DOI: 10.1214/EJP.v10-263

ni e}
Electr® Ability

Vol. 10 (2005), Paper no. 24, pages 786-864.

Journal URL
http://www.math.washington.edu/~ejpecp/

One-dimensional Random Field Kac’s Model: Localization of the Phases *

Marzio Cassandro
Dipartimento di Fisica, Universita di Roma “La Sapienza”,
INFM-Sez. di Roma. P.le A. Moro, 00185 Roma Italy.
cassandro@romal.infn.it

Enza Orlandi
Dipartimento di Matematica, Universita di Roma Tre,
L.go S.Murialdo 1, 00156 Roma, Italy.
orlandi@mat.uniromad.it

Pierre Picco
CPT, UMR CNRS 62072 Luminy, Case 907, F-13288 Marseille Cedex 9, France
and CMM, UMR CNRS? Blanco Encalada 2120, Santiago, Chile.

picco@cpt.univ-mrs.fr

Maria Eulalia Vares**
CBPF, Rua Dr. Xavier Sigaud, 150.
22290-180, Rio de Janeiro, RJ,Brasil.

eulalia@cbpf.br.

Abstract We study the typical profiles of a one dimensional random field Kac model, for values of
the temperature and magnitude of the field in the region of two absolute minima for the free energy of
the corresponding random field Curie Weiss model. We show that, for a set of realizations of the random
field of overwhelming probability, the localization of the two phases corresponding to the previous minima
is completely determined. Namely, we are able to construct random intervals tagged with a sign, where
typically, with respect to the infinite volume Gibbs measure, the profile is rigid and takes, according to the
sign, one of the two values corresponding to the previous minima. Moreover, we characterize the transition
from one phase to the other. The analysis extends the one done by Cassandro, Orlandi and Picco in [13].

Key Words and Phrases: phase transition, random walk, random environment, Kac potential.
AMS 2000 Mathematics Subject Classification: 60K35,82B20,82B43

Submitted to EJP on February 2, 2004. Final version accepted on March 23, 2005.

* Supported by: CNR-CNRS-Project 8.005, INFM-Roma; MURST/Cofin 01-02/03-04; FAPERJ Projects E-26/150.940-99
and E-26/151.905/00; CNPq-CNR Project: 91.0069/00-0

2 Université de Provence Aix—Marseille 1, Université de la Mediterranée Aix—Marseille 2 et Université de Toulon et du Var
3 Universidad de Chile
** Partially supported by CNPq.

14/july/2005; 12:06 786


http://dx.doi.org/10.1214/EJP.v10-263

1 Introduction

We consider a one-dimensional spin system interacting via a ferromagnetic two-body Kac potential and
external random field given by independent Bernoulli variables. Problems where a stochastic contribution
is added to the energy of the system arise naturally in condensed matter physics where the presence of the
impurities causes the microscopic structure to vary from point to point. Some of the vast literature on these
topics may be seen consulting [1-6], [10], [18-21], [23], [32].

Kac’s potentials is a short way to denote two-body ferromagnetic interactions with range %, where v is a
dimensionless parameter such that when v — 0, i.e. very long range, the strength of the interaction becomes
very weak, but in such a way that the total interaction between one spin and all the others is finite. They
were introduced in [22], and then generalized in [24], to provide a rigorous proof of the validity of the van
der Waals theory of a liquid—vapor phase transition. Performing first the thermodynamic limit of the spin
system interacting via Kac’s potential, and then the limit of infinite range, v — 0, they rigorously derived
the Maxwell rule. This implies that the free energy of the system is the convex envelope of the corresponding
free energy for the Curie-Weiss model. This leads to two spatially homogeneous phases, corresponding to
the two points of minima of the free energy of the Curie-Weiss model. Often we will call + phase the one
associated to the positive minimizer, and — phase the one associated to the negative minimizer. For ~y fixed
and different from zero, there are several papers trying to understand qualitatively and quantitatively the
features of systems with long, but finite range interaction. (See for instance [16], [25], [9], [19].) In the one
dimensional case, the analysis [15] for Ising spin and [7] for more general spin, gives a satisfactory description
of the typical profiles.

Similar type of analysis holds for Ising spin systems interacting via a Kac potential and external random
field. The Gibbs measure of this system can be written in terms of a functional over the magnetization
profiles obtained through a block spin transformation that maps the microscopic system into a system on
L>*(IR) x L*(IR), for which the length of interaction becomes of order one (the macroscopic system). This
functional is a sum of two terms of which one is deterministic and has two minimizers (the above mentioned
homogeneous + and — phases). The other term is related to partial sums of the external random magnetic
field.

If we consider a finite volume I, on the macroscopic scale, the variance of the stochastic part of the
functional is of the order 7|I|, so that for a volume I with |I| ~ (yloglog(1/))~! one can expect to get
almost sure fluctuations of order 1 as in the Law of the Iterated Logarithm. These fluctuations of order 1
will compensate the cost for the deterministic part to make a transition from one minimizer to the other
ones. In fact in [13] it has been proven that if the system is considered on an interval of length %(log %)p ,

m, the typical block spin profile

p > 2, then for intervals whose length in macroscopic scale is of order
is rigid, taking one of the two values corresponding to the minima of the free energy for the random field
Curie Weiss model, or makes at most one transition from one of the minima to the other. This holds for
almost all realizations of the field.

It was also proven that the typical profiles are not rigid over any interval of length at least Lq(y) =
%(log %)(log log %)Hp, for any p > 0. In [13] the results are shown to be valid for values of the temperature
and magnitude of the field in a subset of the region of two absolute minima for the free energy of the
corresponding random field Curie Weiss model.

In the present work we show that, on a set of realizations of the random field of probability that goes to
1 when v | 0 , we can construct random intervals of length of order % to which we associate a sign in such a
way that the magnetization profile is rigid on these intervals and, according to the sign, they belong to the
+ or to the — phase. A description of the transition from one phase to the other is also discussed.

The main problem in the proof of the previous results is the “non locality” of the system, due to the
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presence of the random field. Within a run of positively magnetized blocks of length 1 in macro scale, the
ferromagnetic interaction will favor the persistence of blocks positively magnetized. It is relatively easy to
see that the fluctuations of the sum of the random field over intervals of order % in macro scale, are the
relevant ones. But this is not enough. To determine the beginning, the end, and the sign of a random
interval, it is essential to verify other local requirements for the random field. We need a detailed analysis
of the sum of the random field in all subintervals of the large interval of order % In fact it could happen
that even though at large the random field undergoes to a positive (for example) fluctuation, locally there
are negative fluctuations which make not convenient for the system to have a magnetization profile close to
the + phase in that interval.

Another problem in our analysis is due to the fact that the previously mentioned block-spin transformation
gives rise to a random multibody potential. Using a deviation inequality [26], it turns out to be enough to
compute the Lipschitz norm of this multibody potential. This is done by using cluster expansion tools to
represent this multibody potential as an absolute convergent series.

The plan of the paper is the following:

In section 2 we give a description of the model and present the main results.

In section 3 we implement the block spin transformation and express the Gibbs measure in terms of the
above mentioned functional. This functional can be written explicitly as a sum of a deterministic and a
stochastic part, and it has been studied in [13] for values of the inverse temperature 8 > 1 and magnitude of
the field 6 sufficiently small. In this section we go deeper into the analysis of the stochastic part extracting
the leading part and estimating the remaining by deviation inequalities for Lipschitz functions of Bernoulli
random variables. The cluster expansion plays a crucial role in order to get bounds on its Lipschitz norms. In
this way we extend the previous results of [13] to the maximal connected region in the 3,6 plane, containing
(1,0) in its closure, compatible with the existence of two minimizers for the Random Field Curie Weiss model
and control the fluctuation of the stochastic part on a larger scale.

In section 4, we show that the typical block spin profiles are rigid, or make one transition from one of
the minima to the other, over a macroscopic scale €/, for any € > 0, provided v is small enough. This is
an important intermediate result that extends the results of [13] on the scale 1/(yloglog(1/v)) to the larger
scale €/7.

In section 5, we analyze the stochastic contribution on the scale 1/ and prove probability estimates which
allow us to construct the above mentioned random intervals with corresponding sign.

In section 6 we finally prove the theorems stated in section 2.

In section 7 we prove some technical results on the deterministic part of the functional, used in section 4
and 6.

In section 8 we present a rather short, self contained and complete proof of the convergence of the cluster
expansion for our model. This is a standard tool in Statistical Mechanics, but application to this model is
new.

In section 9 we discuss some properties of the Random Field Curie Weiss model that are relevant for our
paper.
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2 Description of the model and main results

Let (2, A, IP) be a probability space on which we have defined h = {h;};cz, a family of independent,
identically distributed Bernoulli random variables with IP[h; = +1] = IP[h; = —1] = 1/2. They represent
random signs of external magnetic fields acting on a spin system on Z, and whose magnitude is denoted by
6 > 0. The configuration space is S = {—1,+1}%. If 0 € S and i € Z, o; represents the value of the spin at
site i. The pair interaction among spins is given by a Kac potential of the form J., (i—j) = vJ(v(i—j)), v > 0,
on which one requires, for r € IR: (i) J(r) > 0 (ferromagnetlsm) (ii) J(r) = J(—r) (symmetry); (iii)
J(r) < ce=I"l for ¢, ¢ positive constants (exponential decay); (iv) [ J(r)dr = 1 (normalization). For sake
of simplicity we fix J(r) = Wjj, <1 /9.

For A C Z we set Sy = {—1,+1}"; its elements are usually denoted by o; also, if o € S, op denotes its
restriction to A. Given A C Z finite and a realization of the magnetic fields, the free boundary condition
Hamiltonian in the volume A is given by

HW(JA)[w]z—% S G- oo — 03 hilwlo, (2.1)

(i,4)EAXA €A

which is then a random variable on (9,4, IP). In the following we drop the w from the notation.

The corresponding Gibbs measure on the finite volume A, at inverse temperature 5 > 0 and free boundary
condition is then a random variable with values on the space of probability measures on Sy. We denote it
by 118,0,4,a and it is defined by

1
148,0,7,0(00) = Zooin exp{—BH,(op)} oA € Sa, (2.2)
20,77,

where Z3 ¢ 4,a is the normalization factor usually called partition function.
To take into account the interaction between the spins in A and those outside A we set

W, (oa,0ne) = Z Z Jy(i = j)oio;. (2.3)

i€A jEAC

If 6 € S, the Gibbs measure on the finite volume A and boundary condition & is the random probability
measure on Sa, denoted by p7y  , and defined by

1

O'A(‘
Zﬂ 0,v,A

1o (o8) = exp {—B(H, (o) + W, (0a,5ac))} (2.4)

where again the partition function ZZAG JA 1S the normalization factor.

Given a realization of h and v > 0, there is a unique weak-limit of pgg~.a along a family of volumes
Ap =[-L,LINZ, L € IN; such limit is called the infinite volume Gibbs measure pi5,9~. The limit does
not depend on the boundary conditions, which may be taken h-dependent, but it is a random element, i.e.,
different realizations of h give a priori different infinite volume Gibbs measures.

As in [15] and [13], our analysis of the large scale profiles under pgg in the limit of v | 0 involves a
block spin transformation, which transforms our microscopic system on ZZ into a macroscopic system on

1

IR. Since the interaction length is 77, one starts by a suitable scale transformation such that on the new
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scale, which we call the macroscopic scale, the interaction length becomes one. Therefore, a macroscopic
volume, always taken as an interval I C IR, corresponds to the microscopic volume A(I) =~y~'I'NZ. The
results will always be expressed in the macroscopic scale. The block spin transformation involves a “coarse
graining”. Before making this precise let us set some notations and basic definitions, mostly from [13].

Given a rational positive number §, Dy denotes the partition of IR into (macroscopic) intervals As(z) =
((x — 1)d, 20] where x € Z. If I C IR denotes a macroscopic interval we let

Cs(1) ={x € Z; As(x) C I}. (2.5)

In the following we will consider, if not explicitly written, intervals always in macroscopic scale and Ds—
measurable, i.e., I = U{As(x);z € Cs5(I)}.

Given a realization of h and for each configuration o, we could define for each block As(z) a pair
of numbers where the first is the average magnetization over the sites with positive h and the second to
those with negative h. However it appears, [13], to be more convenient to use another random partition
of [15(33) N Z into two sets of the same cardinality. This allows to separate on each block the expected
contribution of the random field from its local fluctuactions.

The coarse graining will involve a scale 0 < 6* = 0*(y) < 1 satisfying certain conditions of smallness and
will be the smallest scale. The elements of Ds- will be denoted by A(z), with 2 € Z. The blocks A(z)
correspond to intervals of length 6* in the macroscopic scale and induce a partition of ZZ into blocks (in
microscopic scale) of order §*y~!, hereby denoted by A(x) = {i € Z;iy € A(z)} = {a(z)+1,...,a(z+1)};
for notational simplicity, if no confusion arises, we omit to write the explicit dependence on v, d*. To avoid
rounding problem, we assume , that v = 27" for some integer n, with §* such that §*y~!
that a(z) = 26*y~ 1, with z € Z We assume that §*y~! T 0.

Given a realization hlw] = (h;[w])icz, we set AT(z) = {i € A(z);hilw] = +1} and A~ = {i €
A(z); hilw] = —1}. Let A(z) = sgn(|A1 (z)| — (2v)~16%), Where sgn is the sign function, with the conventlon
that sgn(0) = 0. For convenience we assume 6*y~! to be even, in which case:

is an integer, so

PA\z)=0=2""" (527;/2). (2.6)

We note that A(z) is a symmetric random variable. When A(z) = £1 we set

l

o) =inf{l>a() 1 > TopeeEy ) =07 /2) (2.7)
j=a(z)+1
and consider the following decomposition of A(z): B ®)(z) = {i € AA@)(z);i <i(z)} and B~ (z) =

A(z) \ B*®)(2). When \(z) = 0 we set BT (z) = At (x) and B~ (z) = A= (z). We set D(z) = AN (z)\
BM®)(z). In this way, the sets B¥(z) depend on the realizations of w, but the cardinality |B*(z)| = 6*y~1/2
is the same for all realizations. We define

m® (£, x,0) 27 Z 0;. (2.8)

'LEBi(:L’)

We have )
e E = —(mS” 5T
5 oi =3 (m® (+,z,0) +m° (—,z,0)) (2.9)

i€A(x)
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and

ol _ 1, s 5* 27y
ﬁz hioi = 5 (m" (+,2,0) =m (—,x,a))—&-)\(x)(s—*lz 0. (2.10)
i€A(x) i€D(x)

Given a volume A C Z in the original microscopic spin system, it corresponds to the macroscopic volume
I =~A ={vi;i € A}, assumed to be Ds-—measurable to avoid rounding problems. The block spin transfor-
mation, as considered in [13], is the random map which associates to the spin configuration o, the vector
(m?® (x, 0))zecs- (1), Where m® (z,0) = (m® (+,z,0),m® (—,z,0)), with values in the set

4y 8y 4y \?
Ms-(I) = H {_1’_1+6_*’_1+5_*""’1_5_*’1}' (2.11)
z€Csx (1)

As in [13], we use the same notation j3¢ 4,4 to denote both, the Gibbs measure on Sy, and the probability
measure it induces on Mg« (I), through the block spin transformation, i.e., a coarse grained version of
the original measure. Analogously, the infinite volume limit (as A T Z) of the laws of the block spin
(m®" (2))sec,. (1) under the Gibbs measure will also be denoted by 15,0,

If lim, o 0*(y) = 0, this limiting measure will be supported by

T ={m = (m1,mg) € L™®(IR) X L= (IR); |m1]lco V ||m2|lcc < 1}. (2.12)

To denote a generic element in Mg« (I) we write

mi" = (m%" () secy. 1) = (m () md (@))acere 1) (213)

Since I is Ds«— measurable, we can identify m¢ with the element of 7 which equals m® (z) on each

A(z) = ((x — 1)6*,26*] for x € Cs-(I), and vanishes outside I. We denote by T the linear bijection on 7
defined by

(Tm)(z) = (—ma(x), —my(x)) Vo € IR. (2.14)

As in [13], the description of the profiles is based on the behavior of local averages of m® () over k
successive blocks in the block spin representation, where k > 2 is a positive integer. Let § = ké* such that
1/6 € IN. Given ¢ € Z, recalling (2.5), we define the random variable

Lif Yaees(e-1.0) 5 > weCse (((u—1)5,u6]) [m®” (x) = mplh < ¢

5,8(p) = . x
() = i Vuec,(e-1.0) 5 2 weCsn (u—1)5ud)) Im?” (z) = Tmpllh < ¢ (2.15)
0 otherwise,

where mg = (mgp.1,mg2) and Tmg = (—mg2, —mg,1), see (9.26), correspond to the equilibrium states for
the random field Curie Weiss model and ¢ € (0, mg g].

We say that a magnetization profile m? (), in an interval I C IR, is close to the equilibrium phase T,
7=1or 7 = —1, with tolerance {, when

() =m, Ve InZ} (2.16)

In the following we will use always the letter ¢ to indicate an element of ZZ. This will allow to write (2.16)
as {n>¢(0) =7,V € I}.

Given a realization of h, we would like to know if “typically” with respect to the Gibbs measure we have
7%¢(0) = +1 or n%¢(0) = —1.
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In [13], it was shown that for almost all realizations of h, typically with respect to the Gibbs measure, the
magnetization profiles exhibit runs of 7%¢ = +1 (and runs of n*¢ = —1) and that a profile with an n%¢ =0
between two runs with the same sign is strongly depressed.

Here we have to understand the localization of the end points of such runs, which is random (h—dependent)
even in the limit v | 0. Our main theorem (Theorem 2.1) describes the right scale of the runs and how they
are located, for a set of overwhelming probability of realizations of the random magnetic field. It will be
clear that one can get almost sure results by just taking suitable subsequences v | 0. However, the estimates
reflect our limitation: for such subsequences our description looses in precision in terms of the random Gibbs
measures.

The study of the Random Field Curie-Weiss model, see section 9, allows us to exhibit the maximal
connected region of the 3,6 plane containing (1,0) in its closure, where the system has two and only two
equilibrium states. We call this region £ and all our results for the Random Field Kac model will be valid
in this region.

In Theorem 2.1, we prove that for all w in a subset {1, of overwhelming IP-probability, n><(0) is “deeply”
inside a run of order 1/ whose sign is well defined. We are not able to pin down exactly the endpoints
of a run, but we can identify for each of them a small region that countains it, whose size can be bounded
uniformly with respect to the realizations of the magnetic fields by p/~ for a suitable p = p(v) that tends to
zero as v | 0.

In Theorem 2.2, we extend our analysis to any finite number of consecutive runs on the left and on the
right of the one that contains the origin. We prove that all the runs have size of order 1/, two consecutive
runs have alternating signs and between them there is a small region bounded by p/~.

In Theorem 2.4, we prove that between two consecutive runs there is just a single run of 7%¢ = 0 whose
length is much smaller that p/~.

Theorem 2.1 . Given (8,0) € &, there exists a vo(5,0) such that for all 0 < v < v(53,0) and for suitable
values of 6* > 0,0 > 0,(s > 0,a" > 0, there exists 1, C Q with

1\

P >1— (= (2.17
121~ (57) :

where §(.) is a suitable positive increasing function such that limgieo () = +00.

For all realizations of the fields w € Q., we can construct explicitly a random measurable pair (Io(w), To(w))

where 1o(w) € {—1,4+1} and Ip(w) is a random interval that contains the origin such that for all x >0

IP(w e Qp:y|Ip(w)| > z) < 4de™*¢ (2.18)

<

IP(we Qyy|lh(w)] <z) <2 =, (2.19)

where ¢ > 0,¢' > 0 are functions of 3,0.
For any w € Q, we have

B_ 1
146,60, [W € Io(w) N Z,n>(0) = To(w)} >1—e 730/, (2.20)

Moreover the interval In(w) is mazimal, in the following sense: If J is an interval, Iy(w) C J, |J\Io(w)| > 45,

with p = (ﬁ) for suitable a”’

g0V € JN Z7n6’C4 (0) = 7—0} <e v9(/v), (2.21)
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Remark:

It follows from our analysis that 2., is measurable with respect to the o-algebra o(h;,i € [—Q /7%, Q/+?])
where Q = exp %. Furthermore Iy(w) is measurable with respect to the trace o—algebra o(h;,i €
[—Q/7%,Q/~*))NK,. Therefore to decide if typically 7%¢(0) = +1 or %¢(0) = —1, it is sufficient to know the
realization of the random magnetic field in the region [-Q/~v2,Q/~?]). A possible choice is §(x) =1V logz,
in which case we have @ = (log(l/ﬂy))m.

Our next result is a simple extension of the previous theorem.
Theorem 2.2 . Under the same hypothesis of Theorem 2.1 and with the same notations, for all k € IN,
there exists €1y 1, C ), with

Py ] 21—k (g(11/7)> (2.22)

such that for w € Q0 , we can construct explicitly a random (2k + 2)—tuples

(]_k(w), L), To(w)) (2.23)

where I;(w), —k < j < k are disjoint random intervals, Iy(w) contains the origin and they satisfy for all
z >0

P

weQyk: sup v|j(w)| > x} <42k +1)e™ "¢ (2.24)
—k<j<k

T i < _Cw_/.
P [w € Qi _klgjfgk’ﬂlj (w)| < m] < (2k +1)2e

Moreover
k
inf(14(w)). sup((@)]\ U Hiw)| < @k +1)7, (2.25)
j=—k
where p is given just above (2.21). For any w € Q. 1, we have
. _B_1
.0 Vi € {—k,+k), Ve € [(w), 4 (0) = (~1mo(w) | 21— 2ke 77O, (2:26)

In the previous theorem nothing is said about what happens in the region between two consecutive

intervals with different signs, a region that has a macroscopic length smaller than p/v by (2.25). To describe
it we need to introduce the notion of a single change of phases in a given interval.
Definition 2.3 . Given an interval [{1,03] and a positive integer Ry < |la — 1|, we say that a single
change of phases occurs within [(1,0s] on a length Ry if there exists Ly € [(1,0s] so that n®¢(€) = n®¢(4y) €
{=1,4+1},Y¥€ € [l1,0y — Ra]; n°¢(€) = n®(be) = —n%<(¢1),¥€ € [lo + Ra,ls], and {£ € [ly — Ra,ly + Ra] :
n>$(£) = 0} is a set of consecutive integers. We denote by Wi ([¢1, 2], Rz, ¢) the set of all configurations n°¢
with these properties.

