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Abstract

We consider a parallel server queueing system consisting of a bank of buffers for holding
incoming jobs and a bank of flexible servers for processing these jobs. Incoming jobs are classified
into one of several different classes (or buffers). Jobs within a class are processed on a first-
in-first-out basis, where the processing of a given job may be performed by any server from a
given (class-dependent) subset of the bank of servers. The random service time of a job may
depend on both its class and the server providing the service. Each job departs the system
after receiving service from one server. The system manager seeks to minimize holding costs
by dynamically scheduling waiting jobs to available servers. We consider a parameter regime in
which the system satisfies both a heavy traffic and a complete resource pooling condition. Our
cost function is an expected cumulative discounted cost of holding jobs in the system, where
the (undiscounted) cost per unit time is a linear function of normalized (with heavy traffic
scaling) queue length. In a prior work [42], the second author proposed a continuous review
threshold control policy for use in such a parallel server system. This policy was advanced as
an “interpretation” of the analytic solution to an associated Brownian control problem (formal
heavy traffic diffusion approximation). In this paper we show that the policy proposed in [42]
is asymptotically optimal in the heavy traffic limit and that the limiting cost is the same as the
optimal cost in the Brownian control problem.
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1 Introduction

We consider a dynamic scheduling problem for a parallel server queueing system. This system
might be viewed as a model for a manufacturing or computer system, consisting of a bank of
buffers for holding incoming jobs and a bank of flexible servers for processing these jobs (see e.g.,
[23]). Incoming jobs are classified into one of several different classes (or buffers). Jobs within a
class are served on a first-in-first-out basis and each job may be served by any server from a given
subset of the bank of servers (this subset may depend on the class). In addition, a given server may
be able to service more than one class. Jobs depart the system after receiving one service. Jobs of
each class incur linear holding costs while present within the system. The system manager seeks
to minimize holding costs by dynamically allocating waiting jobs to available servers.

The parallel server system is described in more detail in Section 2 below. With the exception of
a few special cases, the dynamic scheduling problem for this system cannot be analyzed exactly and
it is natural to consider more tractable approximations. One class of such approximations are the
so-called Brownian control problems which were introduced and developed as formal heavy traffic
approximations to queueing control problems by Harrison in a series of papers [12, 19, 16, 17].
Various authors (see for example [7, 8, 20, 21, 24, 29, 30, 39]) have used analysis of these Brownian
control problems, together with clever interpretation of their optimal (analytic) solutions, to suggest
“good” policies for certain queueing control problems. (We note that some authors have used other
approximations for queueing control problems such as fluid models, see e.g. [32] and references
therein, but here we restrict attention to Brownian control problems as approximations.)

For the parallel server system considered here, Harrison and López [18] studied the associated
Brownian control problem and identified a condition under which the solution of that problem
exhibits complete resource pooling, i.e., in the Brownian model, the efforts of the individual servers
can be efficiently combined to act as a single pooled resource or “superserver”. Under this condition,
Harrison and López [18] conjectured that a “discrete review” scheduling policy (for the original
parallel server system), obtained by using the BIGSTEP discretization procedure of Harrison [14],
is asymptotically optimal in the heavy traffic limit. They did not attempt to prove the conjecture,
although, in a slightly earlier work, Harrison [15] did prove asymptotic optimality of a discrete
review policy for a two server case with special distributional assumptions.

Here, focusing on the parameter regime associated with heavy traffic and complete resource
pooling, we first review the formulation and solution of the Brownian control problem. Then we
prove that a continuous review “tree-based” threshold policy proposed by the second author in [42]
is asymptotically optimal in the heavy traffic limit. (Independently of [42], Squillante et al. [35]
proposed a tree-based threshold policy for the parallel server system. However, their policy is in
general different from the one described in [42]. An example illustrating this is given in Section 5.4.)
Our treatment of the Brownian control problem is similar to that in [18, 42] and our description of
the candidate threshold policy is similar to that in [42], although some more details are included
here. On the other hand, the proof of asymptotic optimality of this policy is new. In a related work
[3], we have already proved that this policy is asymptotically optimal for a particular two-server,
two-buffer system. Indeed, techniques developed in [3] have been useful for analysis of the more
complex multiserver case treated here. These techniques have also recently been used in part by
Budhiraja and Ghosh [7] in treating a classic controlled queueing network example known as the
criss-cross network.

Since we began this work, three related works have appeared [1, 36, 31]. In [1], Ata and
Kumar consider a dynamic scheduling problem for an open stochastic processing network that
allows feedback routing. A parallel server system is a special case of such networks in which no
routing occurs. Under heavy traffic and complete resource pooling conditions, Ata and Kumar prove
asymptotic optimality of a discrete review policy for an open stochastic processing network with
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linear holding costs. Although this provides an asymptotically optimal policy for the parallel server
problem, we think it is still of interest to establish asymptotic optimality of a simple continuous
review threshold policy, as we do here. Indeed, the policy proposed in [1] and the method of proof
are substantially different from those used here. The discrete review policy of [1] observes the state
of the system at discrete review times and determines open loop controls to be used over the periods
between review times. Their control typically changes with the state observed at the beginning of
each of these “review periods”. Our policy is a simple threshold priority policy. It continuously
monitors the state, but the control only changes when a threshold is crossed or a queue becomes
empty. Furthermore, our policy exploits a tree structure of the parallel server system, whereas
the policy of [1], which is designed for more general systems with feedback, does not exploit the
tree structure when restricted to parallel server systems. Finally, our proof involves an induction
procedure to prove estimates related to the tree structure; there is not an analogue of this inductive
proof in the paper [1].

The other related works are by Stolyar [36], who considers a generalized switch, which operates
in discrete time, and Mandelbaum and Stolyar [31], who consider a parallel server system. Although
it does not allow routing, Stolyar’s generalized switch is somewhat more general than a parallel
server system operating in discrete time. In particular, it allows service rates that depend on the
state of a random environment. Assuming heavy traffic and a resource pooling condition, which is
slightly more general than a complete resource pooling condition, Stolyar [36] proves asymptotic
optimality of a MaxWeight policy, for holding costs that are positive linear combinations of the
individual queue lengths raised to the power β + 1 where β > 0. In particular, the holding costs
are not linear in the queue length. An advantage of the MaxWeight policy (which exploits the
non-linear nature of the holding cost function) is that it does not require knowledge of the arrival
rates for its execution, although checking the heavy traffic and resource pooling conditions does
involve these rates.

Following on from [36], in [31], Mandelbaum and Stolyar focus on a parallel server system
(operating in continuous time). Assuming heavy traffic and complete resource pooling conditions
they prove asymptotic optimality of a MaxWeight policy (called a generalized cµ-rule there), for
holding costs that are sums of strictly increasing, strictly convex functions of the individual queue
lengths. (They also prove a related result where queue lengths are replaced by sojourn times.)
Again, the nonlinear nature of the holding cost function allows the authors to specify a policy that
does not require knowledge of the arrival rates (nor of a solution of a certain dual linear program).
Although Mandelbaum and Stolyar [31] conjecture a policy for linear holding costs (which like
ours makes use of the solution of a dual linear program), they stop short of proving asymptotic
optimality of that policy.

Thus, assuming heavy traffic scaling, the current paper provides the only proof of asymptotic
optimality of a continuous review policy for the parallel server system with linear holding costs
under a complete resource pooling condition. An additional difference between our work and
that in [1, 31, 36] is that we impose finite exponential moment assumptions on our primitive
stochastic processes, whereas only finite moment assumptions (of order 2 + ε) are needed for the
results in [1, 31, 36]. We conjecture that our exponential moment assumptions could be relaxed
to moment conditions of sufficiently high order, at the expense of an increase in the size of our
(logarithmic) thresholds. We have not pursued this conjecture here, having chosen the tradeoff of
smaller thresholds at the expense of exponential moment assumptions.

This paper is organized as follows. In Section 2, we describe the model of a parallel server
system considered here. In Section 3 we introduce a sequence of such systems, indexed by r (where
r tends to infinity through a sequence of values in [1,∞)), which is used in formulating the notion
of heavy traffic asymptotic optimality. The cost function used in the rth system is an expected
cumulative discounted linear holding cost, where the linear holding cost is per unit of normalized

1047



queue length (in diffusion scale). In Section 3, we also review the notion of heavy traffic defined in
[16, 18] using a linear program, and recall its interpretation in terms of the behavior of an associated
fluid model, as previously described in [42]. In Section 4, we describe the Brownian control problem
associated with the sequence of parallel server systems, and, under the complete resource pooling
condition of Harrison and López [18], we review the solution of the Brownian control problem
obtained in [18] using a reduced form of the problem called the equivalent workload formulation
[16, 19]. The complete resource pooling condition ensures that the Brownian workload process is
one-dimensional. Moreover, from [18] we know that this condition is equivalent to uniqueness of
a solution to the dual to the linear program described in Section 3. In Section 5, we describe the
dynamic threshold policy proposed in [42] for use in the parallel server system. This policy exploits
a tree structure of a graph containing the servers and buffers as nodes. We then state the main
result (Theorem 5.4) which implies that this policy is asymptotically optimal in the heavy traffic
limit and that the limiting cost is the same as the optimal cost in the Brownian control problem.
An outline of our method of proof is given in Section 6. The details of the proof are contained
in Sections 7–9. Here a critical role is played by our analysis in Section 7 of what we call the
residual processes, which measure the deviations of the queue lengths from the threshold levels,
or from zero if a queue does not have a threshold on it, when the threshold policy is used. This
allows us to establish a form of “state space collapse” (see Theorems 6.1 and 5.3) under this policy.
The techniques used in proving state space collapse build on and extend those introduced in [3]. In
particular, a major new feature is the need to show that allocations of time to various activities stay
close to their nominal allocations over sufficiently long time intervals (with high probability), which
in turn is used to show that the residual processes stay close to zero (with high probability). Using
a suitable numbering of the buffers, the proof of state space collapse proceeds by induction on the
buffer number, highlighting the fact that the queue length for a particular buffer depends (via the
threshold policy) on the queue lengths associated with lower numbered buffers. Another new aspect
of our proof lies in Section 9, where a certain uniform integrability is used to prove convergence of
normalized cost functions associated with the sequence of parallel server systems, operating under
the threshold policy, to the optimal cost function for the Brownian control problem. To establish
the uniform integrability, estimates of the probabilities that the residual processes deviate far from
zero need to be sufficiently precise (cf. Theorem 7.7). This accounts for the appearance of the
polynomial terms in (I)–(III) of Section 7.2. Also, in the proof of the uniform integrability of the
normalized idletime processes, a technical point that was overlooked in the proof of the analogous
result in [3] is corrected. Specifically, the proof is divided into two separate cases depending on the
size of the time index (cf. (9.34)–(9.36)). (In the proof of Theorem 5.3 in [3], the estimates in (173)
and (176) should have been divided into two cases corresponding to r2t > 2/ε̃ and r2t ≤ 2/ε̃.)

1.1 Notation and Terminology

The set of non-negative integers will be denoted by IN and the value +∞ will simply be denoted
by ∞. For any real number x, bxc will denote the integer part of x, i.e., the greatest integer that
is less than or equal to x, and dxe will denote the smallest integer that is greater than or equal
to x. We let IR+ denote [0,∞). The m-dimensional (m ≥ 1) Euclidean space will be denoted by
IRm and IRm

+ will denote the m-dimensional positive orthant, [0,∞)m. Let | · | denote the norm on
IRm given by |x| = ∑m

i=1 |xi| for x ∈ IRm. We define a sum over an empty index set to be zero.
Vectors in IRm should be treated as column vectors unless indicated otherwise, inequalities between
vectors should be interpreted componentwise, the transpose of a vector a will be denoted by a′, the
diagonal matrix with the entries of a vector a on its diagonal will be denoted by diag(a), and the
dot product of two vectors a and b in IRm will be denoted by a · b. For any set S, let |S| denote
the cardinality of S.

For each positive integer m, let Dm be the space of “Skorokhod paths” in IRm having time
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domain IR+. That is, Dm is the set of all functions ω : IR+ → IRm that are right continuous on
IR+ and have finite left limits on (0,∞). The member of Dm that stays at the origin in IRm for all
time will be denoted by 0. For ω ∈ Dm and t ≥ 0, let

‖ω‖t = sup
s∈[0,t]

|ω(s)|. (1.1)

Consider Dm to be endowed with the usual Skorokhod J1-topology (see [10]). Let Mm denote the
Borel σ-algebra on Dm associated with the J1-topology. All of the continuous-time processes in
this paper will be assumed to have sample paths in Dm for some m ≥ 1. (We shall frequently use
the term process in place of stochastic process.)

Suppose {W n}∞n=1 is a sequence of processes with sample paths in Dm for some m ≥ 1. Then
we say that {W n}∞n=1 is tight if and only if the probability measures induced by the W n’s on
(Dm,Mm) form a tight sequence, i.e., they form a weakly relatively compact sequence in the space
of probability measures on (Dm,Mm). The notation “W n ⇒ W”, where W is a process with
sample paths in Dm, will mean that the probability measures induced by the W n’s on (Dm,Mm)
converge weakly to the probability measure on (Dm,Mm) induced by W . If for each n, W n and W
are defined on the same probability space, we say that W n converges to W uniformly on compact
time intervals in probability (u.o.c. in prob.), if P(‖W n −W‖t ≥ ε)→ 0 as n→∞ for each ε > 0
and t ≥ 0. We note that if {W n} is a sequence of processes and W is a continuous deterministic
process (all defined on the same probability space) then W n ⇒W is equivalent to W n →W u.o.c.
in prob. This is implicitly used several times in the proofs below to combine statements involving
convergence in distribution to deterministic processes.

2 Parallel Server System

2.1 System Structure

Our parallel server system consists of I infinite capacity buffers for holding jobs awaiting service,
indexed by i ∈ I ≡ {1, . . . , I}, and K (non-identical) servers working in parallel, indexed by
k ∈ K ≡ {1, . . . ,K}. Each buffer has its own stream of jobs arriving from outside the system.
Arrivals to buffer i are called class i jobs and jobs are ordered within each buffer according to their
arrival times, with the earliest arrival being at the head of the line. Each entering job requires
a single service before it exits the system. Several different servers may be capable of processing
(or serving) a particular job class. Service of a given job class i by a given server k is called a
processing activity. We assume that there are J ≤ I ·K possible processing activities labeled by
j ∈ J ≡ {1, . . . ,J}. The correspondences between activities and classes, and activities and servers,
are described by two deterministic matrices C, A, where C is an I× J matrix with

Cij =

{

1 if activity j processes class i,
0 otherwise,

(2.1)

and A is a K× J matrix with

Akj =

{

1 if server k performs activity j,
0 otherwise.

(2.2)

Note that each column of C contains the number one exactly once and similarly for A, since each
activity j has exactly one class i(j) and one server k(j) associated with it. We also assume that
each row of C and each row of A contains the number one at least once (i.e., each job class is
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capable of being processed by at least one activity and each server is capable of performing at least
one activity).

Once a job has commenced service at a server, it remains there until its service is complete,
even if its service is interrupted for some time (e.g., by preemption by a job of another class). A
server may not start on a new job of class i until it has finished serving any class i job that it is
working on or that is in suspension at the server. In addition, a server cannot work unless it has a
job to work on. When taking a new job from a buffer, a server always takes the job at the head of
the line. (For concreteness, we suppose that a deterministic tie-breaking rule is used when two (or
more) servers want to simultaneously take jobs from the same buffer, e.g., there is an ordering of
the servers and lower numbered servers take jobs before higher numbered ones.) This setup allows
a job to be allocated to a server just before it begins service, rather than upon arrival to the system.
We assume that the system is initially empty.

2.2 Stochastic Primitives

All random variables and stochastic processes used in our model description are assumed to be
defined on a given complete probability space (Ω,F ,P). The expectation operator under P will
be denoted by E. For i ∈ I, we take as given a sequence of strictly positive i.i.d. random variables
{ui(`), ` = 1, 2, . . . } with mean λ−1

i ∈ (0,∞) and squared coefficient of variation (variance divided
by the square of the mean) a2

i ∈ [0,∞). We interpret ui(`) as the interarrival time between the
(` − 1)st and the `th arrival to class i where, by convention, the “0th arrival” is assumed to occur
at time zero. Setting ξi(0) = 0 and

ξi(n) =
n
∑

`=1

ui(`), n = 1, 2, . . . , (2.3)

we define
Ai(t) = sup{n ≥ 0 : ξi(n) ≤ t} for all t ≥ 0. (2.4)

Then Ai(t) is the number of arrivals to class i that have occurred in [0, t], and λi is the long
run arrival rate to class i. For j ∈ J , we take as given a sequence of strictly positive i.i.d.
random variables {vj(`), ` = 1, 2, . . . } with mean µ−1

j ∈ (0,∞) and squared coefficient of variation

b2j ∈ [0,∞). We interpret vj(`) as the amount of service time required by the `th job processed by
activity j, and µj as the long run rate at which activity j could process its associated class of jobs
i(j) if the associated server k(j) worked continuously and exclusively on this class. For j ∈ J , let
ηj(0) = 0,

ηj(n) =
n
∑

`=1

vj(`), n = 1, 2, . . . , (2.5)

and
Sj(t) = sup{n ≥ 0 : ηj(n) ≤ t} for all t ≥ 0. (2.6)

Then Sj(t) is the number of jobs that activity j could process in [0, t] if the associated server
worked continuously and exclusively on the associated class of jobs during this time interval. The
interarrival time sequences {ui(`), ` = 1, 2, . . . }, i ∈ I, and service time sequences {vj(`), ` =
1, 2, . . . }, j ∈ J , are all assumed to be mutually independent.

2.3 Scheduling Control and Performance Measures

Scheduling control is exerted by specifying a J-dimensional allocation process T = {T (t), t ≥ 0}
where

T (t) = (T1(t), . . . , TJ(t))
′ for t ≥ 0, (2.7)
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and Tj(t) is the cumulative amount of service time devoted to activity j ∈ J by the associated
server k(j) in the time interval [0, t]. Now T must satisfy certain properties that go along with its
interpretation. Indeed, one could give a discrete-event type description of the properties that T
must have, including any system specific constraints such as no preemption of service. However,
for our analysis, we shall only need the properties of T described in (2.11)–(2.16) below.

Let
I(t) = 1t−AT (t), t ≥ 0, (2.8)

where 1 is the K-dimensional vector of all ones. Then for each k ∈ K, Ik(t) is interpreted as the
cumulative amount of time that server k has been idle up to time t. A natural constraint on T is
that each component of the cumulative idletime process I must be continuous and non-decreasing.
Since each column of the matrix A contains the number one exactly once, this immediately implies
that each component of T is Lipschitz continuous with a Lipschitz constant of one. For each j ∈ J ,
Sj(Tj(t)) is interpreted as the number of complete jobs processed by activity j in [0, t]. For i ∈ I,
let

Qi(t) = Ai(t)−
J
∑

j=1

CijSj(Tj(t)), t ≥ 0, (2.9)

which we write in vector form (with a slight abuse of notation for S(T (t))) as

Q(t) = A(t)−CS(T (t)), t ≥ 0. (2.10)

Then Qi(t) is interpreted as the number of class i jobs that are either in queue or “in progress”
(i.e., being served or in suspension) at time t. We regard Q and I as performance measures for our
system.

We shall use the following minimal set of properties of any scheduling control T with associated
queue length process Q and idletime process I. For all i ∈ I, j ∈ J , k ∈ K,

Tj(t) ∈ F for each t ≥ 0, (2.11)

Tj is Lipschitz continuous with a Lipschitz constant of one, (2.12)

Tj is non-decreasing, and Tj(0) = 0,

Ik is continuous, non-decreasing, and Ik(0) = 0, (2.13)

Qi(t) ≥ 0 for all t ≥ 0. (2.14)

Properties (2.12) and (2.13) are for each sample path. For later reference, we collect here the
queueing system equations satisfied by Q and I:

Q(t) = A(t)−CS(T (t)), t ≥ 0, (2.15)

I(t) = 1t−AT (t), t ≥ 0, (2.16)

where Q, T and I satisfy properties (2.11)–(2.14). We emphasize that these are descriptive equa-
tions satisfied by the queueing system, given C, A, A, S and a control T , which suffice for the
purposes of our analysis. In particular, we do not intend them to be a complete, discrete-event
type description of the dynamics.
Remark. The reader might expect that T should satisfy some additional non-anticipating property.
Although this is a reasonable assumption to make, and indeed the policy we propose in Section
5 satisfies such a condition, we have not restricted T a priori in this way. Indeed, we shall see
that, for the parallel server system under the complete resource pooling condition, our policy is
asymptotically optimal even when anticipating policies are allowed. This is related to the fact that
the Brownian control problem has a so-called “pathwise solution”, cf. [18].
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The cost function we shall use involves linear holding costs associated with the expense of holding
jobs of each class in the system until they have completed service. We defer the precise description
of this cost function to the next section, since it is formulated in terms of normalized queue lengths,
where the normalization is in diffusion scale. Indeed, in the next section, we describe the sequence of
parallel server systems to be used in formulating the notion of heavy traffic asymptotic optimality.

3 Sequence of Systems, Heavy Traffic, and the Cost Function

For the parallel server system described in the last section, the problem of finding a control policy
that minimizes a cost associated with holding jobs in the system is notoriously difficult. One
possible means for discriminating between policies is to look for policies that outperform others
in some asymptotic regime. Here we regard the parallel server system as a member of a sequence
of systems indexed by r that is approaching heavy traffic (this notion is defined below). In this
asymptotic regime, the queue length process is normalized with diffusive scaling – this corresponds
to viewing the system over long intervals of time of order r2 (where r will tend to infinity in the
asymptotic limit) and regarding a single job as only having a small contribution to the overall cost
of storage, where this is quantified to be of order 1/r. The setup in this section is a generalization
of that used in [3].

3.1 Sequence of Systems and Large Deviation Assumptions

Consider a sequence of parallel server systems indexed by r, where r tends to infinity through a
sequence of values in [1,∞). These systems all have the same basic structure as that described
in Section 2, except that the arrival and service rates, scheduling control, and form of the cost
function (which is defined below in Section 3.3) are allowed to depend on r. Accordingly, we shall
indicate the dependence of relevant parameters and processes on r by appending a superscript to
them. We assume that the interarrival and service times are given for each r ≥ 1, i ∈ I, j ∈ J , by

ur
i (`) =

1

λr
i

ǔi(`), vrj (`) =
1

µr
j

v̌j(`), for ` = 1, 2, . . . , (3.1)

where the ǔi(`), v̌j(`), do not depend on r, have mean one and squared coefficients of variation
a2
i , b

2
j , respectively. The sequences {ǔi(`), ` = 1, 2, . . .}, {v̌j(`), ` = 1, 2, . . .}, i ∈ I, j ∈ J are all

mutually independent sequences of i.i.d. random variables. (The above structure is a convenient
means of allowing the sequence of systems to approach heavy traffic by simply changing arrival
and service rates while keeping the underlying sources of variability ǔi(`), v̌j(`) fixed. This type
of setup has been used previously by others in treating heavy traffic limits, see e.g., Peterson [34].
For a first reading, the reader may like to simply choose λr = λ and µr = µ for all r. Indeed, that
simplification is made in the paper [42].)

We make the following assumption on the first order parameters associated with our sequence
of systems.

Assumption 3.1 There are vectors λ ∈ IRI
+, µ ∈ IRJ

+, such that

(i) λi > 0 for all i ∈ I, µj > 0 for all j ∈ J ,

(ii) λr → λ, µr → µ, as r →∞.

In addition, we make the following exponential moment assumptions to ensure that certain large
deviation estimates hold for the renewal processes Ar

i , i ∈ I, and Sr
j , j ∈ J (cf. Lemma 6.7 below

and Appendix A in [3]).
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Assumption 3.2 For i ∈ I, j ∈ J , and all ` ≥ 1, let

ui(`) =
1

λi
ǔi(`), vj(`) =

1

µj
v̌j(`). (3.2)

Assume that there is a non-empty open neighborhood O0 of 0 ∈ IR such that for all l ∈ O0,

Λa
i (l) ≡ logE[elui(1)] <∞, for all i ∈ I, and (3.3)

Λs
j(l) ≡ logE[elvj(1)] <∞, for all j ∈ J . (3.4)

Note that (3.3) and (3.4) hold with ` in place of 1 for all ` = 1, 2, . . ., since {ui(`), ` = 1, 2, . . .},
i ∈ I, and {vj(`), ` = 1, 2, . . .}, j ∈ J , are each sequences of i.i.d. random variables.
Remark. This finiteness of exponential moments assumption allows us to prove asymptotic opti-
mality of a threshold policy with thresholds of order log r. We conjecture that this condition could
be relaxed to a sufficiently high finite moment assumption, and our method of proof would still
work, provided larger thresholds are used to allow for larger deviations of the primitive renewal
processes from their rate processes. Here we have chosen the tradeoff of smaller thresholds and
exponential moment assumptions, rather than larger thresholds and certain finite moment assump-
tions. We note that to adapt our proof to use finite moment assumptions, Lemma 6.7 would need
to be modified to use estimates of the primitive renewal processes based on sufficiently high finite
moments, rather than exponential moments (cf. [1, 5, 31, 36]). In addition, this lemma is used
repeatedly in proving the main theoretical estimates embodied in Theorem 7.7. The latter is proved
by induction and the proof involves a recursive increase in the size of the thresholds as well as an
increase in the size of the error probability which involves powers of r2t. Thus, in order to deter-
mine the necessary order of a finite moment condition and the size of accompanying thresholds,
one would need to carefully examine this recursive proof.

3.2 Heavy Traffic and Fluid Model

There is no conventional notion of heavy traffic for our model, since the nominal (or average) load
on a server depends on the scheduling policy. Harrison [16] (see also Laws [29] and Harrison and
Van Mieghem [19]) has proposed a notion of heavy traffic for stochastic networks with scheduling
control. For our sequence of parallel server systems, Harrison’s condition is the same as Assumption
3.3 below. Here, and henceforth, we define

R = C diag(µ).

Assumption 3.3 There is a unique optimal solution (ρ∗, x∗, ) of the linear program:

minimize ρ subject to Rx = λ, Ax ≤ ρ1 and x ≥ 0. (3.5)

Moreover, that solution is such that ρ∗ = 1 and Ax∗ = 1.

Remark. It will turn out that under Assumption 3.3, x∗j is the average fraction of time that server
k(j) should devote to activity j. For this reason, x∗ is called the nominal allocation vector.

It was shown in [42] that Assumption 3.3 is equivalent to a heavy traffic condition for a fluid
model (a formal law of large numbers approximation) associated with our sequence of parallel
server systems. We summarize that result here since the fluid model plays a role in establishing
asymptotic optimality of a control policy for our sequence of systems.
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A fluid model solution (with zero initial condition) is a triple of continuous (deterministic)
functions (Q̄, T̄ , Ī) defined on [0,∞), where Q̄ takes values in IRI, T̄ takes values in IRJ and Ī takes
values in IRK, such that

Q̄(t) = λt−RT̄ (t), t ≥ 0, (3.6)

Ī(t) = 1t−AT̄ (t), t ≥ 0, (3.7)

and for all i, j, k,

T̄j is Lipschitz continuous with a Lipschitz constant of one,

it is non-decreasing, and T̄j(0) = 0, (3.8)

Īk is continuous, non-decreasing, and Īk(0) = 0, (3.9)

Q̄i(t) ≥ 0 for all t ≥ 0. (3.10)

A continuous function T̄ : [0,∞)→ IRJ such that (3.8)–(3.10) hold for Q̄, Ī defined by (3.6)–(3.7)
will be called a fluid control. For a given fluid control T̄ , we say the fluid system is balanced if the
associated fluid “queue length” Q̄ does not change with time (cf. Harrison [13]). Here, since the
system starts empty, that means Q̄ ≡ 0. In addition, we say the fluid system incurs no idleness
(or all fluid servers are fully occupied) if Ī ≡ 0, i.e., AT̄ (t) = 1t for all t ≥ 0.

Definition 3.4 The fluid model is in heavy traffic if the following two conditions hold:

(i) there is a unique fluid control T̄ ∗ under which the fluid system is balanced, and

(ii) under T̄ ∗, the fluid system incurs no idleness.

Since any fluid control is differentiable at almost every time (by (3.8)), we can convert the above

notion of heavy traffic into one involving the rates x∗(t) = ˙̄T ∗(t), where “ ˙ ” denotes time derivative.
This leads to the following lemma which is stated and proved in [42] (cf. Lemma 3.3 there).

Lemma 3.5 The fluid model is in heavy traffic if and only if Assumption 3.3 holds.

We impose the following heavy traffic assumption on our sequence of parallel server systems,
henceforth.

