

1 + c
|µ|λ

β
)1+1/β

.

As before, this distribution can be interpreted as the size-biased Yaglom distribution correspond-
ing to the stable branching mechanism. This conditional limit law for the subcritical branching
process has been obtained in [21] Theorem 4.2. We also refer to [19] Theorem 5.2 for a study of
the critical stable branching process. ♦

3.2 Multitype irreducible case

We now present the multitype generalization of Proposition 3.1 on the asymptotic behavior of
the conditioned multitype Feller diffusion with irreducible mutation matrix D.

Theorem 3.6. (a) In the critical case (µ = 0), when the mutation matrix D is irreducible, xt

explodes in P
∗-probability when t → ∞, i.e.

∀i ∈ {1, . . . , k}, ∀M > 0, lim
t→+∞

P
∗(xt,i ≤ M) = 0.

(b) In the subcritical case (µ < 0) when D is irreducible, the law of xt converges in distribution
under P

∗ when t → ∞ to a non-trivial limit which does not depend on the initial condition
x.

Proof One obtains from (24) that

Dvλ
t − c sup

i
(uλ

t,i) vλ
t ≤

dvλ
t

dt
≤ Dvλ

t − c inf
i

(uλ
t,i) vλ

t .

Then, by Lemma 2.4,

exp
(

µt − c

∫ t

0
sup

i
uλ

s,i ds
)

ξ ≤ vλ
t ≤ exp

(

µt − c

∫ t

0
inf
i

uλ
s,i ds

)

ξ. (35)

Therefore, in the critical case, vλ
t vanishes for t large if λ > 0, due to the divergence of

∫ ∞
0 infi u

λ
s,ids, which is itself a consequence of Lemma 2.3 (iii). If λi = 0 for some type i,

by Lemma 2.3 (i) and the semigroup property of t 7→ ut, we can use once again Lemma 2.3
(iii) starting from a positive time, to prove that limt→∞ vλ

t = 0. Then, the explosion of xt in
P
∗-probability follows directly from (23) and from the fact that limt→∞ uλ

t = 0.

793



To prove (b), we study the convergence of ṽλ
t := e−µtvλ

t when t → ∞. By (35) and Lemma 2.3
(ii) we know that t 7→ ṽλ

t is bounded and bounded away from 0. Fix ε ∈ (0, 1) and t0 such that
∫ ∞
t0

supi u
λ
t,i dt < ε. Then, for any t ≥ 0,

e−cεe(D−µI)tṽλ
t0 ≤ ṽλ

t0+t ≤ e(D−µI)tṽλ
t0 (36)

and so, for any s, t ≥ 0,

|ṽλ
t0+t+s − ṽλ

t0+t| ≤ sup
δ∈{−1,1}

∣

∣

∣

(

ecδεI − e(D−µI)s
)

e(D−µI)tṽλ
t0

∣

∣

∣
.

By Perron-Frobenius’ theorem, limt→∞ e(D−µI)t = P := (ξiηj)i,j and thus, when t → ∞,

|ṽλ
t0+t+s − ṽλ

t0+t| ≤ (ecε − 1)(ṽλ
t0 , η) ξ + |ṽλ

t0 |o(1)

where the negligible term o(1) does not depend on t0, s, ε and λ, since ε < 1 and exp((D−µI)s)
is a bounded function of s. Therefore, (ṽλ

t )t≥0 satisfies the Cauchy criterion and converges to a
finite positive limit ṽλ

∞ when t → ∞.

We just proved the convergence of the Laplace functional (23) of xt under P
∗ when t → ∞. In

order to obtain the convergence in law of xt, we have to check the continuity of the limit for
λ = 0, but this is an immediate consequence of limλ→0 limt→∞ ṽλ

t = ξ.

Finally, letting t go to infinity in (36), we get

|ṽλ
∞ − P ṽλ

t0 | ≤ (1 − e−cε)P ṽλ
t0 ,

where P ṽλ
t0 = (ṽλ

t0 , η)ξ. It follows that ṽλ
∞ is proportional to ξ, as limit of quantities proportional

to ξ. Therefore (x, ṽλ
∞)/(x, ξ) = (ṽλ

∞,1) is independent of x and the limit law of xt too. 2

We can also generalize the exchange of limits of Proposition 3.3 to the multitype irreducible
case.

Theorem 3.7. In the subcritical case, conditionally on (xt+θ,1) > 0, xt converges in distribution
when t → +∞ to a non-trivial limit which depends only on θ. Furthermore, one can interchange
both limits in t and θ :

lim
θ→∞

lim
t→∞

P(xt ∈ · | (xt+θ,1) > 0)
(d)
= lim

t→∞
lim

θ→∞
P(xt ∈ · | (xt+θ,1) > 0).

Proof Following a similar computation as in the proof of Proposition 3.3,

lim
t→∞

E(e−(xt,λ) | (xt+θ,1) > 0) = lim
t→∞

exp(−(x, uλ
t )) − exp(−(x, u

λ+limλ̄→֒∞ uλ̄
θ

t ))

1 − exp(−(x, limλ̄→֒∞ uλ̄
t+θ))

= lim
t→∞

(x, u
λ+limλ̄→֒∞ uλ̄

θ
t − uλ

t )

(x, limλ̄→֒∞ uλ̄
t+θ)

.

Since

Duλ
t −

c

2
(sup

i
uλ

t,i)uλ
t ≤

duλ
t

dt
≤ Duλ

t −
c

2
(inf

i
uλ

t,i)uλ
t ,
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one gets :

exp
(

−
c

2

∫ t

0
sup

i
uλ

s,i ds
)

eDtλ ≤ uλ
t ≤ exp

(

−
c

2

∫ t

0
inf
i

uλ
s,i ds

)

eDtλ.