In other words, there is an unique run of n%¢ = 0, with no more than Ry elements, inside the interval
[¢1,¢3]. Our next result is
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Theorem 2.4 . Under the same hypothesis of Theorem 2.2 and with the same notations, for
Ry = (3(1/7)" (227)

for a suitable ¢ that depends on (3,6, for any w € Q. i, we have

M?ﬂﬁ{ (1 Wa(lsup(Z;(w)), inf(I;41)], Ra, Ca) > 1 —2ke™ 770D, (2.28)
—k<j<k-1

Note that the regions where the changes of phases occur have at most length Ro (in macroscopic units)
and we are able to localize it only within an interval of length p/v >> Ry. This means that up to a small
probability subset, we are able to construct an interval of length p/v where does it occur within a scale Ro,
but we are not able to determine where it occurs within this interval.

Remark. (Choice of the parameters) In this remark we will clarify the meaning of “suitable” that
appears in the statements of the previous theorems.

The main parameters appearing in the problem, besides 3,60 and v, are 6*, § and (4. The proof of each
theorem, proposition or lemma in the sequel will require some specific bounds on these and other auxiliary
parameters. The bounds involved are listed in section 6, see (6.2) until (6.7) and (6.11), which give a set of
inequalities that intertwine all of them. Therefore it is necessary to check their consistency.

A way to implement these bounds is to express all auxiliary parameters, see (6.66) until (6.69), in terms
of a “suitable” positive increasing function g(6* /), with limgje g(z) = co. The main reason to do this is
to have the simplest expression for the Gibbs measure estimate (2.20) and the probability estimate (2.17).

After this choice we are left with the following conditions: there exists a o = (o(5, 6) such that

1

w3, O g e(Ty < S (229)
where x(3, ) satisfies (9.25),
ggm(%) < SO (2:30)
and
B e ) 4

where g is such that g(z) > 1,g(z)/z < 1,Vz > 1 and lim,q0 2718 (z) = 0.

The condition lim 1 7 1g38(2) = 0 comes from an explicit choice of § and of the auxiliary parameter (5
as functions of g, and the constraint (6.5) that has to be satisfied.

A possibility is to start choosing 6* = 7§+d* for some 0 < d* < 1/2, having in mind (2.30), and then
choose g. Any positive increasing function g, slowly varying at infinity, can be modified in a finite region of
the positive axis to satisfy the above conditions. When g is slowly varying at infinity, the function g(1/7)
that appears in Theorem 2.1 is just g(v_%_d*). When g is not slowly varying but is a suitable polynomial,
g(1/7) can still be simply expressed as a power of g(6*/v). A possible choice is g(x) = 1V logz or any
iterated of it.

Note that the convergence of the cluster expansion requires only (6*)?/y < 1/(6¢33), cf. Theorem 8.1 but
the actual constraint (2.30) is stronger to suitably bound the Lipschitz norm of the multibody potential.

The value of 6* in this paper is different from the one chosen in [13]. There, to control the many body
potential induced by the block spin transformation, a rough estimate proportional to the volume was used.
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§* ~ yloglog(1/~) was taken to describe the behavior of the system in volumes of the order 1/(yloglog(1/7)).
Note that such a choice of ¢* is incompatible with (2.31).

In this paper, via the cluster expansion, we get an explicit expression of the many body potential and
therefore more freedom in the choice of §*. The results of [13] were valid only for € suitably small and
this freedom in the choice of 6* is crucial to get the extension to value of 3,6 in the whole region &, see
Proposition 3.5 and comments before it.

The constraint (2.29) allows to take (4 as a function of §*/ that goes to zero when v | 0.

Finally the choice of the numerical constants (such as 2'3) is never critical and largely irrelevant. We have
made no efforts to make the choices close to optimal.
3 The block spin representation

With Cs(V) as in (2.5), let ©¢ denote the sigma-algebra of S generated by m{ (o) = (m® (z,0),
x € Cs-(V)), where m® (z,0) = (m® (+,z,0),m® (—,z,0)), cf. (2.8).

We take I = (i,i%] C IR with ¥ € Z. The interval I is assumed to be Ds-—measurable and we set
OtI={zeRit <ax<it+1}, 0 I={relRi —1<z<i },and 0l =9tTUOI I.

For (m$ ,mg;) in Ms- (I UOI), cf. (2.11), we set m® (z) = (m{ () +m§ (2))/2,

. 5 e
E(mj ) = 5 > Js(z = y)m® (2)m® (y), (3.1)
(2,y)€Cs+ (1) X C (1)

and

Em§ mli)=—0 S Sy (e—yid (@@l (), (3.2)

mECa*( ) YyECs+ (O£1)

where Js« (z) = §*J(6*x). It is easy to see that

1 X
Hy(oy ) +0 > hioi=—Em}) + log [ I 1 5U(”A<w>v“A<y>>], (3.3)
iey~1I v zE€Cs+ (I) yECsx (I)
where
U(0a@), 0a)) = — Y[I(Vi = jI) = J(6* |z — y|)] 0. (3.4)

i€A(z),jEA(Y)

Since the interaction is only between adjacent blocks of macroscopic length 1, see (2.3), we see that for all
intervals I, for s = 4+ or s = —

1 R -
sup . sup Wﬂ/(0771[‘0'771551) - 7E(m§ 7m§851) < 5*7 17 (35)
771I€M‘5* (m‘} )(7 *16516M (md”) Y

where M (m9 ) ={o €y~ T :m® (z,0) =m® (z), Vo € C5-(I)}.
Recalling (2.10), and using (3.3) and (3.5), if F¥ is a ¢ -measurable bounded function and mg, €
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M- (0I), and pg o (F|29;) denotes the conditional expectation of F9™ given the o—algebra X3, we have

Bos*
eiw%

w0y (F* | S57) () =

Z3.6..1(my;)
« Z o (m?‘ )e—g (E(mi* HEmS mf)— 28" Zzecé* (I)(m‘ls* (x)—m3" (x)))
mS" EMgx (1) (3.6)

260 (z) >, oo
X Z H ]I{m‘s*(ozl,o):m“(zl)}e €D(xq)

o —17 21€Csx (I)

X H H e_ﬁU(UA(zz)vUA(yQ))’

x2€Csx (I) y2€Cs+ (1)

where

~2 (Bm " BOm” -2 3 (8" @)= ()

z€Cgsx (1)

Zomor(mhy) = Y, e

m3” €M« ()

280X (x1) . o
x > I T roymms @y © Liene (3.7)
0,—17 1ECsx (1)

X H H e BU(0A@2)TA ),

22€Csx (I) y2E€Csx+ (I)

Equality (3.6) has to be interpreted as an upper bound for £ = +1 and a lower bound for + = —1. Given
m$", we define the probability measure on {—1,+1}7" 1 by

Zﬁe)\(zl)z_ o
ZO’ 1 Hw Cs+ (I I m8* (z1,0)=m?" (z1)}€ ieb(ey) f(CT)
B, [f] = =0t tn € () T ro)mm T ()} . (3.8)

2607 (1) > oy
2o 1, Harecs () Tm* (@1,0)=mo" (21)3¢ 2eiepiy

Inside the sum Emﬁ* in (3.6), we divide and multiply by

Z H ]I{m5*(acs,a):m‘;*(ms)}€2ﬁ0)\(xs)ZieD(ra) i

0y—15 23€Cs+ (I)

to get

Bos*
. ei;%

& )
Lso. (F za,) miy—
o | (mb1) Z3,0.,1(md7)

05*

) Fﬁ*(mé*)e‘g(E("L§*>+E(m?*77”%?>— : Zzeca*<I><m‘i*<x)—m§*<w>>)

X
mi* EMgx(I) <39)

—BU(0 4 o )
logIE s+ e (x2)°7 A(y2)
oL, |

260X(z3) Y, O
X Z H ]I{mé*(azg,a):m5*(z3)}e eD(e3) 7t
Oy—11 x3E€Cs* (I)
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Notice that for each x € Cs+(I)

S e ()
md* (z,0)=m" ()} — ms”™ (z m ) :
{ ( s ) ( )} 1+ 21 ( )5* 1/2 1+ 2 ( )5*,}/71/2

0685*771

Note that the last sum ) L, in (3.9) factors out into a product over the intervals of length §*y~1,
indexed by Cs+(I). Let us call

E Z goc mo* (Jc) ( )) (311)

z€Csx (I)

where for each x € Cs(I), G, 5+ () (A(z)) is the value of the cumulant generating function:
Gemo* (z) (A(2)) = - ﬁ log lEz ,md” (m)( A ZieD(l) ‘71')7 (3.12)

of the “canonical” measure on {—1,+1}4)  defined through

20 P(O) L (,0)=ms* ()}
>0 Lms® (2,0)=m** (2)}

the sum being over o € {—1, +1}4®).
With these notations, (3.9) becomes

+826* ~ . .

* * * * _B m‘S m‘S m(S m‘S

13,0, (F§ | E@I) (mgl) — e = F5 (m5 )e v{]:( 7 Imy)+vG(my )+V (m; )}7 (314)
Za01(mar) o S0 )

where
X « X 5 " 06* « «
Fonf ) =B(md )+ Bnd,mi) - Y2 (nd (@) —mf (@)
xE€Cs+ (I)
3.15
B gl
* 0g 1+md* (z _ 1+m$" (= * m— ’
oy B I @ sy )\ @) 5
and )
V(m{ )= V1<m1,h>=—gloglEms*u>[ II e PUla@7aw)], (3.16)

z#y
@,y€Csx (I)XCsx (I)

i25

That is, up to the error terms e , we have been able to describe our system in terms of the block

spin variables giving a rather explicit form to the deterministic and the stochastic part.
The following lemma gives an explicit integral form of the deterministic part of the block spins system.
For m € 7, let us call

Fimslmon) = [ faom)do+ 5 [ [ 3@ =) - ) dody
w3 [ o [ 96—l - m) dy
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Lemma 3.1 . If m{_ 5, € Ms-(1USI) and m(r) = m® (z) forr € ((x —1)6*,26*] and x € Cs-(IUDI), one

has
~ * « ~ * s 2 vy o*
|F(m3 Imyp) — F(mrlmor) + 5 Yo W] D] Jsle—y) < |55 log —- (3.18)
yECs- (O1) 2€Can (1) 7
Proof: Since
iy ji—ji<i/2y — Lsrja—yi<i/2p] < Lo p1/2<6% 0 —y|<6*+1/2) (3.19)
we have that
5* 5
U0 a@):0a@)| < 7(7) {1 /2— 5+ <5% ja—y|<1/246"}- (3.20)

Given m{ € M- (I), we easily obtain from (3.20) that, on M® (m§ ):

1 * 1
H(oyap)+0 > hiai—;E(m‘}) =3 1og[ I 11 eﬁU(gAWAm)} < |Il6*y~ (3.21)

iy 11 zE€Cs+ (I) yECsx (I)
Using Stirling formula, see [30], we get

1 . . ~ 5*y1/2 5*y1/2
6" —(Z(my ) +Z(my)) -6 —*10g<1 mé* (a 1+mi* (x

zE€Cs+ (I zE€Cs+ (I

(3.22)

*

1 .7 )
< 2L 10g &,
fﬂl 5 g7

where Z(-) is defined after (9.6). Recalling the definition of fgg(m), cf. (9.6) and elementary arguments to
approximate the sum in (3.1), (3.2), and (3.15) by the corresponding terms in the integral (3.17), one get
(3.18). The lemma is proven. W

Concerning the stochastic part in (3.14), note that there are two random terms in (3.14): G(m¢ ) and
V(m‘s*). To treat them we will use the following classical deviation inequality for Lipschitz function of
Bernoulli random variables. See [26] or [13] for a short proof.

Lemma 3.2 . Let N be a positive integer and F be a real function on Sy = {—1,4+1} and for all
ie{l,...,N} let

F(h) — F(h)
10 F |00 = sup — (3.23)
(hohyhy=hy vi#i  Pi = Bl
If IP is the symmetric Bernoulli measure and |0(F)||%, = Zf\il 10:(F)||2, then, for allt >0
2
IP[F—IE(F)>t]<e oML (3.24)
and also
+2
IP[F — IBE(F) < —t] <e 00N, (3.25)

When considering volumes I that are not too large, we use the following simple fact that follows from
(3.11) and (3.12)

IG(m ) <20 sup 3 ‘Z ai‘§29 3 ID()]. (3.26)

or€{=1L+1}/7 pecn (1) ieD(x) 2€Cyn (1)
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Lemma 3.2 implies the following rough estimate:
Lemma 3.3 . (The rough estimate) For all * > v > 0 and for all positive integer p, that satisfy

12(1 + p)d™ log 1 <1 (3.27)
v

there exists Qrp = Qre(y,0%,p) C Q with IP[Qrp] > 1 —~2 such that on Qrr we have:

sup 2irecs.n (P@)| — ED@)) _ /3(1+p) \/Vlog%

IC[—y~Py7] VI -

and, uniformly with respect to all intervals I C [—y~P,y7P],

. I 1
swp algmf )l <20 (/24 VAT imhog D) <oon (2 )

mg" eEMgx (I)

(3.28)

This Lemma is a direct consequence of Lemma 3.2, since |D(z)| = (|D(z)| — IF[|D(z)]]) + IE[|D(z)]] ,

|D(z)| = [ > ;e az) hal /2, and IE[|D(2)]] < $4/0* /7 by Schwarz inequality.
When we use the estimate (3.29), V(m§ ) is estimated using (3.21) and one has

sup  A|V(md)| < 6*|1). (3.30)
mS* €M« (I)

However when (3.29) and (3.30) give useless results, one can use Lemma 3.2 to estimate V(m{ ) and at
some point [|0;V (m®" ||oe will be needed.
In Theorem 8.1, with the help of the cluster expansion, we prove the following

Lemma 3.4 . For any finite interval I, let

Vi (’ITL?* ) h’) - ‘/I(m§* ) il)

10:Villoo = sup = (3.31)
(h,R):hj=h; Vj#i |l — hil
Then, for all 3 >0, for all §* > v >0, such that
(6%)° 1
< 32
v 6e3p (3.32)
h
o sup sup [|0;Vr||oo < li (3.33)
Tey ep 1l = T g :

where S is given in (8.4), 0 < S < 663ﬂ(6;)2'

Together with the above estimates for V7, we also need an explicit expression for G(m{"). Since D(x) C
B=2@) (), G omo* () (A(x)), see (3.12), depends only on one component of m?” (x), precisely on m% .. In
@)

fact, we have

280A() Y. o
o ()\( )) 1 | de{,l’Jrl}B—*(r)(w) ]I{m‘g:r;(w) (ac,a):m%ié(z) }6 €p@
z,m%" (z) r)) = _E og

, (3.34)

ZUG{—l,-ﬁ-l}B—A(m)(”") ]I{m%:,)\(w) (Iag):m%y;x(w) }
2e) 3+A(z)

2
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since the sums over the spin configurations in {—1, —|—1}BM$>(”$) — the ones that depend on m‘z*_x(m) — cancel
322@)

out between the numerator and denominator in (3.13).

The explicit expression of G, .5+ () (A(x)) that one gets using (3.12) and (3.13) is almost useless. One can
think about making an expansion in 36 as we basically did in [13], Proposition 3.1 where 56 was assumed
to be as small as needed. Since here we assume (3,0) € £, one has to find another small quantity. Looking
at the term 3, () 0 in (3.12) and setting

p(z) = p(z,w) = |D(x)|/|B**) (z)| = 29| D()| /67, (3.35)
it is easy to see that for I C IR, if

1/2
2y | 7] 1
S N P .
(5*) 08 5 = 39 (3.36)

we have

[

zp[ sup p(x)>(27/5*)%] < e 51(5)? (3.37)
x€Csx (1)

Depending on the values of m9,, ., , Gu.ms* () (A(z)) has a behavior that corresponds to the classical
2

Gaussian, Poissonian, or Binomial regimes, as explained in [13]. However, as we shall see in Remark 4.11,
we need accurate estimates only in the Gaussian regime.

Let go(n) be a positive increasing real function with lim, . go(n) = oo such that go(n)/n is decreasing
to 0 when n T oo.
Proposition 3.5 . For all (8,0) € &, there exist vo = vo(5,0) and do(8) > 0 such that for 0 < v < 7o,
v/0% < do(B), on the set {sup,cc,. 1) P(¥) < (2v/6%)1 /4, if

* . —1
5" cq_ (90 /2),  16p(x)0 .
|m—3+3(1) (@) < ( 0*y~1/2 v 1 —tanh(2460) )’ (3.38)
then
L D @2s0p@) ) @0
gr,m‘s* (z) (A(J?)) -3 1Og :
6 \IIO,O,m‘;Jré(m) (x),v1 (339)
1 . .
— E|D(m)| [log cosh(230) + log (1 + /\(x)miJré(x) () tanh(2ﬂ9)) + @(m§§+é(m) (), 2/\(3?)@9,1?(1‘))} )
where
(s (2), 2(2) 30, p(a))| < 21 " 32661 + B6) (3.40)
MSir (), 2XM(2) B0, p(x))| < | == _ .
g ! 5) = me (@))?(1 — tanh(256))
and
v 5%
A(z)2ﬁ0,p(m),m3+/\(z) (z),v2 18 2,_)/ 1/4
log : < + (> c(B9), (3.41)
\110707m53*+x(m> ()1 go(6*y~1/2) o*

with ¢(50) given in (3.55).

14/july/2005; 12:06 800



Proof: The general strategy of the proof is similar to that of Proposition 3.1 in [13]. However, since
there are important differences we give some details. We introduce the “grand canonical” measure on
{-1, +1}B_MI)(I), with chemical potential v € IR, given by

v . Xz O;
Eop s [f(a)e 2iienr) o) ]

IE, ., (f)= , (3.42)
Op» {eyzieB—”“(m) 01}
B=XM@) ()
where ZEUB%(E)(') is the Bernoulli uniform on {—1, —|—1}B_Mz)($).
Note that taking v = vy with m9, ., () = tanh v in (3.42) and calling
1
Mp-a@) () (0) = B2 ()] ;)( )C’i (3.43)
1€B~AT) (¢
one gets
IE, ., [mex(z)(x)(O')] = mg+;(m) (x). (3.44)
On the other hand, for v5 such that
MSiri () = p(z) tanh (v + A(2)266) + (1 — p(z)) tanh vy, (3.45)
2
one gets
_lEl$ Vo |:mB’\(T)(a:) (J)GA(QJ)Zﬁ@(ZiED(M G'i):|
5
= My (T) (3.46)
IE,., {e)‘(z)zﬁe(zienmai)} ?
and
2
* A(x)230 . o;
E.. l(mBW(z)(U) i (@)) e >]
IE,,., |:€A(m)2ﬁe(ZiED(m) ‘”)} (3.47)
1 1
=p(x +(1-pa)—— =02 .
P )COShQ(VQ + \(x)230) (1 =p( ))COShQ(VQ) Al=)266
Thus if we define
Az)260 > o
IE, ., |e ien@ I e i
e [ V2= ZieB—A(w>(m>(”i’m%+;<x> (I))—O}] (3.48)
_ 3.48

Y @)280,p(2),m87 ) (@)v2 =
B .., eA(m)2BBZi€D(m)m:|

and

(M (2), A@)280, ()

:6_*
=2

cosh(vz + A\(x)250)
cosh(ry)

(3.49)
+ (1 - p())log ﬁ) ,

((1/1 — 1/2)m631;(m> (z) + p(x) log cosh(vy)
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a simple computation gives

) ‘I’Mx)zﬂe,p(z),mz;m(zm

G ) (@) = = o - G (@) A@200,p(). (350

3+)\(1)( )
By using elementary formulae on hyperbolic tangents and cosines, one can check the following identity

B (@), Mz)266. p(x)

) (3.51)
=|D(z) [log cosh 236 + log (1 + Mz )mgﬂ(,) (x )tanh(2ﬁ9)) + @(m‘Lg(z) (2), 2A(m)ﬁ9,p(w))} ,
where

|D(@)| @M (2), 27(2) 30, p(x))

= ;5; (v — yg)m‘saﬂ(m) (x) + g—;log (1 + m‘a;& (z) tanh(vg — 1/1))

+ g—;log cosh(ve — v1) (3.52)

5 () tanh(260) (1 — (M, A, (x))?) tanh(vy — vy)
+ ap(w) log |1+ —

(1—1—)\( I (@ )tanh(259)> <1+m3+w () tanh (v _V1)>

To study (3.51), we need extensions of results proved in [13]. Recalling (3.47) and using again elementary
formulae on hyperbolic tangents and cosines one can check that

Ry = (1= (i (@))?) [1 = p(@)(1 = p(@)Sp(2). M (2))] (3.53)

where

0 < S(pla) miise (@) < (1 - (mEse ())?) (96), (3.54)

with
tanh?(236)(1 + tanh?(236))?

c(B8) = [1 — tanh?(236)][1 — tanh(236)]6"

(3.55)

Following the arguments of the proof of Lemma 3.3 in [13] and assuming ~v/6* < do(8) for some well
chosen do(3), it is long but not too difficult to check that

4p(x) 56
vy — 11| < - . 3.56
| ? 1‘ 1- (mg+A(z) (1,))2 ( )
. . . 4p(x) B0 i

Using the fact that (3.38) implies that a (mst (2))%)(1—tanb(259)) < 1, recalling (3.51), and using Taylor

expansion we get
S(m% ) (), A(2)266, p())
2 5 — p(z) |log cosh 236 + log (1 + Az )m3+x(x) (z )tanh(2ﬁ€)>}
2 (3.57)
32p°(x)B0(1 + 56)

¢! |m3+x(1) (z)])?(1 — tanh(239)) .
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For the proof of (3.41), use the following estimates:

/
2 66 2
g = 1+ + | — 0 .
A(x)zﬁe,p(x),mHM) (2),va ﬁWIB_’\(”)(CBHUz(I)z@o ( 700 172) (5*) c(B )) (3.58)

with ¢(30) given in (3.55). This estimate replaces the one in [13], see Proposition 3.4 there, where a factor
2 is missing.
To get (3.58), we take

log go(6*(27)71)

p1 = \/
TN(x)280V/ 0% (27)~

and call

(p1) =

1 [P ik BT (@) mS ) (@)
Y\(2)260,p(w),m?