Assumption 3.6 (Heavy Traffic) For the sequence of parallel server systems defined in Section
3.1 and satisfying Assumptions 3.1 and 3.2, assume that Assumption 3.3 holds and that there is a
vector θ ∈ IRI such that

r(λr −Rrx∗)→ θ, as r →∞, (3.11)

where Rr = C diag(µr).

For the formulation of the Brownian control problem, it will be helpful to distinguish basic
activities j which have a strictly positive nominal fluid allocation level x∗j from non-basic activities
j for which x∗j = 0. By relabeling the activities if necessary, we may and do assume henceforth
that x∗j > 0 for j = 1, . . . ,B and x∗j = 0 for j = B+ 1, . . .J. Thus there are B basic activities and
J−B non-basic activities.
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3.3 Diffusion Scaling and the Cost Function

For a fixed r and scheduling control T r, the associated queue length process Qr = (Qr
1, . . . , Q

r
I)
′

and idletime process Ir = (Ir1 , . . . I
r
K)′ are given by (2.15)–(2.16) where the superscript r needs to

be appended to A, S, Q, I and T there. The diffusion scaled queue length process Q̂r and idletime
process Îr are defined by

Q̂r(t) = r−1Qr(r2t), Îr(t) = r−1Ir(r2t), t ≥ 0. (3.12)

We consider an expected cumulative discounted holding cost for the diffusion scaled queue length
process and control T r:

Ĵr(T r) = E

(∫ ∞

0
e−γt h · Q̂r(t) dt

)

, (3.13)

where γ > 0 is a fixed constant (discount factor) and h = (h1, . . . , hI)
′, hi > 0 for all i ∈ I, is a

constant vector of holding costs per unit time per unit of diffusion scaled queue length. Recall that
“ · ” denotes the dot product between two vectors.

To write equations for Q̂r, Îr, we introduce centered and diffusion scaled versions Âr, Ŝr of the
primitive processes Ar, Sr:

Âr(t) = r−1
(

Ar(r2t)− λrr2t
)

, Ŝr(t) = r−1
(

Sr(r2t)− µrr2t
)

, (3.14)

a deviation process Ŷ r (which measures normalized deviations of server time allocations from the
nominal allocations given by x∗):

Ŷ r(t) = r−1
(

x∗r2t− T r(r2t)
)

, (3.15)

and a fluid scaled allocation process T̄ r:

T̄ r(t) = r−2T r(r2t). (3.16)

On substituting the above into (2.15)–(2.16), we obtain

Q̂r(t) = Âr(t)−CŜr(T̄ r(t)) + r(λr −Rrx∗)t+RrŶ r(t), (3.17)

Îr(t) = AŶ r(t), (3.18)

where by (2.12)–(2.14) we have

Îrk is continuous, non-decreasing and Îrk(0) = 0, for all k ∈ K, (3.19)

Q̂r
i (t) ≥ 0 for all t ≥ 0 and i ∈ I. (3.20)

On combining Assumption 3.1 with the finite variance and mutual independence of the stochas-
tic primitive sequences of i.i.d. random variables {ǔi(`)}∞`=1, i ∈ I, {v̌j(`)}∞`=1, j ∈ J , we may
deduce from renewal process functional central limit theorems (cf. [22]) that

(Âr, Ŝr)⇒ (Ã, S̃), as r →∞, (3.21)

where Ã, S̃ are independent, Ã is an I-dimensional driftless Brownian motion that starts from
the origin and has a diagonal covariance matrix whose ith diagonal entry is λia

2
i , and S̃ is a J-

dimensional driftless Brownian motion that starts from the origin and has diagonal covariance
matrix whose jth diagonal entry is µjb

2
j .
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4 Brownian Control Problem

4.1 Formulation

Under the heavy traffic assumption of the previous section, to keep queue lengths from growing on
average, it seems desirable to choose a control policy for the sequence of parallel server systems
that asymptotically on average allocates service to the processing activities in accordance with the
proportions given by x∗. To see how to achieve this and to do so in an optimal manner, following
a method proposed by Harrison [12, 15, 18], we consider the following Brownian control problem
which is a formal diffusion approximation to control problems for the sequence of parallel server
systems. The relationship between the Brownian model and the fluid model is analogous to the
relationship between the central limit theorem and the law of large numbers.

Definition 4.1 (Brownian control problem)

minimize E

(∫ ∞

0
e−γt h · Q̃(t) dt

)

(4.1)

using a J-dimensional control process Ỹ = (Ỹ1, . . . , ỸJ)
′ such that

Q̃(t) = X̃(t) +RỸ (t) for all t ≥ 0, (4.2)

Ĩ(t) = AỸ (t) for all t ≥ 0, (4.3)

Ĩk is non-decreasing and Ĩk(0) ≥ 0, for all k ∈ K, (4.4)

Ỹj is non-increasing and Ỹj(0) ≤ 0, for j = B+ 1, . . . ,J, (4.5)

Q̃i(t) ≥ 0 for all t ≥ 0, i ∈ I, (4.6)

where X̃ is an I-dimensional Brownian motion that starts from the origin, has drift θ (cf. (3.11))
and a diagonal covariance matrix whose ith diagonal entry is equal to λia

2
i+
∑J

j=1Cij µjb
2
jx
∗
j for

i ∈ I.

The above Brownian control problem is a slight variant of that used by Harrison and López
[18]. In particular, we allow Ỹ to anticipate the future of X̃. The process X̃ is the formal limit in
distribution of X̂r, where for t ≥ 0,

X̂r(t) ≡ Âr(t)−CŜr(T̄ r(t)) + r(λr −Rrx∗)t. (4.7)

The control process Ỹ in the Brownian control problem is a formal limit of the deviation processes
Ŷ r. (cf. (3.15)). The non-increasing assumption in property (4.5) corresponds to the fact that
Ŷ r
j (t) = −r−1T r

j (r
2t) is non-increasing whenever j is a non-basic activity. The initial conditions

on Ĩ and Ỹj , j = B + 1, . . . ,J, in (4.4)–(4.5) are relaxed from those in the prelimit to allow for
the possibility of an initial jump in the queue length in the Brownian control problem. (In fact,
for the optimal solution of the Brownian control problem, under the complete resource pooling
condition to be assumed later, such a jump will not occur and then the Brownian control problem
is equivalent to one in which Ĩ(0) = 0, Ỹ (0) = 0.)

4.2 Solution via Workload Assuming Complete Resource Pooling

For open processing networks, of which parallel server systems are a special case, Harrison and Van
Mieghem [19] showed that the Brownian control problem can be reduced to an equivalent formula-
tion involving a typically lower dimensional state process. In this reduction, the Brownian analogue
Q̃ of the queue length process is replaced by a Brownian analogue W̃ = MQ̃ of the workload pro-
cess, where M is a certain matrix called the workload matrix. The row dimension L ≤ I of M is
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called the workload dimension and the reduced form of the Brownian control problem is called an
equivalent workload formulation. Intuitively, the reduction in [19] is achieved by ignoring certain
“reversible directions” in which the process Q̃ can be controlled to move instantaneously without
incurring any idleness and without using any non-basic activities; in addition, such movements
are instantaneously reversible. In a work [16] following on from [19], Harrison elaborated on an
interpretation of the reversible displacements and proposed a “canonical” choice for the workload
matrix M , which reduces the possibilities for M to a finite set. This choice uses extremal optimal
solutions to the dual to the linear program used to define heavy traffic, cf. (3.5). For the parallel
server situation considered here, that dual program has the following form.
Dual Program

maximize y · λ subject to y′R ≤ z′A, z · 1 ≤ 1 and z ≥ 0. (4.8)

We shall focus on the case in which the workload dimension is one. This is equivalent to there
being a unique optimal solution of the dual program (4.8). Indeed, for parallel server systems, The-
orem 4.3 below gives several conditions that are equivalent to this assumption of a one-dimensional
workload process. For the statement of this result, we need the following notion of communicating
servers.

Definition 4.2 Consider the graph G in which servers and buffers form the nodes and (undirected)
edges between nodes are given by basic activities. We say that all servers communicate via basic
activities if, for each pair of servers, there is a path in G joining all of the servers.

Theorem 4.3 The following conditions are equivalent (for parallel server systems).

(i) the workload dimension L is one,

(ii) the dual program (4.8) has a unique optimal solution (y∗, z∗),

(iii) the number of basic activities B is equal to I+K− 1,

(iv) all servers communicate via basic activities,

(v) the graph G is a tree.

Proof. The equivalence of the first four statements of the theorem was derived in Harrison and
López [18], and the equivalence of these statements with (v) was noted in [42]. Also, as noted by
Ata and Kumar [1], the equivalence of (i) with (iii) can also be seen by observing from Corollary
6.2 in Bramson and Williams [6] that since the matrix A has exactly one positive entry in each
column, the workload dimension L = I+K−B, where B is the number of basic activities. 2

Henceforth we make the following assumption.

Assumption 4.4 (Complete Resource Pooling) The equivalent conditions (i)–(v) of Theorem 4.3
hold.

The intuition behind the term “complete resource pooling” is that, under this condition, all
servers can communicate via basic activities, and it is reasonable to conjecture that the efforts of
the servers (or resources) can be combined in a cooperative manner so that they act effectively as
a single pooled resource. A main aim of this work is to show that this intuition is correct.

Let (y∗, z∗) be the unique optimal solution of (4.8). By complementary slackness, ((y∗)′R)j
= ((z∗)′A)j for j = 1, . . .B. Let u∗ be the (J − B)-dimensional vector of dual “slack variables”
defined by ((y∗)′R− (z∗)′A)j + u∗j−B = 0 for j = B+ 1, . . . ,J.
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Lemma 4.5 We have y∗ > 0, z∗ > 0, u∗ > 0,

(y∗)′R = (z∗)′A− [0′ (u∗)′], and z∗ · 1 = 1, (4.9)

where 1 is the K-dimensional vector of ones, 0′ is a B-dimensional row vector of zeros.

Proof. This is proved in [18] (Corollary to Proposition 3) using the relation between the primal
and dual linear programs. 2

Now, we review a solution of the Brownian control problem obtained by Harrison and López
[18]. This exploits the fact that the workload is one-dimensional.

For Q̃ satisfying (4.2)–(4.6), define W̃ = y∗ · Q̃, which Harrison [16] calls the (Brownian)
workload. Let ỸN be the (J−B)-dimensional process whose components are Ỹj , j = B+ 1, . . . ,J.
By Lemma 4.5 and (4.2)–(4.6),

W̃ (t) = y∗ · X̃(t) + Ṽ (t) for all t ≥ 0, (4.10)

where

Ṽ ≡ z∗ · Ĩ − u∗ · ỸN is non-decreasing and Ṽ (0) ≥ 0, (4.11)

W̃ (t) ≥ 0 for all t ≥ 0. (4.12)

Now, for each t ≥ 0, since the holding cost vector h > 0 and y∗ > 0, we have

h · Q̃(t) =
I
∑

i=1

(

hi

y∗i

)

y∗i Q̃i(t) ≥ h∗W̃ (t) (4.13)

where

h∗ ≡
I

min
i=1

(

hi

y∗i

)

. (4.14)

It is well-known and straightforward to see that any solution pair (W̃ , Ṽ ) of (4.10)–(4.12) must
satisfy for all t ≥ 0,

Ṽ (t) ≥ Ṽ ∗(t) ≡ sup
0≤s≤t

(

−y∗ · X̃(s)
)

, (4.15)

and hence W̃ (t) ≥ W̃ ∗(t) where

W̃ ∗(t) = y∗ · X̃(t) + Ṽ ∗(t). (4.16)

The process W̃ ∗ is a one-dimensional reflected Brownian motion driven by the one-dimensional
Brownian motion y∗ · X̃, and Ṽ ∗ is its local time at zero (see e.g., [9], Chapter 8). In particular,
Ṽ ∗ can have a point of increase at time t only if W̃ ∗(t) = 0.

Now, let i∗ be a class index such that h∗ = hi∗/y
∗
i∗ , i.e., the minimum in (4.14) is achieved at

i = i∗, and let k∗ be a server that can serve class i∗ via a basic activity. Note that neither i∗ nor k∗

need be unique in general. Then the following choices Q̃∗ and Ĩ∗ for Q̃ and Ĩ ensure that for each
t ≥ 0, properties (4.4)–(4.6) hold and the inequality in (4.13) is an equality with W̃ (t) = W̃ ∗(t)
there:

Q̃∗i∗(t) = W̃ ∗(t)/y∗i∗ , Q̃∗i (t) = 0 for all i 6= i∗, (4.17)

Ĩ∗k∗(t) = Ṽ ∗(t)/z∗k∗ , Ĩ∗k(t) = 0 for k 6= k∗, Ỹ ∗N = 0. (4.18)
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A control process Ỹ ∗ such that (4.2)–(4.6) hold with Q̃∗, Ỹ ∗, Ĩ∗ in place of Q̃, Ỹ , Ĩ there is given in
[42]. It can be readily verified that this is an optimal solution for the Brownian control problem
(cf. [18]) and the associated minimum cost is

J∗ ≡ E
(∫ ∞

0
e−γt h · Q̃∗(t) dt

)

= h∗E

(∫ ∞

0
e−γt W̃ ∗(t) dt

)

. (4.19)

The quantity J∗ is finite and can be computed as in Section 5.3 of [11].
Now, even though the Brownian control problem can be analyzed exactly (as above), the solution

obtained does not automatically translate to a policy for the sequence of parallel server systems.
However, some desirable features are suggested by the form of (4.17)–(4.18), namely, (a) try to
keep the bulk of the work in the class i∗ with the lowest (or equal lowest) ratio of holding cost to
workload contribution, i.e., the class i with the lowest value of hi/y

∗
i , (b) try to ensure that the

bulk of the idleness is incurred only when there is almost no work in the entire system, and (c) try
to ensure that the bulk of the idletime is incurred by server k∗ alone.

4.3 Approaches to Interpreting the Solution

Harrison [14] has proposed a general scheme (called BIGSTEP) for obtaining candidate policies for a
queueing control problem from a solution of the associated Brownian control problem. The policies
obtained in this manner are so-called discrete-review policies which allow review of the system status
and changes in the control rule only at a fixed discrete set of times. For a two-server example (with
Poisson arrivals, deterministic service times and particular values for λ, µ), a discrete-review policy
was constructed and shown to be asymptotically optimal in Harrison [15]. Based on their solution
of the Brownian control problem and the general scheme laid out by Harrison [14], Harrison and
López [18] proposed the use of a discrete review policy for the multiserver problem considered here,
but they did not prove asymptotic optimality of this policy. Recently, Ata and Kumar [1] have
proved asymptotic optimality of a discrete review policy for open stochastic processing networks
that include parallel server systems, under heavy traffic and complete resource pooling conditions.

Another approach to translation of solutions of Brownian control problems into viable policies
has been proposed by Kushner et al. (see e.g., [25, 26, 27]). However this also involves discretization
by way of numerical approximation. We note that, of the works by Kushner et al. mentioned above,
the paper by Kushner and Chen [25] is the closest to the current one in that it considers a parallel
server model. However, it is in a very different parameter regime, namely one that corresponds to
heavy traffic but with no resource pooling.

Assuming the complete resource pooling condition, in the next section we describe a simple
“continuous review” policy for the sequence of parallel server systems, which allows changes in the
control to be made at random times and in particular at times when the system status changes.
This policy is a dynamic priority policy in which priorities for certain “transition” activities depend
on the number of jobs in the associated class relative to certain threshold or “safety-stock” levels.
Changes in the priorities only occur as a threshold is crossed. This threshold policy was proposed
in [42]. A few more details of its description are given here to facilitate our analysis. We prove in
Section 9 that this policy is asymptotically optimal. In [3], we have already proved that this is so for
the special case of a two-server two-buffer system. An important feature of that proof was that the
limiting (under diffusion scale) queue length and idleness processes were effectively one-dimensional,
i.e., a form of state-space collapse occurred in the diffusion limit. A similar phenomenon occurs
here for our multiserver system (cf. Theorem 5.3).
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5 Threshold Policy and Main Results

In this section, we describe a dynamic threshold policy for our sequence of parallel server systems
and state our main results, which imply that this policy is asymptotically optimal. Recall that we
are assuming throughout that the heavy traffic (Assumption 3.6) and complete resource pooling
(Assumption 4.4) conditions hold. The threshold policy takes advantage of the tree structure of
the server-buffer tree G. In reviewing our description of the policy, the reader may find it helpful
to refer to the examples in [42], where a version of this policy was first described. We also include
two additional examples here in Section 5.4 to help explain the policy. We note that there can be
many asymptotically optimal policies. The one described here is simply proposed as one that is
intuitively appealing and that is asymptotically optimal.

Independently of [42], Squillante et al. [35] proposed a tree-based threshold priority policy for
a parallel server system. However, their policy is different from the one described here. The second
example we give in Section 5.4 is used to illustrate this.

5.1 Tree Conventions

The threshold policy only involves the use of basic activities (and so in the following description of
the policy, the word “activity” will be synonymous with “basic activity”). Also, the terms class and
buffer will be used interchangeably. A key to the description of the policy is a hierarchical structure
of the server-buffer tree G and an associated protocol for the dynamic allocation of (preemptive-
resume) class priorities at each server. This protocol is described in an iterative manner, working
from the bottom of the tree up towards the root. (One should imagine a tree as growing downwards
from its root and the root as being at the highest level.) A server tree S, which results from
suppressing the buffers in G, will be helpful for describing the iterative procedure. Recall the
solution of the Brownian control problem described in Section 4.2. The root of the server-buffer
tree G (and of the server tree S) is taken to be a server k∗ which serves the “cheapest” class i∗ via
a (basic) activity. Classes (or buffers) that link one level of servers to those at the next highest
level in the tree G are called transition classes (or transition buffers).

5.2 Threshold Policy

To describe the threshold policy, we first focus on the server tree S and imagine it arranged in
levels with the root k∗ at the highest level of S. We proceed inductively up through the levels in
the tree S.

First, consider a server at the lowest level. As a server within the server-buffer tree G, this
server is to service its classes according to a priority scheme that gives lowest priority to the class
that is immediately above the server in G. The latter class is also served by a server in the next
level up in S and so is a transition class. There will always be such a class unless the server is
at the root of the tree. On the other hand there may be zero, one or more classes lying below
a server at the lowest level in the tree. The relative priority ranking of these classes (if any) is
not so important. These are all terminal classes in that there are no servers below them. Here,
for concreteness, we rank the classes so that for a given server, the lower numbered classes receive
priority over the higher numbered ones. For future use, we place a threshold on the transition class
immediately above each server in the lowest level of S.

Now go to the next level up in the server tree S. This level may have “terminal” server nodes
and server nodes that lead to server nodes lower down the server tree. As servers in the server-buffer
tree G, each server at this level performs its activities in the following prioritized manner. Activities
leading (via transition buffers) to server nodes lower down the tree are given highest priority (if
there is more than one such activity, rank the activities so that activities serving lower numbered
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classes are served first). However, if the number of jobs in a transition class associated with such
an activity is at or below the threshold for that class, service of that activity is suspended. The
next priority is given to activities that service (terminal) classes that are only served by that server
(again ranked according to a scheme that gives lower numbered classes higher priority), and lowest
priority is given to the activity serving the transition class that is immediately above the server in
the server-buffer tree. This transition class should again have a threshold placed on it such that
service of that class by the server at the next highest level will be suspended when the number of
jobs in the class is equal to or below the threshold level. If two or more servers simultaneously
begin to serve a particular transition buffer, a tie breaking rule is used to decide which server takes
a job first. For concreteness we suppose that the lowest numbered server shall select a job before
the next higher numbered server, and so on. Note that two servers in the same level cannot both
serve the same buffer below them since G is a tree.

This process is repeated until the root of the server tree is reached. At the root, the same
procedure is applied as for lower server levels, except that there are no activities above the root
server in the server-buffer tree and an overriding rule is that lowest priority is given to the “cheapest”
class i∗.

The idea behind the threshold policy is to keep servers below the root level busy the bulk of
the time (indeed, they should only be rarely idle and their idletimes should vanish on diffusion
scale as the heavy traffic limit is approached), while simultaneously preventing the queue lengths
of all classes except i∗ from growing appreciably on diffusion scale. Transition buffers are used to
achieve these two competing goals. Intuitively, when the queue length for a transition class gets to
or below its threshold, any service of that class by the server immediately above it in the tree is
suspended and this causes temporary overloading (on average) of the servers below, which prevents
these servers from incurring much idleness. When the queue length for the transition class builds
up to a level above its threshold, then assistance from the higher server is again permitted and the
servers below are temporarily underloaded (on average) and so queue lengths for classes serviced
by these servers are prevented from growing too large. The intended effect of this policy is to allow
the movement (via the transition buffers) of excess work from lower level to higher level buffers
(and eventually, by an upwards cascade, to the buffer for class i∗), while simultaneously keeping all
servers busy the bulk of the time, unless the entire system is nearly empty and even then to ensure
that the vast majority of the idleness is incurred by the server k∗ at the root of the tree.

5.3 Threshold Sizes

For each r, the size of the thresholds in the rth parallel server system is to be of order log r.
However, while each threshold is of order log r, for our proofs, the threshold sizes need to increase
moderately as one moves up and across the tree to compensate for an associated accumulation of
stochastic variability. This is related to the hierarchical structure of the threshold policy under
which allocations to activities associated with transition buffers higher up the tree can depend on
allocations to activities much farther down the tree. These transition buffers need larger thresholds
than their counterparts below to allow enough time for their allocation processes to approach
their long term averages before the associated queue lengths approach zero or twice the threshold
size. For similar reasons, the threshold size for a buffer belonging to a group of transition buffers
served by one server from above, should be larger the lower the priority of the buffer. To facilitate
the description of this increase in threshold sizes, in Section 6.1 we show how the buffers can be
renumbered, so that higher priority buffers for a given server have lower numbers and buffers higher
up the tree are assigned higher numbers. This renumbering does not change the threshold policy,
it simply allows us to streamline its detailed description. In particular, under this scheme, the size
of the threshold for each transition buffer increases with its numbering. A detailed specification of
the size of the thresholds is given in Section 6.2.
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Figure 1: A parallel server system with four servers and five classes. Only basic activities are
shown.
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Figure 2: The server tree (on the left) and server-buffer tree (on the right) for the system pictured
in Figure 1 with i∗ = 2 and k∗ = 1. Activities subject to thresholding have a T beside them.

5.4 Examples

In this subsection we give two examples to illustrate our threshold policy. The second example is
also used to illustrate that our policy differs from that of [35].

Example 5.1 Consider the parallel server system pictured in Figure 1, where only basic activities
are shown. Suppose for this that i∗ = 2 and hence k∗ = 1. The server tree and server-buffer tree,
with server 1 as root, are depicted in Figure 2. Activities subject to thresholding have a T beside
them.
In the implementation of our policy, server 4 serves jobs from class 4 whenever there are class

4 jobs available for it to serve. Server 3 gives first priority to jobs in the transition class 4, except
that when the number of class 4 jobs becomes equal to or goes below the threshold for that class,
server 3 suspends service of the current job from that class and switches attention to class 5 jobs
until those are exhausted and then finally server 3 turns its attention to class 3 jobs. Whenever
the number of class 4 jobs again exceeds the threshold, server 3 preemptively switches its attention
back to serving that class. Server 2 serves class 3 jobs whenever there are such jobs to be served
and idles otherwise. Server 1 gives first priority to the transition class 3, except that server 1
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Figure 3: A parallel server system with three servers and three classes (or buffers).

suspends service of a job of class 3 whenever the number of jobs in that class reaches or goes below
the threshold for the class. In that case, server 1 turns its attention to class 1 jobs until there are
no jobs of that class to serve and then finally server 1 turns to serving jobs of the lowest priority
class i∗ = 2. Whenever the number of jobs in class 3 again goes above the threshold for that class,
server 1 switches attention back to serving that class.

The policy proposed by Squillante et al. [35] involves the allocation of priorities for each server
based on a local optimization of cµ-type with suspension of certain thresholded activities when
the associated class levels are at or below threshold. Their policy locally takes account of the tree
structure, whereas our policy exploits the global tree structure. The following example illustrates
how the two policies can yield different priority rules.

Example 5.2 Consider the three-server, three-class parallel server system pictured in Figure 3.
This example was considered by Squillante et al. [35] with two different sets of parameters in
their Examples 4 and 5. For their Example 4 (using our notation), λ = (0.4, 1.4, 0.6) and µ =
(1, 0.5, 1, 0.25, 1). Here

C =





1 0 0 0 0
0 1 1 1 0
0 0 0 0 1



 , A =





1 1 0 0 0
0 0 1 0 0
0 0 0 1 1



 .

The heavy traffic Assumption 3.3 is readily verified to hold, where x∗ = (0.4, 0.6, 1, 0.4, 0.6), and
hence all activities are basic. Since B = 5 = I + K − 1, it follows from Theorem 4.3 that the
complete resource pooling Assumption 4.4 holds. Noting Lemma 4.5, the unique solution of the
dual program (4.8) is readily verified to be z∗ = y∗ = (2/7, 4/7, 1/7). Let h = (1, 100, 10). Then
(hi/y

∗
i , i = 1, 2, 3) = (7/2, 175, 70) and so h∗ = 7/2, i∗ = 1 and k∗ = 1, since class 1 is only served

by server 1.
Under our threshold policy, server 3 gives priority to class 3 jobs over those of class 2, server 2

always serves class 2 jobs when there are such available, and service of class 2 by server 1 is subject
to a threshold in the sense that server 1 gives priority to class 2 except when the number of jobs
in class 2 is at or below its threshold and then server 1 suspends service of any class 2 job it is
processing and switches attention to serving class 1 jobs until the number of jobs in class 2 once
again exceeds the threshold for class 2 (cf. Figure 4).
The algorithm described by Squillante et al. [35] yields a similar policy for this example, with

the exception that under their policy, activity 4, which links server 3 and class 2, is also subject to
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Figure 4: The server tree (on the left) and server-buffer tree (on the right) for the system pictured
in Figure 3 with the data described for Example 5.2. The activity subject to thresholding under
our policy is indicated with a T .

thresholding, such that if the number of jobs in class 2 is above threshold, server 3 serves jobs from
class 2, whereas when the number of jobs in class 2 is at or below threshold, server 3 serves jobs
from class 3.

5.5 Main Results

In Sections 7 and 8, we prove the following limit theorem for a certain sequence of allocation
processes {T r,∗}. For each r, T r,∗ is obtained by applying the aforementioned threshold policy in
the rth parallel server system. The sizes of the thresholds on the transition buffers are of order
log r. The specific threshold sizes, which, as mentioned above, increase as one moves across and up
the server-buffer tree, are specified precisely in the next section (cf. (6.4)).

Theorem 5.3 Consider the sequence of parallel server systems indexed by r, where the rth system
operates under the allocation process T r,∗ described above. Then the associated normalized queue
length and idletime processes satisfy

(Q̂r, Îr)⇒ (Q̃∗, Ĩ∗), as r →∞, (5.1)

where Q̃∗i = 0 for all i ∈ I\{i∗}, Ĩ∗k = 0 for all k ∈ K\{k∗}, Q̃∗i∗ is a one-dimensional reflected
Brownian motion that starts from the origin and has drift (y∗ · θ)/y∗i∗ and variance parameter
∑I

i=1(y
∗
i )

2(λia
2
i +

∑J
j=1Cijµjb

2
jx
∗
j )/(y

∗
i∗)

2, and Ĩ∗k∗ is a specific multiple of the local time at the

origin of Q̃∗i∗ (In fact, Q̃
∗
i∗ , Ĩ

∗
k∗ are equivalent in law to the processes given by (4.15)–(4.18)).

Recall the definitions of J∗ and Ĵr from (4.19) and (3.13), respectively. The following theorem is the
main result of this paper. It is proved in Section 9 using Theorem 5.3. It shows that J ∗ is the best
that one can achieve asymptotically and that this asymptotically minimal cost is achieved by the
sequence of dynamic controls {T r,∗}. Thus we conclude that our threshold policy is asymptotically
optimal.

Theorem 5.4 (Asymptotic Optimality) Suppose that {T r} is any sequence of scheduling controls
(one for each member of the sequence of parallel server systems). Then

lim inf
r→∞

Ĵr(T r) ≥ J∗ = lim
r→∞

Ĵr(T r,∗), (5.2)

and J∗ <∞.
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Remark. Note that our threshold policy prescribes that a threshold be placed on class i∗ if
that class is a transition class. We conjecture that the policy which removes the threshold in
this case is also asymptotically optimal, but we keep the threshold here as a means to simplify
our proof. In particular, servers below i∗ may experience significant idletime if the threshold is
removed. Our threshold policy also involves preemption of service. There is a corresponding policy
without preemption that we conjecture has the same behavior in the heavy traffic limit, since in
that regime a maximum of J jobs (in suspension or not) should not impact the asymptotic behavior
of the system.