This inequality, similar to (35), can be used exactly as in the proof of Theorem 3.6 (b) to prove
that, for any ε, there exists t0 large enough such that

e−cε/2e(D−µI)te−µt0uλ
t0 ≤ e−µ(t+t0)uλ

t0+t ≤ e(D−µI)te−µt0uλ
t0 . (37)

and to deduce from (37) that ũλ
t := e−µtuλ

t converges as t → ∞ to a non-zero limit ũλ
∞ propor-

tional to the vector ξ.

Moreover, because of (5), uλ
t is increasing with respect to each coordinate of λ. Therefore, it is

elementary to check that t 7→ limλ̄→֒∞ uλ̄
t = supn un1

t is also solution of the non-linear differential

system (6), but only defined on (0,∞) (recall that, by Lemma 2.3 (ii), limλ̄→֒∞ uλ̄
t < ∞ for any

t > 0). Indeed, assume that bt = supn an
t where ȧn

t = F (an
t ) for a locally Lipschitz function

F . Fix t such that bt < +∞ and a small η > 0, and let F := inf |x−bt|≤η F (x) and F̄ :=
sup|x−bt|≤η F (x). There exists n0 such that, for n ≥ n0, |a

n
t − bt| ≤ η/2. Moreover, for any s in a

neighborhood of 0, |an
t+s − bt| ≤ η, where the neighborhood depends on F̄ and F , but is uniform

in n ≥ n0. Therefore, for sufficiently small s and for n sufficiently large, F ≤ (an
t+s −an

t )/s ≤ F̄ .
Letting n → ∞, s → 0 and finally η → 0, since F̄ − F → 0 when η → 0, bt is differentiable at
time t and ḃt = F (bt).
Therefore, the semigroup property of the flow of (6) implies that, for any t ≥ 0,

lim
λ̄→֒∞

uλ̄
t+θ = u

limλ̄→֒∞ uλ̄
θ

t ,

so that e−µt limλ̄→֒∞ uλ̄
t also converges as t → ∞ to a positive limit ũ∞

∞, proportional to ξ too.

Hence,

lim
t→∞

E(e−(xt,λ) | (xt+θ, 1) > 0) = e−µθ (x, ũ
λ+limλ̄→֒∞ uλ̄

θ
∞ − ũλ

∞)

(x, ũ∞
∞)

= e−µθ (ũ
λ+limλ̄→֒∞ uλ̄

θ
∞ − ũλ

∞,1)

(ũ∞
∞,1)

, (38)

which is independent of the initial condition x.

In order to prove the convergence in distribution as t → ∞ of xt conditionally on (xt+θ,1) > 0
to a random variable with Laplace transform (38), it remains to prove the continuity of this
expression as a function of λ for λ → 0. To this aim and also to prove the exchangeability of
limits, we use the following Lemma, the proof of which is postponed at the end of the subsection.
This lemma gives the main reason why the limits can be exchanged: vλ

t is solution of the linearized
equation of (6), and therefore, the gradient of uλ

t with respect to λ is solution of the same system
of ODEs as vλ

t . The function vλ
t was involved in the computation of limt limθ P(xt ∈ · | xt+θ > 0),

whereas the gradient of uλ
t will be involved in the computation of limθ limt P(xt ∈ · | xt+θ > 0).

Lemma 3.8. The function λ 7→ uλ
t is differentiable, and its derivative in the direction η, denoted

by ▽ηu
λ
t , is solution of the same differential system (24) as vλ

t except for the initial condition

795



given by ▽ηu
λ
0 = η. Furthermore, λ 7→ ũλ

∞ is differentiable too and its derivative in the direction
η, denoted by ▽ηũ

λ
∞ satisfies

▽ηũ
λ
∞ = lim

t→∞
e−µt

▽ηu
λ
t .

Since ▽ηu
λ
t satisfies the same differential equation as vλ

t , in particular, ▽ξu
λ
t = vλ

t and, with the
notations of the proof of Theorem 3.6, ▽ξũ

λ
∞ = ṽλ

∞.

It also follows from the above lemma that ũλ
∞ is continuous as a function of λ. As a result,

lim
λ→0

lim
t→∞

E(e−(xt,λ) | (xt+θ,1) > 0) = lim
λ→0

e−µθ (ũ
λ+limλ̄→֒∞ uλ̄

θ
∞ − ũλ

∞,1)

(ũ∞
∞,1)

= e−µθ (ũ
limλ̄→֒∞ uλ̄

θ
∞ ,1)

(ũ∞
∞,1)

= 1

since

ũ
limλ̄→֒∞ uλ̄

θ
∞ = lim

t→∞
e−µtu

limλ̄→֒∞ uλ̄
θ

t = lim
t→∞

e−µt lim
λ̄→֒∞

uλ̄
t+θ = eµθũ∞

∞.

Finally, let us check that the limits in t and θ can be exchanged. Since limλ̄→֒∞ uλ̄
θ ∼ eµθũ∞

∞ =
eµθ(ũ∞

∞,1)ξ when θ → ∞, it follows from Lemma 3.8 that

lim
θ→∞

e−µθ (ũ
λ+limλ̄→֒∞ uλ̄

θ
∞ − ũλ

∞,1)

(ũ∞
∞,1)

= (▽ξũ
λ
∞,1) = (ṽλ

∞,1) = lim
t→∞

E
∗(e−(xt,λ)),

which completes the proof of Theorem 3.7. 2

Proof of Lemma 3.8 The differentiability of uλ
t with respect to λ and the ODE satisfied by

its derivatives are classical results on the regularity of the flow of ODEs (see e.g. Perko [26]).