[ e S5 D (M @)260, plx), k) dk, (3.59)

3+)\(x) (@),v2

—pP1

where

. 2@ ()\D(z)]
cosh(\(z)200 + vo — ik) D)l cosh(vg — ik) |5 @)\
O(A(x)2060 k)= _ . 3.60
(A(2)260, p(z), k) [ cosh(A(x)206 + va) cosh(vs) (3.60)
We introduce the two quantities
1 [Tt kBT (@) |mY | o (@)
I = ¢ S (N ()20, plx), k) dk,
™ —T
1T MBI @m0 (361
Iy = — e 3D\ ()26, p(2), k) dk.
27 Jr—py
After simple algebra, using that m‘L Ay (T) = —1+ 5] B‘ for some [ € ZZ and elementary change of variables,
3@
one gets the crucial relation
Io + Iy = W\ (4)260,p(x),m? 3+A<T_> (@) (P1)- (3.62)
Now \I//\(x)zﬁg,p(m))mgm) (2)., defined in (3.48) satisfies
2
)\(a:)2ﬁ0,p(z), 3+A<I) (@)v2 = 2\11)\(95)2,69,;0(1), 3+A(z) (z),v2 (pl) + gpm (363)
where
~ 1 (7 ik| BTN (2)[m (o) ()
gpl = % [w ]I{p1<|k|§7r_p1}<1>()\(m)259,p(z),k)e Tz dk. (364)
To estimate (3.64), one use the fact that
cosh(z — ik) ’ < ex {_ 1-— cosg%)} (3.65)
cosh(x) 4cosh”z
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and that for k € [0, 7], 1 — cos(2k) > 2(1 — f—;)(kz A (k — m)?), instead of the wrong (3.39) in [13].

Using standard Gaussian estimates, one gets

~ 1 22 p1o2| B~ (2)|(1 - 53)
&y < 3 exp [— }
V21| B=A@) (z)|o, \ V7(1 = 55)p1o2+/|B=A@) ()] 2

To estimate Wy ;940 (p1) one makes exactly the same tedious computations as in [13] pg

p(@)mi o (@)
2

1434 and one gets at the end (3.58). W

4 The erigidity

We start by defining the set of profiles having runs of + or of —, with length at least %
Q _ (Q2—Q1)
Y Y 7
Q > 0 such that % and % are integers, ¢4 > (1 > 8v/0*, 1 > 4§ > 6* > 0, Ry > 0, n = £1, we define
A1 (Ag,n) = A1(Ag,0,¢1,C4,0%, 7,6, R1,m) as

Definition 4.1 . Given % > 0%, an interval Ag = [Q1,Q2]y ™! of length in macroscopic units

Al(AQ,r]):{m‘XQ:EIkEZN,Hm,...,TkE{&—i—l,&—kl...,@—l@—l};
€ € €

€
o

o= —Tk+1 = @,7‘1 <...<rmp,3q € [rii,(ri + 1)5] s.t.
€ € g v
1P (0) = n(~1)" " e € Cr([(rier + 1)5, g — Ri]), (4.1)

7" (g — Ry) = (=1)""'n, 0" (g + R1) = (—1)'n,

77‘5’(4 (£) = n(—l)i Ve e Ci[(¢; + R1) A %, %(riﬂ)}, fori=1,..., k}

and
«41(AQ) = Une{—17+1}A1(AQ,77)- (4.2)

Remark.

e The integer k > 0 represents the number of blocks of length R; within Ay where there is at least one
change of phases which means that 7% (q; — Ry) = (=1)""!n, n%%(g; + R1) = (—1)'n. There are no
restrictions on the profiles within the interval [¢; — Ry + 1,¢; + Ry — 1].

e r; is the index of the i—th block of length €/ in macroscopic units such that in [¢; — R1,¢; + R1] C
[ri$ = R, (ri +1)5 + Ra] we see at least one change of phases.

e R; will be chosen as an upper bound for the length of the longest interval where the system can stay out
of “equilibrium”, that is to have a run of 7%¢* = 0. This length is related to the parameters (i, d, by
Ry =~ (6¢3)71, see (4.22).

Another definition is needed to describe what happens in the intervals [¢; — Ry, q; + R1].
Definition 4.2 . Let Aj, = [¢1,£5] be an interval of length L in macroscopic units and § > 0, {4 > (1 > 8y/d*

as above. Forn =41 orn= —1 we set

WS (A, n) = {m‘XL:n% (L) =™ () =n, A, by <L<ly p>4(l) = —n} (4.3)

and W% (Ap) = WSS (Ap, +1) UWSHSa (A, —1).
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Given an interval I and a positive integer Lo we denote by

W1 L) = U wesa). (4.4)

L:2<L<L, A_LCI

The profiles in the complementary of this set do not have two changes of phases within an interval of
length smaller than Lo, uniformly along intervals that are within 7. We set

A(Aq) = A1(AQ) \ W (Ag, Ly). (4.5)

If Ly > 2R; the profiles in A(Ag) have exactly one change of phase within each interval [¢; — R1,¢q; + Ra].
The main result of this Section is the following:
Theorem 4.3 . Let (5,0) € £. We take (5,0) > 0 verifying (9.25), F* is defined in (7.5), and V(53,0)
given by (4.56). There exist 0 < vo = 70(5,0) < 1, 0 < do = do(5,0) < 1, and 0 < (o = (o(5,0) < 1, such
that for all 0 < v < 79, for all §*,6,(4, (1 with 6* > 7, v/0* < dy, 1 > > 0* >0, (o > (4 > (1 > 87/0%,
and @ > 3 that satisfy the following conditions

32 ,
Wﬁl < 0Cy, (4.6)

128(1 4 6) 2(5+ F*) [~

(5.0) = 5 < 5¢3, (4.7)
G > (5184(1 + ¢(36))? g) v (120(‘3;”;) (5;)2)2 (4.8)
for constants c(3,0) given in (4.65), and c(536) given in (3.55),
VlogQ < % 5(2;,305)’ (4.9)
if we call
R = % (4.10)
and

F |
b =nuro\ )

then for any interval Ag of length % and any € > 6%, there exists Qu = Qu(7,0%, Ag,€,0,(1,Ca) with

IP[Qy] >1—69° — % exp {_M} (4.12)

and for all w € Qy, we have

1.0 (A(Ag)) >1— (@)56—% [(=52echnF ] (4.13)

72

To prove Theorem 4.3, we represent the system in terms of block spins. This representation was used also
in [13]. However, the way to treat some error terms that appear at the very beginning of the computations
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is different, see (3.3) and (3.4). We first define the subsets of the complementary of A(Ag) where the above
mentioned changes do not affect the results already obtained in [13].
Let Ap = [€1,¢5] be an interval of length L = ¢5 — ¢; € IN. Let § > 6*, {4 > (1 > 8y/* be positive real
numbers.
Definition 4.4 . We set
Oy (AL = {9 () =0, YWeA NZ)}. (4.14)

Taking L < L a positive integer, let A = [0y, 03], A; C Ap. Define forn=+1 orn=—1:
RS (AL, L) = {PS (1) = P (L) = 5 } N O ([ + 1,62 — 1)) 0 (UALCALOS’C“(A E)) (4.15)

and Ry (Ap, L) = Ry (AL, L) URY (A, L).
Note that Rgf?l’g“ (AL, i) decreases in L, therefore UizlgigLRg:%hg (AL, i) = Rg’f]l’c“ (Ar,1).
We set
Ren= | U rYUU(AL), (4.16)

:2<L<|T| ALCI

U U 00 (AR). (4.17)

R: Ri<R<|I| ArCI

~

O(()XQ (Ia Rl)

Theorem 4.5 . Let (3,0) € £. There exist vo = v0(8,0) > 0, dg = do(8,0) > 0, and 0 < (p(5,6) < 1 such
that if 0 < v < v, 0* >, v/6* < doy, and p is a positive integer such that

1 1

there ezists Qpp = Qrp(y,6%,p) with IP[Qrg] > 1 — 2, such that for all 6,(1,(s with 1 > § > 6* > 0,
Co(B,0) > (4 > (1 > 8y/0*, and

53 > %(5* v \/gj*), (4.19)
8¢ > %Ch (4.20)

where k(3,0) > 0 satisfies (9.25), on Qrr we have

15,6 (UIC[_W,W] (0341 (I, Ry) UWSSi (I, L) uRg’Cl’C‘*(I))) <2 e T . (4.21)

with F* given in (7.5),

4GB+ FT)
=06 422

and e 1
Lo (4.23)

T 61t 0) 6V /T

The proof of Theorem 4.5 is the same as the proof of Corollary 5.2, Corollary 5.4, and Corollary 5.6 in
[13], with AF in [13] is equal to 2F* here. Moreover with a little work, one can make explicit the constants
depending on 3,6 that appear in [13]. Note that the condition (8, 60) € £ is weaker than the condition used
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n [13], however this will make no difference at all since we just use the rough estimate, see Lemma 3.3 to
treat the random field.
Let Bo([=y7?,77P], R1, L2) = Nic[—vy-r 4] ((’)g’Cl (I, Ry) UWSSa (I, Ly) U R%Ch@ (I)))C.On this set we

can only have runs of %% = 0, with length at most Ry and runs of n®%(¢) = n € {—1,+1}, with length at
least Ly. The next step is to prove that the length of the previous runs of n%% =75 € {1, +1} is indeed
bounded from below by €/~.

Definition 4.6 . Forn e {+1,—1}, {1 < Oy < ly <ty with3 <0, —0; <Ry 3<ly—105<Ry, let

WEHS (b, 0y, Uy 1) = {mily, 0™ (1) = 74 (0 + 1) = n>C (b — 1) = 5 (6) =1, 20
() = —n, VL€ [0y — 1,05 + 1]}

Proposition 4.7 . Let (3,0) € £. We take k(5,60) > 0 as in (9.25), F* > 0 as in (7.5), V(5,0) as in
(4.56), and c(B) as in (3.55). There exist vo = vo(5,0) > 0, do = do(5,0) > 0, and 0 < (o = (p(0,0) < 1
such that if 0 < v < 79, 0% >, v/0* < dp, and 0 < (1 < (4 < (o, 1 > § > 6* > 0 verify the following

conditions
128(1+6)(5+F*) [~

ot > S (4.25)
(1> (5184(1 +¢(89))? §1> v (120(‘;59) (5;) ) (4.26)

for a constant ¢(0,0) given in (4.65), if Aqg is an interval containing the origin, of length Q /v in macroscopic

units, with

1 [12e33
1 < — 4.27
VYlogQ < 5 «3.0)’ (4.27)
and € > 0%, then there exists Qy = Q4(8,0,7,(, 9, Ag, €) with
20 —Fr 4 _F
IP[Q4] > 1392 — Lo @TGAEBY - L 20VI(B,9) (4.28)
€ €
such that on 4, we have, for n = £1
*k IA 5 R? _ B
148,60, (U [e1.£2]CAG U[Zl B]Cler 6] ng,@(fl,ﬁl,ﬂg,fg)) < ;SQ@ 57 (4.29)
leg—e1|<ey—1 e v

In (4.29), the union U*™* refers to the extra constraints 2 < 571 — {0 < Ry, Uy — €~2 < Ry, with Ry given by

(4.22).

Remark.

e The constraint (4.27) is present since we use the rough estimate, Lemma 3.3, to control some terms. Note
that taking p = 1 + [log Q/log(1/7)], (4.26) and (4.27) imply 12(1 + p)d*log(1/v) < 1, when 7 is small
enough which is the condition (3.27) for the rough estimate. We will see that 4 C Qgrg.

e The constraint £y — 1 < ey™!

enters into play in (4.28), giving the terms proportional to ¢! into the
exponential.

e The uniformity with respect to the intervals inside A¢ gives the prefactors % in (4.28) and not %, since
a maximal inequality is used. The union in (4.29) contains at most R?e2Q~y 3 terms.

Proof: We split it in 4 steps.

14/july/2005; 12:06 807



Step 1: reduction to finite volume
Recalling (4.24), we define

R(n) = R¥ () = RO @y, Boym) = {mfy - oo e(0) =nve € [0, 8]}, (4.30)
and
WSS 0y + 1,01, 05,0, — 1) = {n® (6 + 1) = 0> (62 — 1) = n} N R(—n). (4.31)
We can write
ng’g((l,gl,gg,fg) = {7’]6’<1 (61) = '175’C1 (62) = ’I]} n ng’c‘l (61 + 1751,22,62 — 1) (432)

Let us first consider a volume A such that yA D Ag. Recalling (2.3) and (2.4), multiplying and dividing by
Z‘fwfla[eﬁl,@fl]

8.6,y 1[6141,65—1) W have

116,0,,A (VNVﬁ“C“ (fl,il,@z,éz)) -

1 —BH(c ) T\t -
e My e -1) s s, oz ool e
Zs9A Z {n% 1 (€)=n>1(L2)=n}“B,0,v,y =1 [(1+1,62—1] (4.33)

IANY— 1Ly 41,09 —1]

€7ﬁH'Y(U’Y’1 [21+1,42*1])7ﬁW’Y(0’W1 [£1+1,02-1] ’U’Y’l@[fﬁrllz*l])

Z ]IW51'<4(€1+1,571,C72,52*1) O —19[01+1,69—1]
Oley+1,69—-1] B0,y [l1+1,£2—1]

Since n%St(£1) = n%%1 (b + 1) = n%%1(ly — 1) = n®%1(f) = 0, using (3.5) and recalling (3.6) , we get

e—ﬁHw("wfl[zl+1,z271])—5wﬂr(‘7nﬁl[zl+1,z271]»‘77*13[21+1,22711)

Z ]IW,,CIl’44(51+17217EQ7E2—1) ZUW*16[21+1,€271]
Tler+1,62-1] B0,y 41,62 —1] (4.34)

B * * *
+24(6"+¢1) o ) g —
se’ H3.6.y Hwﬁlv%(elﬂ,el,ez,erl)|Za[e1+1,ez—1] (Mt +1,6,-1) = M),

where m4 (m_) is the constant function on %7 or 7 I with value m%* (resp. ng*).
Notice that for any A such that yA D Ag

1 —BH(o ) 9y—1ape e
E e My e L -1 [, s _ s g [_1+1, 2—1]
Z5.0.4,A {021 (L1)=n>1 (L2)=n}“B,0,v,y =1 [l1+1,62—1]

ANy~ L ey 41,851 (4.35)

< 18,708 (Lpypca (e)=poca (0)=n}) < 1.

Therefore, inserting (4.34) in (4.33) and taking the limit A T Z we get

13,0,y ( ~51’@‘(%17!71,!72,32))
(4.36)

8 5 ) * -
< e Gty (W,fl’c“(& +1,0,00,6,— 1) | Eg[el+1,ez—1]) (mg[e1+1,z2—1] = my).

To continue, recalling (3.7) and writing m$; = (m$_ ;,m?. ;), we set simply
_ stl My

23,0,,1 (mg*I = mSlvmg+I = mSz) =41 (4.37)
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when (ms,,ms,) € {m_,0,m;}? where m, and m_ are as above, and for m,;, = 0, we set in (3.7)
E(m‘}*,mg*,l) = 0 while for m;, = 0 we set E(mﬁ*,mgil) = 0. In a similar way, recalling (3.14), if F' is
9" —measurable we set

BY T, 8%, 6% _ §* §* 5*
o1 Ms 5\, 51 F(my Imy_ =msym? =ms,)+vG(m7 )+yV(m7 )
Z}n vt gy mé* eMg= (I) F(mj )e 7{ om 1 o }
stl,m52 = stl,m52 (438)
I I

Using the fact that n>¢(f;) = n%¢(£; — 1) and 7%¢(fy + 1) = 7%¢(f2) we can decouple the contribution
coming from the interval [Zl -1, by + 1] and restrict the configuration in the denominator in a suitable way
to get

K30,y (ng’44 (61 + 1,01, 0,05 — 1) | Eg[el+1,22—1]) (m681€1+1,€2—1] =my)

My, m_ 5.¢ _ 0,0 _ m_p,m 5,¢ _1) = 4.
< 6%8@ Z[eln+17gln_1] (77 1([1 + 1) - 77) Z[El’@](R( 77)) Z[Z’Z':laz’:—l] (77 1(62 1) - 77) ( 39)
> Moy 110, 5, _ 0,0 My, M 5, _ — :
Z[Zln-‘rl,él—l] (7] Cl (él + 1) - 77) 2[21722](73(77)) Z[Zzn-‘rl,zz—l] (77 Cl (EQ 1) - 7])

The first and the third ratio on the right hand side of (4.39) are easily estimated. Since 0 < ¢; — 0 < Ry,
0 < ly — {5 < Ry with Ry given by (4.22), using the rough estimate Lemma 3.3 and (3.30), it can be checked
that on Qgp, uniformly over all intervals [¢1,¢1] C [—y 2,7 7], we have

T T —Binf 4« _ ]}(mé* - [y, m_y)
nsM_n 5,C1 _ 8 _ {n% 61 (1 +1)=n} [e1+1,8,—11""" 1
Zy iy gy 7 (G 4 1) = m) - e%(8(1+0)R1\/5I*)6 o120 — < AT ot
MM s, — - N ’
Z[é:—ﬁ-l,%l—l] (77 ‘ (El + 1) o 77) e_%}—(T 2 mg,[21+1,2171]|m’7’m”)

(4.40)
where F(-) is given in (3.17) and we have used the fact that since 7712* fT’nT%* the boundary terms, see
(3.18),

0 LS5t (12
5 > [ (y)] > s (2 — y) (4.41)

y€Cs« (8[1+1,0,—1]) x€Csx ([L1+1,01—1])

cancel between the numerator and the denominator in (4.40).
Using the same arguments as in the proof of Lemma 7.3, see after (7.31), taking d = 2, it can be proved

that
~ 5* ~ 1—n

inf inf ‘F(m[él—&-l,zl—l]‘m”’ m_n) —F(T =

i 5* 5,¢ _
1< =0 <Ry m[[1+1jlfl]€{n L(€1+1)=n}

> F* — (4Lo + 2Ry)(1 + 0) <§* v \/55> :

where F* is defined in (7.5) and Lo = ﬁ log % with «(8,0) as in (7.4). A similar argument can be used
for the third ratio in (4.39), and we get

5"
m57[51+17gl—1] |mn’ mn)

(4.42)

My,M—n §,(1 —_ r:z,,,,m” §,¢1 _ _
Z[e1+1,t7171] M1 (b1 +1)=mn) Z[£2+1,£271] (1 (le —1)=1n) < e,g(zf*732(1+9)(R1+Lo),/él*)_ (4.43)

m,,m 5, — m, ,m 5, — — >~
Z[eli'l‘l,%l—l] (el +1) = 1) Z[Z;+1,22—1] (1€ (b2 — 1) = n)
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It remains to treat the second ratio in (4.39), that is

=2 {Fm, 104+9G(m3 )4V (m3 )
Z[(;Oe](R( 1) Zm?;emé*m) IR (—pye {Fomi, RV}

e - — (4.44)
Zj gy (R(m) -2 {f(vni.; 10)+7G(m?” >+w<m§-;>}
m” eM;- (o) L{R(m}E ’

where fv(mi-; |0) is as (3.15) for I = I1p = [£1, 5] but with the term E(m$ ,m;) = 0 and, recalling (2.14),

we have TR(n) = R(—n) and Tig—,) = ]I{R(,n)}(m%*z).
Notice that if we flip h; to —h;, for all 4, then A\(z) — —A(z), BT (z) — B~ (x) while D(z) does not
change. Therefore,

0,0 0,0
Zt RO Tl ®OD -
0,0 0,0 ’ :
Z[Z 22](7?’(77)) Z[Zl ,2](R(_n))
b (=m)
which implies that log %(h) has a symmetric distribution around the origin in particular has
[£1,€2]

mean zero.

Step 2: Extraction of the leading stochastic part.

Let mg* be one of the points in {—1 —1+4 5* R 5* , 1} which is closest to mg. Given an interval
I we let m%t ; be the function which coincides with m/B on I and vanishes outside 1.

Recalling (3.11), we introduce

— 8 5*
Ang( 5,112) =n [g(mﬂ,flz) g(T g 112):| (446)
Using the fact that the functional F is left invariant by T', we write

0,0 ~
i) R=) By = PATGY ) Zon0.5.6(N12)

220 Rm) 7 7 (4.47)
iy (R() n.0..¢(112)
where
- N 2{Fm 04725 "G(m? )4V (Tm] )
Z_n0.5.¢:112) — ngzeMé*(llz) Tirscaqn }e { 0 2 12 } )
Fnoscitlia) —g{f(mif 0)+YAGG(mG )V (my] )}
m8* €My (hia) RIS ()} € b & ”
I12
with
Ang(mju) = Z Aggg,m’s*(m) (449)
2€Csx (I12)
and, recalling (3.12),
AYGE v () = Q%Tgmé*(z) (AMz)) — G i i (o )(/\(:c)) (4.50)

with T equal to the identity.

Note that by definition, |mg —mg| < 8y/6* and taking dy small enough (4.26) implies \mg* —mg| <
8v/0* < (1. Thus, the block spin configuration constantly equal to mg* (resp. ng*) is in R4 (+1), (resp
RO (-1)).
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Step 3: Control of the remaining stochastic part.