6 Preliminaries and Outline of the Proof

In this section, we will precisely specify the threshold sizes used for {T r,∗}, give some preliminary
definitions and results, and outline the proofs of Theorems 5.3 and 5.4. Details of the proofs are
contained in Sections 7–9.

Recall from Section 2 that I, K, and J index job classes, servers, and activities, respectively.
Basic Activities Convention. Since our threshold policy only uses basic activities, to simplify
notation, in this section and the next (Sections 6 and 7) only, the index set J will just include the
basic activities 1, 2, . . . ,B. With this convention, J will be synonymous with B.

6.1 The Server-Buffer Tree G: Layers and Buffer Renumbering
To facilitate our proof, we refine our description of the server-buffer tree, G. We say that the server-
buffer tree consists of one or more layers, where a layer consists of a server level along with the
buffer level immediately below it. (At the lowest layer, the buffer level may be empty.) Activities
that serve the buffers (from above and below) in a particular layer are also considered part of that
same layer. We denote the number of layers by l∗ and enumerate the layers in increasing order as
one moves up the tree, so that layer 1 is the lowest layer and layer l∗ is the top layer, consisting of
server k∗, the buffers served by this server (including buffer i∗), and the corresponding activities.
Assuming l > 1, Figure 5 depicts layers l and l − 1 in a server-buffer tree.

For each layer l = 1, . . . , l∗, we denote the collection of servers in layer l by Kl and the collection
of buffers in layer l by I l. For k ∈ Kl, the collection of buffers in layer l served by server k is denoted
by Ik (in Figure 5, i ∈ Ik). The activity that serves buffer i ∈ Ik using server k is labeled a(i)
(“a” is mnemonic for “above”), the collection of activities that serve buffer i from below is denoted
by J

i
, and the collection of servers in layer l − 1 that serve buffer i using the activities in J

i
is

denoted by Ki (the underscores indicate that the quantities are “below”). We let Ji denote the
collection of all activities that service buffer i, i.e., activity a(i) together with J

i
. Note that for

each buffer i ∈ I1, J
i
= ∅, Ki = ∅, i.e., layer 1 does not contain any activities that serve buffers in

this layer from below. In fact, we may even have I1 = ∅.
Without loss of generality, we assume the following left-to-right arrangement and renumbering

convention for buffers in the server-buffer tree G. This simplifies the description of the priorities
associated with our threshold policy. (The simplest way to think of doing the arrangement is to
work from the top of the tree downwards.)
Arrangement Convention. For k ∈ K\{k∗}, the buffers in Ik are arranged so that the transition
buffers are positioned to the left of the non-transition buffers, and within the groups of transition
and non-transition buffers, the lower numbered buffers are to the left of the higher numbered ones.
For k = k∗, the arrangement in the previous sentence holds with the exception that buffer i∗ is
placed at the far right in level I l∗ = Ik∗.
Renumbering Convention. Starting from layer 1, if I1 6= ∅, we enumerate the buffers in I1 in
increasing order from left to right, i.e., the buffer farthest to the left is buffer 1 and the one farthest
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Figure 5: Layers l and l − 1 of a server-buffer tree.

to the right is buffer |I1|. Continuing with layer 2, the buffer farthest to the left is labeled |I1|+ 1,
and the one farthest to the right is labeled |I1| + |I2|, and so on ending with layer l∗. If I1 = ∅,
we use the same scheme except that buffer 1 will then be the buffer farthest to the left in layer 2.

Under the arrangement and renumbering conventions, for any server k, all of the buffers served
by k are numbered such that lower priority buffers have higher numbers. (This is true whether the
buffers are above or below the server and whether they are transition or non-transition buffers.)
In particular, for k 6= k∗, the higher priority transition buffers in Ik are numbered lower than
the non-transition buffers in Ik and the transition buffer above k has a higher number than all of
the buffers in Ik. If k = k∗, the same statement holds with the exception that i∗ is the highest
numbered buffer and has the lowest priority among all buffers in Ik∗ . It also follows from our
numbering scheme that i∗ = I.

Figure 6 illustrates the server-buffer graph of Figure 2, first with the arrangement convention
imposed and then with the renumbering convention applied, where the correspondence between the
old and new numbering of classes (or buffers) is given by 1→ 4′, 2→ 5′, 3→ 3′, 4→ 1′, 5→ 2′.

6.2 Threshold Sizes and Transient Nominal Activity Rates

For k ∈ K such that Ik 6= ∅ and i ∈ Ik, let

x+
i =

∑

i′∈Ik

i′≤i

x∗a(i′), (6.1)

and for each i′ ∈ Ik, i′ ≤ i, let

x̂i,i′ =
x∗
a(i′)

x+
i

. (6.2)
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(Note that this defines x+
i and x̂i,i for all i ∈ I since each buffer is below exactly one server.)

We refer to the x̂i,i′ as transient nominal activity rates for the following reason. Since x∗
a(i′)

determines the overall average fraction of time that server k should devote to activity a(i′), and
since activities a(i′), i′ > i, i′ ∈ Ik, will be turned off during a period in which buffer i either
exceeds its threshold if it is a transition buffer or is non-empty if it is a non-transition buffer, x̂i,i′ ,
i′ ≤ i, i′ ∈ Ik, might be interpreted as the average fraction of time that server k should devote to
activity a(i′) during such a period of time.

We note that for i ∈ Ik,
∑

i′∈Ik

i′≤i

x̂i,i′ = 1, (6.3)

and if i 6= i∗, i′ ∈ Ik, i′ ≤ i, then x̂i,i′ > x∗
a(i′) since then x+

i < 1 (if k ∈ Kl and l 6= l∗, server

k serves a buffer from layer l + 1, by an activity b(k) that is above k, and so by the heavy traffic
condition, x∗

b(k)+
∑

i′∈Ik
x∗
a(i′) = 1, and if k ∈ Kl∗ , then k = k∗ and

∑

i′∈Ik∗
x∗
a(i′) = 1, where i′ ≤ i∗

for all i′ in Ik∗).
We now define the size of the thresholds to be used with our threshold policy. For each r ≥ 1,

let Lr
0 = dc log re for a sufficiently large constant c. The minimum size of c is determined by the

proofs of Lemmas 7.3–7.6 and Theorem 5.4 (see the remark below). For 1 ≤ i ≤ I, let

Lr
i =

⌈

Lr
i−1

ε3i−1

⌉

, (6.4)

where {εi}I−1
i=0 is defined as follows. We also define a constant εI in this process. First we choose

ε̂ > 0 such that

ε̂ < min

{

dδminδminµminλminx
∗
min

2048(J+ 2)µmaxλmaxδmaxµsum
,

∏I
i=1 γi
II

}

, (6.5)

where λmin = min{1, λi : i ∈ I}, µmin = min{1, µj : j ∈ J }, λmax = max{1, λi : i ∈ I},
µmax = max{1, µj : j ∈ J }, dδmin = min{1, λi−

∑

j∈J
i
x∗jµj : i ∈ I}, δmin = min{1,∑j∈J

i
x∗jµj +
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x̂i,iµa(i) − λi : i ∈ I\{i∗}}, δmax = max{1,∑j∈J
i
x∗jµj + x̂i,iµa(i) − λi : i ∈ I}, x∗min = min{x∗j :

j ∈ J }, µsum = max{1,∑j∈J µj}, and

γi =
µa(i)

64
∑

j∈Ji
µj

, 1 ≤ i ≤ I. (6.6)

Then we define by backward induction on i,

εI =
ε̂

I
, εi =

γi+1εi+1

I
, 0 ≤ i < I. (6.7)

(Note that γi < 1 for all i ∈ I, and εi < εi+1 ≤ ε̂ < 1, i = 0, 1, 2, . . . I − 1.) Finally, in the rth

system, if i is a transition buffer, we let Lr
i be the threshold size for buffer i. If i is a non-transition

buffer, Lr
i is not used to define a threshold, it is simply defined to facilitate the iterative definition

of Lr
i , i = 1, . . . , I.

Remark. For our method of proof to work, the constant cmust be sufficiently large. In the proofs of
Lemmas 7.3–7.6 and of uniform integrability in the proof of Theorem 5.4, a means for determining
a value c∗ is described such that our method works provided c > c∗. This value is determined
from several applications of large deviation estimates for the renewal processes associated with the
interarrival and service time sequences (cf. Assumption 3.2). As in [3], we have not attempted to
give a concise formula for c∗ nor to optimize its value, since the relevant fact is that sufficiently
large thresholds of order log r work and this order is the smallest for which our proof works.
(For analysis and approximate analysis of the effects of different threshold sizes for some dynamic
scheduling problems, see for example, [37, 38] and [33, 35].)

6.3 State Space Collapse Result and Outline of Proof

A key element in the proof of Theorem 5.3 is to first show the following “state space collapse”
result.

Theorem 6.1 Consider the sequence of parallel server systems indexed by r, where the rth system
operates under the scheduling control, T r,∗, described in Sections 5 and 6.2. Then

(

Q̂r
i , Î

r
k : i ∈ I\{i∗} , k ∈ K\{k∗}

)

⇒ 0 as r →∞, (6.8)

where 0 is the function in DI+K−2 that remains at the origin of IRI+K−2 for all time.

The idea behind the proof of this theorem is that, for sufficiently large r, under the threshold
control T r,∗, for a transition class i ∈ I\{i∗}, once the queue length process Qr

i has first reached its
threshold level Lr

i (cf. (6.4)), over time intervals of order r2 in length, Qr
i rarely deviates as much

as Lr
i −|Ji| from the threshold level, since when it is above this level, it is driven down towards the

level at an “average” rate of x̂i,iµ
r
a(i) +

∑

j∈J
i
x∗jµ

r
j − λr

i > 0, and when it is below the level, it is

driven up towards the level at an average rate of λr
i −
∑

j∈J
i
x∗jµ

r
j > 0. Similarly, if i∗ is a transition

class, once Qr
i∗ has reached the level Lr

i∗ , Q̂
r
i∗ rarely reaches as low as the low level |Ji∗ |. However,

since i∗ is the cheapest buffer, Qr
i∗ may reach considerably above Lr

i∗ . For a non-transition class
i 6= i∗, J

i
= ∅ and Q̂r

i is driven down towards zero at an average rate of x̂i,iµ
r
a(i) − λr

i > 0. (The

claimed positivity of the quantities above holds for large r since Rx∗ = λ (cf. Assumptions 3.1 and
3.6) and 1 ≥ x̂i,i > x∗

a(i) for i 6= i∗.) The behavior of the queue length process Qr
i for a transition

buffer i ∈ I has a consequential effect on the idleness processes Ir
k , for k ∈ Ki, since idletime for

server k cannot increase when the queue length process Qr
i is above the level |Ji|.

Estimates associated with the above ideas, along with estimates on the cumulative idletime for
server k ∈ Ki until Qr

i reaches Lr
i (for a transition class i), are stated formally in Theorem 7.1.
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The proof of this theorem uses large deviation estimates for the primitive renewal processes and
estimates for the cumulative allocation processes (cf. Lemma 7.3). The proof employs an induction
on the buffers in the server-buffer tree, starting from i = 1 and iterating to buffer i = I − 1. The
buffer i∗ (when it is a transition buffer) is treated separately, although this treatment uses the
consequences of the induction proof. The induction setup is described in Section 7.2 and the proofs
are in Sections 7.3–7.7. Theorem 6.1 follows from Theorem 7.1 using the fact that the threshold
Lr
i being of order log r implies that (Lr

i − |J i
|)/r goes to zero as r goes to infinity.

Once Theorem 6.1 is established, one can show, using the model equations for queue length
and idletime (cf. (2.15)–(2.16)), that the fluid scaled allocations T̄ r,∗( · ) ≡ r−2T r,∗(r2 · ) associated
with T r,∗ satisfy

T̄ r,∗ ⇒ T̄ ∗, as r →∞, (6.9)

where
T̄ ∗(t) ≡ x∗t, t ≥ 0. (6.10)

One can then combine the above to prove Theorem 5.3. These results are proved in Section 8.
For the proof of Theorem 5.4, we first show (cf. Lemma 9.1) that for any subsequence that

achieves the “liminf” on the left side of (5.2) as a limit and for which the “liminf” is finite, the fluid
level asymptotic behavior described in (6.9) must hold along the subsequence, with {T r} in place
of {T r,∗} there. This, together with a pathwise lower bound for hr · Q̂r, where hr is a perturbation
of h given in (9.12), allows us to establish the inequality in (5.2). The equality in (5.2) follows from
Theorem 5.3 after showing that a certain uniform integrability condition holds.

6.4 Residual Processes and Shifted Allocation Processes

Key to our proof of Theorem 6.1 is the behavior of what we call the residual processes defined for
i ∈ I, r ≥ 1, s ≥ 0, by

Rr
i (s) =

{

Qr
i (s)− Lr

i , if i is a transition class,
Qr

i (s), otherwise.
(6.11)

For the case when i 6= i∗ is a transition buffer, the idea of our proof is to move the center
of one’s attention to the threshold and to show that Qr

i reaches the threshold level Lr
i relatively

quickly and then “chatters” back and forth across this threshold, not frequently deviating “far”
from it, so that Qr

i rarely again goes as low as the level |J
i
|, or as high as the level 2Lr

i − |J i
|.

When translated into the behavior of Rr
i , this means that we show that Rr

i reaches the level zero
relatively quickly and then it chatters back and forth across the zero level, rarely deviating by as
much as ±(Lr

i − |J i
|) from this level (cf. Theorem 7.1). If i 6= i∗ is a non-transition buffer, we

show that Qr
i (or equivalently Rr

i ) rarely goes above the level Lr
i .

For describing the excursions of Rr
i above zero, we introduce the following notation.

Definition 6.2 For i ∈ I, let τ r
i,0 = inf{s ≥ 0 : Rr

i (s) ≥ 0}, τ r
i,1 = inf{s ≥ τ r

i,0 : Rr
i (s) ≥ 1},

τ r
i,2 = inf{s ≥ τ r

i,1 : Rr
i (s) ≤ 0} and define recursively τ r

i,2n−1 = inf{s ≥ τ r
i,2n−2 : Rr

i (s) ≥ 1},
τ r
i,2n = inf{s ≥ τ r

i,2n−1 : Rr
i (s) ≤ 0}, for n = 2, 3, . . .. For each n ≥ 1, we say that [τ r

i,2n−1, τ
r
i,2n] is

the nth “up” excursion interval for Rr
i (·), and on {τ r

i,2n−1 < ∞} we let βr
i,n = τ r

i,2n − τ r
i,2n−1, and

on {τ r
i,2n−1 =∞} we let βr

i,n = 0.

For describing the “down” excursion intervals of Rr
i when i ∈ I is a transition class, we define

dRr
i ≡ −Rr

i = Lr
i −Qr

i . (6.12)

If i is not a transition class, we set dRi ≡ 0, and hence the following definition is only non-trivial
for a transition class i.
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Definition 6.3 For i ∈ I, let dτ r
i,1 = inf{s ≥ τ r

i,0 : dRr
i (s) ≥ 1}, dτ r

i,2 = inf{s ≥ dτ r
i,1 : dRr

i (s) ≤ 0}
and define recursively dτ r

i,2n−1 = inf{s ≥ dτ r
i,2n−2 : dRr

i (s) ≥ 1}, dτ r
i,2n = inf{s ≥ dτ r

i,2n−1 : dRr
i (s) ≤

0}, for n = 2, 3, . . .. For each n ≥ 1, we say that [dτ r
i,2n−1,

dτ r
i,2n] is the nth down excursion interval

for Rr
i (·), and on {dτ r

i,2n−1 < ∞} we let dβr
i,n = dτ r

i,2n − dτ r
i,2n−1, and on {dτ r

i,2n−1 = ∞} we define
dβr

i,n = 0.

Estimates of the amount of time that activities in Ji are on during the nth (up/down) excursion
interval for Rr

i are needed to obtain estimates of the value of Rr
i during such an interval (cf. (7.40)).

Such estimates for the activities in J
i
depend in turn on estimates for the on-time of activities

farther down the tree, whereas estimates for the on-time of activity a(i) depend on estimates for
the on-time of the (higher priority) activities that are served from above by the same server that
serves buffer i from above. To keep track of all relevant on-times, for each i ∈ I, j ∈ J , we define
shifted allocation processes for n ≥ 1 and s ≥ 0, by

T r,n
i,j (s) = T r

j (τ
r
i,2n−1 + s)− T r

j (τ
r
i,2n−1), on {τ r

i,2n−1 <∞}, (6.13)

dT r,n
i,j (s) = T r

j (
dτ r

i,2n−1 + s)− T r
j (

dτ r
i,2n−1), on {dτ r

i,2n−1 <∞}, (6.14)

and on {τ r
i,2n−1 = ∞} let T r,n

i,j ≡ 0, and on {dτ r
i,2n−1 = ∞} let dT r,n

i,j ≡ 0. We have that on
{τ r

i,2n−1 < ∞}, T r,n
i,j measures the on-time of activity j ∈ J following an up-crossing to or above

the level one by Rr
i , and, for a transition class i, on {dτ r

i,2n−1 <∞}, dT r,n
i,j measures the on-time of

activity j following a down-crossing to or below level minus one by Rr
i . Note that dT r,n

i,j ≡ 0 if i is
not a transition class.

6.5 Preliminaries on Stopped Arrival and Service Processes

For the proof of (7.1) in Theorem 7.1, we need to establish some preliminary results concerning
the properties of the arrival and service processes stopped at certain hitting times, so that we can
apply the results of Appendix A in [3] to shifted versions of these processes.

Let IN∞ = IN∪{∞}. Consider INI
∞× INJ

∞ to be partially ordered by componentwise inequality,
i.e., (n,m) ≤ (p, q) if and only if ni ≤ pi, and mj ≤ qj for all i ∈ I, j ∈ J . Recall from Section
2.2 the definition, for the rth system, of the cumulative interarrival time process for class i ∈ I, ξri ,
and the cumulative service time process for activity j ∈ J , ηr

j . For each (p, q) ∈ INI
∞ × INJ

∞ let

Fr
pq = σ{ξri (· ∧ (pi + 1)), ηrj (· ∧ (qj + 1)) : i ∈ I, j ∈ J } ∨ P0,

where P0 denotes the collection of P-null sets in the complete probability space (Ω,F ,P). Then
{Fr

pq : (p, q) ∈ INI
∞ × INJ

∞} is a multiparameter filtration (cf. Ethier and Kurtz [10], p. 85).

Definition 6.4 A (multiparameter) stopping time relative to {F r
pq : (p, q) ∈ INI

∞ × INJ
∞} is a

random variable T taking values in INI
∞ × INJ

∞ such that

{T = (p, q)} ∈ F r
pq for all (p, q) ∈ INI

∞ × INJ
∞. (6.15)

The σ-algebra associated with such a stopping time T is

Fr
T = {B ∈ F : B ∩ {T = (p, q)} ∈ F r

pq for all (p, q) ∈ INI
∞ × INJ

∞}. (6.16)

Lemma 6.5 Suppose r ≥ 1 is such that Lr
0 ≥ J+ 1. Then, for each ι ∈ I, n ≥ 1,

T r
n,ι ≡

(

Ar
i (τ

r
ι,2n−1), S

r
j (T

r
j (τ

r
ι,2n−1)) : i ∈ I, j ∈ J

)

,

dT r
n,ι ≡

(

Ar
i (

dτ r
ι,2n−1), S

r
j (T

r
j (

dτ r
ι,2n−1)) : i ∈ I, j ∈ J

)
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are (multiparameter) stopping times relative to the filtration {F r
pq : (p, q) ∈ INI

∞ × INJ
∞}, where we

adopt the convention that each of Ar
i (·), Sr

j (T
r
j (·)), i ∈ I, j ∈ J , takes the value ∞ when evaluated

at the time ∞.

Remark. Here we need r large enough to simplify the proof of Lemma 6.5. Since, in the sequel,
we let r approach infinity, this result will suffice for our purposes.
Proof. This lemma can be proved in a similar manner to Lemma 8.3 in [41]. A proof is given in
the appendix to [2]. 2

Lemma 6.6 Let T be a (multiparameter) stopping time relative to the filtration {F r
pq : (p, q) ∈

INI
∞ × INJ

∞}. Let T I denote the first I components of T and T J denote the other J (= B)
components of T so that T = (T I , T J ). In the following, for notational convenience, we make the
convention that each of ur

i (·), vrj (·), i ∈ I, j ∈ J , takes the value ∞ when its argument takes the
value ∞. Then,

(ur
i (T Ii + 1), vrj (T Jj + 1) : i ∈ I, j ∈ J ) ∈ F r

T , (6.17)

and, on {T ∈ INI × INJ}, the conditional distribution of {(ur
i (T Ii + n), vrj (T Jj + n) : i ∈ I, j ∈

J ), n = 2, 3, . . .} given F r
T is the same as the (unconditioned) distribution of the original family of

i.i.d. random variables {(ur
i (n), v

r
j (n) : i ∈ I, j ∈ J ), n = 1, 2, . . .}.

Proof. For a proof with |I| = 1, |J | = 2, see the proof of Lemma 7.6 in [3]. The general proof is
similar. 2

6.6 Large Deviation Bounds for Renewal Processes

The following lemma, which will be used extensively in proving state space collapse in Section 7,
summarizes the results of the discussion in Appendix A in [3].

Lemma 6.7 Let {ζ(i)}∞i=1 be a sequence of strictly positive independent random variables, where
{ζ(i)}∞i=2 are identically distributed with finite mean 1/ν, for some ν ∈ (0,∞), and ζ(1) may have
a different distribution from ζ(i) for i > 1. Assume that there is a nonempty open neighborhood O
of 0 ∈ IR such that for i = 2, 3, . . .,

Λ(l) ≡ logE
(

elζ(i)
)

<∞ for all l ∈ O. (6.18)

Let the values of r ≥ 1 range through a sequence that increases to infinity. For each r, let νr > 0
and suppose that limr→∞ νr = ν. For each r and i = 2, 3, . . ., let

ζr(i) =
ν

νr
ζ(i). (6.19)

Given 0 < ε < ν/2, let rε ≥ 1 be such that for r ≥ rε,

|νr − ν| < ε, (6.20)

νr

ν

(

1

νr + ε
2

)

≤ 1

ν

(

1

1 + ε
3ν

)

<
1

ν
, (6.21)

1

ν

(

1 +
ε

2(νr − ε)

)

≥ 1

ν

(

1 +
ε

2ν

)

>
1

ν
. (6.22)

For each r ≥ 1, s ≥ 0, let

N r(s) = sup

{

n ≥ 0 :
n
∑

i=1

ζr(i) ≤ s

}

. (6.23)
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Then for r ≥ rε, s > 2/ε,

P(N r(s) > (νr + ε)s) ≤ exp

(

−((νr + ε)s− 1)Λ∗
(

1

ν

(

1

1 + ε
3ν

)))

≤ exp

(

−(νs− 1)Λ∗
(

1

ν

(

1

1 + ε
3ν

)))

, (6.24)

and for r ≥ rε, s ≥ 0,

P(N r(s) < (νr − ε)s) ≤ exp

(

−(νr − ε)sΛ∗
(

1

ν

(

1 +
ε

2ν

)

))

+P
(

ζr(1) >
ε

2νr
s
)

≤ exp

(

−(ν − 2ε)sΛ∗
(

1

ν

(

1 +
ε

2ν

)

))

+P
(

ζr(1) >
ε

2νr
s
)

, (6.25)

where

Λ∗(x) ≡ sup
l∈IR

(lx− Λ(l)), (6.26)

and where the values of the quantities involving Λ∗ in the above are strictly positive. (The function
Λ∗ is called the Legendre-Fenchel transform of Λ.) Furthermore, if ζ(1) has the same distribution
as {ζ(i)}∞i=2, then for each r ≥ 1, s ≥ 0 and 0 < l0 ∈ O, for any n ≥ 1,

P

(

n
max
i=1

ζr(i) >
ε

2νr
s

)

≤ n exp

(

− l0εs

2ν

)

exp
(

Λ(l0)
)

. (6.27)

7 Proof of State Space Collapse

Throughout this section, it is assumed that in the rth parallel server system we use the allocation
process T r,∗ associated with the threshold policy described in Sections 5 and 6.2. To simplify
notation, here we shall simply write T r in place of T r,∗, since no other policy is considered in this
section. The associated queue length and idletime processes will be denoted by Qr, Ir, respectively.

Recall the definition of the residual processes (cf. (6.11)), and the role of c in the definition of
Lr

0 (cf. Section 6.2). For the following theorem, which is the main technical result of this section
and from which Theorem 6.1 will follow, there is c∗ > 0 such that the results hold provided the
fixed constant c is greater than c∗ (cf. the proof of Theorem 7.1).

Theorem 7.1 For each i ∈ I\{i∗}, k ∈ Ki, t ≥ 0, and ε > 0,

P

(

sup
τr
i,0≤s≤r2t

|Rr
i (s)| ≥ Lr

i − |J i
|
)

→ 0 as r →∞, (7.1)

P
(

Irk(τ
r
i,0) ≥ rε

)

→ 0 as r →∞, (7.2)

P
(

Irk(r
2t)− Irk(τ

r
i,0

)

> 0, τ r
i,0 < r2t) → 0 as r →∞, (7.3)

and, in addition, if i∗ is a transition class, then for each k ∈ Ki∗, t ≥ 0, and ε > 0,

P

(

inf
τr
i∗,0

≤s≤r2t
Qr

i∗(s) ≤ |J i∗
|
)

→ 0 as r →∞, (7.4)

P
(

Irk(τ
r
i∗,0) ≥ rε

)

→ 0 as r →∞, (7.5)

P
(

Irk(r
2t)− Irk(τ

r
i∗,0

)

> 0, τ r
i∗,0 < r2t) → 0 as r →∞. (7.6)
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Here, τ r
i,0 = inf{s ≥ 0 : Qr

i (s) ≥ Lr
i } if class i is a transition class, τ r

i,0 ≡ 0 if class i is a
non-transition class, and |J

i
| is the number of basic activities that serve class i from below in the

server-buffer tree (cf. Figure 5).

Here we have used the convention in (7.2)–(7.3) and (7.5)–(7.6) that I r
k(τ

r
i,0) = limt→∞ Irk(t),

on {τ r
i,0 =∞}, and in (7.1) (respectively, (7.4)) that the supremum (respectively, infimum) over an

empty set is defined to equal −∞ (respectively, ∞).
Remark. Although the results in Theorem 7.1 suffice for the proof of Theorem 6.1 and subsequently
for Theorem 5.3, a refinement of Theorem 7.1, with estimates of the left members in (7.1)–(7.3),
(cf. Theorem 7.7) is needed to establish certain uniform integrability used in the proof of Theorem
5.4.

7.1 Auxiliary Constants for the Induction Proof

In this subsection, we introduce various constants and establish various inequalities that hold for r
sufficiently large. These are used in in the proofs of Theorems 7.1 and 7.7 (see below). The reader
may wish to simply skim this subsection at first, and only refer back to it as needed for reading
proofs.

The following constants grow logarithmically with r. For i ∈ I, r ≥ 1, Lr
i , and εi as defined in

(6.4) and (6.7), respectively, let

sri =
Lr
i − (|J

i
|+ 2)

(λr
i + εi)

, (7.7)

tri =
8Lr

i

λi −
∑

j∈J
i
x∗jµj

. (7.8)

Note that if i is a non-transition class then the denominator in (7.8) is equal to λi > 0 (by our
convention that a sum over an empty set is zero), and if i is a transition class then the denominator
is also positive since λi = x∗

a(i)µa(i) +
∑

j∈J
i
x∗jµj (cf. (3.5)). Let

sr0 = tr0 = dsr0 = Lr
0, (7.9)

and, for each i ∈ I, r ≥ 1, let

dsri =
Lr
i − (|J

i
|+ 2)

∑

j∈J
i
(µr

j + εi)(x∗j + εi)
, if i is a transition class, (7.10)

otherwise let dsri = Lr
i . Finally, for each r ≥ 1, let

M r = max
{

sri , t
r
i ,

dsri : i ∈ I
}

. (7.11)

Several lemmas are used in establishing Theorems 7.1 and 7.7 (including Lemmas 7.3–7.6 of
Section 7.2). For the proofs of these lemmas we require that r ≥ 1 is large enough so that various
relations involving the auxiliary constants defined above and the parameters for the rth parallel
server system hold. It is important to note that, for this, the size of r should not depend on the
variable t referred to in those theorems and lemmas. We first require that r is large enough that

sri ≥ sri−1, tri ≥ tri−1,
dsri ≥ dsri−1, for i = 1, . . . , I. (7.12)

For each i ∈ I, let

δi =
∑

j∈J
i

x∗jµj + x̂i,iµa(i) − λi. (7.13)
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Then, δi > 0 for i ∈ I\{i∗} since λi =
∑

j∈J
i
x∗jµj + x∗

a(i)µa(i) <
∑

j∈J
i
x∗jµj + x̂i,iµa(i), using the

fact that x∗
a(i) < x̂i,i for i 6= i∗ (cf. (6.2)). For part of the proof of Lemma 7.3 (associated with (I.1)

and up excursions) we require that for all i ∈ I\{i∗},

|λr
i − λi| < min

{

εi
4
,
(µa(i) − εi)εi

32|Ji|

}

, (7.14)

|µr
j − µj | < min

{

εi
4
,
(µa(i) − εi)εi

32|Ji|

}

, for all j ∈ Ji, (7.15)

µr
j − εi >

4λi + δi
4λi + 2δi

µj for all j ∈ J
i
, (7.16)

µr
a(i) − εi >

4λi +
3
2δi

4λi + 2δi
µa(i), (7.17)

λr
i + εi <

(

2λi

2λi + δi

)





∑

j∈J
i

x∗jµj + x̂i,iµa(i)



 = λi +
λiδi

2λi + δi
, (7.18)

1 <
δi

4λi + 2δi
x̂i,iµa(i)s

r
i . (7.19)

(Note that (7.16)–(7.18) do not hold for i = i∗, for large r ≥ 1, since, in this case, δi∗ = 0, εi∗ > 0,
and λr

i∗ → λi∗ , µ
r
j → µj , j ∈ Ji∗ , as r →∞.)