Moreover, since ▽ηu
λ
t and vλ

t are both solution of the ODE (24) (with different initial conditions),
it is trivial to transport the properties of vλ

t proved in the proof of Theorem 3.6 to ▽ηu
λ
t . In

particular, e−µt
▽ηu

λ
t converges as t → +∞ to a non-zero vector wλ

η which is proportional to ξ.

We only have to check that ▽ηũ
λ
∞ exists and that wλ

η = ▽ηũ
λ
∞. Moreover, as for (35),

exp
(

−
c

2

∫ t

0
sup

i
uλ

s,i ds
)

eDtη ≤ ▽ηu
λ
t ≤ exp

(

−
c

2

∫ t

0
inf
i

uλ
s,i ds

)

eDtη.

Therefore, since exp(Dt) ≥ 0,
|▽ηu

λ
t | ≤ eDt|η|,

which implies that e−µt
▽ηu

λ
t is uniformly bounded for t ≥ 0, λ ≥ 0 and η in a compact subset

of R
k.

Now, letting t → +∞ in (37) one gets for any h ≥ 0,

|ũλ+hη
∞ − ũλ

∞ − P

∫ h

0
e−µt0

▽ηu
λ+rη
t0

dr| = |ũλ+hη
∞ − ũλ

∞ − Pe−µt0(uλ+hη
t0

− uλ
t0)|

≤ (1 − e−cε/2)P (e−µt0uλ
t0 + e−µt0uλ+hη

t0
).
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Letting ε → 0 (and thus t0 → +∞) in the previous inequality, Lebesgue’s convergence theorem
yields

ũλ+hη
∞ − ũλ

∞ =

∫ h

0
wλ+rη

η dr.

Therefore, ũλ
∞ is differentiable with respect to λ and ▽ηũ

λ
∞ = wλ

η . The proof of Lemma 3.8 is
completed. 2

4 Some decomposable cases conditioned by different remote
survivals

In this section, we study some models for which the mutation matrix D is not irreducible: it is
called ‘reducible’ or ‘decomposable’. In this case, the general theory developed above does not
apply. In contrast with the irreducible case, the asymptotic behavior of the MDW process and
the MF diffusion depends on the type.
Decomposable critical multitype pure branching processes (without motion and renormalization)
were the subject of several works since the seventies. See e.g. [23; 11; 12; 30; 33; 31].

4.1 A first critical model

Our first example is a 2-types DW process with a reducible mutation matrix of the form

D =

(

−α α
0 0

)

, α > 0. (39)

For this model type 1 (resp. type 2) is subcritical (resp. critical). Moreover mutations can occur
from type 1 to type 2 but no mutations from type 2 to type 1 are allowed.
In this section we analyze not only the law P

∗ of MDW process conditioned on the non-extinction
of the whole population, but also the MDW process conditioned on the survival of each type
separately.

Theorem 4.1. Let P be the distribution of the MDW process X with mutation matrix (39) and
non-zero initial condition m. Let us define P

∗, P̂∗ and P̌
∗ for any t > 0 and B ∈ Ft by

P
∗(B) = lim

θ→∞
P(B | 〈Xt+θ,1〉 > 0)

P̂
∗(B) = lim

θ→∞
P(B | 〈Xt+θ,1, 1〉 > 0) (if m1 6= 0)

P̌
∗(B) = lim

θ→∞
P(B | 〈Xt+θ,2, 1〉 > 0).

Then, all these limits exist and, for any t > 0,

P̌
∗
∣

∣

Ft
=P

∗
∣

∣

Ft
=

〈Xt,1〉

〈m,1〉
P
∣

∣

Ft
(40)

and P̂
∗
∣

∣

Ft
=
〈Xt,1, 1〉

〈m1, 1〉
eαt

P
∣

∣

Ft
. (41)
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Proof Let us first prove (41). Using the method leading to (12), we get that if m1 6= 0

P̂
∗(B) = lim

θ→∞
E

(

1IB
(xt, limλ1→∞ u

(λ1,0)
θ )

(x, limλ1→∞ u
(λ1,0)
t+θ )

)

.

The cumulant uλ
t of the mass process satisfies for any λ = (λ1, λ2)















duλ
t,1

dt
= −αuλ

t,1 + αuλ
t,2 −

c

2
(uλ

t,1)
2 uλ

0,1 = λ1

duλ
t,2

dt
= −

c

2
(uλ

t,2)
2 uλ

0,2 = λ2.

The second equation admits as solution

uλ
t,2 =

λ2

1 + c
2λ2t

(42)

and uλ
t,1 can be computed explicitly if λ2 = 0:

u
(λ1,0)
t,1 =

λ1e
−αt

1 + cλ1
2α (1 − e−αt)

and u
(λ1,0)
t,2 = 0. (43)

We then get

P̂
∗(B) = eαt

E
(

1IB
xt,1

x1

)

,

which yields (41).

Concerning P̌
∗, remark first that it is well defined even if m2 = 0 (but m1 6= 0) since particles

of type 2 can be created by particles of type 1.
We are going to prove (40) by a similar method as Theorem 2.2. Let us first compute ξ.
The matrix D has two eigenvalues, 0 and −α, each of them with one-dimensional eigenspace.
The (normalized) right and left eigenvectors of the greatest eigenvalue µ = 0 are respectively
ξ = (1

2 ; 1
2) and η = (0; 2). Since ξ > 0, the proof of Lemma 2.3 (and therefore Lemma 2.3 itself)

is still valid for this specific matrix, except for the assertion (i), which has to be reduced to the
following: if λ2 > 0, then, for any t > 0, uλ

t > 0 (if λ2 = 0, then uλ
t,2 ≡ 0).