To estimate the last term in (4.47), we use Lemma 3.2. A control of the Lipschitz norm is needed. Since
it is rather involved to do it, we postpone the proof of the next Lemma to the end of the section.
Lemma 4.8 . Given (8,0) € &, there exist vo = v0(8,0) > 0, dy = do(5,0) > 0, and (o = (o(0,0) such
that for all 0 < v < g, for all 6* > ~v with v/§* < dy, for all 0 < {4 < oy that satisfy the following condition

G > (518401 + e(00)2(1)V2) v (12 8 (0’ (4.51)
te &* (B, 6) v '
where ¢(30) is given in (3.55) and c¢(5,0) is given in (4.65), then for all a > 0,
IP | max ™ max |log 20054 (~Il2) da + 126 < @efeu (4.52)
1€Aq TCr Zn.0,6.¢4(112) v € 1—e¢

a22

1 —
and u = W

where maxyca,* denote the mazimum over the intervals I C Aq such that |I| = ey~

Step 4 Control of the leading stochastic part.
To estimate the first term in the right hand side of (4.47), we denote A"g(mg*fm) = N necy. (fhn) X (2)-

where using Proposition 3.5, on the set {p(z) < (27/6*)/*}, X (z) is defined by

1+ m‘E;2 tanh(256)

1-— mg’jl tanh(246)

X(2) = ~A()|D(x)| |log

+ Eai(z, 80, p(x)) | — Mx)Z2(2, 59, p(x)) (4.53)

where Z; and Z, are easily obtained from (3.39). Furthermore, choosing go(n) = n'/* in Proposition 3.5, it
follows that

and

[Zala, B9, p()| < (255)"/* [36 + 2¢(56)] (4.55)

where ¢(30) is given in (3.55).
Thus, calling
1+ mg 2 tanh(240)

V(3,0) = log = ns, tanh(230)’ (4.56)
on the event {p(z) < (2v/§* 1 , when £ | 0 the leading term in (4.53) is simply
5
V(B,0)
@DV (3.0 = -0 5, (4.57)
1€A(x)
and, from (4.53), we have
EX (2)Tiy@)<(2v/6%)1/43) = 0,
) 5 ) (4.58)
IE[X (x)]I{p(ac)g(Z'y/é*)lﬂ}] = 76(57 077/5 )
where, if v/6* < do(5,0) for suitable 0 < do(3,0), c(8,0,~/5*) satisfies:
V2 2 2 2 2 V2
TN ey ] < ey < CED g yey] = B (4.59).
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Using Lemma 5.4, exponential Markov inequality, and the Levy inequality we get

2
4 _ 2s
ZP[max* max |y Z X(z)| > 23} < —Qe Vi, (4.60)
I€T hacr 2E€Csx (1) €

Then we collect (4.52), (4.60) and make the choice a = F*/16, s = F*/32. Using the hypothesis (4.25) and
the definition (4.22), choosing dy small enough, we get 32(1 + 0)(R1 + Lo)+//0* + 45* < F* /2. Taking (
small enough to have 28¢, < F*/8, we get

[45.0.~ (ng,c%ghghg%gz)) < o 5QF T =32(146)(R1+Lo)y/ 55 —4(¢1+67) ~24¢ ~4a—4s) < o5 (4.61)

with IP—probability at least

20 e AQ ~Sn
€ - 3
1 _ 372 I T —e 296V+ s (462)
€ 1—e e €
where
]:* 2
u= # (4.63)

211¢4c?(8,0)

The unions in (4.29) involves at most R?e2@Q~y~3 terms. This ends the proof of Proposition 4.7. B

Proof of Theorem 4.3: It is an immediate consequence of Theorem 4.5 that will allow to restrict ourself
to Bo([—y~P,v7P], R1, L2) (see above definition 4.6) where the length of the runs of 1 are at least Ly > 2,
and then Proposition 4.7, assuming (, small enough to have u > (F*)?/(26V2). W

Lemma 3.2 is the basic ingredient to prove Lemma 4.8. An estimate of Lipschitz norms is given in the
next lemma. Then an Ottaviani type inequality will be used to take care of the max in (4.52). We state
Lemma 4.9 for a general ¢ since it will be used in Section 5 with a ¢ different from (4.

Lemma 4.9 . Let (5,0) € £. We take c(B) as in (3.55). There exist vo = v0(83,6) > 0, do(8,0) > 0, and
Co(B,0) such that for all 0 <y < g, for all 6* >~ with v/0* < dy, and for all 0 < ¢ < (o, that satisfy

2,V \1/2 12¢°3 (5*)2)2

¢> (5184(1 + c(30)*(3%) ) v (C(ﬁ’ 5 (4.64)

where c(80) is defined in (3.55) and
o(f,6) = 257 . bt 4 etse L F tanh(206) (i + i) (4.65)

T (1 —tanh(200))2  1—mg, 1 — tanh(230) '
then
oitog Zroachd) [z gy 4196350 <o /(s 0), (4.66)
—0,6,¢c12 - 0l

where % is defined as in (4.48) with (4 replaced by C.

The proof of Lemma 4.9 is done similarly to the corresponding estimates in Section 4 of [13]. The main
differences is that the explicit form of A{G in (4.48) is not the same, and we use the cluster expansion
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method to estimate the Lipschitz factors coming from V(mg;). Since we did not see a simple way to modify
the proof given in [13] we prefer to start from the very beginning of the computations .

Given i € vy 'I1o, let (i) = [yi/6*] be the index of the block of length §* that contains i, and let
u(i) = [x(4)0* /&) be the index of the block of length ¢ that contains x(7).

Let us denote

, ) z(i)o*] o x(i)o*| ¢ )
. = «(1) = Z — < — 4+ — 4.
Cajor (@) = Coy () = {w e 22, || & <o |[T0T] 20 2 (1.67)
i.e., the set of indices of those blocks of length 6* that are inside the block of length § indexed by u(3).
Given a sample of h, let us denote h(?) the configuration hy) = h; for j # 1, hgz) = —h;. To simplify the
notations, we do not write explicitly the ¢, ( dependence of Z4 o5 and we write the Lipschitz factors as

0; log Zro6¢ = log —Z+’0(~112)(h) — log —Zf’o(hz)(h) (4.68)

20,8 Zy o(T12) (RD) Z_o(Tia) (h®)

To continue we need a simple observation: if ercé/é* ) [m?® (z) —mg||: < 5%(, then, given g1(¢) decreasing

such that lim¢|g g1(¢) = 0 but g%(() <1, and if { <1, we have

g ¢
> T @-malh<ar @) = 5 (1= @) (4.69)
2€Cs s+ (1)
This suggests to make a partition of Cs/s- () into two sets,
K(m®) = {w € Csy5- (i) : [Im” (z) = mg|x < 91(()}~ (4.70)

and B(m®" ) = Cs/s- (i) \ K(m?"). Let £(i) = [iv], for all m®" = mg(*i) we write

Lscqean=13(m° ) = D Mpemxy (m® ) Wgpmxey (0" ) Ly egipy=1y (M) (4.71)
XCCJ/&* (Z)

where the sum is over all the subsets of Cs 5+ (1) and X¢ = Cs/5- (4)\ X . It follows from (4.69) that ns ¢ (£(i)) = 1
and | X| < 6%(1 - glL(C)) are incompatible. Therefore we can impose that | X| > 5%(1 - glL(C)) in (4.71). Let

)

5+ 5

XCCsyg+ (1) k=3 (- 51%)

and notice that (4.68) is the same as

Zy o(lh2)(h) 1 Z_o(I12)(h)
o N(Q)2 Z o(I12) (hD) o N(Q)2Z_ o(I12)(h®) “73)

The two terms are estimated in the same way. We consider the first one. It is easy to see that, with
self-explanatory notation,

Zeotha)(h) L4 2850k =188 0L0) o8 (v Ty (i n®) | (4.74)
N({)2Z4 0(I12)(hD)  N(¢)2
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where Q is the probability measure

=0 5% Foh() s 5 )
Fmg 0 +yAGGT (my )+ V(mg R)

,ﬁ{
Zmé* (I12)eEMgx (I12) ‘I’(mé )]I{R(+)}€

— LI Fm® 0)4vAF G D (mS™ Y4y V (mE L h(D)
¥ I12 I1o T2

Q¥ = (4.75)

Zmé* (f12)€M5* (112) H{R(+)}e

Applying Schwartz inequality to (4.74) we obtain

Z+,0(f12)(h) <( 1 {%2(7A392(i>—“ﬂ§9§8;)])% gg(.yv(jl27h)7,yv(l~12’hm)) 1
N(Q)2Zs o(I12)(RD) ~ /\/(C)QJr ‘ <Q+ [e D :

(4.76)
The last term on the right hand side of (4.76), can be immediately estimated through Lemma 3.4, and
we obtain
- - ] *\2
’1 log Q+ [622(’)"/([12711)—’}"/([12,h("))):| ‘ < 663ﬂﬁ. (477)
2 B gl

The needed estimates for the first term in the right hand side of (4.76) are summarized in the next Lemma

Lemma 4.10 . Let ¢ and g1({) be the quantities defined before (4.69). For all (3,0) € &, there exist
Co(80) and do(80) such that for all 0 < ¢ < (o(88), for all v/0* < do(B,0), for all increasing go(n) such that
lim,, 100 go(n) = 00 but go(n)/n is decreasing with lim,1oo go(n)/n = 0 we have that

‘%log A%Q+ [e§2(vAogg(i)7Aog:g;):| ‘ < fi (C) + gl—%oelh_fl(o" (4.78)
where
G 1 1 & 27\
with ¢(B6) given in (3.55) and
_ ) 1 + tanh(2536)
f2 = 12(5,0) < b = b (log T 52+ 456). (4.80)

Proof: We insert (4.71) within the [.] in the left hand side of (4.78). Then, see (4.56) in [13], it can be
checked that if we have an estimate of the form

)
‘Af{gﬁ(i) —A$GE | < AOTa@exy + fol{a@esy- (4.81)
From (4.72) we then get
1 Bo(yadeh - A*g"@) ¢ -
IOg—Q |:€’Y Y20 Yo (i) V20 Ya(4) g f C + —€|f2 f1(()\ 4.82
N & O+ (152

To get (4.81) with f1(¢) that satisfies (4.79) and f> that satisfies (4.80), we recall (3.34) and denote

G (yA@) = = log Lo (N(2)266, D(x), (4.83)

ﬂ m,m3+>\(z) x
2
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so that

*

D g (0 (M(i))286, D(x(i)))

oy N ((0))266, DO (7))

+ +ohDY _ _
g (A ga:(’b -4 gz(z ) = —log LI()

3+A<L><r( )
. (4.84)
LS 3y 2 (A(@(1))29, D(x(i)))
w(’)’mﬁ 3ea((y) (@)
+ log — — _ : _ .
Letym (aiyy A (2(1))280, DO (7))
" 3+A< ><z<z>>

where A (z(i)) and D (x(i)) are the respective images of A(x(i)) and D(x(i)) by the map h — h().
The first case to consider is when A (x(i)) = —(x(4)), in which case |D(x(i))| = |[D® (x(i))| = 1 and,
using (3.34), it can be checked that

8 (AFGl — ATGE)

L+ Az )mswm»( (4)) tanh(A(x(7))266) 1 —A(iﬁ)mgs%gﬁm)(x(i))tanh(—A(x(i))QﬁH) (4.85)

B TR s (0) RO 0)200) T Ay (7)) (N (2(0))250)

Now if (p is chosen in such a way that g1(¢) < (1 — tanh(2436))/2, noticing that (5,0) € £ implies 0 <
tanh(230) < 1 when 1 < 3 < oo, a simple computation gives that ||m® (2(i)) — mg* [l1 < g1(¢) implies

4|lm® (2(i)) = mj [y < 49100

+oh _ A+chN <
‘ﬁ (B0 Gy ~ Ao gM)’ = 1-tanh(280) ~ 1- tanh(230) (4.86)
while without condition on ||m® (2(i)) — m‘ng we have
() 1+ tanh(246
[5Gl — A6 < log 1222 (487)

1 —tanh(230)

Therefore (4.79) and (4.80) are satisfied in this particular case.

The other case to study is when A\ (z(i)) = A(z(7)) and therefore ||[D(x(i))| — D@ (z )l =1.

If 2(i) € B, recalling (4.82), we do not need a very accurate estimate for the terms in (4.84). Recalling
(3.34), it is not difficult to see that each term in term in the right hand side of (4.84) is bounded by 236, so
we get

B|AFGh, — ALGH)

(1)

< 459. (4.88)

Collecting (4.87) and (4.88) we have proven (4.80).

It remains to consider the case where x(i) € K. Recalling (4.81) and (4.82) this will give us the term
given in Proposition 3.5. To check that (3.38) is satisfied,
let us first note that since g1 (x) and go(x)/z are decreasing, lim, )¢ g1 () = 0 and lim, 00 go(n)/n = 0, if we
choose (o = (o(8,0) such that

f1(¢). Here we want use the explicit form of G, s+

Cog0(4/Co) y 16(Co/4)"/* 30

91(Co) + 4 1 — tanh(26)

<1l-mg; (4.89)
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and then we choose dy such that v(6*)~! < dy and (4.64) implies ¢ > 8y(6*)~!, we get

go(6*y~1/2)  16(2y/6%)1/*36
0*y=1/2 1 — tanh(2430)

91(¢) + <1l-mgs (4.90)

which implies that on K(m® ) and on the set {sup,ec,. np(z) < (2v/6*)1/*}, we have (3.38).
Remark 4.11 . The fact that it is enough to have accurate estimates only in the Gaussian case comes from
the previous sentence together with (4.81), (4.82) and (4.88).

To estimate (4.84), we first notice that the contribution to 8 ’A(J{Qf(i) - A(J{QQEZ; coming from the terms

that correspond to (3.41) is bounded by
72 27\ /4
—+ | = 4c(50 4.91
st (7)o )

with ¢(86) the positive constant given in (3.55). The terms in (4.84) that come from

_|D(x)| [1og cosh(236) + log (1 + N 2)mE ) (2) tanh(we)ﬂ (4.92)

2

in (3.39) give a contribution that is bounded by

8g1(¢)
1 — tanh(230) (4.93)

when ||m?® (z(i)) — m%*||1 < 91(¢€). It remains to estimate the contribution to (4.84) of the terms that come

from

DI (s (2). 20(2) 30, p(a)) (.94

in (3.39). Unfortunately the estimate (3.40) is useless and we have to consider the explicit form of ¢, see
(3.52). The contribution of ¢ in (4.84) can be bounded by

pa@)VP? rmis @ @OVIGiaw (@) |92 [ Bla(m, 2A(x)36
/ / A LESVE [p| Bl@(m, 2X ()38, p)] dp dm. (4.95)
P

AmS* (x) 87718])

(:L'(i))/\p(i) 7”%:,>\(z) (z) 3+A(x)

== =0

It is just a long task to compute the previous partial derivative, using (3.45), (3.47) and (3.55) and to check
that the following estimates are valid if ¢ is such that g1(¢) < (1 — tanh(240))/2

8V2 2 81/2 1

T ST Im o
. , ) (4.96)
Vo <4 0<L_ 1 <pc(6).
opom | ~ o2, o2, 1—-m?2~ o2

It is clear that unpleasant looking terms like (1 + mtanh(vy —v1))~! appear in the computations. Using
(3.56), the fact that we can assume that (o = (o(, 8) is small enough to get that if { < (o then |[m—mg||1 <
91(¢) implies 1 — |m| > (1 — mg,1)/2. Then, assuming do(53,6) to be small enough in order to have that
v/8* < do(B,6) implies 4860(y/6*) /4 /(1 —mpg1) < 1/2, we get

_ 4mg,180p(x) S

1
1+ mtanh(ve —1q)) > 1 1—mg 4

(4.97)
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for all m and p that occur in the integral in (4.95). So, these terms do not present any problem. We get

9 [p| Blg(m, 2\ (x) 36, p)] 1 1
< |B|256 . 4.98
‘ Omop <18l (1 — tanh(236))2 + 1—mg (4.98)
Notice that
pe(@)vp® mi o (@M, (@) i . 9
/ / 2 =7 dpdm < |m® — m‘g 1= (4.99)
Pl (i) Ap(® (2) B

§* §*
JEENES (@)Am BEAG) g

Thus, inserting (4.98) in (4.95), using (4.99) and then collecting (4.91) and (4.93) we get (4.79). W

Proof of Lemma 4.9 We recall (4.68), (4.73), and (4.76) and apply Lemma 4.10 and (4.77). The
presence of ¢ in (4.79) and ¢/g1(¢) in (4.78) suggests to take g1(¢) = v/C. The presence of (go(6*y~1/2))~!
and (2v/6%)1/* in (4.79) suggests to choose go(n) = n'/4. Thus, calling

1 1
= 0)=2 4.1
c1(8,6) =256 ((1 — tanh(246))? s m@l) (4.100)
and
1+ tanh(236)
= — s T 2T\
=c(6,0) =¢ T~ tanh(200) (4.101)
we get that the left hand side of (4.78) is bounded by
NG (01 + cgeV/CartT2(04e(0) (G >”4) + 7201 + e(56)) (2 = Tyi/4 (4.102)

from which we get the first term on the right hand side of(4.66) with the ¢(3,0) given in (4.65). W

Proof of Lemma 4.8
Using Lemma 3.2 and Lemma 4.9, we get after a simple computation, for all ¢ > 0, for all intervals
Lo = [, 0s)]

T 2
ZPH log M‘ > E] < exp (— = ~a ) . (4.103)
Z,0,6,¢4(112) v 8y[€1 — £2|Cc2(3,0)

To get (4.52), we need the following modification of the Ottaviani inequality done in [13], see Lemma

.8) there. Given an interva ~§ , calling = log =—="=>-= then for all a > 0, for a > 8y(6%)~
5.8) there. Gi i 11 C1, call YIlZ"“((I’))hfu 0, for all ¢ > 8y(5*)~1

we have

" da + 12 [IY )= 6“}
P [max ‘Y(Ilg)‘ > glat 12 (4.104)
h2Cl K inf7 o IP H (—712)‘ < Bz }
Then for all a > 0, setting T = 4a + 12(, we obtain
20 . i
IP | max * max |Y (I12)] > ﬂ < —IP| max |Y(I12)|>p8—], (4.105)
ICAq [,CI € F12CTp0 2 v

where IA[O,Q} = [0,2ey71]. This implies (4.52) after a short computation. W
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5 Probabilistic estimates

In this section we construct a random interval J(w), to which the interval I(w) appearing in Theorem 2.1
is simply related.

Our final aim is to control the behavior of the random field over intervals of (macroscopic) length of order
larger or equal to % To achieve this, it is convenient to consider blocks of (macroscopic) length €/, with
the basic assumption that e/ > ¢*. To avoid rounding problems we assume €/v§* € IN and we define, for
aeZ

XNy =y D X@Tge<eyoryiy, (5.1)
z;ﬁ*mGAE/W(Q)

where, according to the previous notation /16/7(04) = ((a— 1)%7 a%] C IR and for sake of simplicity the 7, §*
dependence is not explicit. To simplify further, and if no confusion arises, we shall write simply x(«). Note
that x () is a symmetric random variable and assuming that I O A, /+(a) for all a under consideration

) (5.2)
IE(x*(a)) = ec(B,0,7/5%),

as it follows from (4.58) since there are e(y6*)~! terms in the sum in (5.1).

The construction of J(w) involves a discrete random walk obtained from the variables x (), « € Z, defined
by (5.1) and satisfying (5.2). If A is a finite interval in ZZ we set Y(A) = > 5. x(@). For convenience we
write

Y({1,...,a}), if a > 1;
YVa=< 0 if a =0; (5.3)
—Y{a+1,...,0}), ifa<-—1,

so that if A ={a1 +1,...,a2} = (a1, a2], with a1 < ay integers, we have Y(A) = Vo, — Vo, -

As v | 0, we assume € | 0 but ¢/76* T +o00. In this regime, Y./ converges in law to a bilateral Brownian
motion (no drift, diffusion coefficient V (3, 0)).
Given a real positive number f, 0 < f < F*/4 where F* is defined in (7.5), we denote

DU 4) = D(f ) = {8 V@) 2 27 + 1, jnf V(&) = 27 41 (5.0

the set of random (finite) intervals A C ZZ with an (uphill) increment of size at least 2F* + f, and such that
no interval within A presents a (downhill) increment smaller than —2F* 4+ f. Such an interval A C ZZ is
said to give rise to a positive elongation, and we set sgn A = +1.

Similarly,
D7, =) = DU —w) = {8 V(&) < 25— £, sup V&) <25 1}, (5:5)
and such an interval is said to give rise to a negative elongation. If A € D(f,—), we set sgn A = —1. We call
D(f,w) =D(f,+,w) UD(f, —,w). (5.6)

Remark: D(f,+)ND(f,—) = 0 since f > 0, so that the above definition of sgnA is well posed. However,
we may have intervals Ay € D(f,+) and Ay € D(f, —) such that Ay N Ay # (.
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Given @ > 0 and writing A° = Q\ A, we let

PO(faQ) = {HA € D(f,LU), A g [7Q/67Q/6]}c3 (57)

be the set of realizations of the random field that neither give rise to a positive nor to a negative elongation
in the interval [—Q/e, Q/€]. As we will see later, cf. Theorem 5.1, IP[Py(f,d)] is small provided @ is large,
uniformly on 0 < f < F*/4. (The uniformity is trivial since from the definitions D(f,+) C D(f,+) if
0<f<f)

Deciding if a given interval gives rise to a positive or negative elongation is a local procedure, in the sense
that it depends only on the values of x(«), with « in the considered interval. But, since our goal is to find
the beginning and the end of successive runs of n%¢ = +1, and runs of n%¢ = —1, we should determine
contiguous elongations with alternating signs. For this we first need (not necessarily contiguous) elongations
with alternating signs. We set, for k& € IN:

By (f,k,Q) = {wGQ:30§a1 <by <ag<b<...<ap <bp <QJe (a;,b;] € D(f),

(5.8)
i=1,.,k; sgn(a;,b;] = —sgn(a;41,bit1], =1, ..,k — 1},

B_(f,k,Q)={we30=b; >a1 >by>ay>...2 by >ar > —Q/e, (a;,b] € D(f), (5.9)
i=1,.,k; sgn(a;,b] = —sgn(aiy1,biy1], i =1,k =1}, .
and P1(f,k,Q) = (By(f,k,Q)NB_(f,k,Q))° 2 Po(f,Q). In Theorem 5.1 we shall prove that IP[P;(f,
k,Q)] is small, uniformly in 0 < f < F*/4, and k > 1, provided @ is taken large enough.
For reasons that will be clear later we set:

,Pé(ﬁQ) = {30[1 <o <az <oq € [_Q/EaQ/e]:|ya1 _yvésl \ |ya2 _yoé4| < 3f7
||ya1 _yoé2| _2f*| < 3fa
Vo € [Vay ANVay = 3f, Vay V Va, + 3f],Va € [a, au]}

and

Py (f,Q) =P5(f,Q) u{ Ix(a)[ > f}. (5.10)

max
a€[-Q/e,Q/e]

To construct the previously described J(w), with 0 € J(w) C [—Q/~v,Q/v], it will suffice to have w €
(P:(£,3,Q) UPY(f, Q))C. Having fixed @ sufficiently large so that IP(P;1(f,3,Q)) is suitably small for any
0 < f < F*/4, we shall take f small enough and € suitably small so that IP(P%(f,Q)) is also suitably small,
as stated in Theorem 5.1.