For each i ∈ I, define
dδi = λi −

∑

j∈J
i

x∗jµj , (7.20)

where dδi > 0 since λi =
∑

j∈J
i
x∗jµj+x∗

a(i)µa(i) >
∑

j∈J
i
x∗jµj ≥ 0. For part of the proof of Lemma

7.3 (associated with (I.1) and down excursions) we require that if i is a transition class,

µr
j + εi <

4λi − 3
2
dδi

4λi − 2 dδi
µj , for all j ∈ J

i
, (7.21)

λr
i − εi >

2λi

2λi − dδi

∑

j∈J
i

x∗jµj , (7.22)

1 <





λi
dδi

(4λi − dδi)(2λi − dδi)

∑

j∈J
i

x∗jµj





dsri . (7.23)

(Note that (7.23) does not hold for a non-transition class i since the right hand side there is zero
for all r ≥ 1 by our convention that a sum over an empty index set is zero.)

For each transition class i ∈ I, let

ε̃i =
εi
∑

j∈J
i
µj

1− 2|J
i
|εi

. (7.24)

To use Lemma 6.7, we need ε̃i < min{λi/2, µj/2 : j ∈ Ji} for each transition class i. To see
that this condition is satisfied, we note that by (6.5) and (6.7), εi < 1/4J < 1/4|J

i
| so that

ε̃i < 2εi
∑

j∈J
i
µj < min{λi/2, µj/2 : j ∈ Ji}. For part of the proof of Lemma 7.3 (associated with

(I.2)), we require that for each transition class i,

λr
i −

∑

j∈J
i

x∗jµ
r
j ≥ 1

2

(

λi −
∑

j∈J
i

x∗jµj

)

, (7.25)
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|λi − λr
i | < ε̃i, |µj − µr

j | < ε̃i, for all j ∈ J
i
. (7.26)

For the proof of Lemma 7.6, for all ι ≥ i, i ∈ I, ι ∈ I, we require that

srι >
[εi
4

(

µa(i) −
µa(i)εi

16

)]−1

,
µr
a(i)

µa(i)
>

1

2
,

λr
ι

λι
<

3

2
, (7.27)

∣

∣

∣λr
i − x∗a(i)µ

r
a(i) −

∑

j∈J
i

x∗jµ
r
j

∣

∣

∣ <
µa(i)εi

32
, (7.28)

Lr
i >

εi(|J ι
|+ 2)max{µa(i), λi −

∑

j∈J
i
x∗jµj}

min{λι,
∑

j∈Ji
(µj + ει)}

, (7.29)

and, in addition, if ι is a transition class,

∑

j∈J
ι
(µj + ει)(x

∗
j + ει)

∑

j∈J
ι
(µr

j + ει)(x∗j + ει)
>

1

2
, dsrι ≥

2J

µr
a(i)εi

. (7.30)

For each i ∈ I, let

ε̌i =
(µa(i) − εi)εi

16J
< min

{

λi

2
,
µj

2
: j ∈ Ji

}

. (7.31)

The inequality here holds by (6.5). In addition, if i is a transition class, let

ε1,i =





∑

j∈J
i

(µj + εi)





−1

εi
16

(

µa(i) −
µa(i)εi

16

)

, (7.32)

and set ε1,i = 1 if i is not a transition class. In either case, we also define

ε2,i =
µa(i)εi

16
(x∗a(i) + εi)

−1 <
µa(i)

2
. (7.33)

If i ∈ I is a transition class, for each j ∈ J
i
let

ε3,j =
µa(i)εi

16|J
i
|(x

∗
j + ε1,i)

−1 <
µj

2
. (7.34)

The inequality (7.34) holds since εi < µminx
∗
min/µmax, by (6.5). To apply the large deviation bounds

of Lemma 6.7 in the proofs of Lemmas 7.3 and 7.6, we require that

Lr
0 > max

{

2

εi
,
2

ε̌i
,

2

(x∗
a(i) − εi)ε2,i

,
4

(x∗j + εi)εi
,

2

(x∗j + εi)ε̃i
,

2

(x∗j + ε1,i)ε3,j
: i ∈ I, j ∈ J

i
.

}

. (7.35)

Assumption 7.2 We henceforth assume that r∗ ≥ 1 is fixed such that for all r ≥ r∗, the following
hold:
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(i) conditions (7.12), (7.14)–(7.19), (7.21)–(7.23), (7.25)–(7.30), and (7.35) hold for all i ∈ I,
ι ∈ I, with the exceptions that (7.14)–(7.19) do not need to hold if i = i∗, (7.21)–(7.23) and
(7.25)–(7.26) do not need to hold if i is a non-transition class, and (7.30) does not need to
hold if ι is a non-transition class,

(ii) for each i ∈ I, j ∈ J
i
, (6.20)–(6.22) hold with

(a) λr
i in place of ν

r, λi in place of ν, and any of εi, ε̃i, ε̌i, or ε̌i/2 in place of ε there,

(b) µr
j in place of ν

r, µj in place of ν, and any of εi, εi/2, ε̃i, ε̌i, or ε3,j, in place of ε there,
and

(c) µr
a(i) in place of ν

r, µa(i) in place of ν, and ε2,i in place of ε there.

Remark. The condition before (6.20)–(6.22) that 0 < ε < ν/2 is automatically satisfied for the
choices of ε, ν in Assumption 7.2.

7.2 Induction Setup

In the sequel we will use induction on i to show that the following (I)–(II) hold for each i ∈ I \{i∗},
and we will show that (III) below holds when i∗ is a transition buffer. Recall the definitions of r∗,
sri , t

r
i ,

dsri , M
r from Section 7.1. Note in particular that r∗ is independent of t. We consider the

following, (I)–(II), for i ∈ I \ {i∗}.
(I) For all r ≥ r∗, t > 0 satisfying r2t ≥M r, and each k ∈ Ki,

(I.1) P
(

sup
τr
i,0≤s≤r2t

|Rr
i (s)| ≥ Lr

i − |J i
|
)

≤ p1,i(r
2t)
(

C
(1)
1,i exp

(

− C
(2)
1,i L

r
0

)

+ C
(3)
1,i exp

(

− C
(4)
1,i r

2t
)

)

,

(I.2) P
(

Irk(τ
r
i,0) ≥ tri

)

≤ p2,i(r
2t)
(

C
(1)
2,i exp

(

− C
(2)
2,i L

r
0

)

+ C
(3)
2,i exp

(

− C
(4)
2,i r

2t
)

)

,

(I.3) P
(

Irk(r
2t)− Irk(τ

r
i,0) > 0, τ r

i,0 < r2t
)

≤ p3,i(r
2t)
(

C
(1)
3,i exp

(

− C
(2)
3,i L

r
0

)

+ C
(3)
3,i exp

(

− C
(4)
3,i r

2t
)

)

,

where p1,i, p2,i, p3,i are polynomials with non-negative coefficients, and C
(m)
l,i , l = 1, 2, 3, m =

1, 2, 3, 4 are positive constants; the polynomials and constants do not depend on t or r. The
polynomials p1,i and p3,i have degree at most i+ 1 and p2,i has degree at most i.
(II) For all r ≥ r∗, t > 0 satisfying r2t ≥M r, and each ι ∈ I with ι > i,

(II.1) sup
n≥1
P
(

T r,n

ι,a(i)(s
r
ι ) ≥ (x∗a(i) + εi)s

r
ι , srι ≤ βr

ι,n, τ r
ι,2n−1 ≤ r2t

)

≤ p4,i(r
2t)
(

C
(1)
4,i exp

(

− C
(2)
4,i L

r
0

)

+ C
(3)
4,i exp

(

− C
(4)
4,i r

2t
)

)

,

(II.2) if ι is a transition class,

sup
n≥1
P
(

dT r,n

ι,a(i)(
dsrι ) ≤ (x∗a(i) − εi)

dsrι ,
dτ r

ι,2n−1 ≤ r2t
)

≤ p5,i(r
2t)
(

C
(1)
5,i exp

(

− C
(2)
5,i L

r
0

)

+ C
(3)
5,i exp

(

− C
(4)
5,i r

2t
)

)

,

(II.3) P
(

T r
a(i)(t

r
ι ) ≤ (x∗a(i) − εi)t

r
ι

)

≤ p6,i(r
2t)
(

C
(1)
6,i exp

(

− C
(2)
6,i L

r
0

)

+ C
(3)
6,i exp

(

− C
(4)
6,i r

2t
)

)

,
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where p4,i, p5,i, p6,i are polynomials (of degree at most i + 1) with non-negative coefficients, and

C
(m)
l,i , l = 4, 5, 6, m = 1, 2, 3, 4 are positive constants; the polynomials and constants do not depend

on t or r.
Remark. The appearance of the variable t in the right side of (II.3) stems from an estimate
obtained in (7.115) involving the number of class i jobs in the system at time trι ≤M r ≤ r2t.

We consider the following, (III), if i∗ is a transition class.
(III) For all r ≥ r∗, t > 0 satisfying r2t ≥M r, and each k ∈ Ki∗ ,

(III.1) P
(

inf
τr
i∗,0

≤s≤r2t
Rr

i∗(s) ≤ −Lr
i∗ + |J i∗

|
)

≤ p1,i∗(r
2t)
(

C
(1)
1,i∗ exp

(

− C
(2)
1,i∗L

r
0

)

+ C
(3)
1,i∗ exp

(

− C
(4)
1,i∗r

2t
)

)

,

(III.2) P
(

Irk(τ
r
i∗,0) ≥ tri∗

)

≤ p2,i∗(r
2t)
(

C
(1)
2,i∗ exp

(

− C
(2)
2,i∗L

r
0

)

+ C
(3)
2,i∗ exp

(

− C
(4)
2,i∗r

2t
)

)

,

(III.3) P
(

Irk(r
2t)− Irk(τ

r
i∗,0) > 0, τ r

i∗,0 < r2t
)

≤ p3,i∗(r
2t)
(

C
(1)
3,i∗ exp

(

− C
(2)
3,i∗L

r
0

)

+ C
(3)
3,i∗ exp

(

− C
(4)
3,i∗r

2t
)

)

,

where p1,i∗ , p2,i∗ , p3,i∗ are polynomials with non-negative coefficients, and C
(m)
l,i∗ , l = 1, 2, 3, m =

1, 2, 3, 4 are positive constants; the polynomials and constants do not depend on t or r. The
polynomials p1,i∗ and p3,i∗ have degree at most I+ 1 and p2,i∗ has degree at most I.

Property (I) is used to obtain the conclusions (7.1)–(7.3) in Theorem 7.1. Property (II) describes
the properties associated with buffer i that are carried along in the induction proof to prove (I) for
buffers ι > i and to prove Property (III), which in turn is used to prove (7.4)–(7.6). The induction
proof depends on the following lemmas that are proved in Sections 7.3–7.6 below.

Lemma 7.3 Fix i ∈ I \ {i∗}. Suppose that for all r ≥ r∗, t > 0 satisfying r2t ≥M r, the following
properties (i)–(iii) hold for all j ∈ J

i
whenever i is a transition buffer, and (iv) holds for i whether

it is a transition buffer or not:

(i) sup
n≥1
P
(

T r,n
i,j (sri ) ≤ (x∗j − εi)s

r
i , sri ≤ βr

i,n, τ r
i,2n−1 ≤ r2t

)

≤ p7,i(r
2t)
(

C
(1)
7,i exp

(

− C
(2)
7,i L

r
0

)

+ C
(3)
7,i exp

(

− C
(4)
7,i r

2t
)

)

,

(ii) sup
n≥1
P
(

dT r,n
i,j (dsri ) ≥ (x∗j + εi)

dsri ,
dτ r

i,2n−1 ≤ r2t
)

≤ p8,i(r
2t)
(

C
(1)
8,i exp

(

− C
(2)
8,i L

r
0

)

+ C
(3)
8,i exp

(

− C
(4)
8,i r

2t
)

)

,

(iii) P
(

T r
j (t

r
i ) ≥ (x∗j + εi)t

r
i

)

≤ p9,i(r
2t)
(

C
(1)
9,i exp

(

− C
(2)
9,i L

r
0

)

+ C
(3)
9,i exp

(

− C
(4)
9,i r

2t
)

)

,

(iv) sup
n≥1
P
(

T r,n

i,a(i)(s
r
i ) ≤ (x̂i,i − εi)s

r
i , sri ≤ βr

i,n, τ r
i,2n−1 ≤ r2t

)

≤ p10,i(r
2t)
(

C
(1)
10,i exp

(

− C
(2)
10,iL

r
0

)

+ C
(3)
10,i exp

(

− C
(4)
10,ir

2t
)

)

,

where p7,i, p8,i, p9,i, p10,i are polynomials (of degree at most i) with non-negative coefficients,

and C
(m)
l,i , l = 7, 8, 9, 10, m = 1, 2, 3, 4 are positive constants; the polynomials and constants are

independent of t and r. Then, (I) holds for i.

Lemma 7.4 Let i ∈ I\{i∗}. Suppose that (I) and (II) hold with i′ in place of i, for all i′ < i. Then,
if i is a transition buffer, (i)–(iii) of Lemma 7.3 hold for all r ≥ r∗, t > 0 satisfying r2t ≥M r, and
each j ∈ J

i
.
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Lemma 7.5 Let i ∈ I\{i∗}. Suppose that (I) and (II) hold with i′ in place of i, for all i′ < i.
Then (iv) of Lemma 7.3 holds for all r ≥ r∗ and t > 0 satisfying r2t ≥M r.

Lemma 7.6 Let i ∈ I\{i∗}. Suppose that (I) and (II) hold with i′ in place of i, for all i′ < i.
Then (II) holds for i.

Lemmas 7.3–7.6 combined with a formal induction yield the following.

Theorem 7.7 (I) and (II) hold for each i ∈ I\{i∗}. In addition, (III) holds if i∗ is a transition
class.

With Lemmas 7.3–7.6 in place, the steps in the induction argument used in proving Theorem
7.7 are as follows (assuming the ordering of the buffers is as described in Section 6.1).

1. Fix i ∈ I\{i∗}, and assume that (I) and (II) hold with i′ in place of i, for all i′ < i (for i = 1,
this is a vacuous assumption).

2. Use Lemma 7.4 to show that (i)–(iii) in Lemma 7.3 hold for all j ∈ J
i
if i is a transition

buffer, and use Lemma 7.5 to show that (iv) holds for i.

3. Apply Lemma 7.3 to conclude that (I) holds for i.

4. Apply Lemma 7.6 to conclude that (II) holds for i.

It then follows that (I) and (II) hold for all i ∈ I\{i∗}. Then, if i∗ is a transition buffer, we combine
the proof of Lemma 7.4 and parts of the proof of Lemma 7.3 (adapted for i = i∗) with the fact that
(II) holds for ι = i∗ and i < i∗, to prove that (III) holds.

The formal proof of Theorem 7.7 is given in Section 7.7. As a guide to the reader, before
beginning the proofs of the lemmas and Theorems 7.7 and 7.1, we briefly describe some of the ideas
involved in these proofs.

Lemma 7.3 is the main lemma that drives the induction. The result of this lemma yields that
all queue length processes and idletime processes (except Qr

i∗ and Irk∗) vanish on diffusion scale as
r goes to infinity (for c sufficiently large). To obtain (I) for i ∈ I\{i∗}, our proof requires that,
in addition to large deviation estimates on the primitive renewal processes, there are estimates on
the allocation processes (in each excursion interval for the residual process associated with buffer
i) corresponding to the activities which process class i jobs, i.e., (i)–(iv) in Lemma 7.3 hold. When
i is a transition buffer, the estimates (i)–(iii) are derived from the induction assumptions for (II)
(with i replaced by i′ < i in (II)), using the fact that, for each j ∈ J

i
, the utilization of activity j is

constrained by the (higher priority) activities for server k(j) which serve buffers in the layer below
that server. These estimates are obtained in the proof of Lemma 7.4, which is contained in Section
7.4. Similarly, for (iv), the on-time of the activity, a(i), that serves buffer i from above can be
estimated (in an up excursion for Rr

i ) by having estimates, derived from the induction assumption
for (II), on the (higher priority) activities associated with server k(a(i)) (recall that buffers which
have higher priority for server k(a(i)) are all numbered lower than i). These estimates are obtained
in the proof of Lemma 7.5 in Section 7.5. Finally, the proof of Lemma 7.6 in Section 7.6 (which uses
the fact that (I) holds for buffer i together with the induction assumption for (II), with i replaced
by i′ < i in (II)), completes the induction step by showing how to transition between layers.

For (III.1)–(III.3), assuming that i∗ is a transition buffer, we first use the proof of Lemma 7.4
(cf. Section 7.4) to show that (ii) and (iii) in Lemma 7.3 hold with i∗ in place of i, r ≥ r∗, t > 0
satisfying r2t ≥ M r, and all j ∈ J

i∗
, given that (I) and (II) hold for all i < i∗ (cf. (7.69) and

(7.70), respectively). Then, (III.1)–(III.3) can be proved in a similar manner to that in the proof
of Lemma 7.3 in Section 7.3 (with i∗ in place of i there).

Properties (I) and (III) are used to prove (7.1)–(7.3) and (7.4)–(7.6), respectively, of Theorem
7.1, for a sufficiently large constant c appearing in the definition of Lr

0.
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7.3 Estimates on Allocation Processes Imply Residual Processes Stay Near Zero

– Proof of Lemma 7.3

Proof of Lemma 7.3. Fix i ∈ I\{i∗}. Suppose that for all r ≥ r∗, t > 0 satisfying r2t ≥ M r,
and each j ∈ J

i
, (i)–(iv) hold. The proof that follows is an extension of the proof of Theorem 7.2

in [3]. For the special case when class i is not a transition class, we have Ki = ∅, J i
= ∅, τ r

i,0 ≡ 0,

and dRr
i ≡ 0. This implies that (I.2) holds trivially and the part of the proof of (I.1) given below

for down excursions of Rr
i is not needed.

Proof of (I.1). The idea of this proof is: (a) to show that the number of excursions of Rr
i from the

zero level is at most of order r2t, with probability at least 1 −K1 exp(−K ′
1r

2t) where K1, K
′
1 are

constants not depending on r or t, and then (b) to estimate the probability that |Rr
i | reaches the

level Lr
i − |J i

| or higher during any of the first O(r2t) excursions. Using large deviation estimates
for the renewal processes Ar

i and Sr
j , j ∈ Ji, and the assumptions of Lemma 7.3, this probability will

be shown to be dominated by an expression of the form pi(r
2t)(C exp(−C ′Lr

i )+C ′′ exp(−C ′′′r2t)),
for all r ≥ r∗ and t > 0 satisfying r2t > M r, where pi is a polynomial of degree at most i with
non-negative coefficients, and C,C ′, C ′′, C ′′′ are non-negative constants not depending on r or t (cf.
(7.57)). Then (a) and (b) are combined to yield (I.1).

We first consider the up excursions of Rr
i . For n ≥ 1, r ≥ 1, j ∈ Ji, on {τ r

i,2n−1 <∞}, we define
shifted renewal processes, for s ≥ 0, as follows.

Ar,n
i,i (s) = Ar

i (τ
r
i,2n−1 + s)−Ar

i (τ
r
i,2n−1), (7.36)

Sr,n
i,j (s) = Sr

j (T
r
j (τ

r
i,2n−1) + s)− Sr

j (T
r
j (τ

r
i,2n−1)), (7.37)

Ăr,n
i,i (s) = sup{m ≥ 0 : ξri (A

r
i (τ

r
i,2n−1) +m)− ξri (A

r
i (τ

r
i,2n−1)) ≤ s}, (7.38)

S̆r,n
i,j (s) = sup{m ≥ 0 : ηrj (S

r
j (T

r
j (τ

r
i,2n−1)) +m)− ηrj (S

r
j (T

r
j (τ

r
i,2n−1))) ≤ s}, (7.39)

and, for concreteness, on {τ r
i,2n−1 =∞} we define Ar,n

i,i , S
r,n
i,j , Ă

r,n
i,i , S̆

r,n
i,j to be identically zero. Recall

the definition of T r,n
i,j from Section 6.4.

Consider the nth up excursion interval for Rr
i . We have that on {τ r

i,2n−1 <∞}, for 0 ≤ s ≤ βr
i,n,

Rr
i (τ

r
i,2n−1 + s) = 1 +Ar,n

i,i (s)−
∑

j∈Ji

Sr,n
i,j (T

r,n
i,j (s)), (7.40)

and, taking account of the fact that a new arrival to class i occurs at τ r
i,2n−1 < ∞ and a job may

have been partially served by activity j ∈ Ji at τ r
i,2n−1 <∞, we also have that, for s ≥ 0,

Ar,n
i,i (s) = Ăr,n

i,i (s), and Sr,n
i,j (s) ≥ S̆r,n

i,j (s), j ∈ Ji. (7.41)

By (6.5), we have that

εi < min

{

µj

2
,
λi

2
,

(

1− 4λi + δi

4λi +
3
2δi

)

x̂i,i,

(

1− 4λi

4λi + δi

)

x∗j : j ∈ Ji

}

, (7.42)

where δi and x̂i,i are given in (7.13) and (6.2), respectively.
In the following, it is assumed that r ≥ r∗ and t > 0 satisfies r2t ≥ M r. Then r2t > 2/εi by

(7.9)–(7.12), and (7.35). Define nr
i = b(λr

i + εi)r
2tc + 1. Since each up excursion of Rr

i is initiated
by an arrival to class i, using the large deviations bounds for renewal processes given in Lemma 6.7
and the choice of r∗ (cf. Assumption 7.2), we have the following estimate of the probability that
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at least nr
i up excursions of Rr

i have been initiated in [0, r2t] (τ r
i,2nr

i−1 is the beginning of the (nr
i )

th

up excursion interval):

P(τ r
i,2nr

i−1 ≤ r2t) ≤ P(Ar
i (r

2t) ≥ nr
i )

≤ P(Ar
i (r

2t) > (λr
i + εi)r

2t)

≤ K1 exp(−K ′
1r

2t), (7.43)

where K1 = exp(Λa,∗
i ((λi(1+ εi/3λi))

−1)) > 0, K ′
1 = λiΛ

a,∗
i ((λi(1+ εi/3λi))

−1) > 0, depend on the
Legendre-Fenchel transform Λa,∗

i of the logarithmic moment generating function Λa
i of ui(1) (cf.

(3.3)), λi, and εi, but are independent of t and r.
Now, decomposing the probability space according to whether the number of up excursions

initiated in [0, r2t] is greater than or equal to nr
i or less than nr

i , we have

P
(

Rr
i (s) ≥ Lr

i − |J i
| some s ∈ [0, r2t]

)

≤ P
(

τ r
i,2nr

i−1 ≤ r2t
)

+

nr
i−1
∑

n=1

P
(

Rr
i (s) ≥ Lr

i − |J i
| some s ∈ (τ r

i,2n−1, τ
r
i,2n), τ r

i,2n−1 ≤ r2t
)

. (7.44)

For each positive integer n, let

Υr,n
i =

{

Ar,n
i,i (s

r
i ) ≤ (λr

i + εi)s
r
i ; S

r,n
i,j ((x̃

i
j − εi)s

r
i ) ≥ (µr

j − εi)(x̃
i
j − εi)s

r
i , j ∈ Ji;

T r,n
i,j (sri ) > (x̃i

j − εi)s
r
i , j ∈ Ji; τ

r
i,2n−1 ≤ r2t}, (7.45)

where x̃i
j = x∗j for j ∈ J

i
and x̃i

j = x̂i,i for j = a(i). The set Υr,n
i is a “good” set, in the sense that,

on it, various shifted stochastic processes can be bounded on one side at time sri by certain linear
functions. These bounds will enable us to show that on Υr,n

i , Rr
i will not reach the level Lr

i − |J i
|

in the nth up excursion interval (τ r
i,2n−1, τ

r
i,2n) whose length is shorter than sri .

Let

ρr,ni = ξri (A
r
i (τ

r
i,2n−1) + Lr

i − |J i
| − 1)− ξri (A

r
i (τ

r
i,2n−1)) on {τ r

i,2n−1 <∞}, (7.46)

and let ρr,ni ≡ 0 on {τ r
i,2n−1 =∞}. Then,

{

Rr
i (s) ≥ Lr

i − |J i
| some s ∈ (τ r

i,2n−1, τ
r
i,2n), τ r

i,2n−1 <∞
}

=
{

Rr
i (s) ≥ Lr

i − |J i
| some s ∈ (τ r

i,2n−1, τ
r
i,2n), ρr,ni ≤ βr

i,n, τ r
i,2n−1 <∞

}

, (7.47)

since, on {τ r
i,2n−1 <∞}, ρr,ni is the minimum possible amount of time required for Rr

i to reach the

level Lr
i − |J i

| in the nth up excursion. Thus,

P
(

Rr
i (s) ≥ Lr

i − |J i
| some s ∈ (τ r

i,2n−1, τ
r
i,2n), τ r

i,2n−1 ≤ r2t
)

≤ P
(

τ r
i,2n−1 ≤ r2t, (Υr,n

i )c, ρr,ni ≤ βr
i,n

)

+P
(

Rr
i (s) ≥ Lr

i − |J i
| some s ∈ (τ r

i,2n−1, τ
r
i,2n),Υ

r,n
i

)

. (7.48)
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Now, on Υr,n
i , we have

1 +Ar,n
i,i (s

r
i )−

∑

j∈Ji

Sr,n
i,j (T

r,n
i,j (sri ))

≤ 1 + (λr
i + εi)s

r
i −

∑

j∈Ji

(x̃i
j − εi)(µ

r
j − εi)s

r
i

≤ 1 +





2λi

2λi + δi





∑

j∈Ji

x̃i
jµj





−
∑

j∈J
i

(

4λi

4λi + δi
x∗j

4λi + δi
4λi + 2δi

µj

)

− 4λi + δi

4λi +
3
2δi

x̂i,i

4λi +
3
2δi

4λi + 2δi
µa(i)



 sri

= 1− δi
4λi + 2δi

x̂i,iµa(i)s
r
i < 0, (7.49)

where, in the second inequality we have used (7.16)–(7.18) along with (7.42), and in the last
inequality we have used (7.19). It then follows from (7.40) that

βr
i,n = τ r

i,2n − τ r
i,2n−1 < sri on Υr,n

i . (7.50)

Furthermore, on Υr,n
i for 0 ≤ s ≤ sri ,

1 +Ar,n
i,i (s)−

∑

j∈Ji

Sr,n
i,j (T

r,n
i,j (s)) ≤ 1 + (λr

i + εi)s
r
i = Lr

i − |J i
| − 1, (7.51)

by (7.7). Hence by (7.40) we have that on Υr,n
i , Rr

i (s) < Lr
i − |J i

| for s ∈ (τ r
i,2n−1, τ

r
i,2n), since

r ≥ r∗. Thus the last probability in (7.48) is zero.
Splitting the probability space according to whether ρr,ni < sri or ρr,ni ≥ sri , and discarding some

qualifiers, we obtain

P
(

τ r
i,2n−1 ≤ r2t, (Υr,n

i )c, ρr,ni ≤ βr
i,n

)

≤ P
(

ρr,ni < sri , τ r
i,2n−1 ≤ r2t

)

+P
(

Ar,n
i,i (s

r
i ) > (λr

i + εi)s
r
i , τ r

i,2n−1 ≤ r2t
)

+
∑

j∈Ji

P
(

Sr,n
i,j (x̃

i
j − εi)s

r
i ) < (µr

j − εi)(x̃
i
j − εi)s

r
i , τ

r
i,2n−1 ≤ r2t

)

+
∑

j∈Ji

P
(

T r,n
i,j (sri ) ≤ (x̃i

j − εi)s
r
i , sri ≤ βr

i,n, τ r
i,2n−1 ≤ r2t

)

. (7.52)

Now, the set {τ r
i,2n−1 < ∞} is contained in the set {T r

n,i ∈ INI × INJ} (cf. Lemma 6.5).