Therefore, as in the proof of Theorem 2.2, we can prove that

∀λ ≥ 0, ∀t ≥ 0, |uλ
t − eDtλ| ≤ K‖λ‖teDtλ

and thus that, for θ and t0 such that ‖uλ
t0‖ ≤ 1/K(θ + t),

∣

∣

∣

∣

∣

(a, uλ
t0+θ)

(b, uλ
t0+θ+t)

−
(a, eDθuλ

t0)

(b, eD(θ+t)uλ
t0

)

∣

∣

∣

∣

∣

≤
2K‖a‖‖uλ

t0‖θ‖e
Dθuλ

t0‖

(b, eD(θ+t)uλ
t0

)
+

2K‖a‖‖b‖‖eDθuλ
t0‖‖u

λ
t0‖(t + θ)‖eD(θ+t)uλ

t0‖

(b, eD(θ+t)uλ
t0

)2
. (44)
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Let us compute explicitly the exponential of the matrix Dt. Since Dn = (−α)nN where N =
(

1 −1
0 0

)

, then

eDt = P + e−αtN, with P = (ξiηj)1≤i,j≤2 =

(

0 1
0 1

)

.

This has the same form as (15) in the irreducible case, except that P 6> 0. Because of this, we
cannot obtain a bound for (44) uniform in λ ∈ R

2 as in the proof of Theorem 2.2. However,
we can restrict to a subset of R

2 for which the convergence is uniform and which covers the
two limits involved in the computation of P̌

∗ (λ1 = 0 and λ2 → +∞) and P
∗ (λ1 → +∞ and

λ2 → +∞).

This can be done as follows: if λ1 = λ2, then uλ
t,1 = uλ

t,2 for any t ≥ 0. Therefore, for any

λ 6= {0} such that λ2 ≥ λ1, uλ
t,2 ≥ uλ

t,1 > 0 for any t > 0 (if at some time these quantities are
equal, they remain equal for any larger time). Then, since

eDθuλ
t0 = (uλ

t0,2 + e−αθ(uλ
t0,1 − uλ

t0,2), u
λ
t0,2),

this quantity converges when θ → ∞ to (uλ
t0,2, u

λ
t0,2), uniformly in λ such that λ2 > λ1 ≥ 0.

From this follows as in the proof of Theorem 2.2 that

lim
θ→∞

uλ
θ

(x, uλ
t+θ)

=
ξ

(x, ξ)

uniformly for λ in the set of (λ1; λ2) 6= 0 such that λ2 ≥ λ1 ≥ 0. This ends the proof of (40). 2

From the local density of P
∗ (resp. P̂

∗) with respect to P, we easily obtain as in Section 2.2 the
following expressions for the Laplace functionals of the different conditioned processes.

Theorem 4.2. The probability measure P
∗(= P̌

∗) is characterized by

∀f ∈ Cb(R, R2)+, E
∗(exp−〈Xt, f〉 | X0 = m) =

〈m, Vtf〉

〈m, ξ〉
e−〈m,Utf〉

where Vtf is the unique semigroup solution of the PDE (22). The probability measure P̂
∗ is

characterized by

∀f ∈ Cb(R, R2)+, Ê
∗(exp−〈Xt, f〉 | X0 = m) =

〈m, V̂tf〉

〈m1, 1〉
eαte−〈m,Utf〉

where V̂tf satisfies the same PDE as Vtf except for the initial condition V̂0f = (1; 0).

4.2 Long time behaviors of the Feller diffusions

Let us now analyze the long time behavior of the various conditioned MF diffusions.

Proposition 4.3. (a) The first type vanishes in P
∗-probability when t → ∞, that is

∀ε > 0, lim
t→∞

P
∗(xt,1 > ε) = 0.
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(b) Under P̂
∗, the first type converges in distribution to the probability measure Γ(2, 2α/c)

lim
t→∞

P̂
∗(xt,1 ∈ ·)

(d)
= Γ(2, 2α/c).

(c) The second type xt,2 explodes in P
∗- and in P̂

∗-probability when t → ∞.

Proof We first compute the vector vλ
t := Vtλ, λ ∈ R

2.

E
∗(exp−(xt, λ) | x0 = x) =

(x, vλ
t )

(x, ξ)
e−(x,uλ

t )

with














dvλ
t,1

dt
= −αvλ

t,1 + αvλ
t,2 − cuλ

t,1v
λ
t,1, vλ

0,1 = 1/2,

dvλ
t,2

dt
= −cuλ

t,2v
λ
t,2, vλ

0,2 = 1/2.

Therefore, replacing uλ
t,2 by its value obtained in (42),

vλ
t,2 =

1

2(1 + c
2λ2t)2

and

vλ
t,1 =

1

2
e−αt−c

R t
0 uλ

s,1ds
(

1 + α

∫ t

0

eαs+c
R s
0 uλ

τ,1dτ

(1 + c
2λ2s)2

ds
)

. (45)

In particular, if λ2 = 0, v
(λ1;0)
t,2 = 1/2 and one gets from the explicit expression (43) of u

(λ1;0)
t,1

v
(λ1,0)
t,1 =

1

2
−

cλ1(1 + c
2αλ1)te

−αt + c2

α2 λ2
1e

−2αt

2
(

1 + c
2αλ1(1 − e−αt)

)2 .

Similarly, for v̂λ
t := V̂tλ, λ ∈ R

2, we get

Ê
∗(exp−(xt, λ) | x0 = x) =

(x, v̂λ
t )

(x, ξ)
eαte−(x,uλ

t )

with














dv̂λ
t,1

dt
= −αv̂λ

t,1 + αv̂λ
t,2 − cuλ

t,1v̂
λ
t,1, v̂λ

0,1 = 1,

dv̂λ
t,2

dt
= −cuλ

t,2v̂
λ
t,2, v̂λ

0,2 = 0.