Let w € (P1(f,3,Q) UPY(f,Q))c. Starting at « = 0, and going to the right we tag the “first” interval
in ZZ which provides an elongation. We then use an explicit way to construct contiguous intervals that
provide elongations with alternating signs. J(w) will be defined with the help of such elongations. Having
a discrete random walk, different types of ambiguities appear in this construction and we need to estimate
the probability of their occurrence. We discuss a possible construction.

Let us define for each a,b € [-Q/¢,Q /el N Z:

b_(a) = inf{b' > a: (a,b'] € D(f,w)},
by (a) = sup{d’ > a: (a,b'] € D(f,w)}, (5.11)
a; (b) = sup{d’ < b:(a’,b] € D(f,w)},
a_(b) = inf{a’ < b:(da’,b] € D(f,w)},
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with the infima and suprema taken on [—Q/e, Q/€] N ZZ; thus, if the corresponding set is non-empty we have
a minimum or maximum; otherwise we make the usual convention: inf ) = +o0o and sup{) = —oo.

We see at once:

o if b_(a) < oo then a_(b_(a)) < a < as(b_(a));

o if ay(b) > —oo then b_(a4 (b)) < b < bi(ay(h)).

Let us set ag = inf{a > 0:b_(a) < +o00}. Since w € B4(f,3,Q) C B4 (f,1,Q), we have 0 < ay <
b_(ag) = bo < Q/e, and (ag, by is an elongation. Also, (a—(by),bo] 2 (ao, bo] is an elongation with the same
sign. To fix ideas we assume +1 = sgn(ag, bp]. This will serve as starting point for the construction. We
now set, for b < by:

a4 (b) = supf{a < b: (a,b] € D(f,—)}, (5.12)
b_1 =sup{b < bg: a4 (b) > —o0}, and a—1=ay(b_q). .
Since w € B_(f,3,Q) € B_(f,2,Q) we have —Q/e < a_1 < b_1, and from the construction, we easily check
a_1 < 0. Observe that in (5.12) we need to consider b < by (instead of b < ag) due to the possibility of
non-empty overlap among elongations with different signs. We make the following:
Claim 1. If w € (P1(f,3,Q) UPY(f,Q))° we have b_1 > a_(bo).

Proof of Claim. We prove it by contradiction. For that, we suppose that b_; < a_(by), and consider two
cases:
(D) Vo < Va_(v) for some o € [-Q/e,a_(bo));
(I1) Vo > Va_ () for all a € [-Q/e,a_(bo)).
In case (I), letting ap = max{a < a_(bo):Va < Va_(vo)}, We take: ag any point of (global) minimum of
Y. in [a—(bg),bol; a4 = min{a € [ag,bo]: Vo — Vas = 2F* + f}, which exists since sgn(a_(bg),bo] = +1;
ag = max{a € [ag, a—(b0)]: Vas; — VYo < —2F* + f}, which exists in this case, otherwise (ayg, bg] would be a
positive elongation, contradicting the definition of a_(by).

We see that starting from as and moving backwards in time, the process ) must take a value below
Yo, — 2F* + 3f before it reaches a value above YV, + 2f (otherwise b_1 > a_(bg))); taking o as the “first”
(backwards) such time, we are in the situation described in P4(f, @), contradicting our assumption on w.

In case (II), let oy be any point of minimum of Y(:) in [a—(bo),bg]. Due to the assumption that w €
B_(f,3,Q), there exists a positive elongation contained in [—Q/e,a_(by)]. Together with the assumption in
(IT) this allows to define oy = max{a < a_(bo): Vo > Vo, + 2F* + f}, and —Q/e < oy < a_(by). Taking
ag = sup{a < ag: Vo — Vo, > 2F* — f} which exists otherwise [a1, @] would be a negative elongation
contradicting b_1 < a_(bg). Moreover ag > ;. We see that starting from as and moving “backwards”
in time, ). has to make a downwards increment of at least 2F* — 3f “before” ay [otherwise b_1 > a_(bp)].
and we get as as the “first” such time, we are in the situation described in P4(f,Q), contradicting our

assumption on w.

Having assumed that w € (P1(f,3,Q) UPY(f,Q))¢ in this construction, the previous claim tells us that
b_1 > a_(by). For sgn(ag,by] = +1 we define

af = min{a € [a—(by),b_1]: Vo = ai(bor)ngiggbi1 Y(a)}. (5.13)

In this situation (a_1, o] and (af, b] are contiguous elongations, with alternating signs (—1 and +1 resp.).
The same holds for (a—(af), o] 2 (a—1, o] and (af, b+ (af)] 2 (af, bo)-

Remark. Though not needed, one can check that Vaor =ming , <a<b, Va-
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With w € (P1(f,3,Q)UPL(f,Q))° we may proceed one step to the right, where the next “breaking point”
will be a maximum in a suitable interval. We first set, for a > ag:

b_(a) = inf{b > a: (a,b] € D(f,—)} (5.14)

ay =inf{a > a}:b_(a) < 400}, and by = b_(a1) '

and since w € B4 (f,3,Q) C B+ (f,2,Q) we have 0 < a1 < by < Q/e. Moreover, as before we have:
Claim 2. For w € (P1(f,3,Q) UPy(f,Q))° we must have a1 < by(af).

Claim 2 is proven in the same way as the previous one, and we omit details. It allows to define, for such

of =min{a € [a1,b4(0g)): Vo= max  Va} (5.15)
a1<a<by(af)

so that (ag, @], and (af,b;] are contiguous elongations with alternating signs (+1 and —1 resp.). Also

sgn(aj, by (a1)] = sgn(aj, bi], and, similarly to previous observation, we see that Vo: = maxa,<a<b, Va-

If af < 0 we set J(w) = (EO‘TO, %) If instead, o > 0, in order to determine J(w) we need to extend the

construction one more step to the left. In this case, we may consider for any b < ag:

a4 (b) = supf{a < b: (a,b] € D(f,+)}, (5.16)
b_o =sup{b < af:a4(b) > —c0}, and a_g = ay(b_2). .
Since af > 0, sgn(a—_(af),af] = —1, and w € B_(f,3,Q) € B_(f,2,Q) we have —Q < b_s < af and
—Q < a_z. Moreover, from the construction a_s < a_(ag) < a_;. As before, we can prove the following:
Claim 3. For w € (P1(f,3,Q) UPH(f,Q))° we must have b_ > a_(af).
The proof of Claim 3 is omitted, since it follows the same argument of Claim 1, under the previous
assumptions. Having b_o > a_(«af) we may split the intervals through

oy =inf{a € [a_(af),b_2]: Vo = max Vat, (5.17)

a—(af)<G<b_s

so that (a_g,a* ;] and (a*,,af] are elongations with alternating signs. As in the previous steps, we see
that b_3 < a_(af) is not possible if w ¢ P(f, Q). Moreover, from the construction it follows that a*; < 0,

otherwise it would contradict the definition of ag and sgn(ag,bg] = +1. Thus, for af > 0 we set J(w) =
(m{l , EO‘T‘)) Though not used in the sequel, we may again check that, Vor | =max, ,<a<bt_, Vo-

Under the assumptions on w € (P(f,3,Q) U PY(f,Q))¢ we have constructed contiguous elongations
(a—a,a* 1], (a1, af], (af,aj], and (af,b1], with alternating signs.

Starting from (a—(a*),a* ] and (af,bs(aF)], the construction may be continued to the left and right
respectively, if w & Py (f, k, Q) UPY(f,Q) for larger k. For Theorem 2.2 it suffices to have w € (P1(f, 3(2k +
1), Q) UPI(f,Q))".

Remark. We have chosen ag, af, etc... as the first minimizer or maximizer, respectively, since the random
walk may have multiple maximizers on the intervals considered there. In fact the random walk can oscillate,
being always below or equal to the maximum. Since in the limit € | 0, the random walk converges in law
to a Brownian motion where the local maxima are always distinct, see [29] p. 108, we can expect that for a
random walk such a result holds approximately. A way to do it is to accept an error on the location of the
beginning or the end of the runs of n%¢(£). For this we need to prove that if a; and as are the locations of
two local maxima of )(-) and the distance between o and ay is larger than p/e, then IP[|Va, — Va,| < 9]
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goes to zero in the limit e | 0, for a suitable choice of the parameters p = p(e), & = 6(p,€e) = 6(e) both
vanishing as € — 0.
We define, for p and 5 positive,

PQ(f7+7Q7a—17b07p7 6) = {U) € (Pl(f737Q) UPé’(ﬂQ))C, da e [a’—lvbo]a

) ) (5.18)
& —agl > p/e,|Va — Vag| < 6},
PQ(fv—’_ana(hblvpvg) = {w € (Pl(fv?)vQ) U'Pé/(f’Q))C7 Eld € [a(hbl]a (5 19)
|&_a>{|>p/€a|y&_yai“gg}v .
and )
PZ(f7+7Q7a727b717p7 6) = {w S (Pl(f737Q) U Pé/(f7Q))c7 aEk) > 073d € [a727b71]7 (5 20)

6~ a4 > p/e, Vs — Yo | <5).

We will show that the previous three sets have IP-probability as small as we want provided we choose the
parameters e, p, é in a suitable way.
We recall that we have defined the random interval J(w) as follows:

(“*—0 i) if o < 0;

Jw)y=4 3. 7 (5.21)
(““1 —6%) if ag >0
vyl ’ 0=

There is some arbitrariness when af = 0, but accepting to make an error p/e on the location of the

maximizers or minimizers, we will show that the set

Pa(f,Q.p) = {w € (P(3.Q UPL(£,Q)) a5 ora”, € [-22,28]] (5.22)
has a very small probability.
Remark. Always assuming w € (P(f,3,Q) U Py (f,Q))¢, for sgn(ag,by] = —1, we perform the obvious

modifications of the construction.

Recalling that all over this work, 8 > 1 and § > 0 € &, the control on the various exceptional sets is
summarized in the following:

Theorem 5.1 . There exist positive constants Qo = Qo(5,0), fo = fo(B,0), po = po(B,0) and v =
Y (8, 0) such that for all0 < v <7y, 0 < p < pg, and 0 < f < fo, for all € such that

2

* <
0" < €= 73(5,6) log(194)

(p* 2 A f2) (5.23)

for an arbitrary given a > 0, we have the following: For all integers k > 1,Q > Qo(8,0),

o 2f +9V(3,0),/elog &2 *
IP [Py(f,Q)] <3e 21 + L2 @ )Wl 27 =7 (5.24)

- og ,
log 2 27— f 2f + 2V (B,0),/elog &

where V(3,0) is given by (4.56) and C1 = C1(6,0) is given in (5.46) with b = 2F*;

2f + 9V (5,0),/elog &2 .
PP h,Q) < (k4 5y o &V OOVAE 27— (5.25)

n 08
log2 27" ] 2f +2V(5,0)yfelog &

14/july/2005; 12:06 822




9f + (2+ V(B,0))y/elog &
IP[PY(f,Q)] <8(2Q +1)? 2v2m (9F)*/ 2+ 4 (2Q +1) 12096 9f+(2+V(B ))\/I

V(3,0) V(3,0) (9)3/(4+20) (5.26)
f
+ @6* 1eV3(B.0)
€
Moreover, for S(p) = p?T° we have
- ~ 4
P Uk U, Pa(f,51,Q, i, biv1,p, 0 < (4k +2)3G1(6,6,5(p), €) log —————<——, (527
Uik Uineeny P51, @i i . 80)| < W+ 2361(8,6,8(0). ) log moomersmss - (527
where
: e T V(B.0)(clog &)+
G1(8,0,0(p),€) = ———— | p*/? + ’ € 5.28
1(8 (p);€) V(3.0) (P p3/4 ( )
with C1 as in (5.24), and if 0 < k < 1/2
1_ 2 €\t ok € C(8,0) C(8,0)
< e —— ()2 — 2 V7
PPa(£,Qup) = 6027 4 s ()27 4 ex (87 2105 —=5=). (5.29)

where C(3,0) is a suitable constant that depends on V(3,0) and T'(+) is the Euler Gamma function.

The proof will be given at the end of this section.
Remark: The quantities a; and b; are random variables, but none is a stopping time. As e | 0, and then
p 1 0 (5.27) reduces to the well known fact that with probability one, the Brownian path does not have two
equal local maximum (or minimum) over any finite interval (see [29] pg 108).

To simplify the writing of the above estimates, we made the following choice:

p=e4(21+a>, f:ei, k=1/4. (5.30)

Then, calling

P(kv €, Q) :Pl(f = 6%,]6, Q) U Pg(f = Gi,Q) U P3(f = 6%,01_2, b—17p = 64(21!1))
. L B . (5.31)
U (Ui‘ﬂsz U51€{:|:1} P2(f = 627517 Q7ai7 bi+1ap = €4(+a) 75(P) = EZ)) 9

after simple estimates one gets
Corollary 5.2 . There exist positive constants Qo = Qo(53,0), Yo = v0(5,0) and eo(3,0) such that for all
0 < v <o, for all € that satisfies §*y < € < €q, for all Q > Qo, k > 1 we have

a a -1
P[P(k,e,Q)] < (k +5)e 76T + keTBTa 4 Q2etm + Qe 2/ V2(50) . (5.32)

where a > 0 is a given arbitrary positive number.

Recalling (5.21), the following Proposition will be used for proving (2.18) and (2.19). It will be proved at
the end of this section.

Proposition 5.3 . For all 0 < z < (F*)?/(V?(8,6)181log2) we have

(]_—*)2

IPy|J] < 2] < 2e 182V2(5.0) (5.33)

while for all x > 0 we have

logB)
)

Py ]| > 2] < de” sormar (T (5.34)
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where C1(B,0,F*) is defined in (5.46).
Remark: Note that for x > (F*)?/(V?(3,0)181og 2) the right hand side of (5.33) is larger than 1. Therefore
(5.33) is trivially satisfied also in this case.

Basic estimates.

Several probabilistic estimates are needed for Theorem 5.1 and are summarized in the following Lemmata
and Proposition. The variables x(a), a € Z defined by (5.1), with X (z) given by (4.53), constitute the
basic objects in the following analysis. We recall that we always assume that 8 > 1,0 > 0 € £. Recalling
(4.59) we set

=20 (1- () ad  vZ=v2a.0)(1+()70) (5.35)

Remark: Throughout this section we shall assume that 0 < v/6* < do(3,0) A 27> so that V(3,0)/2 <
Vo </c(B,0,7/6%) < Vi <3V(3,0)/2 where V(3,0) is given in (4.56).

We need some further simple estimates concerning the variables x(«) that are not difficult to prove just
recalling that x(«) is a sum over e(y6*)~! independent symmetric random variables X (x). (5.38) is proved
using (5.37).

Lemma 5.4 . There exists a do(3,0) > 0, such that if v/0* < do(8,0) then

)\2
IE {e)‘X(a)] <ezVE  WAeR (5.36)

with V} defined in (5.35). If 0 < X < [eVE]™!, we have

A 2 1
IE le2xX(@" | < . .
[e ST (5.37)
Forall k>3 andp=1,2,4:
IE { max |X(a)|p} < (4eVZ1og k)P/2(1 + é)g\/l. (5.38)

In order to have an elongation, as previously described, it is necessary to find suitable uphill or downhill
increments of height 2F* + f.

A constructive way to locate elongations, though it might miss some of them, is related to the following
stopping times:

Given b >0 (b= F* + % later), we set 7o = 0, and define, for k > 1:

t

T = inf{t > 75_1:| Z x(a)| = b},

E——
A=Tho (5.39)
T—(k—1)
T_ = sup{t < T—(k—1)" | Z x(a)| > b}
a=t+1

Clearly, the random variables A7y,41 = Tp4+1 — Tk, k € Z, are independent and identically distributed.
(Recall that A7y = 71 from the definitions.) We define,

Tk T—k+1
Sy = Sgn( Z X(j)); S_p = Sgn( Z X(j)) for k>1. (5.40)
J=Tr—1+1 J=T_p+1

14/july/2005; 12:06 824



We need probabilistic estimates for the variables A7y and 7k, which are obtained by standard methods.
An upper bound on the tail of their distribution can be given as follows:

Lemma 5.5 . There exists a positive constant do(8,6) such that for all integer v, v/6* < do(B,0) and
0 <e<e€(B,0,b) where

€0(8,0,b) == 3% <1P[Y > V(L;b? 0)]>2, (5.41)
o P [ﬁ > ﬂ < exp <—le [Y > V(éb’ 9)D : (5.42)

where Y is standard Gaussian and V(03,0) as in (4.56).
Remark: For future use, note that €y(83, 6, b) is a decreasing function of b.
Proof: Since the x(«) are i.i.d. random variables, for any positive integer v, we have:

(k+1)/e
v v
P [ﬁ > j <P | max | 3 xl@)|<2b| = (P[Y(1/e)] < 20) (5.43)
a=k/et1

We can use (5.36) to get an estimate of the fourth moment of x(«) and apply Berry—Essen Theorem ([17]
p. 304) to control the right hand side in (5.43). Consequently, there exists a constant Cpp = Cggr(8,0)
which, according to Berry-Essen inequality may be taken as

Cpr =038 sup E(Ix(V))/IE(]x(1)[)*? < 3* (5.44)
0<y/6*<do(3,0),e>*~

assuming at the last step that v/6* < do(3,0) < (1/2)°. Therefore

2b
c(B,0,7/6%)

H
V(B,0)"

1P[|y(1/e)|g2b]} <1-2P[Y > | +3'e<1—IP[y > (5.45)

where Y is a standard Gaussian, using 0 < € < €(3,6,b) and (5.41) for the last inequality in (5.45). Using
l—z<e ™ weget(5.42) W

The following lemma gives bounds for the mean of 7, and follows easily from the Wald Identity, see [27],
pg 83, and (5.38).
Lemma 5.6 . If
2
IP[Y > 4b/V(8,0)]’

Ci1=C1(5,0,b) = (5.46)

where Y is standard gaussian and 0 < € < €y(5,0,b) cf. (5.41), there exists do(53,0) such that for v/5* <
do(53,0) we have

2 2 :
gy (1~ O/ < Bl < S+ (/579 <1+9@ €1°g%> A

Remark: For future use, note that C1(/3,0,b) is increasing with b.
We need exponential estimates for the probability that a Cesaro average over k terms of the previous
AT;’s is outside an interval that contains the mean IE[r]. The result is:
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Lemma 5.7 . For all 0 < s < b?[4(log2)VZ]™!, for all positive integers k we have

b2

—k
P {Tk < E} <e VI (5.48)
€

where V¥ is defined in (5.35). Moreover, for eq = €o(83,0,b) as (5.41), for all 0 < € < €q, for all positive
integers k, and for all s > 0 we have

Bl

IP|7, > —(s+10g2)Cy | < e *F, (5.49)
€
where Cy = C1(8,0,b) is given in (5.46).
Proof: (5.48) is an immediate consequence of the Markov exponential inequality together with the exponen-
tial Wald identity see [27], pg 81. (5.49) is an immediate consequence of the Markov exponential inequality
together with (5.42) to estimate the Laplace transform. H

As we shall check, the above stopping times with b = F* + %, provide a simple way to catch elongations.
It will be enough to find successive indices k& > 1 (k < —2) such that Sy = Sk41 and eliminating a set
of small probability, see Lemma 5.10, (74—1, 7k+1] ((7k, Tk+2] respectively) will provide an elongation which
is positive if S = +1, or negative otherwise. Still, if S_; = Sy, then (7_1,7] is an elongation. Not all
elongations are of this form, as one simply verifies, but what matters is that this procedure catches enough
of them, sufficient to prove Theorem 5.1. The basic ingredient is given in the next two lemmas.

Lemma 5.8 . Let g = ¢o(5,6,b) be given by (5.41). For all 0 < € < €q, all integer k > 1, and all s > 0 we

have
1

k(s +log2)Cy

i die{l,....k—1}8 =S| >(1—-e*")(1 (5.50)

Proof: It follows at once from the fact, due to the symmetry, that conditionally on A7;’s the variables S;,7 #
0’s form a family of i.i.d. Bernoulli symmetric random variables (see (5.40)), with the trivial observation
that for i.i.d. symmetric Bernoulli random variables

1

Together with (5.49), this entails (5.50). H

To deal with the case where more than one elongation is involved, we define to the right of the origin

ii=inf{i>1:5;, =851}

S SR . (5.52)
Zj+1Elnf{lz(%4’2)331':51‘4_1:75‘1‘;} ]21,
and to the left
L (-1 iS5y =S =—Si,
1= sup {Z < -2: Sz = Si+1 = —Sf{} if Sfl 75 Sl or Sl = —Si;,
i =sup {i <0 =21 8 = Sy = =S } j>1, (5.53)
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we then have:
Lemma 5.9 . Let e = €0(3,0,b) be given by (5.41). For all 0 < € < €g, all k and L positive integers, L
even, (just for simplicity of writing) and all s > 0 we have:

kL —1 S+10 2)C % . _s _ L/2 k-1
P [TkLl < ( )( . 82) 1’v1§j§k i <3L] > (1_6 (kL 1)) (1— 5) (1_ (2) / )
(5.54)
and
—kL log 2)C L-1 log 2)C
lP[TkLZ (s+€og ) S T < ( )(S:_ °52) L, it < L, Vigj<k i*j>_jL]
(5.55)

> (1 _ e—s(kL—l)) (1 _ 2L171) (1 B <%)L/2>k.