Using Lemmas 6.5 and 6.6, we conclude that on {T r
n,i ∈ INI × INJ}, the conditional distribution

of {ur
i (A

r
i (τ

r
i,2n−1) + m), m = 1, 2, 3, . . .} given F r

T r
n,i

is equal to that of a sequence of strictly

positive independent random variables where the members indexed by m = 2, 3, . . . are identically
distributed with the same distribution as ur

i (1) (for the application of these lemmas, observe that
Lr

0 ≥ J + 1 by (7.35) and (6.5) since εi ≤ ε̂ < 1/2(J + 1), and ur
i (A

r
i (τ

r
i,2n−1) + 1) ∈ Fr

T r
n,i
). Then,
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as in equation (84) of [3], since we have assumed that r ≥ r∗ and t > 0 satisfies r2t ≥M r, we have

P
(

Ar,n
i,i (s

r
i ) > (λr

i + εi)s
r
i , τ r

i,2n−1 ≤ r2t
)

≤ E
(

1{T r
n,i∈INI×INJ}P

(

Ăr,n
i,i (s

r
i ) > (λr

i + εi)s
r
i | Fr

T r
n,i

))

≤ exp

(

− ((λr
i + εi)s

r
i − 1)Λa,∗

i

(

1

λi

(

1

1 + εi
3λi

)))

≤ K2 exp(−K ′
2L

r
i ), (7.53)

by Lemma 6.7 (since sri > 2/εi by (7.9), (7.12), and (7.35)), and where K2 = exp((|J
i
| +

3)Λa,∗
i ((λi(1 + εi/3λi))

−1)) > 0 and K ′
2 = Λa,∗

i ((λi(1 + εi/3λi))
−1) > 0 do not depend on t, n,

or r. Similarly, since r ≥ r∗ and t > 0 satisfies r2t ≥M r, we have

P
(

ρr,ni < sri , τ r
i,2n−1 ≤ r2t

)

≤ E
(

1{T r
n,i∈INI×INJ}P

(

ρr,ni < sri | Fr
T r
n,i

))

≤ E
(

1{T r
n,i∈INI×INJ}P

(

Ăr,n
i,i (s

r
i ) ≥ Lr

i − |J i
| − 1 | Fr

T r
n,i

))

≤ E
(

1{T r
n,i∈INI×INJ}P

(

Ăr,n
i,i (s

r
i ) > (λr

i + εi)s
r
i | Fr

T r
n,i

))

≤ K2 exp(−K ′
2L

r
i ), (7.54)

where the third inequality follows by the definition of sri (cf. (7.7)).
In a similar manner (cf. (85)–(86) of [3]), since r ≥ r∗ and t > 0 satisfies r2t ≥ M r, we have

for all j ∈ Ji,

P
(

Sr,n
i,j ((x̃

i
j − εi)s

r
i ) < (µr

j − εi)(x̃
i
j − εi)s

r
i , τ r

i,2n−1 ≤ r2t
)

≤ E
(

1{T r
n,i∈INI×INJ}P

(

S̆r,n
i,j ((x̃

i
j − εi)s

r
i ) < (µr

j − εi)(x̃
i
j − εi)s

r
i , τ r

i,2n−1 ≤ r2t | Fr
T r
n,i

))

≤ exp

(

− (µj − 2εi)
(

x̃i
j − εi

)

sriΛ
s,∗
j

(

1

µj

(

1 +
εi
2µj

)))

+E

(

1{T r
n,i∈INI×INJ}P

(

vr,ni,j >
εi
2µr

j

(x̃i
j − εi)s

r
i , τ r

i,2n−1 ≤ r2t | Fr
T r
n,i

))

, (7.55)

by Lemma 6.7, where vr,ni,j = vrj (S
r
j (T

r
j (τ

r
i,2n−1)) + 1), and Λs,∗

j , j ∈ Ji is the Legendre-Fenchel
transform of the logarithmic moment generating function Λs

j of vj(1), j ∈ Ji (cf. (3.4)). (Note
here that when we use (6.25) of Lemma 6.7, we do not need the condition that s > 2/ε required
in (6.24), i.e., in the case above we do not require that (x̃i

j − εi)s
r
i > 2/εi.) In a similar manner to

that for (87) in [3], using (6.27) and (6.24), since r ≥ r∗ and t > 0 satisfies r2t ≥ M r, we have for
all j ∈ Ji,

P

(

vr,ni,j >
εi
2µr

j

(x̃i
j − εi)s

r
i , τ r

i,2n−1 ≤ r2t

)

≤ P
(

Sr
j (r2t)+1
max
m=1

vrj (m) >
εi
2µr

j

(x̃i
j − εi)s

r
i

)

≤ P
(

b(µr
j+εi)r

2tc+1
max
m=1

vrj (m) >
εi
2µr

j

(x̃i
j − εi)s

r
i

)

+P
(

Sr
j (r

2t) > (µr
j + εi)r

2t
)

≤
(

b(µr
j + εi)r

2tc+ 1
)

K4 exp(−K ′
4s

r
i ) +K5 exp(−K ′

5r
2t), (7.56)
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where, by (6.27), K4 = max{exp(Λs
j(l0)) : j ∈ Ji} > 0, K ′

4 = min{(l0εi/2µj)(x̃
i
j− εi) : j ∈ Ji} > 0

and 0 < l0 ∈ O0 (cf. (3.4)). Also, by (6.24) and since r2t ≥M r > 2/εi, K5 = max{exp(Λs,∗
j ((µj(1+

εi/3µj))
−1)) : j ∈ Ji} > 0 and K ′

5 = min{µjΛ
s,∗
j ((µj(1+ εi/3µj))

−1) : j ∈ Ji} > 0. Note that K4,
K ′

4, K5, K
′
5 do not depend on t, n, or r. It follows that the last term in (7.55) is bounded by the

expression in (7.56).
Combining all of the above (from (7.43) onwards), we have for all r ≥ r∗ and t > 0 satisfying

r2t ≥M r,

P
(

Rr
i (s) ≥ Lr

i − |J i
| some s ∈ [0, r2t]

)

≤ K1 exp(−K ′
1r

2t)

+(nr
i − 1)

{

2K2 exp(−K ′
2L

r
i ) + |Ji|K3 exp(−K ′

3s
r
i )

+
∑

j∈Ji

(

b(µr
j + εi)r

2tc+ 1
)

K4 exp(−K ′
4s

r
i ) + |Ji|K5 exp(−K ′

5r
2t)

+
∑

j∈Ji

sup
n<nr

i

P
(

T r,n
i,j (sri ) ≤ (x̃i

j − εi)s
r
i , sri ≤ βr

i,n, τ r
i,2n−1 ≤ r2t

)

}

, (7.57)

where K3 = 1, K ′
3 = min{(µj − 2εi)(x̃

i
j − εi)Λ

s,∗
j (µ−1

j (1 + εi/2µj)) : j ∈ Ji} > 0 from (7.55).
Now we consider the down excursions of Rr

i . For this, we assume that J
i
6= ∅, i.e., we assume

that class i is a transition class, since (7.57) suffices for the proof that (I.1) holds when class i
is a non-transition class. The treatment of the down excursions is very similar to that for the
up excursions except that we do not need to introduce an analogue of ρr,n

i and the effects of the
arrivals and services on pushing Rr

i towards zero are reversed. In particular, one can show that for
all r ≥ r∗ and t > 0 satisfying r2t ≥M r,

P
(

Rr
i (s) ≤ |J i

| − Lr
i some s ∈ [τ r

i,0, r
2t]
)

≤ K6 exp(−K ′
6r

2t) +
(

dnr
i − 1

)

{

K7 exp(−K ′
7
dsri )

+
(

b(λr
i + εi)r

2tc+ 1
)

K8 exp(−K ′
8
dsri ) +K9 exp(−K ′

9r
2t)

+K10 exp(−K ′
10

dsri )

+
∑

j∈J
i

sup
n<dnr

i

P
(

dT r,n
i,j (dsri ) ≥ (x∗j + εi)

dsri ,
dτ r

i,2n−1 ≤ r2t
)}

, (7.58)

where dnr
i =

⌊

∑

j∈J
i
(µr

j + εi)r
2t
⌋

+ |J
i
|, K6 = |J

i
|max{exp(Λs,∗

j ((µj(1+ εi/3µj))
−1)) : j ∈ J

i
} >

0, K ′
6 = min{µjΛ

s,∗
j ((µj(1 + εi/3µj))

−1) : j ∈ J
i
} > 0, K7 = 1, K ′

7 = (λi − 2εi)Λ
a,∗
i (λ−1

i (1 +

εi/2λi)) > 0, K8 = exp(Λa
i (l0)) > 0, K ′

8 = l0εi/2λi > 0, 0 < l0 ∈ O0, K9 = exp(Λa,∗
i ((λi(1 +

εi/3λi))
−1)) > 0, K ′

9 = λiΛ
a,∗
i ((λi(1+εi/3λi))

−1) > 0, K10 = |J
i
|max{exp(Λs,∗

j ((µj(1+εi/6µj)
−1)) :

j ∈ J
i
} > 0, and K ′

10 = min{µj(x
∗
j + εi)Λ

s,∗
j ((µj(1 + εi/6µj)

−1) : j ∈ J
i
} > 0. Details of the

argument for this can be found in [2].
On combining the results (7.57) and (7.58) for the up and down excursions, assumptions (i),

(ii), and (iv) of Lemma 7.3, the definitions of nr
i ,

dnr
i , sri ,

dsri , Lr
i , and the fact that sri ≥ Lr

0

and dsri ≥ Lr
0 for all i ∈ I (by (7.9) and (7.12)), it follows that for r ≥ r∗ and t > 0 satisfying

r2t ≥ M r, we have that (I.1) holds, Note that since i ≥ 1, terms involving (r2t)2 are absorbed in
the polynomial term p1,i(r

2t).

Proof of (I.2). Since Ki = ∅, if i is a non-transition class, (I.2) trivially holds in this case. So it
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suffices to consider the case when i is a transition class. Note that for 0 ≤ s ≤ τ r
i,0,

Qr
i (s) = Ar

i (s)−
∑

j∈J
i

Sr
j (T

r
j (s)), (7.59)

since activity a(i) will be turned off for such s. By (6.5), (6.7), and (7.24), we have

0 < ε̃i < min

{

1,
λi −

∑

j∈J
i
x∗jµj

4(|J
i
|+ 2)

,
λi

2
,
µj

2
: j ∈ J

i

}

. (7.60)

Now,

P
(

Irk(τ
r
i,0) ≥ tri

)

≤ P
(

τ r
i,0 ≥ tri

)

≤ P
(

Ar
i (t

r
i )−

∑

j∈J
i

Sr
j (T

r
j (t

r
i )) ≤ Lr

i

)

, by (7.59),

≤ P
(

Ar
i (t

r
i ) ≥ (λr

i − ε̃i)t
r
i , T r

j (t
r
i ) ≤ (x∗j + εi)t

r
i for all j ∈ J

i
,

Sr
j ((x

∗
j + εi)t

r
i ) ≤ (µr

j + ε̃i)(x
∗
j + εi)t

r
i for all j ∈ J

i
,

((λr
i − ε̃i)−

∑

j∈J
i

(x∗j + εi)(µ
r
j + ε̃i))t

r
i ≤ Lr

i

)

+P
(

Ar
i (t

r
i ) < (λr

i − ε̃i)t
r
i

)

+
∑

j∈J
i

P
(

Sr
j ((x

∗
j + εi)t

r
i ) > (µr

j + ε̃i)(x
∗
j + εi)t

r
i

)

+
∑

j∈J
i

P
(

T r
j (t

r
i ) > (x∗j + εi)t

r
i

)

. (7.61)

Now, for r ≥ r∗, using (7.25), (7.26), (7.24), (7.60), (7.8), and the fact that x∗j < 1 for all j ∈ J
i
,

we have


λr
i −

∑

j∈J
i

x∗jµ
r
j − ε̃i − ε̃i

∑

j∈J
i

x∗j − εi
∑

j∈J
i

(µr
j + ε̃i)



 tri

≥





1

2



λi −
∑

j∈J
i

x∗jµj



− (|J
i
|+ 1)ε̃i − εi

∑

j∈J
i

(µj + 2ε̃i)



 tri

≥





1

2



λi −
∑

j∈J
i

x∗jµj



− (|J
i
|+ 2)ε̃i



 tri > Lr
i . (7.62)

Hence, the first probability in the last expression of (7.61) is zero. From Lemma 6.7 (since (x∗j +
εi)t

r
i > 2/ε̃i, for all j ∈ J i

, by (7.9), (7.12), and (7.35)), we have for all j ∈ J
i
, r ≥ r∗,

P
(

Sr
j ((x

∗
j + εi)t

r
i ) > (µr

j + ε̃i)(x
∗
j + εi)t

r
i

)

≤ exp

(

−(µj(x
∗
j + εi)t

r
i − 1)Λs,∗

j

(

1

µj

(

1

1 + ε̃i
3µj

)))

≤ K11 exp(−K ′
11t

r
i ), (7.63)
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whereK11 = max{exp(Λs,∗
j ((µj(1+ε̃i/3µj))

−1) : j ∈ J
i
} > 0, andK ′

11 = min{µj(x
∗
j+εi)Λ

s,∗
j ((µj(1+

ε̃i/3µj))
−1 : j ∈ J

i
} > 0. Using (6.27) in conjunction with Lemma 6.7, we have for r ≥ r∗,

0 < l0 ∈ O0,

P
(

Ar
i (t

r
i ) < (λr

i − ε̃i)t
r
i

)

≤ exp

(

−(λi − 2ε̃i)t
r
iΛ

a,∗
i

(

1

λi

(

1 +
ε̃i
2λi

)))

+exp

(

− l0ε̃it
r
i

2λi

)

exp(Λa
i (l0))

≤ K12 exp(−K ′
12t

r
i ), (7.64)

where K12 = max{1, exp(Λa
i (l0))} > 0, K ′

12 = min{(λi − 2ε̃i)Λ
a,∗
i (λ−1

i (1 + ε̃i/2λi)), l0ε̃i/2λi} > 0.
Then, combining (7.61)–(7.64), we have for each k ∈ Ki, for all r ≥ r∗,

P
(

Irk(τ
r
i,0) ≥ tri ) ≤ |J

i
|K11 exp(−K ′

11t
r
i ) +K12 exp(−K ′

12t
r
i

)

+
∑

j∈J
i

P
(

T r
j (t

r
i ) > (x∗j + εi)t

r
i

)

. (7.65)

By assumption (iii) of Lemma 7.3, the definitions of tri and Lr
i , and the fact that tri ≥ Lr

0 (by (7.9)
and (7.12)) for r ≥ r∗, it follows that for all k ∈ Ki, r ≥ r∗, and t > 0 satisfying r2t ≥M r, we have

P
(

Irk(τ
r
i,0) ≥ tri

)

≤ p2,i(r
2t)
(

C
(1)
2,i exp

(

− C
(2)
2,i L

r
0

)

+ C
(3)
2,i exp

(

− C
(4)
2,i r

2t
)

)

, (7.66)

where p2,i is a polynomial (of degree at most i) with non-negative coefficients, and C
(m)
2,i > 0, for

m = 1, 2, 3, 4, and where the constants and the polynomial do not depend on t or r.

Proof of (I.3). Since Ki = ∅ if i is not a transition class, (I.3) holds trivially in this case. So suppose
i is a transition class. Note that under the threshold policy, since class i (being above server k) is
the lowest priority class for server k ∈ Ki, I

r
k can increase only when Qr

i ≤ |Ki| = |J i
|. The bound

of |J
i
| occurs here because there may be a class i job in service or in suspension at each of the other

|J
i
| servers (|J

i
| − 1 servers below and one server above i) that can serve class i. In particular,

if server k ∈ Ki incurs some idletime in [τ r
i,0, r

2t], i.e., τ r
i,0 < r2t and Irk(r

2t) − Irk(τ
r
i,0) > 0, then

Rr
i (s) ≤ −Lr

i + |J i
| for some s ∈ [τ r

i,0, r
2t]. Thus, for r ≥ r∗, t > 0 satisfying r2t ≥M r, and k ∈ Ki,

P
(

Irk(r
2t)− Irk(τ

r
i,0) > 0, τ r

i,0 < r2t
)

≤ P
(

inf
τr
i,0≤s≤r2t

Rr
i (s) ≤ −Lr

i + |J i
|
)

≤ p3,i(r
2t)
(

C
(1)
3,i exp

(

− C
(2)
3,i L

r
0

)

+ C
(3)
3,i exp

(

− C
(4)
3,i r

2t
)

)

, (7.67)

where p3,i is a polynomial (of degree at most i + 1) with non-negative coefficients, and C
(m)
3,i > 0,

for m = 1, 2, 3, 4, by the validity of (I.1) proved above, where the constants and the polynomial do
not depend on t or r. 2

7.4 Estimates on Allocations for Activities Immediately Below Buffers – Proof

of Lemma 7.4

Proof of Lemma 7.4. Fix i ∈ I\{i∗}. Suppose that i is a transition buffer, so that J
i
6= ∅,

and assume that (I) and (II) hold with i′ in place of i, for all i′ < i (for i = 1 this is a vacuous
assumption). In the following, recall (cf. Section 1.1) that a sum over an empty set is defined to
equal zero. In particular, the results below hold even if Ik = ∅.
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Proof of (i). For r ≥ r∗, t > 0 satisfying r2t ≥M r, j ∈ J
i
, k = k(j), and n ≥ 1, we have

P(T r,n
i,j (sri ) ≤ (x∗j − εi)s

r
i , sri ≤ βr

i,n, τ r
i,2n−1 ≤ r2t)

= P
(

sri −
∑

i′∈Ik

T r,n

i,a(i′)(s
r
i ) ≤ (x∗j − εi)s

r
i , sri ≤ βr

i,n, τ r
i,2n−1 ≤ r2t

)

= P

(

∑

i′∈Ik

T r,n

i,a(i′)(s
r
i ) ≥

∑

i′∈Ik

x∗a(i′)s
r
i + εis

r
i , sri ≤ βr

i,n, τ r
i,2n−1 ≤ r2t

)

≤
∑

i′∈Ik

P
(

T r,n

i,a(i′)(s
r
i ) ≥ (x∗a(i′) + εi′)s

r
i , sri ≤ βr

i,n, τ r
i,2n−1 ≤ r2t

)

. (7.68)

The first equality holds since server k, k ∈ Ki, does not incur any idle time in the nth (up) excursion
interval for Rr

i which is of length βr
i,n, and the second equality holds since

∑

i′∈Ik
x∗
a(i′) + x∗j = 1.

For the last inequality, we have used the fact that εi ≥ Iεi′ ≥ |Ik|εi′ , by (6.7) (since γl ≤ 1 for all
l ∈ I, and the fact that i′ ∈ Ik satisfies i′ < i by the ordering assumed for the buffer numbering).
Hence, for r ≥ r∗, t > 0 satisfying r2t ≥ M r, for each j ∈ J

i
, (i) of Lemma 7.3 holds, since (II.1)

was assumed to hold with i′ in place of i for all i′ < i and |Ik| <∞.

Proof of (ii). For r ≥ r∗, t > 0 satisfying r2t ≥M r, j ∈ J
i
, k = k(j), and n ≥ 1, we have

P(dT r,n
i,j (dsri ) ≥ (x∗j + εi)

dsri ,
dτ r

i,2n−1 ≤ r2t)

= P
(

dsri −
∑

i′∈Ik

dT r,n

i,a(i′)(
dsri )− (Irk(

dτ r
i,2n−1 +

dsri )− Irk(
dτ r

i,2n−1)) ≥ (x∗j + εi)
dsri ,

dτ r
i,2n−1 ≤ r2t

)

≤ P
(

∑

i′∈Ik

dT r,n

i,a(i′)(
dsri ) ≤

∑

i′∈Ik

x∗a(i′)
dsri − εi

dsri ,
dτ r

i,2n−1 ≤ r2t

)

≤
∑

i′∈Ik

P
(

dT r,n

i,a(i′)(
dsri ) ≤ (x∗a(i′) − εi′)

dsri ,
dτ r

i,2n−1 ≤ r2t
)

. (7.69)

In the above, the equality follows from (2.8); the first inequality holds since the idletime process,
Irk , is non-decreasing and non-negative, and since

∑

i′∈Ik′
x∗
a(i′) + x∗j = 1. Note also for the last

inequality that εi ≥ Iεi′ ≥ |Ik|εi′ . Hence, for r ≥ r∗, t > 0 satisfying r2t ≥ M r, for each j ∈ J
i
,

(ii) of Lemma 7.3 holds, since (II.2) was assumed to hold with i′ in place of i for all i′ < i, and
|Ik| <∞.

Proof of (iii). For j ∈ J
i
, and k = k(j), we have in a similar manner to that for the proof of (ii)

above that for r ≥ r∗,

P
(

T r
j (t

r
i ) ≥ (x∗j + εi)t

r
i

)

≤ P
(

tri −
∑

i′∈Ik

T r
a(i′)(t

r
i )− Irk(t

r
i ) ≥ (x∗j + εi)t

r
i

)

≤ P
(

∑

i′∈Ik

T r
a(i′)(t

r
i ) ≤

∑

i′∈Ik

(x∗a(i′) − εi′)t
r
i

)

≤
∑

i′∈Ik

P
(

T r
a(i′)(t

r
i ) ≤ (x∗a(i′) − εi′)t

r
i

)

. (7.70)

Hence, for r ≥ r∗, t > 0 satisfying r2t ≥M r, for each j ∈ J
i
, (iii) of Lemma 7.3 holds, since (II.3)

was assumed to hold with i′ in place of i, for all i′ < i. 2
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7.5 Estimates on Allocations for Activities Immediately Above Buffers – Proof

of Lemma 7.5

Proof of Lemma 7.5. Fix i ∈ I\{i∗}, and let k = k(a(i)). Assume that (I) and (II) hold with i′

in place of i, for all i′ < i. Note that by the priorities assigned to buffers by server k, we have that

∑

i′∈Ik

i′≤i

T r,n

i,a(i′)(s) = s, for 0 ≤ s ≤ βr
i,n, (7.71)

since activities that have lower priority than activity a(i) will not be “on” and server k will not
idle in the nth up excursion interval for Rr

i . We then have for r ≥ r∗, t > 0 satisfying r2t ≥ M r,
and n ≥ 1,

P
(

T r,n

i,a(i)(s
r
i ) ≤ (x̂i,i − εi)s

r
i , sri ≤ βr

i,n, τ r
i,2n−1 ≤ r2t

)

= P
(

sri −
∑

i′∈Ik

i′<i

T r,n

i,a(i′)(s
r
i ) ≤ (x̂i,i − εi)s

r
i , sri ≤ βr

i,n, τ r
i,2n−1 ≤ r2t

)

= P
(

∑

i′∈Ik

i′<i

T r,n

i,a(i′)(s
r
i ) ≥

∑

i′∈Ik

i′<i

x̂i,i′s
r
i + εis

r
i , sri ≤ βr

i,n, τ r
i,2n−1 ≤ r2t

)

≤ P
(

∑

i′∈Ik

i′<i

T r,n

i,a(i′)(s
r
i ) ≥

∑

i′∈Ik

i′<i

x∗a(i′)s
r
i + εis

r
i , sri ≤ βr

i,n, τ r
i,2n−1 ≤ r2t

)

≤
∑

i′∈Ik

i′<i

P
(

T r,n

i,a(i′)(s
r
i ) ≥ (x∗a(i′) + εi′)s

r
i , sri ≤ βr

i,n, τ r
i,2n−1 ≤ r2t

)

. (7.72)

The first equality follows by (7.71) and the second uses (6.3). The second to last inequality holds
since x̂i,i′ ≥ x∗

a(i′) for all i′ ∈ Ik, i′ < i, and the last inequality follows since εi ≥ Iεi′ ≥ |{i′′ ∈
Ik : i′′ < i}|εi′ for i′ < i. (Notice that if buffer i is the highest priority buffer for server k, i.e.,
{i′ ∈ Ik : i′ < i} = ∅, then the first probability in (7.72) is zero since T r,n

i,a(i)(s
r
i ) = sri for sri ≤ βr

i,n,

by (7.71).) Hence, for r ≥ r∗, t > 0 satisfying r2t ≥ M r, (iv) of Lemma 7.3 holds, since (II.1) was
assumed to hold with i′ in place of i, for all i′ < i. 2

7.6 Transition Between Layers in the Server-Buffer Tree — Proof of Lemma

7.6

We will show below that (II) holds for i ∈ I\{i∗} given that (I) and (II) hold with i′ in place of i,
for all i′ < i.
Proof of Lemma 7.6. Fix i ∈ I\{i∗}. Assume that (I) and (II) hold with i′ in place of i, for all
i′ < i. Then, from Lemmas 7.3–7.5, we have that (I) holds for i as well. By (6.5) and (6.7), we
have, for any ι ∈ I satisfying ι > i,

εi < min

{

∏I
m=1 γm
II

,
µa(i)

1024λι
,

µa(i)

1024
∑

j∈Ji
(µj + ει)

,

λi −
∑

j∈J
i
x∗jµj

18λι
,

µa(i)

16(λι −
∑

j∈J
ι
x∗jµj)

}

, (7.73)
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since εl < ε̂, for all l ∈ I. To validate the denominator in the third term in (7.73), we note
that 1024

∑

j∈Ji
(µj + ει) ≤ 1024(µsum + |Ji|ε̂) ≤ 2048µsum. For the fifth term, we note that

0 < λl −
∑

j∈J
l
x∗jµj ≤ λmax for all l ∈ I.

Proof of (II.1). For r ≥ 1, n ≥ 1, s ≥ 0, ι ∈ I such that ι > i, j ∈ Ji, k = k(j), on {τ r
ι,2n−1 <∞},

define

Ar,n
ι,i (s) = Ar

i (τ
r
ι,2n−1 + s)−Ar

i (τ
r
ι,2n−1), (7.74)

Sr,n
ι,j (s) = Sr

j (T
r
j (τ

r
ι,2n−1) + s)− Sr

j (T
r
j (τ

r
ι,2n−1)), (7.75)

S̆r,n
ι,j (s) = sup{m ≥ 0 : ηrj (S

r
j (T

r
j (τ

r
ι,2n−1)) +m)− ηrj (S

r
j (T

r
j (τ

r
ι,2n−1))) ≤ s}, (7.76)

Ǎr,n
ι,i (s) = sup{m ≥ 0 : ξri (A

r
i (τ

r
ι,2n−1) +m+ 1)− ξri (A

r
i (τ

r
ι,2n−1) + 1) ≤ s}, (7.77)

Ir,nι,k (s) = Irk(τ
r
ι,2n−1 + s)− Irk(τ

r
ι,2n−1), (7.78)

and for concreteness on {τ r
ι,2n−1 =∞}, we define Ar,n

ι,i , S
r,n
ι,j , S̆

r,n
ι,j , Ǎ

r,n
ι,i , I

r,n
ι,k , to be identically zero.