Therefore, v̂λ
t,2 = 0 and

v̂λ
t,1 = exp

(

− αt − c

∫ t

0
uλ

s,1 ds
)

. (46)

In particular, if λ2 = 0, using (43) again,

v̂
(λ1;0)
t,1 =

e−αt

(

1 + c
2αλ1(1 − e−αt)

)2 . (47)
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Now (a) and (b) can be deduced from the facts that limt→∞ v
(λ1;0)
t = ξ and limt→∞ eαtv̂

(λ1;0)
t =

(1/(1 + cλ1/2α)2; 0).

The explosion of xt,2 in P
∗-probability in (c) is a consequence of the fact that limt→∞ eαtv̂

(λ1;λ2)
t =

(

exp(−c
∫ ∞
0 uλ

s,1 ds); 0
)

= (0; 0), by Lemma 2.3 (iii).
Finally, it follows from (45) that

vλ
t,1 ≤

e−αt

2
+

α

2

∫ t

0

e−α(t−s)−c
R t

s uλ
τ,1dτ

(1 + c
2λ2s)2

ds

≤
e−αt

2
+

e−αt/2

2
+

α

cλ2(1 + c
4λ2t)

where the last inequality is obtained by splitting the integral over the time interval [0, t] into the
sum of the integrals over [0, t

2 ] and [ t
2 , t]. This implies the first part of (c). 2

We interpret this proposition as follows. Conditionally on the survival of the whole population,
the weakest type gets extinct and the strongest type has the same behavior as in the critical
monotype case. Conversely, conditionally on the long time survival of the weakest type, the
weakest type behaves at large time as in the monotype subcritical case and the strongest type
explodes.

4.3 A more general subcritical decomposable model

We consider a generalization of the previous model. The mutation matrix is now given by

D =

(

−α α
0 −β

)

(48)

where α > 0 (as before) and β > 0 with β 6= α.

In this case, the whole population is subcritical. Here again, mutations are only possible from
type 1 to type 2. If β < α, type 2 is “less subcritical” than type 1 (as in the previous case) but
if α < β, type 1 is “less subcritical” than type 2. We will see below that the behavior of the
various conditioned processes is strongly related to the so-called dominating type, which is the
first one if α < β and the second type if β < α.
Before treating separately both cases with different techniques, we define the common ingredients
we need.

We can easily compute the normalized right eigenvector ξ for the greatest eigenvalue µ. If β < α,
µ = −β and ξ = 1

2α−β (α; α − β) and if α < β, µ = −α and ξ = (1; 0). We can also explicitly
compute the exponential of the mutation matrix:

eDt = e−βt

(

0 α
α−β

0 1

)

+ e−αt

(

1 − α
α−β

0 0

)

.

The cumulant uλ
t of the mass process satisfies















duλ
t,1

dt
= −αuλ

t,1 + αuλ
t,2 −

c

2
(uλ

t,1)
2 uλ

0,1 = λ1

duλ
t,2

dt
= −βuλ

t,2 −
c

2
(uλ

t,2)
2 uλ

0,2 = λ2

(49)
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Thus uλ
t,2 is given by

uλ
t,2 =

λ2e
−βt

1 + c
2β λ2(1 − e−βt)

. (50)

One can compute uλ
t,1 explicitly only when λ2 = 0, and in this case, as in (43),

u
(λ1;0)
t,1 =

λ1e
−αt

1 + c
2αλ1(1 − e−αt)

and u
(λ1;0)
t,2 = 0.

We now consider the system of equations











dht,1

dt
= −αht,1 + αht,2 − cuλ

t,1ht,1

dht,2

dt
= −βht,2 − cuλ

t,2ht,2

(51)

which solutions are given by

ht,2 =
h0,2 e−βt

(

1 + cλ2
2β (1 − e−βt)

)2 . (52)

and

ht,1 = e−αt−c
R t
0 uλ

s,1ds
(

h0,1 + α

∫ t

0
eαs+c

R s
0 uλ

τ,1dτhs,2ds
)

. (53)

We denote as before by vλ
t , v̂λ

t or v̌λ
t the respective solutions of (51) with initial conditions vλ

0 = ξ,
v̂λ
0 = (1; 0) and v̌λ

0 = (0; 1).

4.3.1 Case β < α

We now identify the laws obtained by conditioning with respect to the various remote survivals.

Theorem 4.4. Let P
∗ (resp. P̂

∗, P̌∗) be the conditioned laws defined in Theorem 4.1 where P is
the law of the MDW process with mutation matrix given by (48) with β < α and non-zero initial
condition m. It holds

P̌
∗
∣

∣

Ft
= P

∗
∣

∣

Ft
=
〈Xt, ξ〉

〈m, ξ〉
eβt

P
∣

∣

Ft

and P̂
∗
∣

∣

Ft
=
〈Xt,1, 1〉

〈m1, 1〉
eαt

P
∣

∣

Ft
(if m1 6= 0).

Sketch of the proof The greatest eigenvalue of D is µ = −β, the normalized right eigenvector
for µ is ξ = 1

2α−β (α; α − β) and the normalized left eigenvector is η = (0; 2α−β
α−β ).