Proof: We prove (5.54); (5.55) is done similarly. We again use that conditionally on Ar;’s, the variables
S;’s are i.i.d. Bernoulli symmetric random variables. Recalling Lemma 5.7, it is then sufficient to prove that

k—1
Pli} < L,i} < 2L,....i5 < kL] > (1— g) (1 - (g)m) . (5.56)

When k& = 1 this is just (5.51). On the other side, using the above mentioned properties of the random
variables S; we easily see that

- ok -k -k L/2
P[Zj+1_zj SL|7’1?""Zj}21_( )

=

a.s.

from where (5.54) follows at once. W

Next we verify that the above described method provides elongations, with overwhelming probability.
Recalling (5.52) let us assume, to fix ideas, that Six = Si=4+1 = 1. From the definition of 7;, see (5.39), with
b= F*+ (f/2), we have that

T{if+1}

V(i) = >, x(@) = 2F + f. (5.57)
a:T{i’l‘—l}JFl

Therefore (T{q,l}, T{Z‘I+1}] automatically satisfies one of the two conditions to give rise to an elongation, cf.
(5.4).
Let us see that, except on a set of small probability, the other requirement is fulfilled, i.e.,

Q2
inf x(o) > —2F* + f. (5.58)
T{i»{,l}<a1<a2§7{q+1} 05;1
On the event {S; = 1}, we readily see that
o T
inf > x(@a) = —F*—f/2,and inf > x(@) >o. (5.59)

Tri—1ytl<oa<T _

i 1<a<T;
a=rgi-1y+1 Ti-pHisesTi g

o=«
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Since 3707, x(@) = 3204, x(a) + 3252, 11 X(@), on {S; = Sy =1} we have

a2

inf > —F*—f/2> —2F* . 5.60
7{7‘,_1}+1§06112Ti<a2§7{i+1} a:Zal x(a) > f/2> +f ( )
In the last inequality we used f < F*/4 < 2F*/3. Therefore, it remains to evaluate IP[7 (] )UJ (i1 +1), i =
1], where
a2
J@) = { inf Z x(o) < —2F* + f} . (5.61)

Tri—1yHlSar<az<7{;} ooy

Note that on {S; = 1}, we have inf,, |, t1<ai<as<n Doama, X(@) > —2F* — f, where we used (5.59) and
041—1

~ f . .
SUD, ) f1<ar < Y amr 11 X(@) < F* + 4. As a consequence, for any integer i:

as
),S; =1} C{ —2F* — < inf q) < —2F* .
{j(Z) } N { f< T{z‘fl)+1l£@1<a2§ﬂ ~Z X(Oé) * f}
=71
An analogous inequality (with a sup instead of an inf) holds in the case S;; = —1. Therefore we need to

prove the following:
Lemma 5.10 . Let €9 = €o(3,0,2F*) be given by (5.41) and Cy = C1(5,0,2F*) be given by(5.46). For all
0< f<F*/4 and for all 0 < € < ¢y we have

Qs
IP |Ujmiz i1 (2F — [ < sup D x@)| <27+ f
Tj—1<a1<az<T; a=aq

(5.62)
QG(B’ 97 67 f) 1
ST gz 5G0B0ef)

where

2f +9V(8,0)4/elog &
G(B,0,¢, f) = 77 . (5.63)

Remark: Clearly 4] is anticipating, and 7;+ 1 and 7+ are not stopping times.
Proof: Since IP[i} =i,S;: = 1] = 27"*!, we have

=1] < ilP[j(i), S;=1] +27"%, (5.64)

i=1

P[J(i}), S

5
1

where ¢ will be suitably chosen. To treat the sum, we define the stopping times

(e

T, sp=wf{a>ry Y x@=2F -} (5.65)
2 a=T1i—1+1
T p=mf{a>miy Y x(@)2F + 1} (5.66)
2 d—T{L71}+1
- 1 . ~ * 3
Tp_% :mf{oz>ij%,~ > +1X(a)g—f + 3. (5.67)
A=T(i-1}
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By inspection we verify that {7 (i),S; =1} C S(i) = {T}_ sf ST 44 < T}_ }, and by the strong
-3 73 .
Markov property, we have
ool T}'* %
2 - .
Plsw) < /f_¥ P o <Tr g P Z+1X( ) €da] S P[Typ gy < Tig],  (5:68)
Q=Ti—1

where we have written 7, = inf {a >1: Y, > x}, T; = inf {a >1: Y, < —x}.
At this point we need the estimate (5.91), in Lemma 5.13 below, it gives

B 5 2f +9V(83,0)y/elog &
]P[TQ_]:*—3f < TQf] S 2]_—* — f = G(ﬂ,e,G, f) (569)

with Ch = C1(8,0,2F*) > (C1(B,0,(2F* =3f)V(2f)) if 0 < e < €0(8,0,2F*) < €o(5,0, 2F*=3f)V(2f)).
Here we have used that eg(3, 0, b) is decreasing with b and that C4 (3,6, b) is increasing with b.
Consequently, cf. (5.64), (5.68) and (5.69) we have

IP[T(i}), Siz = 1] ZZP ] +27% <ioG(B,0,¢, f) + 27, (5.70)
Taking i = log m[log 2]~" we obtain (5.62), since the same works for i} +1. W

To show that (5.27) holds, we need to bound the probability of finding two extrema in an interval [Ti; $Tit ,

at distance larger than p/e and whose values are within 5.
We fix the interval [7;= , 7+] (the peculiarity of having fixed the origin will not bother), and for any given
h, k positive integers we denote

E(k hy+) ={weQ:i*y =—h,i] =k, S, = -1}, (5.71)

where for definiteness we are considering only the case of maxima, i.e., we have assumed that Sy = Sipy1 =
~1,8_ 5, =S_py1 = +1 on E(k, h,+). The case of minima is similar. Recall that IP [€(k, h, +)] < 27 *+h),
The positive integers h, k in (5.71) determine a random interval {7_p, ..., 7x+1} C Z in which the index
« of the variables x(a) varies. Using Lemma 5.7, on a set of probability larger than (1 — e_Sk) (1 — e_Sh),
we can replace this random interval by a larger deterministic one. In particular, assuming s > log 2, except
for a set of probability at most 4e~*, for all h,k > 1, {r_p, ..., Tot1} € {L(—h,¢€),...,L(k +1,€)} where

L(r,e) = T% rez (5.72)
with Cy = C1(8,0,2F*) > C1(8,0, F* + (f/2)) as in (5.46).

We now partition the interval [£(—h,€), L(k + 1,€)] into blocks of length p/e, where p was already intro-
duced in (5.30). Assuming, as always, that we do not have rounding off problems, the number of such blocks
inside [L(—h,e€), L(k+1,€)] is L(k+1,p) — L(—h, p), i.e., of order (k+h+1)p~1, with L(-, p) defined as in
(5.72) with e replaced by p.
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Given a = L(—h,e) < a1 < as < L(k+1,¢), let:
V(a,a1,9) = max Z x(a). (5.73)

Given 6 > 0, p > 0, and ¢ such that L(=h,p) <L < L(k—1,p), let us define the event

Dk, h, p,8,+,¢) = {w €Q:3,0, L(~h,p)<L<l <L(k—1,p);
(5.74)
V* (a Pt p(e+1))_y*(g pt’ p(e’+1))| 325}.

aev € ) e

We now prove the following estimate:

Lemma 5.11 . There exist positive constants ~vo(03,0) and po(5,0) such that for all v < ~o(5,6), for
0 <p<po(B,0), for 6 = p2te with a > 0, for 6y < e < €o(5,0,p), where

4(p)*2+)

€0(B,0,p) = 2V2(5,0) log(1944)’ (5.75)

and for all s > 0 we have

P [Uk,h21

/N

£k, hy+) mD(k,h,p,&Jr,e)ﬂ <

L+ V(8,06)(clog w)m) (5.76)

16 *
2OCUB,0.2F) 1o <pa/2 . L

V(B,0)

Proof: By Schwartz inequality

IP U piz1€(k, iy +) N Dk By p, 8, ,6)] < 30 (PEWR, by +))? (1P [D(k,h,p,5,+,e)Dl/g. (5.77)

Since

IPE(k,h,+)]F <22 (5.78)

will be summable in h, k, it remains to properly estimate the second term into parenthesis in (5.77). From
(5.74) we just write

L(k—1,0)—1 L(k—1,p)

lP[D(k‘,h,p,S,—l—,e)}S > Z 1P{|y ol )y y*(%%{@ﬂgzéﬂ (5.79)

(=L(—h,p) £'=+1

and estimate each summand on the r.h.s. of (5.79). If £+ 1 < ¢ we write:

V(a2 A5 — (o, £, 2D —

=) € ? € =) € €
ot 3 p(t+1)
€ o €
E x(a) + max E min g x(a),
' +1
p(0+1) 2L 1i<a <p(£ ) s gp( +1) e
a="e “=
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and using the independence of the y(«) we easily see that:

ol
1P (9" (a, 2, 2530 — y*(a, 2, L) < 93] <sup P | D x(a) € [, + 23]
T
o=ED) | (5.80)
46+/2m

SVGoVT T Dp

In the last inequality we have used the concentration inequality of Le Cam (e.g. [12], p.407) for the symmetric
random variables x(«) and assumed 0 < € < (3,0, p) see (5.75). This condition comes from a lower estimate

of what Le Cam called B2(7). In our case B2(26) = (¢' —{ — 12IE[1 A (x(1)/26)?]. A short computation
gives

E[(x(1)2] (1 ) JE[(X(l))2]1{|X(1)|>4s}]> . (5.81)

LA ((1)/20)°) > =2 E[(x(1))?]

Using (5.2), (5.35), Schwarz inequality, and that IP[|x(1)] > 44] < 220" /(VE(B9)  which follows from
(5.36), a short computation shows that for 0 < e < €¢(3,0, p) the last term inside parenthesis in (5.81) is
bounded from below by 1/2.

When ¢ = ¢ + 1, we bound the corresponding term on the r.h.s. of (5.79) as:

sup IP [y*(g) € [v,x+25]] . (5.82)

where V*(a) = maxi<a<a Ya = V*(1,1,) if & > 1, and Y, given in (5.3). Putting together (5.72), (5.79),
(5.80) and (5.82), we get

2 2V21 8
V(8,9) p? (5.83)

+ (C1(8,0,2F")(s +10g2))* U sup 1P [ V*(£) € [, 0 + 23] .

1P [D(k, b, p,3,+, )] < (C1(5,0,2F")(s +10g2))*2(h + k + 1)

The first term on the r.h.s. of (5.83) suggests to take 6 = p**% with a > 0. The last term will be estimated
in the next Lemma 5.12, cf. (5.84) below.
Recalling (5.77), (5.78), (5.79), (5.83), and using (5.84) a short computation entails (5.76). W

Lemma 5.12 . There exist positive constants vo(3,0) and po(5,0) such that for all v < ~o(5,0), for
0<p<poB,0), for 6= p*te with a > —1/2 , such that for §*y < € < (3,0, p) with eo(B,0,p) given in
(5.75), we have

1 ) - 1206 [0+ (2+V(B.0))/elog 2
ph [)’ (2) € [x,x+25]} < V5.0 e (5.84)

where C1 = C1(6,0,2F*) is given by (5.46).

14/july/2005; 12:06 831



Proof: Let T, be the stopping time given after (5.68). We write

zp[y*(g) € [x,x+25]} :IP[T} < %,Tzﬂg > g] +1P[2£ <T, <

Al

<T, 05 (5.85)

0

Observe that for any 6 > 0 we have {% <T,<2<T —} = {y*(%) <zmaxp _ _pYVa € [x,x+25]}.
) i 2e="—¢€

Therefore, if 0 < € < €y(8, 0, p), we obtain

p p < ~ 4627
P L, <fcr | <IP| max Y€z, 2+28]| <sup P |Vp €uu+28]| < —""
<< < T <0 e 30 e 28] < e g e o] <
(5.86)

In the second inequality in (5.86), we used that the law of max p o<l Y, is the convolution of the law of
2e—="—¢€
Y p with another probability (the law of Y*(4-), in this case).
2e

Let us now consider the first summand on the r.h.s. of (5.85). Decomposing according to the value of
Vi, T, and using the fact the variables x(-) are i.i.d. we get

5 p p/2€  p125 B _ p
,Tm+25>—]:Z/ IP[T, = b D € dy) IP[ T, 05, > 2 —

P [Tl <
€
k=0

r
— 2

Since x — y < 0 we can write:

P .
IP(T, 405, > 2~ K| < 1P[Ty5 > 2 — 4],
Integrating in y we then have:

P [T, < 2 Ty > g < 1P [Ty; > % : (5.87)

and collecting (5.85), (5.86), and (5.87), we get

. . . 46\/27
Now, it is easy to check that
ZP[T~>£}<1P T <Tys|+P|T~ — AT >L (5.89)
207 9¢] = ep/2 = %0 evp/2 T2 T 2|

where Tﬁ is the stopping time defined after (5.68) for a constant ¢ to be chosen soon. Then we apply
c\/p
inequalities (5.91) and (5.93) given in the next lemma, with a = ¢v/p/2, d = p/2, and = = 2. Collecting all

together the estimates for IP [y*(g) € [z, xz+ 25]}, we have:

1 . 204+ 9V(3,60),/elog & 8v/25¢
— sup IP | V*(2 20]| < =
s P [ (@) < e 4 28] < —or e g

(5.90)
72 Cl N Cl
+ 7/)3/2‘/2(@6) 1/ €elog - (9(25 +cv/p/2)+V(5,0)4/€elog ?>
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with Cy = C1(8,0, (20) V ¢\/p/2) see (5.46). Taking ¢ = V(3,6) and assuming that po(0, #) is small enough,
we have C1 (3,0, (20) V ¢\/p/2) < C1(f,6,2F*), and a short computation entails (5.84). H

Lemma 5.13 . Forallz > 0,a >0, C; = C1(8,0,2V a) as in (5.46), eo(B,0,2V a) as in (5.41), and if
0y < e<ey(B,0,zVa), we have:

» [~ - :,3] . J:+9V(ﬁ,9)\/elog% (5.91)

r+a ’

» [Na_ . Tx] . a+ 9V (B,0),/elog & (5.92)

r+a ’

~_ ~ d 4xa 36 Cl Cl
P {Ta ANTy > J < V203,00 ++V2(ﬁ7¢9)d”610g? (9(x+a) +V(,6’,0)Uelog6> . (5.93)

The proof of the previous lemma is a standard application of (5.38) and (5.42) together with Wald identity
applied to the martingales Vo, a > 0 and (V,)? — ec(3,0,7/6*)a, and also the bound (4.59). Details are left
out.

To prove (5.29) in Theorem 5.1 we need a classical result on the distribution of the localization of the
mimimum or the maximum of a simple random walk. Since their distribution is the same, it is enough to
consider the case of maximum. So, recalling (5.73), let us denote L,,. = inf{a > 0: Y, = V*(0,0, p/e)}. Such
kind of result was proved by E. Sparre Andersen [33]. Following step by step the very nice computations
he did, see Theorem 3 of [33], and using the Berry-Essen theorem to estimate what is there denoted by
IP{S,, > 0}, we can evaluate by the Cauchy integral formula the constant called C' at pg. 208, 3 lines before
(5.17) of [33]. After simple, however lengthy computations, we obtain the following result.

Proposition 5.14 . There exists a constant C(5,0) (related to V(5,0)) and po = po(5,0) such that for
all 0 < p < pg there exists g = €o(8,0) such that for all 0 < € < peq, for all 0 < k < 1/2, for all interval
0<a<a <1 suchthata’—az%,

1P [Lyc € lap/e,a'p/e]] —

cos(mk) /“/(e’p) dx

1 1
& (6.0) Z2TE(1 — )2~ "
w2 (1-2) (5.94)

1 1
1 €\2tr 1 €2~k € ¢(8,0) C(8,0)
< 7(—> +—(—) + ————exp (8 ®* 2log =35 |,
D(5—#)\p L(5+5)\p pla’ —a) "

where x(p,€) = (pr +€)(p+¢€) 7! forx =a,a
Proof of Theorem 5.1

We start proving (5.24). For any Q > Qo = 4log2C, (8,0, F*), if we take Q/e blocks of length /v
on the right of the origin, then using Lemma 5.8 with s = log2 and k = 1 + [Q/(2C1(8,0,2F*)log2)]
where [] is the integer part, with a IP-Probability at least (1 — 3e~@/2C1(8:0.77)) there is at least one
index i among 1,...,[Q/(2C1(8,0,2F*)log2)] such that S; = S;11. From Lemma 5.10 with IP > 1 —
G(B,0,¢, f)log G(5,0,¢, f)é with G(3,0,¢, f) defined in (5.63) we have an elongation there. Therefore
the probability of not having any elongation on the right of the origin within @ /e blocks of length €/~ is less
than 5

3¢ TTHIFT 4 g 30306, log G(3,0,c. ). (5.95)
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which implies (5.24).
The proof of (5.25) is done in a similar way. We first apply Lemma 5.9 with s = log2 and L = 1 +
[Q/(kc(B,0,2F*)21og 2)] then Lemma 5.10.

To prove (5.27), we recall Lemma 5.11 and the arguments that precede it. Taking 5(p) = p**% and
recalling (5.28) we have
P |:7)2(f7 S1, Q7 a;, bi+17 12 g(p))i| S 4e™? + (S + lOg 2)G1 (/67 07 S(p)’ 6)' (596)

Choosing s = log4/(G1(8,6,0(p),€)) and taking po(5,6) and €o(0, 6, p) small enough, we get (5.27).
For the proof of (5.26), recalling (5.10) we write

PRI P Pt mex @l P] ) @l ).

and taking p’ = (9f)1/ 2+ we consider the event

D@.p 0 = {300, -Q/p < U< <(Q-1)/ps |9 (a, 21, £ — y. (o, 22, L)) 95| < of},
where Y, is defined as in (5.73) replacing max by min.

Simple observations show that P3(f, Q) N {maxae—q/e,q/q IX()| < f} C D(Q,p,€). Following the
arguments leading to (5.83), assuming 0 < € < €0(3,0, f) = (9f)%/(2V%(3,0) log 1944), using Lemma 5.12
with 26 replaced by 9f one gets (5.26).

1

The proof of (5.29) follows from (5.94) estimating the integral in the left hand side of (5.94) by 8(a’—a)2 ™"
which can be obtained by cutting the interval [a(e, p), a’(¢, p)] into two equal pieces. Using (5.94) for a =
0,a’ = p and a short computation entails (5.29). W

Proof of Proposition 5.3
To prove (5.33), notice that v.J(w) D [er—1,0] U [0, erq]. Therefore, using (5.48) and a short computation
one gets
L (F)2
IPly|J| < 2] < 2e 182V2(5.0) (5.97)
for 0 < x < (F*)2/(V%(3,0)1810g2). (5.34) follows at once, due to (5.52), (5.53), and the fact that
vJ(w) C [eTix, eTiz]. Therefore (5.56) with k = 2 entails

x 1 3\ /2
Using now (5.49) with k = 2L, s = log2 one gets IPlerar, > 4LC1(3,0,F*)log2] < e 2182, Taking
L =x/(8C1(8,0,F*)log2) one obtains after a short computation (5.34). W

The following lemma will be useful in the next section; it is in fact an immediate consequence of (5.27)
and the proof is omitted .

Lemma 5.15 . Under the hypothesis of Corollary 5.2 and with the same notations with IP—probability
larger than 1 — €TOCTD we have

akq (&5}
> x(a) =€t > x(a) =€V (5.99)
a=o1 a=af
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provided of is the beginning and of is the end of a positive elongation, af + 2 < ay < aj — 2.
6 Proof of Theorems

In this section we prove Theorems 2.1, 2.2, and 2.4. They will be derived from Proposition 6.2 stated and
proved below. We will use the following strictly positive finite quantities: x(3,0) that satisfies (9.25), F*

defined in (7.5), V(5,0) in (4.56), ¢(5,0) in (4.65) and ¢(80) in (3.55). We denote

a(3,0,Go) = ~log 22 (g~ 2.6) >, (6.1)

where gz(m, 8) is defined in (9.8), (o = (o(/,0) is a small quantity that satisfies requirements written before
(7.22). Recalling (7.4), we have a(8,60) > «(8,0, (o). The results from Sections 3,4, and 6 require relations
among various parameters. For g, dy,(p sufficiently small depending on (3,6 as stated in Theorem 2.1,
0 <y <7, 7/0"<do1>0>6 >0, >C>C>C >80, Q>1,e>0, we assume that the
following constraints are satisfied:

The Cy constraints:
128(1+0)2(5+F*) [~

w30 7 Ve < (6.2)
32
RN 63)
" 2
(s et 5 ) (12c(egﬁo> (§v)g> <G, (6.4
512(1 + 0) \/z 5
w(3.0)a(5.0.G) \ 57 08 =% (6.5)

1 [12e38
ﬁlOngﬁﬂmy (6.6)

m JFr<e (6.7)
Remark. The constraints (6.2), (6.3), (6.4), and (6.6) come from Theorem 4.3, where (6.4) was written for
5 replaced by a larger value {; ; now we impose the stronger restriction (6.4), as it will be needed later.
Notice that (6.7) and (6.2) imply that ey~! > 2R;. (6.5) comes from (7.38) in Corollary 7.5.
Remark 6.1 . Note that in (6.2) one can take 6 = d1, in (6.3) § = d4 and in (6.5) § = J5, with J5 = nsd*,
01 = n1d5, and 04 = nyd* for some positive integers that will diverge since * | 0. This would allow d4 to be
small without imposing as in Theorem 2.1 that it goes to zero. Since this would introduce new parameters
we have decided, for simplification, not to do it.