Then we have, for all s ≥ 0,

Ǎr,n
ι,i (s) ≥ Ar,n

ι,i (s)− 1, Sr,n
ι,j (s) ≥ S̆r,n

ι,j (s). (7.79)

Now, for r ≥ r∗, t > 0 satisfying r2t ≥M r, ι ∈ I satisfying ι > i, and n ≥ 1,

P
(

T r,n

ι,a(i)(s
r
ι ) ≥ (x∗a(i) + εi)s

r
ι , srι ≤ βr

ι,n, τ r
ι,2n−1 ≤ r2t

)

≤ P
(

Sr,n

ι,a(i)

(

T r,n

ι,a(i)(s
r
ι )
)

≥ Sr,n

ι,a(i)

(

(x∗a(i) + εi)s
r
ι

)

, srι ≤ βr
ι,n, τ r

ι,2n−1 ≤ r2t
)

≤ P
(

Sr,n

ι,a(i)

(

(x∗a(i) + εi)s
r
ι

)

≤ Qr
i (τ

r
ι,2n−1) +Ar,n

ι,i (s
r
ι )

−
∑

j∈J
i

Sr,n
ι,j

(

T r,n
ι,j (srι )

)

, srι ≤ βr
ι,n, τ r

ι,2n−1 ≤ r2t
)

≤ P
(

Sr,n

ι,a(i)

(

(x∗a(i) + εi)s
r
ι

)

< (µr
a(i) − ε2,i)(x

∗
a(i) + εi)s

r
ι , τ r

ι,2n−1 ≤ r2t
)

+P
(

Qr
i (τ

r
ι,2n−1) +Ar,n

ι,i (s
r
ι )−

∑

j∈J
i

Sr,n
ι,j

(

T r,n
ι,j (srι )

)

≥ (x∗a(i) + εi)(µ
r
a(i) − ε2,i)s

r
ι ,

srι ≤ βr
ι,n, τ r

ι,2n−1 ≤ r2t
)

. (7.80)

For the second inequality, we have used the fact that the number of class i jobs processed by activity
a(i), between time τ r

ι,2n−1 and time τ r
ι,2n−1 + srι , namely, Sr,n

ι,a(i)(T
r,n

ι,a(i)(s
r
ι )), is less than or equal to

the number of class i jobs present at time τ r
ι,2n−1, namely, Qr

i (τ
r
ι,2n−1), plus the number of arrivals

to class i between time τ r
ι,2n−1 and time τ r

ι,2n−1+srι , namely Ar,n
ι,i (s

r
ι ), less the number of class i jobs

processed during this time interval by the activities indexed by J
i
, namely,

∑

j∈J
i
Sr,n
ι,j (T

r,n
ι,j (srι ))

(cf. (2.9)).
Letting vr,n

ι,a(i) = vr
a(i)(S

r
a(i)(T

r
a(i)(τ

r
ι,2n−1))+1) on {τ r

ι,2n−1 <∞} and vr,n
ι,a(i) = 0 on {τ r

ι,2n−1 =∞},
by Lemmas 6.5–6.7 together with (6.27) and (7.33), in a similar manner to (7.55)–(7.56), for r ≥ r∗,
n ≥ 1, and t > 0 satisfying r2t ≥M r, we have

P
(

Sr,n

ι,a(i)

(

(x∗a(i) + εi)s
r
ι

)

< (µr
a(i) − ε2,i)(x

∗
a(i) + εi)s

r
ι , τ r

ι,2n−1 ≤ r2t
)

≤ K13 exp(−K ′
13s

r
ι )

+
(

b(µr
a(i) + εi)r

2tc+ 1
)

K14 exp(−K ′
14s

r
ι ) +K15 exp(−K ′

15r
2t), (7.81)
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where K13 = 1, K ′
13 = (µa(i)−2ε2,i)(x

∗
a(i)+εi)Λ

s,∗
a(i)(µ

−1
a(i)(1+ε2,i/2µa(i))) > 0, K14 = exp(Λs

a(i)(l0)) >

0, K ′
14 = (l0ε2,i/2µa(i))(x

∗
a(i) + εi) > 0, 0 < l0 ∈ O0, K15 = exp(Λs,∗

a(i)((µa(i)(1 + εi/3µa(i)))
−1)) > 0,

and K ′
15 = µa(i)Λ

s,∗
a(i)((µa(i)(1 + εi/3µa(i)))

−1) > 0, which are all independent of t, n, and r.
For r ≥ 1, n ≥ 1, and ι > i, let

Υr,n
ι,i =

{

Qr
i (τ

r
ι,2n−1) ≤ (µr

a(i)εi/16)s
r
ι ; A

r,n
ι,i (s

r
ι ) ≤ (λr

i + µr
a(i)εi/16)s

r
ι + 1;

Sr,n
ι,j

(

(x∗j − ε1,i)s
r
ι

)

≥
(

µr
j −

µr
a(i)εi

16|J
i
|

)

(x∗j − ε1,i)s
r
ι , j ∈ J

i
;

T r,n
ι,j (srι ) > (x∗j − ε1,i)s

r
ι , j ∈ J

i
; τ r

ι,2n−1 ≤ r2t
}

, (7.82)

where ε1,i is defined in (7.32), and if J
i
= ∅, we omit the terms involving j ∈ J

i
from the definition

of Υr,n
ι,i . Then, for the last probability in (7.80), we have

P
(

Qr
i (τ

r
ι,2n−1) +Ar,n

ι,i (s
r
ι )−

∑

j∈J
i

Sr,n
ι,j

(

T r,n
ι,j (srι )

)

≥ (x∗a(i) + εi)(µ
r
a(i) − ε2,i)s

r
ι , srι ≤ βr

ι,n, τ r
ι,2n−1 ≤ r2t

)

≤ P
(

Qr
i (τ

r
ι,2n−1) +Ar,n

ι,i (s
r
ι )−

∑

j∈J
i

Sr,n
ι,j

(

T r,n
ι,j (srι )

)

≥ (x∗a(i) + εi)(µ
r
a(i) − ε2,i)s

r
ι , Υ

r,n
ι,i , τ r

ι,2n−1 ≤ r2t
)

+P
(

Qr
i (τ

r
ι,2n−1) > (µr

a(i)εi/16)s
r
ι , τ r

ι,2n−1 ≤ r2t
)

+P

(

Ar,n
ι,i (s

r
ι ) >

(

λr
i +

µr
a(i)εi

16

)

srι + 1, τ r
ι,2n−1 ≤ r2t

)

+
∑

j∈J
i

P

(

Sr,n
ι,j

(

(x∗j − ε1,i)s
r
ι

)

<

(

µr
j −

µr
a(i)εi

16|J
i
|

)

(x∗j − ε1,i)s
r
ι , τ r

ι,2n−1 ≤ r2t

)

+
∑

j∈J
i

P
(

T r,n
ι,j (srι ) ≤ (x∗j − ε1,i)s

r
ι , srι ≤ βr

ι,n, τ r
ι,2n−1 ≤ r2t

)

. (7.83)
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For the first term in the right side of the inequality in (7.83) we have on Υr,n
ι,i that for r ≥ r∗,

Qr
i (τ

r
ι,2n−1) +Ar,n

ι,i (s
r
ι )−

∑

j∈J
i

Sr,n
ι,j (T

r,n
ι,j (srι ))

≤
µr
a(i)εi

16
srι + λr

i s
r
ι +

µr
a(i)εi

16
srι + 1−

∑

j∈J
i

(

µr
j −

µr
a(i)εi

16|J
i
|

)

(x∗j − ε1,i)s
r
ι

=
µr
a(i)εi

8
srι + λr

i s
r
ι −

∑

j∈J
i

x∗jµ
r
js

r
ι + 1

+
∑

j∈J
i

µr
a(i)εi

16|J
i
|x
∗
js

r
ι +

∑

j∈J
i

(

µr
j −

µr
a(i)εi

16|J
i
|

)

ε1,is
r
ι

≤
µr
a(i)εi

8
srι + λr

i s
r
ι −

∑

j∈J
i

x∗jµ
r
js

r
ι + 1 +

µr
a(i)εi

16
srι +

∑

j∈J
i

µr
jε1,is

r
ι

≤
µr
a(i)εi

4
srι + λr

i s
r
ι −

∑

j∈J
i

x∗jµ
r
js

r
ι + 1

≤



λr
i −

∑

j∈J
i

x∗jµ
r
j +

µr
a(i)εi

2



 srι

≤
(

x∗a(i)µ
r
a(i) +

µa(i)εi

32
+

µr
a(i)εi

2

)

srι

< (x∗a(i) + εi)(µ
r
a(i) − ε2,i)s

r
ι , (7.84)

where in the second inequality we have used the fact that
∑

j∈J
i
x∗j ≤ 1. For the third inequality

we have, using (7.32) together with (7.15), if J
i
6= ∅,

∑

j∈J
i

µr
jε1,i =

∑

j∈J
i
µr
j

∑

j∈J
i
(µj + εi)

εi
16

(

µa(i) −
µa(i)εi

16

)

≤
µr
a(i)εi

16
. (7.85)

For the fourth inequality we have used (7.27), together with (7.15). The fifth inequality follows by
(7.28). The final inequality follows by (7.33). Hence, the first probability in the second expression
of (7.83) is zero, for all n ≥ 1, r ≥ r∗, t > 0 satisfying r2t ≥M r.

For the second term in the right side of the inequality in (7.83), using the result established at
the beginning of this proof that (I.1) holds for i, we have for r ≥ r∗, t > 0 satisfying r2t ≥M r,

P
(

Qr
i (τ

r
ι,2n−1) > (µr

a(i)εi/16)s
r
ι , τ r

ι,2n−1 ≤ r2t
)

≤ P
(

sup
τr
i,0≤s≤r2t

Rr
i (s) ≥ Lr

i − |J i
|
)

≤ p1,i(r
2t)
(

C
(1)
1,i exp

(

− C
(2)
1,i L

r
0

)

+ C
(3)
1,i exp

(

− C
(4)
1,i r

2t
)

)

, (7.86)

where p1,i is a polynomial (of degree at most i + 1) with non-negative coefficients, and C
(m)
1,i > 0,

for m = 1, 2, 3, 4, and where the polynomial and constants are independent of t and r. In (7.86),
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the first inequality holds since srι (for ι > i) is considerably larger than Lr
i . Specifically,

µr
a(i)εi

16
srι =

µr
a(i)εi

16
· L

r
ι − (|J

ι
|+ 2)

λr
ι + ει

≥
µr
a(i)

µa(i)
· λι

λr
ι + ει

[

µa(i)

16λι
· L

r
i

εi
−

µa(i)

16λι
εi(|J ι

|+ 2)

]

≥ 1

4

[

µa(i)

16λι
· L

r
i

εi
−

µa(i)

16λι
εi(|J ι

|+ 2)

]

≥ 2Lr
i +

1

4

[

8Lr
i −

µa(i)

16λι
εi(|J ι

|+ 2)

]

≥ 2Lr
i , (7.87)

for r ≥ r∗. In the first inequality of (7.87), we have used (6.4), and the fact that εl ≤ 1 for all l ∈ I.
In the second inequality, we have used (7.14) and (7.27), together with the fact that ει < λι/2, to
obtain λι/(λ

r
ι + ει) > 1/2. The third inequality follows since εi < ε̂ < µa(i)/256λι (cf. (7.73)), and

the fourth inequality follows from (7.29).
For the third term in the right side of the inequality in (7.83), using (7.15) and (7.31) to obtain

µr
a(i)εi/16 ≥ ε̌i, and using the fact that srι > 2/ε̌i for all ι > i, we can proceed in a similar manner

to that in (7.53), using Lemmas 6.5–6.7, to obtain for r ≥ r∗, n ≥ 1 and t > 0 satisfying r2t ≥M r

that

P

(

Ar,n
ι,i (s

r
ι ) >

(

λr
i +

µr
a(i)εi

16

)

srι + 1, τ r
ι,2n−1 ≤ r2t

)

≤ K16 exp(−K ′
16s

r
ι ), (7.88)

where K16 = exp(Λa,∗
i ((λi(1 + ε̌i/3λi))

−1)) > 0 and K ′
16 = λiΛ

a,∗
i ((λi(1 + ε̌i/3λi))

−1) > 0 do not
depend on t, n, or r.

Similarly, for the fourth term in the right side of the inequality in (7.83), we have, by a similar
argument to that for (7.55)–(7.56), that for r ≥ r∗, n ≥ 1, t > 0 satisfying r2t ≥ M r, and
j ∈ J

i
6= ∅,

P

(

Sr,n
ι,j

(

(x∗j − ε1,i)s
r
ι

)

<

(

µr
j −

µr
a(i)εi

16|J
i
|

)

(x∗j − ε1,i)s
r
ι , τ r

ι,2n−1 ≤ r2t

)

≤ K17 exp(−K ′
17s

r
ι )

+
(

b(µr
j + ε1,i)r

2tc+ 1
)

K18 exp(−K ′
18s

r
ι ) +K19 exp(−K ′

19r
2t), (7.89)

where K17 = 1, K ′
17 = min{(µj − 2ε̌i)(x

∗
j − ε1,i)Λ

s,∗
j (µ−1

j (1 + ε̌i/2µj)) : j ∈ J
i
} > 0, K18 =

max{exp(Λs
j(l0)) > 0 : j ∈ J

i
}, K ′

18 = min{(l0ε̌i/2µj)(x
∗
j − ε1,i) : j ∈ J

i
} > 0, 0 < l0 ∈ O0, K19 =

max{exp(Λs,∗
j ((µj(1 + ε1,i/3µj))

−1)) : j ∈ J
i
} > 0, and K ′

19 = min{µjΛ
s,∗
i ((µj(1 + ε1,i/3µj))

−1) :
j ∈ J

i
} > 0, which are all independent of t, n, and r.

For the fifth term in the right side of the inequality in (7.83), we have for r ≥ r∗, n ≥ 1, t > 0
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satisfying r2t ≥M r, j ∈ J
i
6= ∅, and k = k(j),

P
(

T r,n
ι,j (srι ) ≤ (x∗j − ε1,i)s

r
ι , srι ≤ βr

ι,n, τ r
ι,2n−1 ≤ r2t

)

= P
(

srι −
∑

i′∈Ik

T r,n

ι,a(i′)(s
r
ι )− Ir,nι,k (s

r
ι ) ≤ (x∗j − ε1,i)s

r
ι , srι ≤ βr

ι,n, τ r
ι,2n−1 ≤ r2t

)

≤ P
(

∑

i′∈Ik

T r,n

ι,a(i′)(s
r
ι ) + Ir,nι,k (s

r
ι ) ≥

∑

i′∈Ik

x∗a(i′)s
r
ι + ε1,is

r
ι , srι ≤ βr

ι,n, τ r
ι,2n−1 ≤ r2t

)

≤
∑

i′∈Ik

P
(

T r,n

ι,a(i′)(s
r
ι ) ≥

(

x∗a(i′) + εi′
)

srι , srι ≤ βr
ι,n, τ r

ι,2n−1 ≤ r2t
)

+P
(

Ir,nι,k (s
r
ι ) ≥

ε1,i
I

srι , τ r
ι,2n−1 ≤ r2t

)

. (7.90)

For the first inequality in (7.90) we use the fact that
∑

i′∈Ik
x∗
a(i′) + x∗j = 1. The last inequality in

(7.90) follows from the fact that when J
i
6= ∅, for all i′ ∈ Ik,

ε1,i =
1

∑

j∈J
i
(µj + εi)

εi
16

(

µa(i) −
µa(i)εi

16

)

≥
µa(i)εi

64
∑

j∈J
i
µj
≥ γiεi ≥ Iεi′ , (7.91)

by (6.7) (since i′ < i), and where I ≥ (|Ik| + 1). The first inequality in (7.91) holds since εi ≤
min{µmin, 1}, by (6.5), and the second inequality follows by the definition of γi (cf. (6.6)).

For the second term in the last expression in (7.90), we have that for r ≥ r∗, n ≥ 1, t > 0
satisfying r2t ≥M r,

sup
n≥1
P
(

Ir,nι,k (s
r
ι ) ≥

ε1,i
I

srι , τ r
ι,2n−1 ≤ r2t

)

≤ P(Irk(2r2t)− Irk(τ
r
i,0) > 0, τ r

i,0 ≤ 2r2t)

+P(Irk(τ
r
i,0) ≥ tri )

≤ p3,i(2r
2t)
(

C
(1)
3,i exp

(

− C
(2)
3,i L

r
0

)

+ C
(3)
3,i exp

(

− 2C
(4)
3,i r

2t
)

)

+p2,i(r
2t)
(

C
(1)
2,i exp

(

− C
(2)
2,i L

r
0

)

+ C
(3)
2,i exp

(

− C
(4)
2,i r

2t
)

)

, (7.92)

where p2,i and p3,i are polynomials (of degree at most i and i+ 1, respectively) with non-negative

coefficients, and C
(m)
l,i > 0, for l = 2, 3, m = 1, 2, 3, 4, since (I) holds for i (with 2t in place of t),

and k ∈ Ki. The polynomials and the constants do not depend on t, n, or r. The first inequality
in (7.92) holds since on {τ r

ι,2n−1 ≤ r2t}, Ir,nι,k (s
r
ι ) ≤ Irk(τ

r
ι,2n−1 + srι ) ≤ Irk(r

2t + srι ) ≤ Irk(2r
2t), as
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srι ≤M r ≤ r2t, and since by (7.91),

ε1,i
I

srι ≥
γiεis

r
ι

I
=

γiεi(L
r
ι − (|J

ι
|+ 2))

I(λr
ι + ει)

≥ ε2i (L
r
ι − (|J

ι
|+ 2))

(λr
ι + ει)

≥ λι

λr
ι + ει

(

Lr
i

λιεi
− ε2i (|J ι

|+ 2)

λι

)

≥ λι

λr
ι + ει

(

18Lr
i

λi −
∑

j∈J
i
x∗jµj

− εi(|J ι
|+ 2)

λι

)

≥ 1

2

(

17Lr
i

λi −
∑

j∈J
i
x∗jµj

)

≥ tri . (7.93)

Here, in the second inequality in (7.93), we have used the fact that εi < (
∏I

m=1 γm)/II ≤ γi/I, as
γm ≤ 1 for all m (cf. (7.73)). In the third inequality of (7.93), we have used (6.4). In the fourth
inequality we have used the fact that εi < (λi −

∑

j∈J
i
x∗jµj)/(18λι) (cf. (7.73)) and εi < 1. In

the fifth inequality we have used (7.29) along with the estimate λι/(λ
r
ι + ει) > 1/2 used in proving

(7.87).
Combining all of the above (from (7.80) onwards), we have for all r ≥ r∗, t > 0 satisfying

r2t ≥M r,

sup
n≥1
P
(

T r,n

ι,a(i)(s
r
ι ) ≥ (x∗a(i) + εi)s

r
ι , srι ≤ βr

ι,n, τ r
ι,2n−1 ≤ r2t

)

≤ K13 exp(−K ′
13s

r
ι )

+
(

b(µr
a(i) + εi)r

2tc+ 1
)

K14 exp(−K ′
14s

r
ι ) +K15 exp(−K ′

15r
2t)

+p1,i(r
2t)
(

C
(1)
1,i exp

(

− C
(2)
1,i L

r
0

)

+ C
(3)
1,i exp

(

− C
(4)
1,i r

2t
)

)

+K16 exp(−K ′
16s

r
ι ) + |J i

|K17 exp(−K ′
17s

r
ι )

+
∑

j∈J
i

(

b(µr
j + ε1,i)r

2tc+ 1
)

K18 exp(−K ′
18s

r
ι ) + |J i

|K19 exp(−K ′
19r

2t)

+
∑

j∈J
i

{

∑

i′∈Ik(j)

sup
n≥1
P
(

T r,n

ι,a(i′)(s
r
ι ) ≥ (x∗a(i′) + εi′)s

r
ι , srι ≤ βr

ι,n, τ r
ι,2n−1 ≤ r2t

)

+p3,i(2r
2t)
(

C
(1)
3,i exp

(

− C
(2)
3,i L

r
0

)

+ C
(3)
3,i exp

(

− 2C
(4)
3,i r

2t
)

)

+p2,i(r
2t)
(

C
(1)
2,i exp

(

− C
(2)
2,i L

r
0

)

+ C
(3)
2,i exp

(

− C
(4)
2,i r

2t
)

)}

. (7.94)

By the assumption that (II.1) holds with i′ in place of i, for all i′ < i, the definition of srι , and the
fact that srl ≥ Lr

0, for all l ∈ I, it follows that for r ≥ r∗, t > 0 satisfying r2t ≥M r,

sup
n≥1
P
(

T r,n

ι,a(i)(s
r
ι ) ≥ (x∗a(i) + εi)s

r
ι , srι ≤ βr

ι,n, τ r
ι,2n−1 ≤ r2t

)

≤ p4,i(r
2t)
(

C
(1)
4,i exp

(

− C
(2)
4,i L

r
0

)

+ C
(3)
4,i exp

(

− C
(4)
4,i r

2t
)

)

, (7.95)

where p4,i is a polynomial (of degree at most i + 1) with positive coefficients, and C
(m)
4,i > 0, for

m = 1, 2, 3, 4. The polynomial and the constants do not depend on t or r. This completes the proof
that (II.1) holds for i.
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Proof of (II.2). Fix a transition class ι > i. For each r ≥ 1, n ≥ 1, s ≥ 0, j ∈ Ji, on {dτ r
ι,2n−1 <∞}

define

dAr,n
ι,i (s) = Ar

i (
dτ r

ι,2n−1 + s)−Ar
i (

dτ r
ι,2n−1),

dSr,n
ι,j (s) = Sr

j (T
r
j (

dτ r
ι,2n−1) + s)− Sr

j (T
r
j (

dτ r
ι,2n−1)),

dĂr,n
ι,i (s) = sup{m ≥ 0 : ξri (A

r
i (

dτ r
ι,2n−1 +m))− ξri (A

r
i (

dτ r
ι,2n−1)) ≤ s},

dŠr,n
ι,j (s) = sup{m ≥ 0 : ηrj (S

r
j (T

r
j (

dτ r
ι,2n−1)) +m+ 1)− ηrj (S

r
j (T

r
j (

dτ r
ι,2n−1)) + 1) ≤ s},

and for concreteness on {dτ r
ι,2n−1 = ∞}, we define dAr,n

ι,i ,
dSr,n

ι,j ,
dĂr,n

ι,i ,
dŠr,n

ι,j , to be identically zero.
Then, for each s ≥ 0,

dAr,n
ι,i (s) ≥ dĂr,n

ι,i (s),
dŠr,n

ι,j (s) ≥ dSr,n
ι,j (s)− 1. (7.96)

We have for r ≥ r∗, t > 0 satisfying r2t ≥M r, and n ≥ 1,

P
(

dT r,n

ι,a(i)(
dsrι ) ≤ (x∗a(i) − εi)

dsrι ,
dτ r

ι,2n−1 ≤ r2t
)

≤ P
(

dSr,n

ι,a(i)

(

dT r,n

ι,a(i)(
dsrι )
)

≤ dSr,n

ι,a(i)

(

(x∗a(i) − εi)
dsrι
)

, dτ r
ι,2n−1 ≤ r2t

)

≤ P
(

Qr
i (

dτ r
ι,2n−1 +

dsrι )−Qr
i (

dτ r
ι,2n−1) ≥ (µr

a(i)εi/32)
dsrι ,

dτ r
ι,2n−1 ≤ r2t

)

+P
(

dAr,n
ι,i (

dsrι )−
∑

j∈J
i

dSr,n
ι,j

(

dT r,n
ι,j (dsrι )

)

−dSr,n

ι,a(i)

(

(x∗a(i) − εi)
dsrι
)

< (µr
a(i)εi/32)

dsrι ,
dτ r

ι,2n−1 ≤ r2t
)

, (7.97)

where the last inequality in (7.97) uses (2.9).
For each r ≥ 1 and n ≥ 1, let

dΥr,n
ι,i =

{

dAr,n
ι,i (

dsrι ) ≥ (λr
i − (µr

a(i)εi/32))
dsrι ;

dSr,n

ι,a(i)

(

(x∗a(i) − εi)
dsrι
)

≤ (µr
a(i) + ε2,i)(x

∗
a(i) − εi)

dsrι + 1;

dSr,n
ι,j

(

(x∗j + ε1,i)
dsrι
)

≤ (µr
j + ε3,j)(x

∗
j + ε1,i)

dsrι + 1,

dT r,n
ι,j (dsrι ) < (x∗j + ε1,i)

dsrι , j ∈ J
i
; dτ r

ι,2n−1 ≤ r2t
}

, (7.98)

where ε2,i and ε3,j are defined in (7.33) and (7.34), respectively.
Then, the last term in (7.97) is bounded above by

P
(

dAr,n
ι,i (

dsrι )−
∑

j∈J
i

dSr,n
ι,j

(

dT r,n
ι,j (dsrι )

)

−dSr,n

ι,a(i)

(

(x∗a(i) − εi)
dsrι
)

< (µr
a(i)εi/32)

dsrι ,
dΥr,n

ι,i ,
dτ r

ι,2n−1 ≤ r2t
)

+P
(

dAr,n
ι,i (

dsrι ) < (λr
i − (µr

a(i)εi/32))
dsrι ,

dτ r
ι,2n−1 ≤ r2t

)

+P
(

dSr,n

ι,a(i)

(

(x∗a(i) − εi)
dsrι
)

> (µr
a(i) + ε2,i)(x

∗
a(i) − εi)

dsrι + 1, dτ r
ι,2n−1 ≤ r2t

)

+
∑

j∈J
i

P
(

dSr,n
ι,j

(

(x∗j + ε1,i)
dsrι
)

> (µr
j + ε3,j)(x

∗
j + ε1,i)

dsrι + 1, dτ r
ι,2n−1 ≤ r2t

)

+
∑

j∈J
i

P
(

dT r,n
ι,j (dsrι ) ≥ (x∗j + ε1,i)

dsrι ,
dτ r

ι,2n−1 ≤ r2t
)

. (7.99)
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It can be verified (cf. (8.124) in [2] with |Ji| in place of 2 there), using (7.28), (7.30), (7.85),
(7.33), (7.34), and the fact that µa(i) < 2µr

a(i), that on dΥr,n
ι,i , for all r ≥ r∗, t > 0 satisfying

r2t ≥M r,

dAr,n
ι,i (

dsrι )−
∑

j∈J
i

dSr,n
ι,j

(

dT r,n
ι,j (dsrι )

)

− dSr,n

ι,a(i)

(

(x∗a(i) − εi)
dsrι
)

>
µr
a(i)εi

32
dsrι , (7.100)

and then the first probability in the right side of (7.99) is zero.
For the second, third and fourth terms in the right side of (7.99), in a similar manner to that

in (7.88)–(7.89), we have using Lemmas 6.5–6.7, that for r ≥ r∗ and t > 0 satisfying r2t ≥M r,

P
(

dAr,n
ι,i (

dsrι ) < (λr
i − (µr

a(i)εi/32))
dsrι ,

dτ r
ι,2n−1 ≤ r2t

)

≤ K20 exp(−K ′
20

dsrι ) +
(

b(λr
i + εi)r

2tc+ 1
)

K21 exp(−K ′
21

dsrι )

+K22 exp(−K ′
22r

2t), (7.101)

P
(

dSr,n

ι,a(i)

(

(x∗a(i) − εi)
dsrι
)

> (µr
a(i) + ε2,i)(x

∗
a(i) − εi)

dsrι + 1, dτ r
ι,2n−1 ≤ r2t

)

+
∑

j∈J
i

P
(

dSr,n
ι,j

(

(x∗j + ε1,i)
dsrι
)

> (µr
j + ε3,j)(x

∗
j + ε1,i)

dsrι + 1, dτ r
ι,2n−1 ≤ r2t

)

≤ K23 exp(−K ′
23

dsrι ), (7.102)

where K20 = 1, K ′
20 = (λi− ε̌i)Λ

a,∗
i (λ−1

i (1+ ε̌i/4λi)) > 0, K21 = exp(Λa
i (l0)) > 0, K ′

21 = l0ε̌i/4λi >
0, 0 < l0 ∈ O0, K22 = exp(Λa,∗

i ((λi(1 + εi/3λi))
−1)) > 0, K ′

22 = λiΛ
a,∗
i ((λi(1 + εi/3λi))

−1) > 0,

K23 = |Ji|max{exp(Λs,∗
a(i)((µa(i)(1+ ε2,i/3µa(i)))

−1)); exp(Λs,∗
j ((µj(1+ ε3,j/3µj))

−1)) : j ∈ J
i
} > 0,

K ′
23 = min{µa(i)(x

∗
a(i) − εi)Λ

s,∗
a(i)((µa(i)(1 + ε2,i/3µa(i)))

−1); µj(x
∗
j + ε1,i)Λ

s,∗
j ((µj(1 + ε3,j/3µj))

−1) :

j ∈ J
i
} > 0.