As in the proof of Theorem 4.1, ξ > 0, so that Lemma 2.3 holds (except assertion (i) ) and we
can use a similar method. The only difficulty is to find a domain E ⊂ R

2
+ such that, for each

initial condition λ ∈ E, the cumulant semigroup uλ
t takes its values in E and {λ1/λ2, λ ∈ E}

is bounded. To this aim, one can check that, if 0 ≤ uλ
t,1 = α

α−β uλ
t,2 at some time t ≥ 0, then

duλ
t,1

dt ≤ α
α−β

duλ
t,2

dt . Therefore, if 0 ≤ λ1 ≤ α
α−β λ2 with λ2 > 0, one has 0 < uλ

t,1 ≤ α
α−β uλ

t,2 for any
positive t. 2
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Let us now analyze the behavior for large t of the mass process under the three measures P
∗, P̂

∗

and P̌
∗. Since v̂0,2 = 0, v̂t,2 ≡ 0 as in Section 4.2 and (46) holds. Therefore the behavior of xt

under P̂
∗ is exactly the same as for β = 0, treated in Proposition 4.3 (b) and (c).

The long time behavior of xt under P
∗ is different from Section 4.2 and is given in the following

proposition.

Proposition 4.5. (a) The first type vanishes in P
∗-probability when t → ∞.

(b) Under P
∗, the second type converges in distribution to the probability measure Γ(2, 2β/c)

lim
t→∞

P
∗(xt,2 ∈ ·)

(d)
= Γ(2, 2β/c).

Proof Since

E
∗(e−(xt,λ) | x0 = x) =

(x, vλ
t )

(x, ξ)
eβte−(x,uλ

t )

we have to compute limt→∞ vλ
t eβt.

For the proof of (a) we remark that, from (52) and (53), v
(λ1;0)
t,2 = ξ2 e−βt and

v
(λ1;0)
t,1 = e−αt exp(−c

∫ t

0
u

(λ1;0)
s,1 ds)

(

ξ1 + α ξ2

∫ t

0
e(α−β)s exp(c

∫ s

0
u

(λ1;0)
τ,1 dτ)ds

)

.

Since

exp(−c

∫ t

0
u

(λ1;0)
s,1 ds) = exp

(

− c

∫ t

0

λ1e
−αs

1 + c
2αλ1(1 − e−αs)

ds
)

=
1

(

1 + c
2αλ1(1 − e−αt)

)2

one obtains

v
(λ1;0)
t,1 eβt = exp

(

−
(α − β)t

(1 + c
2αλ1(1 − e−αt))2

)

ξ1

+
α

(

1 + c
2αλ1(1 − e−αt)

)2

∫ t

0
e−(α−β)(t−s)

(

1 +
c

2α
λ1(1 − e−αs)

)2
ds ξ2.

The integral can be computed explicitly and is equal, for t large, to

1

α − β
(1 +

c

2α
λ1)

2 + O(e−(α−β)t) .

Thus,

lim
t→∞

v
(λ1;0)
t,1 eβt =

α

α − β
ξ2 = ξ1.

For the proof of (b), it suffices to show that

lim
t→∞

v
(0;λ2)
t eβt =

1

(1 + c
2β λ2)2

ξ.
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From (52), it is clear that limt→∞ v
(0;λ2)
t,2 eβt = 1

(1+ c
2β

λ2)2
ξ2. It then remains to compute the limit,

for λ2 > 0, of v
(0;λ2)
t,1 as t → ∞. Using (53), we get

v
(λ1;λ2)
t,1 eβt = e−(α−β)t−c

R t
0 uλ

s,1ds ξ1 + αξ2

∫ t

0

e−(α−β)(t−s)−c
R t

s uλ
τ,1dτ

(

1 + cλ2
2β (1 − e−βs)

)2 ds.

The first term is O(e−(α−β)t) and goes to 0 as t → ∞. The limit of the integral can be computed
as follows:

∣

∣

∣

∫ t

0

e−(α−β)(t−s)−c
R t
s uλ

τ,1dτ

(

1 + c
2β λ2(1 − e−βs)

)2 ds −
1

(1 + c
2β λ2)2

∫ t

0
e−(α−β)(t−s)ds

∣

∣

∣

≤ K̄

∫ t

0
e−(α−β)(t−s)

∣

∣

∣
1 − e−c

R t
s uλ

τ,1dτ
(

1 −

cλ2
2β e−βs

1 + cλ2
2β

)−2∣
∣

∣
ds

≤ K̄

(

e−(α−β)t/2 +
t

2

(

1 − e
−c

R +∞

t/2 uλ
s,1ds

)

∨
((

1 −

cλ2
2β e−βt/2

1 + c
2β λ2

)−2
− 1

)

)

where the positive constant K̄ may vary from line to line and where the last inequality is obtained
by splitting the integration over the time intervals [0, t

2 ] and [ t
2 , t].

Now, by Lemma 2.3 (ii), limt→∞

∫ +∞
t/2 uλ

s,1ds = 0. Therefore,

lim
t→∞

vλ
t,1e

βt =
αξ2

(

1 + c
2β λ2

)2

∫ ∞

0
e−(α−β)sds =

ξ1
(

1 + c
2β λ2

)2

as required. 2

Here again, this result can be interpreted as follows: for i = 1, 2, conditionally on the survival of
the type i, this type i behaves as if it was alone, and the other type j explodes or goes extinct
according to whether it is stronger or weaker.