With the choice of parameters that satisfy the Cy constraints, we apply Theorem 4.3, Corollary 7.5 with
p = 2+ [(log@)/(log(1/7))], Lemma 5.15, and Corollary 5.2 with k = 5, to determine measurable sets
Ny = Qu(v,0%,80,€6,0,(1,C4), Qre = Qre(7,0%, p) = Qre(y,0%,Q), Q, and respectively P(5,¢€, Q) such
that, calling Q51 = Qs N Qre NP(5,€,Q)° N Q, we have

a a 1
IP[Q51] > 1 — 106”67 — 50T — Q2w — Qe 2200 — T2, (6.8)
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when §*y < € < ¢(5,0) and a > 0.
For w € P(5,¢,Q)°, the origin belongs to an unique elongation [} , a7 ] where jo = —1or0, see (5.13)
and (5.15), moreover on this set, recalling (5.22), we have,

|:p’p:| c {60@07 Ea;o+1:| c {QQ} . (6.9)
T Y v v
We write, for n € {-1,+1}

Q(e,Q) = {w € P(5,¢,Q)¢, sgn [mij, %TOH} = 77} . (6.10)

For concreteness, we take jo, = 0 and we assume that this elongation is positive, that is, we are on Q51 N
Q7 (¢,Q). We have the following result:
Proposition 6.2 . If Cy holds and

1-s 1/4
8F1+Afs +Afs + 32, +16C1§€T (6.11)
where
1 y o*
=101 46—/ Llog —, 6.12
TN AOL Ee o

2 = 8V(B, 9)\/’ylog (i) ( (g,la oyl <5> +R1> (6.13)

: _ 45+FT)
with R] = W,

f3=16(1+6)Ry 61*’ (6.14)

and 0 < z < 1/2, there exists Qs such that

52
QQXP(’zﬁchcz(M))

IP[Qs] > 1 -8y — 7 (6.15)
1 — exp(~wozems))
and such that on Q5N Q51 N Q" (e, Q),
i (254 Lt p S L R0 £0) <
(6.16)

5 5
£(B,0) ¢ ¢ * L/ el/
- (3?) {0 snF }+28R§ (2@) e_ggexp{@e—g 154}7
¥ v 7

where p = T

Remark Recalling (5.21) and Proposition 5.3 the interval J = [O‘fy’e, a,t ] is random, its length being a finite
and positive random variable, of order y~!. On the other hand when choosing the parameters p + vR; will
tend to zero.
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Proof. We assume that = +1, the case n = —1 being similar. To simplify notation we denote by
Ny = %aée, Ny = %a{e, I'=[Ni+Ri+£ No— Ry = 2], n%¢4 () = n(¢) and B(¢) = {o : n(f) # 1} Recalling
(4.5), we have that

a0y (3E LN # 1) < pgoq (Ms(Ag) \ A(AQ)) + > g0~ (BE) NAA)), (6.17)
el

where we denote by A(Ag)¢ the complement in M+ (Ag) of A(Ag).
According to Theorem 4.3, for w € Q51 C Q4 we have

BB (RB.0) 503 g
1p.0.4 (Ms=(Aq) \ A(Aq)) < (37—@> 67;{(%)544)/\]: } (6.18)

2

To estimate the other term in (6.17) we need to restrict the infinite volume Gibbs measure to a finite volume
one. We write

ta.0, (B(0) N A(Aq))
Ni1+R; N3

< Z Z Z 13,0,y (775’Cl (61) =, n>o (b)) =72, B()N A(AQ)) (6.19)

1,2 €{—1,1}2 £1=N1 £2=N2—R;

+ g (07 (0) =0,¥0 € [Ny, Ny + Ri)) + g0 (n%51(6) = 0,¥0 € [No — Ry, Na)) .
Using Theorem 4.5, with p = 2 + [(log Q)/(logy~1)], on Qrr D Q51 we have

115,04 (V€ € [N1, N1 + Ry}, 0> (€) = 0) + pig.o.4 (V€ € [No — Ry, Na], 1> (€) = 0)

1095 (5.0) i (6.20)
B -s{(G2a)r)
Y
where R; = %@ and we have used the fact that our choice of p entails Qv~! < v < Qy~2 to replace
) 1

3475 in (4.21) by 3*Q%y~19 in (6.20).
Recalling (3.5) and using that 7% (¢;) = 7; implies that on the left of ¢,

* * * *

|E(m5y_1(€1—2,€1—1] (U)amw—l(el—ul](ff/)) — E(mj-1(4, g4, -1y(0),m <G (6.21)

T3 By (- 1,60]
for ¢’ such that n><t(¢;) = n>< (61)(0) -1 (¢, _1,6,7) = T and similarly on the right of £, we get

1g.0. (171 (1) = 71,07 (£2) = 72, B((), A(Aq))

= 2o Dy (179(00) = 1,074 (62) = o, BO), A6, 2]) (6.22)
v .
Z° 0 (P4 (1) = 01,m5 () = 72)

To get an upper bound for (6.22), we restrict the denominator to profiles that we expect to be typical
for the Gibbs measure under the constraint 7% (¢1) = 71, 7% (¢3) = 7, given that we are inside a positive
elongation. Without the constraints, taking into account only the presence of a positive elongation, the
profiles we expect to be typical are of course ¢ = 1 for all £ € [{1, £5], this is also the case for (71,72) =
(+1,+1). To take into account the cases (771, 72) # (+1, +1), we leave intervals [¢, {1+ L] and/or [fo— Lo, lo],
where L is a positive integer to be chosen later to allow the profiles to change from, say n%< (¢;) =7, = —1
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to n%¢1 (¢ + Lo) = +1. We actually require the profiles to satisfy n%% (¢; + Lg) = +1, with (5 < (; for a
reason that we explain later.
To proceed on this it is convenient to define: given Ny < ¢ < €o < Ny and 77 € {—1,+1}, for ¢ = 1 and
1t =25
Rilil, b1, 62) = {mf], ™ (01) = =< (62) }, (6.23)

ﬁ1(+1,£1,€2) n {775"45 (61 =+ Lo) = 776’<5 (fg — Lo) = —|—1} forﬁl =—-1= 72,
E(H1, 01, bo, 71, 72) = { Ra(+1, 41, 6) N {0 (by — Lo) = +1} for iy = 1,7, = —1; (6.24)
Ri(+1, 01, 02) N {5 (01 + Lo) = +1} forijy = —1,72 = 1,

where the +1 on the left hand side is associated to the sign of the elongation, chosen here to be positive.
We then estimate the expression in (6.22) as in Section 4 (see (4.39)), to obtain

1.0,y (0" (1) = M, 0> (L) = 72, B(£), A(Aq))
Z5° 1 (%61 (01) = 71, (b2) = 72, B(£), A([(1, £2]))

< 654(<1+C5+25*) [€1,02] ) e .
Z[e’l,b} (5(-1-1,51,5277717772)) (6.25)
0,m ma 0
216y 1+ Lo—1] (n°¢ (&) = +1) 210, Lyt1.00] (n°1 (02) = +1)

0,m _ my,0 _ .
Z[EI;;;JrLofl] (776;41 ([1) = 771) Z[Zth0+1,€2] (775741 (62) = 1’]2)
To apply Lemma 7.3 to the last two terms in (6.25), we take

1 * 1 *
P S 5

a(3.6,6) 5~ a(5.0) 8y (6.26)

Replacing the fi; of Lemma 7.3 by f; defined in (6.12), since here |/ > 0%, we obtain

115.0.4 (0" (£1) = 71, 0" (b2) = 712, B({), A) < e TG+ +28") B (Fr2f1) [3 (1 — L+ 2 =1])] o
20 o (155 (00) = 7, 0 (€2) = 72, BL), A([61, £2])) (6.27)
Z[OZIO,ZZ] (5(+17€17£2aﬁ17ﬁ2)) .

To treat the last term in (6.27), we make a partition of the set of profiles in A([¢1, ¢5]) distinguishing the
profiles according to the number and the location of the changes of phases in [¢1, {5].

A([t1,42)) = UN_g Ugajajeny A([01, fo], A, ), (6.28)

where N is the number of the 5 blocks in [¢1, 4], i.e.,

N = [l = 62] = | (Slot - a1 -2/ ) 2] = [f0t - a1 - 22 ). (6.29)

[z] is the integer part of z, and the first equality follows from (6.7) that entails €/v > 2R;. Moreover in
(6.28), A C {% +1, % +2,..., % -2, % — 1} . The integer n represents the cardinality of the set A and
therefore the number of % blocks where, in each one of them, there is one and only one interval of length
2R; in which only one change of phases occurs. Recall that in the definition of A([¢1,¢2]) cf. (4.1) the r,,
i=1,.., N indicate that in [nﬁ, (ri + 1)%] there is g;, such that in [¢; — R1, q; + R1] there is only one change
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of phases and there is no change in [r;<, (r; + 1)5] \ [¢; — R1,¢; + R1]. The notation A([¢1, (2], A,n) is
self-explanatory. When there is no amblgulty we denote A([l1,42], A,n) = A(A,n). Going back to (6.17),
taking into account (6.20), (6.27) and (6.28) on 51, we have that

5 N
3 -JLICR)) . 4B(G+¢s+287)
MB’Q’VGEEI’U(@#)SQ(T@ A D DN (6.30)
n=0

where

B1,_ _ -
S, = e;§(\ﬂ1—1|+\n2—1|)(f +2f1)><

Z Z Nfl Z Z el Ez] SL(ly) = i, > (b)) = 2, A(A, n), B(€)) (6.31)
0,0 ——
Lel 71,f2€{—1,1}2 £1=N1 £2=N2—R; A,|A|= Z[z V] ](5(+17£17£2;7717772))

We must estimate S,, for any n, taking care of the probability subspaces on which we are working. At first
sight one could have thought that the presence of n—changes of phases would simplify the analysis, at least
for n large, due to the presence of terms proportional to exp(—n%]-' *). Unfortunately this is not the right
picture since we must control the local contributions of the magnetic field. For A’ C [af, o] we only know
that Y- cas x(@) > =2(F* — f). The analysis is therefore more delicate, being summarized in Lemmas 6.3
and 6.4 below.

To complete the estimate of the expression in (6.30) we need to sum up the upper bounds of the S, cf.
Lemmas 6.3 and 6.4. For this we use the following inequalities that follow from Taylor formula: for all z > 0,

l I+1
IETIAEDY (ka) e (Zﬁ)l)em”” < (@N)Flelr, (6.32)
k=0

Recall that N% = %[(62761)%] < (ly—ty) < ?; || < ? To simplify the computations, when necessary,

we take half of negative part in the exponential to compensate the positive part. We also use (52 > (5.
Denote Q25 = Q51 N Q53, with Q53 as in Lemma 6.3. After some easy however lengthy computations, using
(6.11), we see that on Q5 N QT (€, Q),

ﬁ51/4
4Q .~ 575
B n(ae) 2 1/4 {Te B }
ppon (3 ET(l) #1) <2 (iQ) R Af}+28|R1|2< Q) T (6.33)

which is (6.16). (6.15) follows from (6.34) since IP[QQgg] > 1 —~2. This ends the proof of Proposition 6.2 if
we assume Lemmas 6.3 and 6.4. W

Lemma 6.3 . (n=0) For fi given by (6.12) and fo given by (6.13), for 3 > z > 0, there exists Q53 with

2
. 9 WETTw
Pl >1 -4y - (6.34)

1 — e BQCE2(8.6)

such that on Q7 (e, Q) N N5z N Q51

1/4

So < R2|1]e5 (+72) e 5e (6.35)
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where

1= .
G = RN (1 4 ), (6.36)

Proof. In this case the profiles have no change of phases, therefore we must have 7; = 2. If 1 = 72 = +1
and we take |A| = 0 in (6.28), we have

{,,75741 (¢) = 771;7757C1 (l2) = 772,«4([€17€2]aA70)7B(£)} =0

and there is nothing to prove. So we consider the case 7; = 72 = —1. With this choice the set to estimate
n (6.31) is

{n® (01) = i1, > (L) = 72, A([lr, 2], A, 0), B(0)}

, » ) e (6.37)
= {77 CH(ly) =02 (o) = —1L, VL€ [y + 1,4y — 1], n75 (£) = *1} = Rya(—1, [, £2]).

To estimate the quotient of the two partition functions in (6.31), we need to extract the contribution of the
magnetic field as we did in the proof of Proposition 4.7, see (4.47). If, however, we proceed exactly as it was
done there, we should get (4 instead of (5 on the right hand side of (6.34). Since (4 is fixed and @ will be
large at the end, such an estimate would be useless. Therefore an extra step is needed. For 77 = +1, ¢} < ¢}
such that ¢4 — ¢4 > 40y + 8, £y > 0 to be chosen later, let us denote

R (7,100, 65]) = {mly 0™ (0) = 7, Ve € [, 65]} (6.38)
and
Ri45(—1,[01,62]) = Ri,.a5(—1,[l1,42])(%0) = R1,a(—1, [¢1,€2]) N Rs(—1, [€1 + Lo, b2 — £o)). (6.39)

Then we write, see (6.31) and (6.37)

730 (Rua(=1, 61, 65)) 750 (Ruas(=1, [, 40])) y 257 1 (Ria(=1, [0, 65))

. (6.40)
250 (E(H1, 60,6y, —1, 1)) Z&om(g(ﬂ,el,zg,_l,_n) 2570 (Ruas(=1, [0, £a]))

The choice of £ is related to the needed length to go from 7%%4(0) = 7 to 7% (ly) = n knowing that we are
within a run of n®% = 5. It is determined estimating the last term in (6.40) from which we start. Since
R17415(_1’ [£17€2]) - R114(_17 [61752]) we have

Z[%’loe](RM(— [61, £2])) 14 zy° ez](Rlél( 01, 62]) N (Rua5(=1, [61, £2]))°)

< (6.41)
[zl 0] (Bra5(=1, [1, £2])) [41 42](31 4,5(=1, [€1, £2]))

From Corollary 7.5 it follows that on Qrg D Qs1, if

512(1 4 0) v 5*
06 > .0)a(3.0,) \g log = (6.42)

where «(3,0, (o) is defined in (6.1), and ¢ is chosen* as Lo defined in (6.26), then

2ty (Bra(=1, 16, 6]) 0 (Bras (-1 [0, 6D))) o g5y

257 0 (Ruas(=1, [, £2))) -

(6.43)

* The Lg chosen in (6.26) is obtained setting d = 2 in Corollary 7.5.
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uniformly with respect to [Ny, No] C [-Qy ™1, Qv 7], ¢1 € [N1, Ny + Ry], and ¢y € [Ny — Ry, No]. To treat
the first term in the right hand side of (6.40), recalling that, see (6.24),

E(+1,01,00, —1,—1) = Ry(+1, [1, €2]) N Rs(+1, [¢1 + Lo, £z — L))

we first split the interval [¢1, £2] into three intervals [¢1,¢; + Lo — 1], [¢1 + Lo, ¢2 — Lo] and [la — Lo + 1, 45].
On the first and the last interval, we use a block spin representation, the rough estimate Lemma 3.3 with
p =2+ [(log@Q)/(log(1/7))], and then the symmetry m — T'm of the block spin model. Thus, on Qrg =
Qre(y,0%,Q) D Qs51, we get for the first term

0,m_
Zy (7 () = —LVEE [0 + 1,6 + Lo — 1], >4 (0) = 1)

0,m
Ziey iy + 1o (171 (() = 1) (6.44)

8 ol
<e 26(140) Lo (5" Vv 5*) :6;6(1+9)m(10g )(5 Vy/55) < 6%]”1

and in the very same way for the other term. Therefore, on Qrg D 51, we have

750 (Ruas(=1, [61, 6]) (Lo)) _ Bag Bap, 23, 1o ta—ro)(Bs (=1, [ + Lo, 5 — L))
< ev*%sen
Z[%loé ](8(+17€1a€27 _17 _1))) Z[(;71()+L0,€2—L0](R5(17 [61 + L0,€2 - LO]))

(6.45)
24 B2 AN oy ey 1) Z=10(l + Lo, £y — Lo])
Z11,0,([€1 + Lo, b2 — Lg))

where AQ( él+Lo o) = 2aweCse ([t1+Losta—Lo]) X () and the remaining term is defined in (4.48) with
R(n) replaced by Rs(+,[¢1 + Lo,¢2 — Lo]). The equality in (6.45) is obtained by extracting the main
contribution of the random field as we did in (4.47).

To estimate the last term in (6.45), we use Lemma 4.8 with (4 replaced by (5, a = §5 , for some
0 < z < 1/2. Using (6.4), this entails that on a subset 54, with

2
26_8QC§[Z2(&9)
PQsy) >1- ——— (6.46)

1 _ g BQEECHO

we have
Z_1,0([tx + Lo, 2 — Lo)) B16, 7
max , < e~166 7 6.47
[61.,£2]C[-Qy=1.Qv1] Zy1,0,([1 + Lo, €2 — Lo]) — | !

Some care is necessary to estimate the contribution of the first factor of the r.h.s. of (6.45). By definition,
on Q% (e,Q), we have A*g(m‘;[a* ar]) = 2F+ f = 2F + e'/*. However the random contribution we
J[ag.ap

extracted in (6.45) is merely A"‘g(mgwﬁL0 fszo])’ with ¢1 € [N1, N1 + Ry], b2 € [N3 — Ry, No]. Tt is easy
to check that there exists a subset 255, that depends on (v, 5%, Q) with IP[Qs55] > 1 —8v2, such that on Qss,
uniformly with respect to [N1, Na] C [-Qv~1,@Qy71], and ¢; € [Ny, Ny + R1], {2 € [N2 — Ry, N2], we have

e~ BAG(m MG (610,62~ Lo)) <e 7 (2'7:*"'51/4_]02) (6.48)

)

where f5 is given in (6.13). Collecting (6.44), (6.45) and (6.47), on Q1 (Q, f) N Qre N Q54 N Qs5, we have

Z[Oél 2]<R1’475(_17 [£17€2]))
Zf.éof }(6(4_1’61762’7717772))

<. g(4<o+2f1+16< z )e—§(2f*+e”4—f2) (6.49)
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Now, collecting (6.40), (6.41), (6.43) and (6.49), and calling Q53 = Q54 N N5, on QT(Q, f) N Q3 N Q51 we
have

z25°, 1 (S (6) = i1, % (L) = 7o, A([l1, £2], A, 0), B(¢ .
[€1,02] (77 ( 1)00771 ;0> (L2) (El 2] ) ()) SGe_g(z}_ +51/4_f2) (6.50)
Z1j) 1) (E(FL, [b1, 2], 711, 772) )
from which we get easily (6.35). B

Lemma 6.4 . (n>1) On Q(54) N Q51 N QT (e,Q) N Q, we have

Sy < RYI|[la — b1)es Chtfatfatacnge=5e/ (6.51)
2 N e\" nE(fa44¢) 2 —Bnl/4 _ _

S, < R7|I| n) 5 e Gze 72° | neven 7 =12 =1, (6.52)

N " -
Sn <R2II|6_(4f1+2f2)<n) <6> GEHIEnS a0 =B (e B-nl"+252 %) S — gy = 1,

v
(6.53)
S < R2|I]e~ 2 (N) <E) eGP S () s odd, (6.54)
n v
where f1 is defined in (6.12) fa in (6.13), f3 in (6.14) and G in (6.36).
Proof. We prove explicitly the case n = 1. The n > 1 can be done similarly following the general

strategy outlined later. When n = 1 the magnetization profiles have only one change of phases and are
therefore compatible only with boundary conditions 71 # 72. Suppose that 73 = —72 = 1. The reverse
case is done similarly. Denote by 71 the index of the 5 block in which the change of phases occurs. When
[rs =Ry, (r+1)5 +R1)] [No = Ry — £, £5] we have {n><1(61) = 1,77 (€a) = =1, A, 4,)(A, 1), B(f)} = 0
since ¢ € [Ny + R1 —|— ,No — Ry — %] Therefore we may assume that [Tl— — Ry, (r + 1) + Ry)] C
[¢1, No— Ry — —] We spht the interval [¢1, 5] into three adjacent intervals [¢1, ¢1 — R1], [(1 — R1 —|—1 ¢1+R1—1]
and [q1 + Rl,fg] assuming that the change of phases happens in the interval [¢; — R1,¢1 + R1]. Recalling
Definition 4.1 in Section 4, one has %% (Z) is equal to +1 for £ = ¢, and for { = ¢; — Ry while it is equal
to —1 for £ = q1 + R1. We associate the interactions between the intervals to the middle interval. Suitably
restricting the denominator we get

25 1y (0 (00) = +1,0 (b)) = =1, Ay, 1,)(A, 1), B(0))

133 < 3%4C1 X
200, (Ru(+1, 01, 60) N {19 (€ — Lo) = +1})
o0 mo,m_
210y g0~ Ra] (Ria(+1, [0, 1 — Ra))) 2 R

X (6.55)

0,0 S x my,m =
Z[&,qlle] (R1(+17£17 q1 — Rl)) Z[qltR:r+1)q1+Rl_1] (R1(+1741 - Ry + 1,(]1 + Ry — 1))

0,0
v+ R 5] (R14(—1,[q1 + Ry, 42]))

ZﬁhOJrRl 2] (R1(+1, @1+ Ri, o) N {n%% (6 — Lo) = +1}) :

Since Ry a(+1,[l1,q1 — R1]) € Ri(+1,41,q1 — Ry), see (6.37) and (6.23), the first ratio on the right hand
side of (6.55) is smaller than 1. The second ratio in (6.55) is treated in a similar way as in the proof of
Lemma 7.3. However, since the volume we are considering is [¢1 — R1 +1,¢q1 + Ry — 1], the error terms that
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come from the block spin approximation and the rough estimates, see Lemma 3.3, are evf 3 with f3 given
n (6.14). Therefore, on QrE D N51, uniformly with respect to the position of the change of phases in the
interval [—Qy~1, Qv 1], we have

my,m_

lgy — Ry 1,1+ Ry 1] < e 5F—f), (6.56)
m4,m =
T o (R s~ B Lo = 1)

It remains to treat the last ratio in (6.55). We claim that on Q54 N QrE D Qs3, see just before (6.50), we
have

Z[O‘;1()+R1,22] (R174(717 [(h + Rl, 62]))
Z[%?er 2] (ﬁ1(+1, @1 + Ry, 02) N {n%% by — Lg) = +1})

1—2
B B B 2 B r(B,6) 53
< e teenten 10T (1475 7T 20

ﬂAg(m slar+R1+Lo+1,62—Lo— 1]) = Ge —ﬁA*Q(m lar+Ri+Lo+1,62—Lo— 1])
(6.57)
where G is defined in (6.36).

Let us explain where those terms come from: We have written the ratio on the left hand side of (6.57) as

B 5(8,6) 53
a product of two ratios in the very same way as in (6.40). The second ratio gives the term (1+e” 7 1 3G

as in (6.41) and (6.43), and this occurs on Q2gg. The first ratio was treated by first splitting the volume
[q1 + R1,¥¢2] in three intervals [¢1 + R1,q1 + R1 + Lo, [¢1 + R1 + Lo+ 1,02 — Ly — 1], and [¢5 — Lo, ¢3]. The
first and the last intervals give us the term exp(%? f1) that comes from the rough estimates, and therefore

occurs on Qprp. There is also a term eXp(%4C5) that comes from the interactions between the intervals. We
remain with a term similar to the left hand side of (6.45) but in the volume [¢q1 + Ry + Lo+ 1,02 — Lo —1]. It

1—2
give us the term exp(%lG(?) and the last term in (6.57) and this occurs on Q54. Collecting (6.55), (6.56),
and (6.57), we have, on Q51 N Q53

71+1 byt
N1+R1 B:

= Z Z Z Z Z §f+2f1)e—§(}‘*—f3)e§4clx

N1 Eg Ng Rl T1 qlz—eg q1— Rl

X G6_6A+g(mgv[ql+R1+L0+1vf2—Lo—l]) (658)

Ni+Ry

B(2f1+f5+4C1)G Z Z Z Z —BA*g(mﬁ lar+R1+Lo+1,£0—Lo— 1])

El Nl Zz N2 Rl T1 q1=

By Y., we denote the sum over blocks of length < contained in the interval [(1,No — Ry — £], so that
Yo 1<l —60]T < ? The contribution of the magnetic field in (6.58) is estimated using Lemma 5.15

and therefore occurs on €2.. By definition, for any value under consideration of ¢; € [%e, rlTHe] and 71, we
in fact have that
5
Ag(mﬁq[II1+R1+L0+1,Z2*L0*1]) = Z X(:L’)
:CECL;*([Q1+R1+L0+1,€2—L0—1])
1 o1 (6.59)
=— > x (@) — >, X ().

v a= q1+R1:rLo+1,y z€Csx (l2—Lo,N2)
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The point is that af is the end of a positive elongation, that is a maximum, and by construction |aj —
1
w'ﬂ > £, recall p = e7@Fa . Therefore recalling Lemma 5.15 on Q7 (Q, f) N Q. N Q53 we have

* 1
Ag(mg,[qﬁmﬂlz]) z ~ (61/4 - f2> : (6.60)

This entails that on Q51 N Q53 N QT(Q, f), see (6.58),
2 Z(2f1+fatfatacy) v, —2et/*
Sl < R1|I|[€2 — Kﬂev Ge 7 . (661)

Remark: The fact that No = afe/~ is a maximum is crucial here. In the case 7; = —1,72 = +1, it would be
essential that of is a minimum.