For the last probability in (7.99), for r ≥ r∗, t > 0 satisfying r2t ≥ M r, j ∈ J
i
, k = k(j), and

n ≥ 1, as in (7.69) and using (7.91), we have

P
(

dT r,n
ι,j (dsrι ) ≥ (x∗j + ε1,i)

dsrι ,
dτ r

ι,2n−1 ≤ r2t
)

≤
∑

i′∈Ik

P
(

dT r,n

ι,a(i′)(
dsrι ) ≤ (x∗a(i′) − εi′)

dsrι ,
dτ r

ι,2n−1 ≤ r2t
)

. (7.103)

Finally, for the first term in the last inequality in (7.97), we have that for r ≥ r∗, t > 0 satisfying
r2t ≥M r,

P
(

Qr
i (

dτ r
ι,2n−1 +

dsrι )−Qr
i (

dτ r
ι,2n−1) ≥ (µr

a(i)εi/32)
dsrι ,

dτ r
ι,2n−1 ≤ r2t

)

≤ P
(

sup
0≤s≤2r2t

Qr
i (s) ≥ (µr

a(i)εi/32)
dsrι

)

≤ P
(

sup
τr
i,0≤s≤2r2t

Rr
i (s) ≥ Lr

i − |J i
|
)

≤ p1,i(2r
2t)
(

C
(1)
1,i exp(−C

(2)
1,i L

r
0) + C

(3)
1,i exp(−2C

(4)
1,i r

2t)
)

, (7.104)

where p1,i is a polynomial (of degree at most i + 1) with non-negative coefficients, and C
(m)
1,i > 0,

for m = 1, 2, 3, 4, since (I.1) was already proved to hold for i (with 2t in place of t). The polynomial
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and the constants do not depend on t or r. The first inequality above uses the fact that M r ≥ dsrι ,
and the second inequality holds since for r ≥ r∗,

εiµ
r
a(i)

32
· dsrι ≥ 2Lr

i , (7.105)

which can be verified as in [2], using (7.27), (7.30), (6.4), (7.29), εi < min

{

µa(i)

1024
∑

j∈J i
(µj+ει)

, 1

}

(cf. (7.73)).
Combining all of the above from (7.97) onwards, we have for r ≥ r∗, t > 0 satisfying r2t ≥M r,

sup
n≥1
P
(

dT r,n

ι,a(i)(
dsrι ) ≤ (x∗a(i) − εi)

dsrι ,
dτ r

ι,2n−1 ≤ r2t
)

≤ p1,i(2r
2t)
(

C
(1)
1,i exp

(

− C
(2)
1,i L

r
0

)

+ C
(3)
1,i exp

(

− 2C
(4)
1,i r

2t
)

)

+K20 exp(−K ′
20

dsrι ) +
(

b(λr
i + εi)r

2tc+ 1
)

K21 exp(−K ′
21

dsrι )

+K22 exp(−K ′
22r

2t) +K23 exp(−K ′
23

dsrι )

+
∑

j∈J
i

∑

i′∈Ik(j)

sup
n≥1
P
(

dT r,n

ι,a(i′)(
dsrι ) ≤ (x∗a(i′) − εi′)

dsrι ,
dτ r

ι,2n−1 ≤ r2t
)

. (7.106)

By the induction assumption that (II.2) holds with i′ in place of i for all i′ < i, we have that for
r ≥ r∗, t > 0 satisfying r2t ≥M r,

sup
n≥1
P
(

dT r,n

ι,a(i)(
dsrι ) ≤ (x∗a(i) − εi)

dsrι ,
dτ r

ι,2n−1 ≤ r2t
)

≤ p5,i(r
2t)
(

C
(1)
5,i exp

(

− C
(2)
5,i L

r
0

)

+ C
(3)
5,i exp

(

− C
(4)
5,i r

2t
)

)

, (7.107)

where p5,i is a polynomial (of degree at most i + 1) with non-negative coefficients, and C
(m)
5,i > 0,

for m = 1, 2, 3, 4. The polynomial and the constants do not depend on r or t. It then follows that
(II.2) holds for i, since dsrι ≥ Lr

0.

Proof of (II.3). For r ≥ r∗ and ι > i fixed,

P
(

T r
a(i)(t

r
ι ) ≤ (x∗a(i) − εi)t

r
ι

)

≤ P
(

Ar
i (t

r
ι )−

∑

j∈J
i

Sr
j

(

T r
j (t

r
ι )
)

− Sr
a(i)

(

T r
a(i)(t

r
ι )
)

≥ Ar
i (t

r
ι )−

∑

j∈J
i

Sr
j

(

T r
j (t

r
ι )
)

− Sr
a(i)

(

(x∗a(i) − εi)t
r
ι

)

)

≤ P
(

Qr
i (t

r
ι ) ≥ (µr

a(i)εi/32)t
r
ι

)

+P
(

Ar
i (t

r
ι )−

∑

j∈J
i

Sr
j

(

T r
j (t

r
ι )
)

− Sr
a(i)

(

(x∗a(i) − εi)t
r
ι

)

< (µr
a(i)εi/32)t

r
ι

)

. (7.108)

Let,

Υr
ι,i =

{

Ar
i (t

r
ι ) ≥ (λr

i − (µr
a(i)εi/32))t

r
ι ;

Sr
a(i)

(

(x∗a(i) − εi)t
r
ι

)

≤ (µr
a(i) + ε2,i)(x

∗
a(i) − εi)t

r
ι ;

Sr
j

(

(x∗j + ε1,i)t
r
ι

)

≤ (µr
j + ε3,j)(x

∗
j + ε1,i)t

r
ι , j ∈ J

i
;

T r
j (t

r
ι ) < (x∗j + ε1,i)t

r
ι , j ∈ J

i

}

. (7.109)
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Now, for the last term in (7.108), we have

P
(

Ar
i (t

r
ι )−

∑

j∈J
i

Sr
j

(

T r
j (t

r
ι )
)

− Sr
a(i)

(

(x∗a(i) − εi)t
r
ι

)

< (µr
a(i)εi/32)t

r
ι

)

≤ P
(

Ar
i (t

r
ι )−

∑

j∈J
i

Sr
j (T

r
j (t

r
ι ))− Sr

a(i)

(

(x∗a(i) − εi)t
r
ι

)

< (µr
a(i)εi/32)t

r
ι ,Υ

r
ι,i

)

+P
(

Ar
i (t

r
ι ) < (λr

i − (µr
a(i)εi/32))t

r
ι

)

,

+P
(

Sr
a(i)

(

(x∗a(i) − εi)t
r
ι

)

> (µr
a(i) + ε2,i)(x

∗
a(i) − εi)t

r
ι

)

+
∑

j∈J
i

P
(

Sr
j

(

(x∗j + ε1,i)t
r
ι

)

> (µr
j + ε3,j)(x

∗
j + ε1,i)t

r
ι

)

+
∑

j∈J
i

P
(

T r
j (t

r
ι ) ≥ (x∗j + ε1,i)t

r
ι

)

. (7.110)

For the first term in the right side of (7.110) we have that on Υr
ι,i, for r ≥ r∗,

Ar
i (t

r
ι )−

∑

j∈J
i

Sr
j

(

T r
j (t

r
ι )
)

− Sr
a(i)

(

(x∗a(i) − εi)t
r
ι

)

≥
µr
a(i)εi

32
trι , (7.111)

in a similar manner to that in (7.100). Hence the first probability in the right side of (7.110) is
zero.

For the second term in the right side of (7.110) we have, using (7.15) and (7.31), for r ≥ r∗,

P
(

Ar
i (t

r
ι ) < (λr

i − (µr
a(i)εi/32))t

r
ι

)

≤ P
(

Ar
i (t

r
ι ) < (λr

i − ε̌i/2)t
r
ι

)

≤ K24 exp(−K ′
24t

r
ι ) +K25 exp(−K ′

25t
r
ι ), (7.112)

by Lemma 6.7 and (6.27), where K24 = 1, K ′
24 = (λi − ε̌i)Λ

a,∗
i (λ−1

i (1 + ε̌i/4λi)) > 0, K25 =
exp(Λa

i (l0)) > 0, K ′
25 = l0ε̌i/4λi > 0, and 0 < l0 ∈ O0.

For the third and fourth terms in the right side of (7.110) we have, using Lemma 6.7 (since
(x∗

a(i) − εi)t
r
ι > 2/ε2,i and (x∗j + ε1,i)t

r
ι > 2/ε3,j , for all j ∈ J

i
, by (7.9), (7.12), and (7.35)), for

r ≥ r∗,

P
(

Sr
a(i)

(

(x∗a(i) − εi)t
r
ι

)

> (µr
a(i) + ε2,i)(x

∗
a(i) − εi)t

r
ι

)

+
∑

j∈J
i

P
(

Sr
j

(

(x∗j + ε1,i)t
r
ι

)

> (µr
j + ε3,j)(x

∗
j + ε1,i)t

r
ι

)

≤ K26 exp(−K ′
26t

r
ι ), (7.113)

where K26 = |Ji|max{exp(Λs,∗
a(i)((µa(i)(1 + ε2,i/3µa(i)))

−1)); exp(Λs,∗
j ((µj(1 + ε3,j/3µj))

−1)) : j ∈
J

i
} > 0, K ′

26 = min{µa(i)(x
∗
a(i) − εi)Λ

s,∗
a(i)((µa(i)(1 + ε2,i/3µa(i)))

−1); µj(x
∗
j + ε1,i)Λ

s,∗
j ((µj(1 +

ε3,j/3µj))
−1) : j ∈ J

i
} > 0.

For the fifth term in the right side of (7.110) in a similar manner to that in (7.70) and using
(7.91), we have for j ∈ J

i
, k = k(j), and r ≥ r∗,

P
(

T r
j (t

r
ι ) ≥ (x∗j + ε1,i)t

r
ι

)

≤
∑

i′∈Ik

P
(

T r
a(i′)(t

r
ι ) < (x∗a(i′) − εi′)t

r
ι

)

. (7.114)
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For the first term in the last inequality in (7.108), we have that for r ≥ r∗, t > 0 satisfying
r2t ≥M r,

P
(

Qr
i (t

r
ι ) ≥ (µr

a(i)εi/32)t
r
ι

)

≤ P
(

sup
τr
i,0≤s≤r2t

Rr
i (s) ≥ Lr

i − |J i
|
)

≤ p1,i(r
2t)
(

C
(1)
1,i exp

(

− C
(2)
1,i L

r
0

)

+ C
(3)
1,i exp

(

− C
(4)
1,i r

2t
)

)

, (7.115)

where p1,i is a polynomial (of degree at most i + 1) with non-negative coefficients, and C
(m)
1,i > 0,

for m = 1, 2, 3, 4, since (I.1) was already proved to hold for i. The polynomial and the constants
do not depend on t or r. For the first inequality in (7.115), we have used the fact that

µr
a(i)εi

32
trι =

µr
a(i)εi

32
· 8Lr

ι

λι −
∑

j∈J
ι
x∗jµj

≥
µr
a(i)

µa(i)
·

µa(i)εi

4(λι −
∑

j∈J
ι
x∗jµj)

· L
r
i

ε3i

≥
µa(i)

8(λι −
∑

j∈J
ι
x∗jµj)

· L
r
i

ε2i

≥ 2Lr
i , (7.116)

by (6.4), (7.27), and the fact that εi < min
{

µa(i)

16(λι−
∑

j∈J ι
x∗jµj)

, 1
}

(cf. (7.73)).

Combining all of the above (from (7.108) onwards), we have for all r ≥ r∗, t > 0 satisfying
r2t ≥M r,

P
(

T r
a(i)(t

r
ι ) ≤ (x∗a(i) − εi)t

r
ι

)

≤ p1,i(r
2t)
(

C
(1)
1,i exp

(

− C
(2)
1,i L

r
0

)

+ C
(3)
1,i exp

(

− C
(4)
1,i r

2t
)

)

+K24 exp(−K ′
24t

r
ι ) +K25 exp(−K ′

25t
r
ι ) +K26 exp(−K ′

26t
r
ι )

+
∑

j∈J
i

∑

i′∈Ik(j)

P
(

T r
a(i′)(t

r
ι ) < (x∗a(i′) − εi′)t

r
ι

)

. (7.117)

By the induction assumption that (II.3) holds with i′ in place of i, for all i′ < i, and the definition
of trι , it follows that for r ≥ r∗, t > 0 satisfying r2t ≥M r,

P
(

T r
a(i)(t

r
ι ) ≤ (x∗a(i) − εi)t

r
ι

)

≤ p6,i(r
2t)
(

C
(1)
6,i exp

(

− C
(2)
6,i L

r
0

)

+ C
(3)
6,i exp

(

− C
(4)
6,i r

2t
)

)

, (7.118)

where p6,i is a polynomial (of degree at most i + 1) with non-negative coefficients, and C
(m)
6,i > 0

for m = 1, 2, 3, 4. Thus, (II.3) holds for i. 2

7.7 Proofs of Theorems 6.1, 7.1, and 7.7

Proof of Theorem 7.7. Fix i ∈ I\{i∗} and assume that (I) and (II) hold for all i′ < i. Then, by
Lemmas 7.4–7.5, (i)–(iv) in Lemma 7.3 hold for r ≥ r∗, t > 0 satisfying r2t ≥ M r, for i and each
j ∈ J

i
, and hence (I) holds for i by Lemma 7.3. By Lemma 7.6, we have that (II) also holds for i.

The conclusion of the first statement in Theorem 7.7 then follows by the induction principle.
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For (III), suppose that i∗ is a transition class, and let k ∈ Ki∗ . By the above, for r ≥ r∗, t > 0
satisfying r2t ≥M r, we have that (II) holds with i∗ in place of ι, i′ ∈ Ik in place of i.

For r ≥ r∗, by the same proof as for Lemma 7.4, (ii) of Lemma 7.3 holds with i∗ in place of i
(cf. (7.69)), and then in the same manner as in the proof of Lemma 7.3 (the part of the proof of
(I.1) involving down excursions of Rr

i∗ , with i∗ in place of i there), it can be shown that for r ≥ r∗

and t > 0 satisfying r2t ≥M r,

P
(

inf
τr
i∗,0

≤s≤r2t
Rr

i∗(s) ≤ −Lr
i∗ + |J i∗

|
)

≤ p1,i∗(r
2t)
(

C
(1)
1,i∗ exp

(

− C
(2)
1,i∗L

r
0

)

+ C
(3)
1,i∗ exp

(

− C
(4)
1,i∗r

2t
)

)

, (7.119)

where p1,i∗ is a polynomial (of degree at most I+ 1) with non-negative coefficients, and C
(m)
1,i∗ > 0,

m = 1, 2, 3, 4 are independent of r and t. Thus (III.1) holds.
To establish (III.2), we note that by the same proof as for Lemma 7.4, for r ≥ r∗ and t > 0

satisfying r2t ≥ M r, (iii) of Lemma 7.3 holds with i∗ in place of i (i.e., for j ∈ J
i∗
), since (II.3)

holds with i∗ in place of ι and i′ ∈ Ik (where k = k(j)) in place of i (cf. (7.70)). Then, by the
same proof as for (I.2) in Lemma 7.3 (with i∗ in place of i there, cf. (7.59)–(7.66)), we have,

P
(

Irk(τ
r
i∗,0) ≥ tri∗

)

≤ p2,i∗(r
2t)
(

C
(1)
2,i∗ exp

(

− C
(2)
2,i∗L

r
0

)

+ C
(3)
2,i∗ exp

(

− C
(4)
2,i∗r

2t
)

)

, (7.120)

where p2,i∗ is a polynomial (of degree at most I) with non-negative coefficients, and C
(m)
2,i∗ > 0,

m = 1, 2, 3, 4 are independent of r and t.
Finally, for (III.3) we argue as in the proof of (I.3) in Lemma 7.3 (cf. (7.67)), that I r

k , k ∈ Ki∗ ,
can increase only at times s ≥ 0 such that Qr

i∗(s) ≤ |J
i∗
|, so that for r ≥ r∗, t > 0 satisfying

r2t ≥M r,

P(Irk(r
2t)− Irk(τ

r
i∗,0) > 0, τ r

i∗,0 < r2t)

≤ P
(

inf
τr
i∗,0

≤s≤r2t
Qr

i∗(s) ≤ |J i∗
|
)

≤ p1,i∗(r
2t)
(

C
(1)
1,i∗ exp

(

− C
(2)
1,i∗L

r
0

)

+ C
(3)
1,i∗ exp

(

− C
(4)
1,i∗r

2t
)

)

, (7.121)

by (7.119). 2

Proof of Theorem 7.1. Note that (I) and (II) hold for all i ∈ I\{i∗} by Theorem 7.7.
Fix i ∈ I\{i∗}, k ∈ Ki, and ε > 0. For t = 0, (7.1) and (7.3) hold trivially since Rr

i (0) = 0 if
τ r
i,0 = 0. So we assume that t > 0 is fixed. Since M r = O(log r), there exists an rt ≥ r∗ such that

for all r ≥ rt, r
2t ≥M r. Then for r ≥ rt, by (I.1),

P
(

sup
τr
i,0≤s≤r2t

|Rr
i (s)| ≥ Lr

i − |J i
|
)

≤ p1,i(r
2t)
(

C
(1)
1,i exp

(

− C
(2)
1,i L

r
0

)

+ C
(3)
1,i exp

(

− C
(4)
1,i r

2t
)

)

. (7.122)

Since tri = o(r), there is an r′t ≥ rt such that tri ≤ rε for all r ≥ r′t. Then, by (I.2), for r ≥ r′t

P
(

Irk(τ
r
i,0) ≥ rε

)

≤ P
(

Irk(τ
r
i,0) ≥ tri

)

≤ p2,i(r
2t)
(

C
(1)
2,i exp

(

− C
(2)
2,i L

r
0

)

+ C
(3)
2,i exp

(

− C
(4)
2,i r

2t
)

)

. (7.123)
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Finally, we have by (I.3) that for r ≥ rt,

P
(

Irk(r
2t)− Irk(τ

r
i,0

)

> 0, τ r
i,0 < r2t)

≤ p3,i(r
2t)
(

C
(1)
3,i exp

(

− C
(2)
3,i L

r
0

)

+ C
(3)
3,i exp

(

− C
(4)
3,i r

2t
)

)

. (7.124)

Since Lr
0 = dc log re (and hence for d > 0, exp(−dLr

0) ≤ r−cd), it follows from (7.122)–(7.124)
that there is a constant c0 > 0 (not depending on t or r) such that if c ≥ c0, the expressions in
(7.122)–(7.124) tend to zero as r →∞ (for each fixed t > 0). This verifies (7.2)–(7.3).

For the proof of (7.4)–(7.6), suppose that i∗ is a transition class. Let k ∈ Ki∗ , and ε > 0. For
t = 0, (7.4) and (7.6) hold trivially since τ r

i∗,0 > 0 for a transition class, so we fix t > 0. Then, as

above, for r ≥ rt, we have that r2t ≥M r. We then have, for r ≥ rt, by (III.1),

P
(

inf
τr
i∗,0

≤s≤r2t
Qr

i∗(s) ≤ |J i∗
|
)

= P
(

inf
τr
i∗,0

≤s≤r2t
Rr

i∗(s) ≤ −Lr
i∗ + |J i∗

|
)

≤ p1,i∗(r
2t)
(

C
(1)
1,i∗ exp

(

− C
(2)
1,i∗L

r
0

)

+ C
(3)
1,i∗ exp

(

− C
(4)
1,i∗r

2t
)

)

, (7.125)

Since tri∗ = o(r), there exists r′′t ≥ rt such that tri∗ ≤ rε for all r ≥ r′′t . Then by (III.2), we have for
r ≥ r′′t ,

P
(

Irk(τ
r
i∗,0) ≥ rε

)

≤ P
(

Irk(τ
r
i∗,0) ≥ tri∗

)

≤ p2,i∗(r
2t)
(

C
(1)
2,i∗ exp

(

− C
(2)
2,i∗L

r
0

)

+ C
(3)
2,i∗ exp

(

− C
(4)
2,i∗r

2t
)

)

. (7.126)

Finally, we have by (III.3) that for r ≥ rt,

P(Irk(r
2t)− Irk(τ

r
i∗,0) > 0, τ r

i∗,0 < r2t)

≤ p3,i∗(r
2t)
(

C
(1)
3,i∗ exp

(

− C
(2)
3,i∗L

r
0

)

+ C
(3)
3,i∗ exp

(

− C
(4)
3,i∗r

2t
)

)

. (7.127)

Since Lr
0 = dc log re, it follows that there is a constant c1 ≥ c0 (not depending on t or r), such that

if c ≥ c1, then the expressions in (7.125)–(7.127) tend to zero as r →∞ (for each fixed t > 0). This
proves (7.4)–(7.6). 2

Proof of Theorem 6.1. It suffices to show that as r → ∞, (Q̂r
i : i ∈ I\{i∗}; Îrk : k ∈ Ki, i ∈

I)⇒ 0. Note for this that k ∈ K\{k∗} is either in Ki for some i ∈ I\{i∗} or it is in Ki∗ and i∗ is
a transition class.

Fix t > 0 and ε > 0. By Theorem 7.1 and the properties of {Lr
i }i∈I , there is r(ε, t) ≥ 1 such

that whenever r ≥ r(ε, t) we have 2Lr
i /r < ε and for all i ∈ I\{i∗}, k ∈ Ki,

P
(

sup
τr
i,0≤s≤r2t

|Rr
i (s)| ≥ Lr

i − |J i
|
)

< ε, (7.128)

P
(

Irk(τ
r
i,0) ≥ rε

)

< ε, (7.129)

P
(

Irk(r
2t)− Irk(τ

r
i,0) > 0, τ r

i,0 < r2t
)

< ε, (7.130)

and if i∗ is a transition buffer, for all k ∈ Ki∗ ,

P
(

Irk(r
2t)− Irk(τ

r
i∗,0) > 0, τ r

i∗,0 < r2t
)

< ε. (7.131)
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Recalling the definition of ‖ · ‖t from Section 1.1, we then have for all r ≥ r(ε, t),

P
(

‖Q̂r
i ‖t ≥ ε for some i ∈ I\{i∗}, or ‖Îrk‖t ≥ ε for some k ∈ K\{k∗}

)

= P
(

‖Qr
i ‖r2t ≥ rε for some i ∈ I\{i∗}, or ‖Irk‖r2t ≥ rε for some k ∈ K\{k∗}

)

≤ P
(

sup
τr
i,0≤s≤r2t

Qr
i (s) ≥ 2Lr

i for some i ∈ I\{i∗}, or

Irk(τ
r
i,0) ≥ rε for some k ∈ Ki and i ∈ I, or

τ r
i,0 < r2t and Irk(r

2t)− Irk(τ
r
i,0) > 0 for some k ∈ Ki and i ∈ I

)

≤
∑

i∈I\{i∗}

P
(

sup
τr
i,0≤s≤r2t

|Rr
i (s)| ≥ Lr

i − |J i
|
)

+
∑

i∈I

∑

k∈Ki

{

P
(

Irk(τ
r
i,0) ≥ rε

)

+P
(

Irk(r
2t)− Irk(τ

r
i,0) > 0, τ r

i,0 < r2t
)

}

< (I+ 2K− 3)ε. (7.132)

2

8 Weak Convergence under the Threshold Policy

This section is devoted to the proof of Theorem 5.3.

8.1 Fluid Limits for Allocation Processes

Recall the definitions from Section 2.2 of the functions,

i : J → I, k : J → K, (8.1)

where for j ∈ J , i(j) is the buffer processed by activity j and k(j) is the server which processes
activity j. Also, recall from Assumption 3.1 that

λr → λ, µr → µ, as r →∞. (8.2)

Recall from Sections 5 and 6 that a(i) is the basic activity above buffer i in the server-buffer
tree (where only basic activities are included in that tree), and k∗ is the server at the root of the
server-buffer tree in layer l = l∗. Using the notation of Section 6.1, for each r ≥ 1, for i ∈ I l∗ ,
define

zrk∗ = zk∗ , yri =
zrk∗

µr
a(i)

, (8.3)

and for layer l = l∗ − 1, . . . , 1, define by backwards induction on l,

zrk = yri(b(k))µ
r
b(k), for each k ∈ Kl, (8.4)

yri =
zr
k(a(i))

µr
a(i)

, for each i ∈ I l, (8.5)

where b(k) is the basic activity immediately above server k which links it to a buffer in the next
highest layer (see Figure 7). Here z∗k∗ is the variable, determined from one component of the unique
optimal solution (y∗, z∗) of the dual program (4.8). Then, since each basic activity either links a
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Figure 7: Activity b(k) above a server k that is in layer l.

buffer in some layer l+ 1 to a server below it in layer l, or links a server in some layer l to a buffer
immediately below it in layer l, we have for each basic activity j,

yri(j)µ
r
j = zrk(j), j = 1, . . . ,B, (8.6)

i.e., for any basic activity j,
(

(yr)′Rr
)

j
=
(

(zr)′A
)

j
, (8.7)

where yr = (yri : i ∈ I), zr = (zrk : k ∈ K),

Rr = Cdiag(µr), Cij = δi,i(j), Akj = δk,k(j), for all i ∈ I, k ∈ K, j ∈ J , (8.8)

and δx,y = 1 if x = y and δx,y = 0 otherwise.
Lemmas 8.1, 8.4, and 8.3, which are proved below, will be used in Section 9 for the proof of

asymptotic optimality (Theorem 5.4) as well as in the proof of Lemma 8.5, which shows that the fluid
scaled allocation processes, {T̄ r,∗}, associated with the threshold policy, converge in distribution
(as r goes to infinity) to the nominal allocation processes T̄ ∗ defined in (6.10).

Lemma 8.1 We have that (yr, zr) → (y∗, z∗) as r → ∞, where (y∗, z∗) is the optimal solution to
the dual linear program specified in (4.8).

Proof. We prove that zrk → z∗k, yrk → y∗k, as r → ∞, for all k ∈ Kl, i ∈ I l, for l = 1, 2, . . . , l∗,
by backward induction on l. The result of the lemma then follows, since each server belongs to
some layer and similarly for each buffer. From (4.9) and (8.6), we have that y∗

i(j)µj = z∗
k(j) and

yr
i(j)µj = zr

k(j) for all basic activities j = 1, 2, . . . ,B.
Note that layer l∗ has one server k∗ and the buffers in that layer are indexed by Ik∗ . We have

that (by definition) zrk∗ = zk∗ . Then for i ∈ Ik∗ , we have by (8.2) and (8.3), that

yri =
z∗k∗

µr
a(i)

→ z∗k∗

µa(i)
=

z∗
k(a(i))

µa(i)
= y∗i(a(i)) = y∗i , as r →∞. (8.9)

Now, for the induction step, suppose that (yr
i , z

r
k) → (y∗i , z

∗
k) as r → ∞, for all i ∈ I l, k ∈ Kl,

some l ≥ 2. For k ∈ K(l−1), i ∈ Ik, we have by (8.2), (8.6), and (4.9) that as r →∞,

zrk = yri(b(k))µ
r
b(k) → y∗i(b(k))µb(k) = z∗k(b(k)) = z∗k, (8.10)

since i(b(k)) ∈ I l, and

yri =
zr
k(a(i))

µr
a(i)

→
z∗
k(a(i))

µa(i)
= y∗a(i) = y∗i , (8.11)
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since k(a(i)) = k. This completes the induction step and the conclusion of the lemma then follows.
2

Definition 8.2 A sequence of processes with paths in Dm for some m ≥ 1 is called C-tight if it is
tight in Dm and any weak limit point of the sequence (obtained as a weak limit along a subsequence)
has continuous paths almost surely.

For Lemma 8.3 below, note that the result holds for any sequence of scheduling controls, not
just for those associated with our threshold policy. In addition to the scaled processes defined in
Section 3.3, for any r ≥ 1 and control T r for the rth parallel server system, we define the following
fluid scaled processes. For each t ≥ 0, let

Ār(t) = r−2Ar(r2t), (8.12)

S̄r(t) = r−2Sr(r2t), (8.13)

Īr(t) = r−2Ir(r2t), (8.14)

Q̄r(t) = r−2Qr(r2t). (8.15)

Lemma 8.3 Let {T r} be any sequence of scheduling controls (one for each member of the sequence
of parallel server systems). Then

{

(

Q̄r(·), Ār(·), S̄r(·), T̄ r(·), Īr(·)
)

}

is C-tight.

Proof. It follows from (3.21) that

(

Ār(·), S̄r(·)
)

⇒
(

λ(·), µ(·)
)

as r →∞, (8.16)

where λ(t) = λt and µ(t) = µt for all t ≥ 0. In addition, since they correspond to cumulative
allocations of time, each of the components of T r is Lipschitz continuous with a Lipschitz constant
of one and this property is preserved by the fluid scaled processes T̄ r. It follows immediately from
this and (8.16) that {(Ār(·), S̄r(·), T̄ r(·))} is C-tight, cf. Theorem 15.5 in [4]. From the equations
(2.15)–(2.16) for queue length and idletime we have that for each t ≥ 0,

Q̄r(t) = Ār(t)−CS̄r(T̄ r(t)), (8.17)

Īr(t) = 1t−AT̄ r(t). (8.18)

Combining these with the C-tightness established above, the continuous mapping theorem, and a
random time change theorem (cf. [4], p. 145), we obtain the desired result. 2

Recall that T r,∗ denotes the allocation process when our threshold policy is used in the rth

parallel server system. For the non-basic activities j = B+1, . . . ,J, T r,∗
j ≡ 0. We indicate the fact

that this threshold policy is being used by appending a superscript of ∗ to the associated processes.
By (3.15), (3.17), (3.18), Assumption 3.3, and (8.8), for any r ≥ 1,

Q̄r,∗(t) = r−1Âr(t)− r−1CŜr(T̄ r,∗(t)) + (λr −Rrx∗)t+Rr(x∗t− T̄ r,∗(t)), (8.19)

Īr,∗(t) = 1t−AT̄ r,∗(t), (8.20)

where 1 is the K-dimensional vector of all ones. Recall from Assumption 3.6 that

r(λr −Rrx∗)→ θ as r →∞, (8.21)

where θ ∈ IRI.
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Lemma 8.4 For (yr, zr) as defined in (8.3)–(8.5), we have that

(yr)′Rr
(

x∗t− T̄ r,∗(t)
)

= (zr)′Īr,∗(t), for all t ≥ 0.