4.3.2 Case α < β

When α < β, the greatest eigenvalue of D is µ = −α and the normalized right eigenvector to
µ is ξ = (1; 0). In particular, ξ 6> 0, so that Lemma 2.3 does not hold and we cannot use the
previous method anymore. However, in our specific example, uλ

t,2 can be explicitly computed,

and, by (49), uλ
t,1 is solution of the one-dimensional differential equation

dyt

dt
= −αyt −

c

2
y2

t +
αλ2e

−βt

1 + c
2β λ2(1 − e−βt)

. (54)

This equation can be (formally) extended to the case λ2 = ∞ as

dyt

dt
= −αyt −

c

2
y2

t +
2αβe−βt

c(1 − e−βt)
. (55)

The following technical lemma gives (non-explicit) long-time estimates of the solutions of (54)
that are sufficient to compute the various conditioned laws of the MDW process. We postpone
its proof at the end of the subsection.
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Lemma 4.6. For any λ2 ∈ [0,∞], let Y(λ2) denote the set of solutions yt of (54) (or of (55)
if λ2 = ∞) defined (at least) on (0,∞). For any y ∈ Y(λ2), the limit C(λ2, y) := limt→∞ yte

αt

exists and satisfies

0 < inf
λ2≥1, y∈Y(λ2)

C(λ2, y) ≤ sup
λ2≥1, y∈Y(λ2)

C(λ2, y) < +∞

We now identify the laws obtained by conditioning P with respect to the various remote survivals.

Theorem 4.7. Let P
∗ (resp. P̂

∗, P̌∗) be the conditioned laws defined in Theorem 4.1, where
P is the MDW process with mutation matrix given by (48) with α < β and initial condition
m = (m1; m2) with m1 6= 0. It holds

P̂
∗
∣

∣

Ft
= P̌

∗
∣

∣

Ft
= P

∗
∣

∣

Ft
=

〈Xt, ξ〉

〈m, ξ〉
eαt

P
∣

∣

Ft
.

When m1 = 0 and m2 6= 0,

P̌
∗
∣

∣

Ft
= P

∗
∣

∣

Ft
=

〈Xt,2, 1〉

〈m2, 1〉
eβt

P
∣

∣

Ft
.

and P̂
∗ is not defined.

Proof Our usual method consists in computing the following limits as θ goes to +∞ :

limλ1→∞ u
(λ1;0)
θ

(x, limλ1→∞ u
(λ1;0)
t+θ )

,
limλ2→∞ u

(0;λ2)
θ

(x, limλ2→∞ u
(0;λ2)
t+θ )

,
limλ1,λ2→∞ u

(λ1;λ2)
θ

(x, limλ1,λ2→∞ u
(λ1;λ2)
t+θ )

. (56)

It is elementary to prove that, as monotone limits of solutions of (54), the function θ 7→

limλ1→∞ u
(λ1;0)
θ,1 is still solution of (54) with λ2 = 0, and the functions θ 7→ limλ2→∞ u

(0;λ2)
θ,1

and θ 7→ limλ1,λ2→∞ u
(λ1;λ2)
θ,1 are solutions of (55) (a priori only defined for t > 0).

Therefore, we can use Lemma 4.6 and the explicit formula (50) for uλ
t,2 to compute the three

limits of (56). In each case, the dominant term is the one including uλ
t,1, except when m1 = 0,

where the only remaining term is the one including uλ
t,2. 2

Finally, we give the long time behavior of the mass process under P
∗ (which is equal to P̌

∗ and
P̂
∗ when this last measure exists).

Proposition 4.8. (a) If m1 6= 0, the laws under P
∗ of the mass of both types xt,1 and xt,2

converge when t → ∞. More precisely

lim
t→∞

P
∗(xt,1 ∈ ·)

(d)
= Γ(2, 2α/c),

and xt,2 converges in P
∗-distribution to a non-trivial (and non-explicit) distribution on R+.

(b) If m1 = 0 (m2 6= 0), xt,1 ≡ 0 P
∗ − a.s. and

lim
t→∞

P
∗(xt,2 ∈ ·)

(d)
= Γ(2, 2β/c).
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Proof With the previous notation, when m1 6= 0,

E
∗(exp−(xt, λ)) =

(x, vλ
t )

(x, vλ
0 )

eαte−(x,uλ
t ).

Since vt,2 = 0 and vt,1 = exp(−αt − c
∫ t
0 uλ

s,1ds),

lim
t→∞

eαtvt =
(

exp−c

∫ ∞

0
uλ

s,1ds ; 0
)

where exp−
∫ ∞
0 uλ

s,1ds ∈ (0, 1) by Lemma 4.6. In order to prove the convergence in distribution
of xt,2, it remains to prove that

lim
λ2→0

∫ ∞

0
u

(0,λ2)
s,1 ds = 0.

Because of (54), u̇λ
t,1 ≤ −αuλ

t,1 +αλ2e
−βt. Therefore, it is easy to check that uλ

t,1 ≤ (β +2)λ2e
−βt

for all t ≥ 0 if λ1 ≤ (β + 2)λ2 (simply differentiate the difference). This implies the required
result.

When λ2 = 0, the computations can be made explicitly as in the proof of Proposition 4.3 (b)
and give the usual Gamma limit distribution for xt,1 under P

∗ when t → +∞.

If m1 = 0 (i.e. x1 = 〈m1, 1〉 = 0),

E
∗(exp−(xt, λ)) =

(x, v̌λ
t )

(x, v̌λ
0 )

eβte−(x,uλ
t ) = v̌λ

t,2e
βte−(x,uλ

t )

and the computations are the same as in the monotype case. 2

We interpret this last result as follows: when the first type is present, it dominates the asymptotic
behavior of both types, since its subcriticality is weaker than the one of the second type, although
mutations from type 2 to type 1 do not occur.

Remark 4.9. Theorem 4.7 and Proposition 4.8 are still valid in the remaining case α = β.
In this case, it is actually possible to be more precise than in Lemma 4.6 by proving, using a
similar method, that a solution yt to (54) or (55) (with α = β) satisfies yt ∼ C(λ2)te

−αt where
C(λ2) = αλ2/(1 + cλ2/2α) if λ2 < ∞ and C(∞) = 2α2/c.

Proof of lemma 4.6 Let zt := eαtyt. It solves the equation

dzt

dt
= −

c

2
e−αtz2

t +
αλ2e

−(β−α)t

1 + c
2β λ2(1 − e−βt)

. (57)

Let us first prove that zt is bounded for t ∈ [1,∞), uniformly in λ2 and independently of the
choice of the solution yt of (54) or (55) defined on (0,∞). For any t ≥ 1 and λ2 ∈ [0,∞],

dzt

dt
≤

2αβ

c(1 − e−β)
e−(β−α)t.
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Since the integral of the above r.h.s. over [1,∞) is finite, we only have to prove that z1 is
bounded uniformly in λ2 ≥ 0 and independently of the choice of yt. Now, for any t ∈ [12 , 1] and
λ2 ∈ [0,∞],

dzt

dt
≤

2αβ

c

e−(β−α)t

1 − e−β/2
−

ce−α

2
z2
t .

In particular, for any t ∈ [12 , 1], the first term in the r.h.s. above is bounded and bounded away

from 0. Thus, there exists a constant K such that, if zt ≥ K and 1
2 ≤ t ≤ 1, dzt

dt ≤ − ce−α

4 z2
t .

Therefore, distinguishing between z1/2 ≤ K and z1/2 > K, one obtains

z1 ≤
z1/2

1 + c
4e−αz1/2

∨ K ≤
4eα

c
∨ K =: K ′ < ∞.

Second, it follows from (57) and from the boundedness of zt that |dzt/dt| ≤ K ′′(e−(β−α)t + e−αt)
for some constant K ′′ for any t ≥ 1. Therefore, zt converges as t → ∞. Moreover, this function
is uniformly bounded from above for t ≥ 1 by some constant K ′′′ independent of the particular
function zt considered. Therefore, since dzt/dt ≥ −cK ′′′e−αtzt/2 for t ≥ 1, the limit of zt when
t → +∞ is also greater than z1 exp(−cK ′′′e−α/2).

Then, it only remains to prove that z1 is bounded away from 0, uniformly in λ2 ∈ [1,∞]. This
follows from the fact that, for any λ2 ≥ 1, there exists a constant M > 0 independent of λ2 and
t such that, for t ∈ [12 , 1],

dzt

dt
≥ M −

c

2
z2
t .

This implies that there exists M ′ such that, if zt ≤ M ′ for t ∈ [12 , 1], dzt/dt ≥ M/2, and thus

z1 ≥
(

z1/2 +
M

4

)

∧ M ′ ≥
M

4
∧ M ′ > 0,

which completes the proof of Lemma 4.6. 2

4.4 Exchange of long time limits

As in the irreducible case, one can study the interchangeability of the long time limit (t → +∞)
of the conditioned Feller diffusion and the limit of long time survival (θ → +∞). The same
method as in Proposition 3.7 yields, for i, j ∈ {1, 2} and λ ∈ R+,

lim
t→∞

E(e−λxt,i | xt+θ,j > 0) = lim
t→∞

(x, u
λi+limλ̄→∞ uλ̄j

θ
t − uλi

t )

(x, limλ̄→∞ uλ̄j

t+θ)

where λ1 = (λ; 0) and λ2 = (0;λ).

However, the computation of these quantities requires precise information about the behavior
of uλ

t as a function of its initial condition λ for t large. The cases we could handle are the one
with non degenerate limits. In the model introduced in section 4.1, it corresponds to i = j = 1
and the computation reduces to the monotype case studied in Proposition 3.3. In the model
introduced in section 4.3, with β < α, it corresponds to i = j = 1 and i = j = 2, and with α < β,
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to all cases. For i = j = 1 the proof is based on explicit expressions like in the monotype case,
and for the other cases, the arguments are similar to those used in the proof of Theorem 3.7
(except in the case α < β and m1 = 0, where the computation can also be done explicitly). To
summarize:

Proposition 4.10. In the cases described above, one can interchange both limits in time:

lim
θ→∞

lim
t→∞

P(xt,1 ∈ · | xt+θ,1 > 0)
(d)
= lim

t→∞
lim

θ→∞
P(xt,1 ∈ · | xt+θ,1 > 0)

(d)
= Γ(2, 2α/c) if 0 ≤ β < α,

lim
θ→∞

lim
t→∞

P(xt,2 ∈ · | xt+θ,2 > 0)
(d)
= lim

t→∞
lim

θ→∞
P(xt,2 ∈ · | xt+θ,2 > 0)

(d)
= Γ(2, 2β/c) if 0 < β < α

or 0 < α < β and m1 = 0,

lim
θ→∞

lim
t→∞

P(xt,1 ∈ · | xt+θ,1 > 0)
(d)
= lim

θ→∞
lim
t→∞

P(xt,1 ∈ · | xt+θ,2 > 0)

(d)
= lim

t→∞
lim

θ→∞
P(xt,1 ∈ · | xt+θ,1 > 0)

(d)
= lim

t→∞
lim

θ→∞
P(xt,1 ∈ · | xt+θ,2 > 0)

(d)
= Γ(2, 2α/c) if 0 < α < β

and

lim
θ→∞

lim
t→∞

P(xt,2 ∈ · | xt+θ,1 > 0)
(d)
= lim

θ→∞
lim
t→∞

P(xt,2 ∈ · | xt+θ,2 > 0)

(d)
= lim

t→∞
lim

θ→∞
P(xt,2 ∈ · | xt+θ,1 > 0)

(d)
= lim

t→∞
lim

θ→∞
P(xt,2 ∈ · | xt+θ,2 > 0)

if 0 < α < β and m1 6= 0 (in this last case the limit is not known explicitly).
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