Proof. Since x∗j = 0 and T̄ r,∗
j ≡ 0 for all non-basic activities j, we have from Assumption 3.3,

(8.7) and (8.20) that for all t ≥ 0,

(yr)′Rr
(

x∗t− T̄ r,∗(t)
)

= (zr)′
(

Ax∗t−AT̄ r,∗(t)
)

= (zr)′
(

1t−AT̄ r,∗(t)
)

= (zr)′Īr,∗(t). (8.22)

2

Lemma 8.5 below is needed in the proof of Theorem 5.3, in combining the functional central
limit result (3.21), with a random time change theorem.

Lemma 8.5 For the fluid scaled allocation processes, T̄ r,∗
j , j ∈ J , we have,

T̄ r,∗ ⇒ T̄ ∗ as r →∞, (8.23)

where T̄ ∗(t) = x∗t, for all t ≥ 0.

Proof. We note first that since T̄ r,∗
j ≡ 0 and T̄ ∗j ≡ 0 for j = B + 1, . . . ,J, for all r ≥ 1, we have

that (trivially)

T̄ r,∗
j (·)⇒ T̄ ∗j (·) as r →∞, for j = B+ 1, . . . ,J. (8.24)

Now from (3.21) and the fact that T̄ r,∗
j (t) ≤ t, j ∈ J , for all t ≥ 0, we have that

(

r−1Âr
i (·), r−1Ŝr

j (T̄
r,∗
j (·)) : i ∈ I, j ∈ J

)

⇒ 0, as r →∞. (8.25)

Using (8.19) and Lemma 8.4 we have that for each t ≥ 0,

yr · Q̄r,∗(t) = yr · X̄r,∗(t) + zr · Īr,∗(t), (8.26)

where

X̄r,∗(t) = r−1Âr(t)− r−1CŜr(T̄ r,∗(t)) + (λr −Rrx∗)t, (8.27)

and by (8.25), (8.2) and (8.21),

X̄r,∗(·)⇒ 0 as r →∞. (8.28)

Thus, for t ≥ 0,

yri∗Q̄
r,∗
i∗ (t) = ζ̄r,∗(t) + zrk∗ Ī

r,∗
k∗ (t), (8.29)

where, by (8.26), (8.28), Lemma 8.1, and Theorem 6.1 we have

ζ̄r,∗(·) ≡ yr · X̄r,∗(·)−
∑

i∈I\{i∗}

yri Q̄
r,∗
i (·) +

∑

k∈K\{k∗}

zrkĪ
r,∗
k (·)⇒ 0 as r →∞. (8.30)

Here yr > 0, zr > 0, Q̄r,∗
i∗ ≥ 0, ζ̄r,∗(0) = 0, Īr,∗k∗ (0) = 0, Īr,∗k∗ (·) is continuous and non-decreasing.

Furthermore, for r sufficiently large, in the rth system operating under the threshold policy, the
idletime at server k∗ can increase only if the queue length at buffer i∗ is at or below the level Lr

i∗ .
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Hence Īr,∗k∗ can only increase if Q̄r,∗
i∗ is at or below the level Lr

i∗/r
2. (Here, when i∗ is a transition

buffer, r needs to be large enough that Lr
i∗ ≥ |J i∗

|. For if Lr
i∗ < Qr,∗

i∗ (t) ≤ |J
i∗
|, then the idletime

at server k∗ might increase at t if the Qr,∗
i∗ (t) jobs are in service or in suspension at the servers

in Ki∗ . If i∗ is a non-transition buffer, server k∗ is busy whenever buffer i∗ is nonempty, and in
particular whenever Qr,∗

i∗ > Lr
i∗ > 0.)

It then follows from an oscillation inequality for solutions of a perturbed Skorokhod problem
(cf. the proof of Theorem 5.1 in [40]) that

zrk∗ Ī
r,∗
k∗ (t) ≤ − inf

0≤s≤t

(

ζ̄r,∗(s)
)

+ yri∗L
r
i∗r
−2, for all t ≥ 0. (8.31)

Hence, it follows by (8.30), the continuous mapping theorem, Lemma 8.1, and the facts that
Lr
i∗ = O(log r) and zk∗ > 0, that

Īr,∗k∗ ⇒ 0 as r →∞. (8.32)

By (8.29) and (8.30), we then have that

Q̄r,∗
i∗ ⇒ 0 as r →∞, (8.33)

since y∗i∗ > 0. To obtain the conclusion of the lemma, we appeal to Lemma 8.3 and assume that
(Q̄(·), Ā(·), S̄(·), T̄ (·), Ī(·)) is obtained as a weak limit point of {(Q̄r,∗(·), Ār(·), S̄r(·), T̄ r,∗(·),
Īr,∗(·))} along a subsequence. Since (Q̄(·), Ī(·)) ≡ 0 (by Theorem 6.1, (8.32), and (8.33)), and
(Ā(·), S̄(·)) = (λ(·), µ(·)) (by (8.16)) we have by passing to the limit in (8.17)–(8.18) that T̄ satisfies

0 = λt−RT̄ (t), (8.34)

0 = 1t−AT̄ (t), (8.35)

for all t ≥ 0, where T̄ inherits the properties (3.8) from T̄ r,∗. Thus, the fluid system is balanced
and incurs no idleness (cf. Section 3) under T̄ . Hence, by Definition 3.4, Assumption 3.3, and
Lemma 3.5, we have that T̄ = T̄ ∗. Thus, the weak limit point is the same along all convergent
subsequences. It follows that (Q̄r,∗(·), Ār(·), S̄r(·), T̄ r,∗(·), Īr,∗(·)) ⇒ (0, λ(·), µ(·), T̄ ∗(·),0), as
r →∞. The conclusion of the lemma then follows. 2

8.2 Convergence of Diffusion Scaled Performance Measures under the

Threshold Policy–Proof of Theorem 5.3

We now prove that the diffusion scaled performance measures for our sequence of parallel server
systems operating under the allocation processes {T r,∗} converge in distribution to the processes
given in (4.17)–(4.18). We indicate the fact that this threshold policy is being used by appending
a superscript of ∗ r to the associated processes.

Proof of Theorem 5.3. For each t ≥ 0, we have by multiplying (8.26) through by r that

Ŵ r,∗(t) ≡ yr · Q̂r,∗(t) = yr · X̂r,∗(t) + zr · Îr,∗(t) (8.36)

where X̂r,∗ is defined by (4.7) (with T̄ r replaced by T̄ r,∗ there). By the functional central limit
result (3.21), Lemma 8.5, and a random time change theorem (cf. [4], §17), we have that as r →∞,

(

Âr(·), Ŝr(T̄ r,∗(·))
)

⇒
(

Ã(·), S̃(T̄ ∗(·))
)

. (8.37)

It then follows from the definition of X̂r,∗, (8.2), and (8.21) that

X̂r,∗ ⇒ X̃, as r →∞, (8.38)
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where

X̃(t) = Ã(t)−CS̃(T̄ ∗(t)) + θt, t ≥ 0, (8.39)

is an I-dimensional Brownian motion with drift θ and a diagonal covariance matrix whose ith

diagonal entry is λia
2
i +

∑J
j=1Cijµjb

2
jx
∗
j .

Rearranging (8.36), we have that for t ≥ 0,

yri∗Q̂
r,∗
i∗ (t) = ζ̂r,∗(t) + z∗k∗ Î

r,∗
k∗ (t), (8.40)

where

ζ̂r,∗(·) ≡ yr · X̂r,∗(·)−
∑

i∈I\{i∗}

yri Q̂
r,∗
i (·) +

∑

k∈K\{k∗}

zrkÎ
r,∗
k (·)⇒ y∗ · X̃(·), (8.41)

as r → ∞, by (8.38), Lemma 8.1, and Theorem 6.1. Here yr > 0, zr > 0, Q̂r,∗
i∗ ≥ 0, ζ̂r,∗(0) = 0,

Îr,∗k∗ (0) = 0, Îr,∗k∗ (·) is continuous and non-decreasing. Furthermore, for sufficiently large r, Îr,∗k∗ can

increase only if Q̂r,∗
i∗ is at or below level Lr

i∗/r (since Lr
i∗ > |J

i∗
|, for sufficiently large r). Then, by

Corollary 4.3 in [40], since Lr
i∗/r → 0 as r →∞, it follows that
(

Q̂r,∗
i∗ , Îr,∗k∗

)

⇒
(

Q̃∗i∗ , Ĩ
∗
k∗

)

, as r →∞, (8.42)

where Q̃∗i∗ , Ĩ
∗
k∗ are given by (4.17)-(4.18). Combining this with Theorem 6.1 and Lemma 8.1 yields,

(

Q̂r,∗, Îr,∗, Ŵ r,∗)⇒ (Q̃∗, Ĩ∗, W̃ ∗
)

, as r →∞, (8.43)

where W̃ ∗ is defined in (4.15)–(4.16), and Q̃∗, Ĩ∗ are defined by (4.17)-(4.18).

9 Asymptotic Optimality of the Threshold Policy

In this section we prove Theorem 5.4. We follow a similar development to that in Section 9 of [3].
Before proceeding with the proof, we first establish some preliminary results concerning fluid scaled
processes under a sequence of scheduling controls, T = {T r} (one for each member of the sequence
of parallel server systems). The associated queue length and idletime processes will be denoted by
Qr, Ir, and the fluid and diffusion scaled versions of these processes will be denoted by Q̄r, Īr and
Q̂r, Îr, respectively. We also let

J(T ) = lim inf
r→∞

Ĵr(T r), (9.1)

where Ĵr(T r) is defined by (3.13). When our sequence of threshold controls {T r,∗} is used, we
append a superscript ∗ to the queue length, idletime etc. processes, i.e., we use Qr,∗, Ir,∗, etc.

The next lemma implies that, when searching for an asymptotically optimal policy, we may
restrict to those policies whose associated fluid scaled allocation processes converge (along a sub-
sequence) to those given by T̄ ∗.

Lemma 9.1 Let T = {T r} be a sequence of scheduling controls such that J(T ) < ∞. Consider a
subsequence {T r′} of {T r} along which the lim inf in the definition of J(T ) is achieved, i.e.,

lim
r′→∞

Ĵr′(T r′) = J(T ). (9.2)

Then,
(

Q̄r′(·), Ār′(·), S̄r′(·), T̄ r′(·), Īr′(·)
)

⇒
(

0, λ(·), µ(·), T̄ ∗(·),0
)

as r′ →∞, (9.3)

where T̄ r(t) = T r(r2t)/r2 and T̄ ∗(t) = x∗t, for all r ≥ 1 and t ≥ 0, x∗ is given by the heavy
traffic Assumption 3.3, 0 denotes the constant process that stays at the origin (in the appropriate
dimension) for all time, and λ(t) = λt, µ(t) = µt for all t ≥ 0.
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Proof. It follows from Lemma 8.3 that
{

(

Q̄r′(·), Ār′(·), S̄r′(·), T̄ r′(·), Īr′(·)
)

}

(9.4)

is C-tight. Thus, it suffices to show that all weak limit points of this sequence are given by the
right member of (9.3). For this, suppose that

(

Q̄(·), Ā(·), S̄(·), T̄ (·), Ī(·)
)

, (9.5)

is obtained as a weak limit of (9.4) along a subsequence indexed by r′′. Without loss of generality,
by appealing to the Skorokhod representation theorem (cf. [10], Theorem 3.1.8), we may choose an
equivalent distributional representation (for which we use the same symbols) such that all of the
random processes in (9.4) indexed by r′′ in place of r′, as well as the limit (9.5), are defined on the
same probability space and the convergence in distribution is replaced by almost sure convergence
uniformly on compact time intervals, so that a.s., as r′′ →∞,

(

Q̄r′′(·), Ār′′(·), S̄r′′(·), T̄ r′′(·), Īr′′(·)
)

→
(

Q̄(·), Ā(·), S̄(·), T̄ (·), Ī(·)
)

u.o.c. (9.6)

From (8.16) we have that a.s., Ā(·) = λ(·) and S̄(·) = µ(·). We next show that a.s., Q̄(·) ≡ 0.
Combining the fact that limr′′→∞ Ĵr′′(T r′′) = J(T ) <∞ with (9.6) and Fatou’s lemma, we have

0 = lim
r′′→∞

1

r′′
Ĵr′′(T r′′) ≥ E

(∫ ∞

0
e−γt lim inf

r′′→∞

(

h · Q̄r′′(t)
)

dt

)

(9.7)

= E

(∫ ∞

0
e−γt h · Q̄(t) dt

)

.

Since hi > 0 for all i ∈ I, and a.s., Q̄ has continuous paths in IRI
+, it follows from the above that

a.s., Q̄(·) ≡ 0. Then, by letting r = r′′ → ∞ in (8.17)–(8.18) and using (8.16), (9.6), and the
definition of R, we have a.s., for each t ≥ 0,

0 = λt−RT̄ (t), (9.8)

Ī(t) = 1t−AT̄ (t). (9.9)

Multiplying (9.8) by (y∗)′ while recalling that y∗ · λ = 1 = z∗ · 1 and (y∗)′R = (z∗)′A− [0′ (u∗)′],
where u∗ > 0 (cf. Lemma 4.5), we obtain

0 = z∗ · Ī(t) + [0′ (u∗)′]T̄ (t). (9.10)

Since a.s., the components of Ī(·) and T̄ (·) inherit the property from Īr
′′
(·), T̄ r′′(·) that they are

all non-negative for all time, it follows from (9.10), and the fact that z∗k > 0 for all k ∈ K, u∗j > 0

for all j = 1, 2, . . . ,J − B, that a.s., Ī(·) = 0, and T̄j(·) = 0 for all j = B + 1, . . . ,J. We then
observe that T̄ is a fluid control under which the fluid system in (3.6)-(3.7) is balanced and incurs
no idleness (cf. Section 3). Hence, by Definition 3.4, Assumption 3.3, and Lemma 3.5 we have that
T̄ (·) = T̄ ∗(·). 2

Proof of Theorem 5.4. We first concentrate on proving the inequality on the left side of (5.2).
For this, let T ≡ {T r} be a sequence of scheduling controls. If J(T ) =∞, then the inequality holds
trivially and so we assume that J(T ) < ∞. Recall the definitions of (yr, zr) from (8.3)–(8.5). For
each j = B+ 1, . . . ,J, let ur

j−B = ((zr)′A− (yr)′Rr)j . Then by (8.7), we have that

(yr)′Rr = (zr)′A− [0′ (ur)′], (9.11)
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where for sufficiently large r, ur > 0 by Lemma 4.5, (8.2), and Lemma 8.1.
For each i ∈ I, let

hr
i =

hiy
r
i

y∗i
, (9.12)

where h is the holding cost vector appearing in (3.13). Since i∗ is the “cheapest” buffer (cf. Section
4.2), we have that

hi∗

y∗i∗
≤ hi

y∗i
, for all i ∈ I. (9.13)

Then, using (9.11), (3.17)–(3.18) and (9.12)–(9.13), we have for all t ≥ 0,

hr · Q̂r(t) =
I
∑

i=1

hr
i Q̂

r
i (t)

≥ hi∗

y∗i∗

I
∑

i=1

yri Q̂
r
i (t)

=
hi∗

y∗i∗
yr · Q̂r(t)

=
hi∗

y∗i∗

(

yr · X̂r(t) + V̂ r(t)
)

, (9.14)

where X̂r is given in (4.7),

V̂ r(t) =
(

(zr)′A− [0′ (ur)′]
)

Ŷ r(t) = zr · Îr(t)− ur · Ŷ r
N (t), t ≥ 0, (9.15)

Ŷ r is defined by (3.15) and Ŷ r
N is the (J − B)-dimensional process whose components are Ŷ r

j ,
j = B+ 1, . . . ,J.

Now, since hr · Q̂r(t) ≥ 0 for all t ≥ 0, yr · X̂r starts from zero, and V̂ r is non-decreasing (for
sufficiently large r) and starts from zero, it follows from the well known minimality of the solution
of the Skorokhod problem (cf. Appendix B in [3]) that for all r sufficiently large,

V̂ r(t) ≥ sup
0≤s≤t

(

−yr · X̂r(s)
)

for all t ≥ 0, (9.16)

and hence

hr · Q̂r(t) ≥ hi∗

y∗i∗
ϕ
(

yr · X̂r
)

(t) for all t ≥ 0, (9.17)

where ϕ(x)(t) ≡ x(t) + sup0≤s≤t(−x(s)) for all t ≥ 0 and x ∈ D satisfying x(0) = 0.

Now, let {T r′} be a subsequence of {T r} such that limr′→∞ Ĵr′(T r′) = J(T ). By Lemma 9.1,
the fact that the limit in (9.3) is deterministic, and (3.21), we have that as r′ →∞,

(

Âr′(·), Ŝr′(·), T̄ r′(·)
)

⇒
(

Ã(·), S̃(·), T̄ ∗(·)
)

. (9.18)

By invoking the Skorokhod representation theorem, we may assume without loss of generality that
the convergence above is almost surely uniform on compact time intervals and then for X̂r given
by (4.7), using Assumption 3.6, we have that a.s. as r′ →∞,

(

Âr′(·), Ŝr′(·), T̄ r′(·), X̂r′(·)
)

→
(

Ã(·), S̃(·), T̄ ∗(·), X̃(·)
)

u.o.c., (9.19)
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where X̃(t) = Ã(t)−CS̃(T̄ ∗(t))+θt, for t ≥ 0, defines a Brownian motion as described in Definition
4.1. By Fatou’s lemma, we have

J(T ) = lim
r′→∞

Ĵr′(T r′) ≥ E
(∫ ∞

0
e−γt lim inf

r′→∞

(

h · Q̂r′(t)
)

dt

)

. (9.20)

Now we claim that a.s., for each t ≥ 0,

lim inf
r′→∞

(

h · Q̂r′(t)
)

≥ h · Q̃∗(t), (9.21)

where Q̃∗ is given by (4.15)–(4.18). To see this, fix ω ∈ Ω such that ω is in the set of probability
one where the convergence in (9.19) holds u.o.c., and the limits have continuous paths. Fix t ≥ 0.
If the left member of the inequality (9.21) is infinite at ω, then the inequality clearly holds. On
the other hand, if the left member is finite at ω, then there is a further subsequence indexed by r′′

(possibly depending on ω and t) such that

lim
r′′→∞

(

h · Q̂r′′(t, ω)
)

= lim inf
r′→∞

(

h · Q̂r′(t, ω)
)

<∞. (9.22)

Since hi > 0 and Q̂r′′

i (t, ω) ≥ 0, for all i ∈ I, it follows that Q̂r′′

i (t, ω) is bounded as r′′ → ∞, for
all i ∈ I, and then using the fact that hr

i → hi, for all i ∈ I (cf. Lemma 8.1), we have

lim
r′′→∞

(h− hr′′) · Q̂r′′(t, ω) = 0. (9.23)

Then, using (9.17), (9.19), the continuity of ϕ on D, the fact that ϕ(y∗ · X̃)( · , ω) is continuous,
and (4.16)–(4.17), we have

lim
r′′→∞

h · Q̂r′′(t, ω) = lim
r′′→∞

(

hr′′ · Q̂r′′(t, ω) + (h− hr′′) · Q̂r′′(t, ω)
)

≥ lim inf
r′′→∞

hi∗

y∗i∗
ϕ
(

yr
′′ · X̂r′′

)

(t, ω)

=
hi∗

y∗i∗
ϕ
(

y∗ · X̃
)

(t, ω) =
hi∗

y∗i∗
W̃ ∗(t, ω) = h · Q̃∗(t, ω).

Thus, (9.21) holds. Now, substituting this in (9.20), we conclude that

J(T ) ≥ E
(∫ ∞

0
e−γt h · Q̃∗(t) dt

)

≡ J∗. (9.24)

This completes the proof of the inequality in the left side of (5.2).
Suppose now that the threshold control T r,∗ is used in the rth parallel server system. For the

purpose of establishing the finiteness of J∗ and the equality in the right side of (5.2), by appealing
to Theorem 5.3 and the Skorokhod representation theorem, we may assume that a.s.,

Q̂r,∗ → Q̃∗ u.o.c. as r →∞, (9.25)

where Q̃∗ is given by (4.15)–(4.17). Then for

Ĥr,∗ ≡ h · Q̂r,∗ and H̃∗ ≡ h · Q̃∗ (9.26)

we have
Ĥr,∗ → H̃∗ (m×P)-a.e. on IR+ × Ω, (9.27)
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where dm = γe−γtdt on (IR+,B+) and B+ denotes the Borel σ-algebra on IR+. Then, since
(IR+ × Ω,B+ ×F ,m×P) is a probability space, to establish

Ĵr(T r,∗) ≡ E
(∫ ∞

0
e−γtĤr,∗(t) dt

)

→ J∗ <∞ as r →∞, (9.28)

it suffices to show that

lim sup
r→∞

E

(∫ ∞

0
e−γt

(

Ĥr,∗(t)
)2

dt

)

<∞ (9.29)

which implies the required uniform integrability. From (8.36) we have

Ĥr,∗ = h · Q̂r,∗ ≤
(

∑

i∈I

hi

yri

)

Ŵ r,∗. (9.30)

For each r ≥ 1 and t > 0, let

Gr,t =
{

Qr,∗
i (s) ≤ 2Lr

i for all s ∈ [0, r2t], i ∈ I \ Ik∗
}

. (9.31)

By the definition of T r,∗, on Gr,t we have that (for r large enough that Lr
i ≥ |J i

| for all i ∈ Ik∗),
Îr,∗k∗ can have a point of increase at s ∈ [0, t] only if Q̂r

i (s) is at or below the level Lr
i /r for all

i ∈ Ik∗ , which occurs only if

Ŵ r,∗(s) ≤
(

∑

i∈I\Ik∗

2yriL
r
i +

∑

i∈Ik∗

yriL
r
i

)/

r. (9.32)

Thus, on Gr,t, it follows from (8.36) and an oscillation inequality for solutions of a perturbed
Skorokhod problem (cf. the proof of Theorem 5.1 in [40]) that

zrk∗ Î
r,∗
k∗ (t) ≤ sup

0≤s≤t

(

− yr · X̂r,∗(s)−
∑

k 6=k∗

zrkÎ
r,∗
k (s)

)

+

(

∑

i∈I\Ik∗

2yriL
r
i +

∑

i∈Ik∗

yriL
r
i

)

r−1

≤ sup
0≤s≤t

∣

∣yr · X̂r,∗(s)
∣

∣+
∑

k 6=k∗

zrkÎ
r,∗
k (t)

+

(

∑

i∈I\Ik∗

2yriL
r
i +

∑

i∈Ik∗

yriL
r
i

)

r−1, (9.33)

where we have used the fact that Îr,∗k , k ∈ K\{k∗}, is non-decreasing, to obtain the last inequality.
Since Irk(r

2t) ≤ r2t for all k ∈ K, we have for t satisfying r2t < M r,

E
(

(

Îr,∗k (t)
)2
)

≤
(

M r

r

)2

for all k ∈ K. (9.34)
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On the other hand, for r ≥ r∗, for each t > 0 satisfying r2t ≥M r,

E
(

(

Îr,∗k∗ (t)
)2

; Ω \Gr,t
)

≤ r2t2P
(

Ω \Gr,t
)

≤ r2t2
∑

i∈I\Ik∗

P
(

Qr,∗
i (s) > 2Lr

i for some s ∈ [0, r2t]
)

≤ r2t2
∑

i∈I\Ik∗

P
(

sup
τr
i,0≤s≤r2t

|Rr
i (s)| ≥ Lr

i − |J i
|
)

≤ r2t2
∑

i∈I\Ik∗

p1,i(r
2t)
(

C
(1)
1,i exp(−C

(2)
1,i L

r
0) + C

(3)
1,i exp(−C

(4)
3,i r

2t)
)

≤ t p(r2t)
(

C(1) exp(−C(2)Lr
0) + C(3) exp(−C(4)r2t)

)

, (9.35)

by Theorem 7.7, where the p1,i, C
(m)
1,i , m = 1, 2, 3, 4, are as in (I.1), p(s) = s

∑

i∈I\Ik∗
p1,i(s), for

all s ≥ 0, C(1) = max{C(1)
1,i : i ∈ I\Ik∗}, C(3) = max{C(3)

1,i : i ∈ I\Ik∗}, C(2) = min{C(2)
1,i : i ∈

I\Ik∗}, C(4) = min{C(4)
1,i : i ∈ I\Ik∗}. Here p is a polynomial (of degree at most I + 1) with

non-negative coefficients and C(m) > 0, m = 1, 2, 3, 4; the polynomial and constants do not depend
on t or r.

By (8.21) and the fact that Lr
i is of order log r for all i ∈ I, there is r′ ≥ r∗, such that for all

r ≥ r′, yr · (λr − Rrx∗)r ≤ y∗ · |θ| + 1 and
(

∑

i∈I\Ik∗
2yriL

r
i +

∑

i∈Ik∗
yriL

r
i

)

r−1 ≤ 1. Then we

have for r ≥ r′, and t > 0 satisfying r2t ≥ M r, using the inequality
(

∑n
i=1 |xi|

)2
≤ n

∑n
i=1 x

2
i

repeatedly, that

E
(

(

Îr,∗k∗ (t)
)2
)

= E
(

(

Îr,∗k∗ (t)
)2

; Gr,t
)

+E
(

(

Îr,∗k∗ (t)
)2

; Ω \Gr,t
)

≤ 5

(zrk∗)
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∑

k 6=k∗

(zrk)
2E
(

(

Îr,∗k (t)
)2
)

+ 1

}

+t p(r2t)
(

C(1) exp(−C(2)Lr
0) + C(3) exp(−C(4)r2t)

)

, (9.36)

where the first term to the right of the equality sign is controlled via (9.33), and the second term

is controlled via (9.35). Using the fact that exp(−C (2)Lr
0) ≤ r−C(2)c (since Lr

0 = dc log re), and the
fact that for any polynomial q and d > 0, q(x)e−dx is bounded for x ∈ IR+, we have that there is
a constant c2 ≥ c1 (independent of t and r) and r′′ ≥ r′ such that for each fixed c ≥ c2 and all
r ≥ r′′, the last term in (9.36) is bounded by a polynomial in t, independent of r. (The constant
c1 was used in the proof of Theorem 7.1.)

Then, using (9.30), (8.36), (4.7), (3.11), (9.34), (9.36), and the fact that M r = o(r), for c
sufficiently large (chosen independently of t and r), we see that to prove (9.29) it suffices to show
that, as functions of t, the following are all in a bounded subset of L1(m) ≡ L1(IR+,B+,m) for r
sufficiently large:

E
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sup
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Âr
i (s)

)2
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, E
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Ŝr
j (T̄

r,∗
j (s))

)2
)

, E

(

(

Îr,∗k (t)
)2
)

, (9.37)
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for all i ∈ I, j ∈ J , k ∈ K\{k∗}. The bounds for the first two expectations can be obtained as
in Section 9 in [3]. For the third bound, fix k ∈ K\{k∗}, and let i be the transition buffer that is
immediately above k. Let ε > 0 and choose r′′′ ≥ r′′ such that for all i ∈ I and r ≥ r′′′, rε ≥ tri
(cf. (7.8)). Fix r ≥ r′′′. By (9.34), we need only consider t > 0 satisfying r2t ≥ M r. Since
Ir,∗k (r2t) ≤ r2t,

E
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+r2t2P
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)
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1,i exp
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)}

, (9.38)

by (I.1)–(I.2), if i 6= i∗, or by (III.1)–(III.2), if k ∈ Ki∗ , which all hold by Theorem 7.7. In the first
inequality in (9.38), we have used that fact that Ir,∗k (r2t) − Ir,∗k (τ r

i,0) = 0 if infτr
i,0≤u≤r2t R

r
i (u) >

−Lr
i + |J i

|.
Since exp(−C

(2)
m,iL

r
0) ≤ r−C

(2)
m,ic, m = 1, 2, and for any polynomial q and d > 0, q(x)e−dx is

bounded for x ∈ IR+, it follows that that there is a constant c3 ≥ c2 (independent of t and r),
r∗∗ ≥ r′′′, such that for each fixed c ≥ c3, and all r ≥ r∗∗, the right member above can be bounded
by a polynomial in t (not depending on r). Combining (9.34) with the above, we conclude that
{E((Îr,∗k (·))2) : r ≥ r∗∗} is a bounded sequence of functions in L1(m), provided that c is fixed and
sufficiently large. 2
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