General strategy. The estimate of the terms with n > 1 in (6.30) is a simple modification of what we did
in the cases n = 0 and n = 1. Let us summarize the general strategy:

a) Similarly to (6.55), if n changes occur we bound the ratio of two constrained partition functions by the
product of ratios over the n intervals [¢; — Ry, ¢; + R1] where the changes occur, a factor €346 and a product
of ratios over the intervals with no change of phases.

[F*—f5]

B
b) The contribution of a ratio corresponding to a change of phases is estimated by e~ where f3 is

given in (6.14), as we did in (6.56). This holds on Qrg since a rough estimate is used and therefore on 5.
¢) The contribution of a ratio over an interval, say J, where there is no change of phases is bounded by

1 when the profile is (4-near mg, that is for a run of n>% = 41. If, instead, the profile gives a run of
n®% = —1, as in (6.57), then the corresponding ratio is bounded from above by

1—z - -
T (s +2014166,7 ) (1 4 o= 555D~ FAG(mG ) _ Ge—FAGmG ) (6.62)

on Q51 N Q53.

d) The contribution of AG (mgj ) in (6.62) depends whether J is between two consecutive changes of phases
or not, with 7 being located at an extreme of I. In the first case we use ) . x(a) > —(2F* — f) =

5+4a

— (27" - 61/4)) which holds on Q7 (e, Q). In the second case, if the length of J is larger than £ = e~ &4,
we apply Lemma 5.15 as in (6.60), on Q.. This gives A"‘Q(m?,j) > y[e!/* — f5]. Otherwise, we use the
fact that

*
o t

| § | ) |
o2k, 2@ 20 pif, D x(@ 20, (6.63)
- a=ag

since o is the location of a maximum and o the location of a minimum.
e) At least there are two factors in (6.51), (6.53), and (6.54) that come from

o< (ZZ) Yois< (f)n (6.64)

T1,---Tn q1;---9n v

Proof of Theorem 2.1 The proof of Theorem 2.1 is a consequence of Proposition 6.2 and of the next
choice of parameters. Take g(-) such that g(z) is increasing, g(x) > 1 diverges as x | 0o, 2 *g(z) < 1 and

v~ lg™(x) 1 0, (6.65)
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RV (6.66)

9(%)’
log g(%-)
Q = exp (m) (6.67)
1 1 1
CTmeEnAE); T (009
g—# and 6—— 1 (6.69)
L 160g(2) 5(g(5)) 2 ‘

First we have to check that the Cy constraints are satisfied if the parameters are chosen as above. (6.2) is
immediate from (6.69) and (6.65). (6.3) is just (2.29) with the choice in (6.69). (6.4) is just (2.30) with
(6.68) and (6.65). (6.5) is immediate from (6.68) and (6.65). (6.6) is immediate from (6.67), (6.65), 6* < 1
and v/d < dg, by taking dy small enough. (6.7) follows from (6.65) by taking o and dy small enough.
It is immediate to check that (6.11) holds and also that (6.16) implies (2.20) after easy simplifications. It
remains to check (2.17). Notice that (6.68) gives 26Q(Zc?(8,6) = Q/g, and taking dy small enough we have
e~ /(2°QG(B.0) < ¢=F*Va_ Tt is then easy to check that with our choice of @ the leading term in (6.8) is
5¢T6CFD from which we easily get (2.17).
We then set

o
and 7(w) = +1ifw € QT (6,Q)NQ5 and 7(w) = —1if w € Q™ (¢, Q)N Q5. The estimates (2.18) and (2.19) are
immediate consequences of Proposition 5.3. The proof of (2.21) is an immediate consequence of (2.20), since

J contains at least one interval of length larger than 2p/~ that is within one of the two adjacent elongations
that, by construction, have the opposite sign. W

Proof of Theorem 2.4 Since the proof follows from arguments similar to the ones we already used, we will
sketch it. It is enough to consider two consecutive elongations

(6.70)
I - [%Mﬁﬁ,%_ 1_3]
v
with sgnly = +1 and sgn/; = —1. The main point is to estimate ulg}gﬁ(COJL where
ajfe aje
Cop = WE ([—1 O Ly ) 32,44) NA(Asq) (6.71)
Y Y Y
and W is defined in Definition 2.3. Using Theorem 4.5, we get
1 +R
noonlConl < Y Z Z 1,0~[Cor NN (€1) = i, " (€2) = 72}] +
77177726{ 1 +1}€ —Ry Zz— (6.72)
! (2Q) e~ 2((goEHAF").
v?
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where @ is defined in (6.67). To study g,0.~[Co1 N {n>* (£1) = 71,177 (¢2) = 72 }], we decompose the event
in a way similar to (6.28). Consider first the case 7; = +1. To be able to use (6.52) where there is a
positive elongation, we need to have another n%¢(¢) = +1 for £ on the left of % - Ry — % instead of
the n®%(¢) = 1 that is present by Theorem 2.1. Using Theorem 4.5, we will find such an ¢ in the interval
[O‘16 -2 % Ry — 2], and we apply (6.52) in the interval [¢,¢1] C [a16 2Ry — £, D‘Tl} As a
consequence on Q51 N 253, the Gibbs—probability to have an even number of changes of phases n > 2 within

[ — 2Ry — ;, % R;] is bounded from above by

Ry
2Q) B l/4 {%e_g 144}
e T e . (6.73)
5

Consider now the case 7; = —1. Thus, within the interval [ - -£ 6O‘—l] the profile makes an odd

number of changes of phases. When n > 1, we can apply (6. 54) and we get that the contribution of these
terms is also bounded from above by (6.73).

So, on the left of af, there are two cases left from the previous analysis: no change of phases when 7; = +1
or a single change of phases when 77; = —1.

The same arguments apply on the right of aj and therefore we can have at most one change of phases on
the left of o] and at most one change of phases on its right. Now we show that to have simultaneously one
change of phases on the right of o} and one on its left has a very small Gibbs-probability. It only remains
to consider the case 71 = —1,72 = +1. Since 17‘5744(0‘7Ie + R+ %) = —1 the profile in Cp; makes two changes

of phases on the right of /1 but since we are on A(Ayg) this means that there exists an ¢ € [¢1, % + R+ %]
with ¢ — ¢1 > ¢/~ such that n>¢(¢) = +1. That is within the negative elongation that occurs on the left of
ai, we have 9% (fy) = +1,7%% (f) = +1. By using the very same argument as in (6.52), taking care that
here with the same notations as in (6.45), we will merely use

0,0
2y Lot ](R5(+1, [¢2 + Lo, t — Lo])) +5Ag(m S et Lort—Lo) Z410([l2 + Lo, ¢ — Lo))

(6.74)
24 p i) (Bs(=1,[l2 + Lo, £ = Lo])) Z-10(/fz + Lo, € Lo])’
and since we are within a negative effective elongation we have
VYAG(MY (431 1o 0—1) < 2F" — €/, (6.75)

As in (6.52), the 2F* cancels with the contributions of the two changes of phases and we get a contribution
which is bounded from above by (6.73).
Therefore we are left with the three cases 73 = —1,72 = =1, 71 = +1,72 = +1, and 7, = +1,7, = —1

that belong to W; ([T — Ry — %% + Ry + %], R, C4>. This ends the proof of Theorem 2.4. W

7 Functional

We introduce the so called “excess free energy functional” F(m), m € T:

.7'- ml,mQ)

2 (7.1)
/ / r — 1) ) — () drdr’ + / a0 (ma (), ma(r)) — fa.9(mp1,mp 2)] dr,

with fzg(m1,mz2) given by (9.6) and m(r) = (mi(r) + ma(r))/2. The functional F is well defined and
non-negative, although it may take the value +o0o. Clearly, the absolute minimum of F is attained at the
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functions constantly equal to the minimizers of fgg. F represents the continuum approximation of the
deterministic contribution to the free energy of the system (cf. (3.15)) subtracted by fge(mg), the free
energy of the homogeneous phases. Notice that F is invariant under the T-transformation, defined in (2.14).
It has been proven in [14] that under the condition m4(0) + m2(0) = 0, there exists a unique minimizer
m = (my,ms), of F over the set

Moo = {(m1,ms2) € T;liminf m;(r) < 0 < liminf m;(r),i =1,2}. (7.2)
r——00

r—+00

Without the condition m;(0) + m2(0) = 0, there is a continuum of minimizers, all other minimizers are
translates of m. The minimizer m(-) is infinitely differentiable. Furthermore, there exists positive constant
¢ depending only on § and 6 such that

[m(r) —mglly <ce @Il if r >0

(7.3)
|m(r) — Tmgl|ly < ce ", if <0,
where a = a(,60) > 0 is given by (recall (9.13)):
e=o0.0) — 995 5 g (7.4)

om

Since F is invariant by the T-transformation, see (2.14), interchanging r — oo and r — —oo in (7.2) there
exists one other family of minimizers obtained translating T'm. We denote

F* = F(im) = F(Tmn) > 0. (7.5)

The functional F that enters in the above decomposition into a deterministic and a stochastic part, F +~G,
is merely a finite volume version of (7.1); however (7.3) and F* will play a crucial role here.

In this section we prove some estimates needed in Section 5, based on results on a finite volume version
of the excess free energy functional, F(-), see (7.1). They are adaptation to our case from results in [16] and
[9]. More care is needed here, since the profiles belong to 7 C L*°(IR,[—1,+1]) x L*(IR,[—1, +1]) instead
of L>*(IR,[—1,+1]) and the norm involved, see (7.7), is stronger than the L> norm used in [16] and [9].

e I: Minimizers in finite volume

As in Section 2, Ds denotes the partition of IR into the intervals ((¢ — 1)4, 6], £ € ZZ, for § > 0 rational.
In particular, if § = né’, n € IN, then Ds is coarser than Ds . For r € IR, we denote by D°(r) the interval
of Ds that contains r. A function f(-) is Ds—measurable if it is constant on each interval of Ds. In terms of
the notation of Section 2, we have D°(r) = As([r/8] + 1), where [z] denotes the integer part of z. We define
for m = (mqy,mg) € T, see (2.12),

s 1

mi(r) == m;(s)ds i=1,2. (7.6)
0 D3 (r)

By definition, the functions m?(-),i = 1,2, are constant on each D’(r). Definition (2.15) is extended to

i

functions in 7', and, with an abuse of notation, we denote n%¢(¢), £ € IN,

1 if Vae—1,05 3 Jps g dsllm?® (s) —mglls < ¢

5¢(0) — (u) )

0 =9 =1 if Va1, 3 Jps uy dsllm? (s) = Tl < ¢; (7.7)
0 otherwise.
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If m® (z) = m® (x,0) for & € Cs(I), see Section 2 before (2.11), and we identify it with an element of
T, piecewise constant on each ((z — 1)6*,26*], and take § = kd*, then (7.7) coincides with (2.15). Given
LoeIN,0>6*>0,(>0and ne {—1,+1} we set

Vsc,Lo(n) = {m = (m1,ma): (nm1,mmz) € Moo, 1°<(0) = —n,n>(Lo) = n}, (7.8)

where M, was defined in (7.2).

Lemma 7.1 . Let (58,0) € €. There e:vist 0o = 80(53,0) >0, o = Co(B,0) > 0 such that for all 0 < § < &g

and 0 < ¢ < (o, for all integers Lo > (ﬁ 7y log 1/¢, with X(3,0) given in (7.4) we have

inf F(m)=F"= inf F(m), (7.9)
meVs ¢ Lo (+1) meVs ¢, Lo(—1)

where F* is defined in (7.5). The infimun in the first (last) term of (7.9) is a minimum, attained at a
suitable translate of m (T, respectively).

Lemma 7.1 follows from the variational result proven in [14] once we show that the set Vs ¢ r,(+1)
(Vs,¢,0,(—1)) contains a suitable translate of m (T, respectively). Due to the T-invariance of the functional
F it suffices to check the first. This is easily obtained. Namely, from the exponential decay properties of
m, see (7.3), ||m(r) — mglh < ¢ for r > mlogc/g and ||m(r) — Tmglly < ¢ for r < fmlogc/g
Taking into account the definition (7.8) we can take Lo > ﬁ log ¢/¢ and find a translate of /m in the set
V&C,Lo (—|—1).

For any interval I C IR and m = (my,ms) € T, we denote by m; = m1; the function that coincides with
m on I and vanishes outside I. We define

2

Pt = [ Goalme) = Fom)) dr+ 5 [ar [ ar'ae =) =] (@0)

where fg9 is defined in (9.6) and i = ™52 For a given m € T, we denote

F(mrimy;) = FO(my) + %/j dr /C dr' J(r —r")[m(r) — @(r’)f. (7.11)

Both functionals are positive and well defined for all I C IR, however they could be infinite if I is unbounded.
Observe that when m; = mg (or m; = T'mg) then F°(m;) reaches its minimum value F°(mg) = F°(Tmg) =
0 in I. The same holds for F(m;|my;) when my; = mg (or my; = T'mg). When the boundary conditions
myy are different from mg (or T'mg) but are suitably close to them we will prove that the minimizer exists
and it decays exponentially fast to mg (or T'mg) with the distance from the boundaries of I. The value of
the functional at the minimizer will be, therefore, close to the null value. For all n € {—1,+41}, we denote

M(¢,6,m) = {m = (m1,mz) € T; S0 =n, V0 e Z}, (7.12)

AC,8,m) = {m = (my,m2) € T3 74(0) = n, Ve € Z2} | (7.13)
where 7%¢(-) was defined in (7.7) and
s +1 i Yaee—1,q Im®(u) = mglh < G
M) =9 =1 if Yaeqeo,g [m®(u) — Tmg|ly < (7.14)
0 otherwise.
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Using ||m?(u) — mgls < 671 fDé(u) ds||m® (s) — mg]|1, it is easy to see that M(C,d,1) € A((,6,m). We
denote by M;(¢,d,nm) = {m1;for m € M(¢,d,n)} and in a similar way A;((, 8, 7).

Theorem 7.2 . For (8,0) € & there exists 0 < (o = (o(8,0) < 1 and, for 0 < ¢ < (o, there exists
do = 00(¢) > 0, such that for any 0 < § < &g, given a Ds—measurable interval I and boundary conditions
mg; € Mar(C,0,+1) there exists an unique ¥ = (1,12) in My(¢,6,+1) such that

- _r . 7.15
mlejélr}(w#) (mr|mgr) (Y]my;) (7.15)

The minimizer ¥ is a continuous function with uniformly bounded first derivative in the interior of I,
lim,q 5+ ¥(r) and lim, | 5- 1 Y(r) exist, with the further property that

[1(r) —mga| + |2(r) —mga| < (¢ Vrel (7.16)

[1(r) — mpga| + [1h2(r) — mga2| < (e_a(ﬁ’g’qo)[Zd(r’m)] Vr el suchthat d(r,0I)> (7.17)

N | —

where d(r,0I) denotes the distance from r, to the closure of OI, [-] refers to the integer part, and (5,6, (o)
is defined in (6.1).
Remark: An analogous result, changing mg to T'mg, holds for n = —1.

Proof: Since M((,d,1) C Ar(¢,6,1), we first prove that the infimum of F(-|my;) over A;(¢,6,1), a priori
smaller than the one in (7.15), is reached at a unique ¥ € A;({,0,1). Then we prove that ¢ can be taken
continuous and that it verifies (7.16). This implies that ¢ € M;({,d,1), and therefore (7.15) holds. The
proof that the minimizer of F(-|my;) over A;((,0,1) exists is obtained dynamically. We study a system of
integral differential equations for which F(-|mg;) is decreasing along its solutions:

0
g —my + tanh{3 (J*m + 0 + J x1my;) }
ot
) (7.18)
% =~y + tanh{B (J %1 — 0 + J % 1y, ) ).
Here « is the usual convolution.
Therefore the minimizers of F(:|mg;) correspond to stationary solutions of(7.18), i.e:
Py :tanh{ﬂ (J*lz—i—Q—i—J*@aI)};
(7.19)

wgztanh{ﬁ(J*z/;—G—i—J*@m)}.

This method has been already applied to characterize the minimum of the infinite volume functional (7.1),
see [14] and reference therein. To show (7.16) set 1) = 1(¥1 +92) so that, from (7.19),

J= g tanh {6 (720 40+ Txrig, )} + 5 tanh {5 (720~ 0+ T xrig )} (7.20)

Since, see (9.8), gs(s,0) < s when s > mg and gg(s,0) > s when 0 < s < 7g, it is easy to see that for
0 < ¢ < 7y there exists dy(¢) such that for & < 6(C), [P(r) — Mg < % for r € I. (7.16) is then easily
derived, once we observe that

[91(r) = mg 1| = |tanh B[] x (¢ + ;) (r) + 6] — tanh Bl + 0]
(7.21)

/O dsB(1 — tanh® B[s.] x () + 1y, ) (1) + (1 = 8)ing + 0] [T * (¢ + iy, ) (r) — mﬁ} ‘ :
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Replacing 1iv,; by m?,;(r), we obtain

[1(r) —mpa| < B [1 — tanh? B{mgs — % -0+ 9}] ‘(J* (1; +m~531)(7“) + 6 —mg(J * Lrusr)(r)

gﬂ[l—tanh2ﬂ{ﬁzg £—5+0}] (C—HS)

Doing something similar for the other component we obtain
[91(r) = mpa| + [9h2(r) — mpa| < e” PO 4 24),

where we set a(3,6,() = —1og S (Mpge — 5,0) gp being defined in (9.8). By the smoothness of gg, since
(9.13), there exists o = (o(5,0) so that for ¢ < (p(3,0) and § small enough (depending on () we have
e~ (CH20)[¢ 4 28] < ¢. To get (7.17) we first show that ¢ solution of (7.20) has the following property

- 1
[9(r) — | < e " GOWRACI] i () > (7.22)
where [z] is the integer part of x. Since mg is a solution of (9.8), we have:
[r(r) = g < 20O T ihy (1) = g | + €= P0 T gy |(r), V€ L. (7.23)

Notice that (J % [mg;|)(r) = 0 for r € I,d(r,0I) >  and, since J(r) = Ty <1/2}, if r is such that
d(r,0I) > Ny/2 for some Ny € IN, we have (J*No x |my,|)(r) = 0. Therefore, iterating (7.23) No—times, for
r such that (No +1)/2 > d(r,0I) > Ny/2, we see that

‘J)I(T) - mg] < e NoalB00 | J o apy(r) — 1| < e*Nw(ﬁﬂ’Og. (7.24)
Since e~*(4:9:¢) < 1 for ( < (o, we obtain (7.22). Since d(r,0I) > } implies that (J % 1hy;)(r) = 0, from
(7.21) and (7.22), and doing similarly for the other component, we obtain that

|4 (1) — m5,1| + [the(r) — m6,2| < efa(ﬂﬂ,c)Cefa(ﬁﬁ,co)[m(rﬁf)] < Cefa(ﬁ,G,C)[M(rﬁl)]. (7.25)

O
o II: Surface tension.

Lemma 7.3 . Given (3,0) € &, there exist vo = v0(05,0) > 0, dy = do(5,0) >0, 1 > (o = (o(B,0) > 0 such
that for all 0 < v <9, all 6* > 0 with v/6* < dy, and all positive integer p satisfying

(14 p)é*log Lo % (7.26)

Q

there exists Qrrp = Qre(y,6*,p) with lP[ rE] > 1 —~2 such that for any w € Qrg, any 1 > § > §* > 0,
and any (o > (1 > 8v/6*, if Ly = (ﬂ 7 1og(g—) for some d > 2 and «(f3,0) defined in (7.4), we then we
have, uniformly with respect to the choice of [€1,¢1 + Lo — 1] and [l — Lo + 1, 45] inside [—y P,y P]:

my,0 5.¢ o 0,m , o
Zie Lyt (17 (82) = 1) Zy g g (17 () = +1) o2 (F ) [BUm -1 +1me—11)] (7.27)
0 - 0, — < , )
Z[?;—L(ﬁl,lz] (%61 (£2) = 7j2) Z[e:zr-i-Lo—q (%<1 (€1) = 1)
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where F* is defined in (7.5) and

5*
fi1 = 10(1 + 0)(6* v \/;)dlog 5 (7.28)

Zozm;r 1](716’<1(£1)=771) _ . .
Proof: We start estimating —l“-20= from below. When 7; = +1, the previous quantity is
zy (n<1(e)=+1)
equal to 1 and there is nothing to prove. We then suppose that 7; = —1 and to simplify notation we set

¢1 = 0. We perform a block spin transformation as in Section 4 and use Lemma 3.1. For the random terms
we use the rough estimate, Lemma 3.3, obtaining for w € Qrpg,

-21, (5 +egr log & +40/ 5 )

ZOJmr (,’75,(1 O) — ,'71) >e [~ A[(:LO 1] |_ao Lo— 1])]
[0,Lo—1] ( (7.29)

2
B[ s 5
% 6+; [7 Zyecé*(6[0,L071]) [m (y)] Zmecé*([O,LO—l]) J‘;*(m_y)] ’
where mg*[O’Lofl] is the profile associated to the chosen boundary conditions, i.e., mgi 0,Lo—1] = 0, m%l (0,Lo—1]

= m‘sﬁ* and ﬁzf&Lo_l] € M~ = M ([0, Lo — 1]) N {n%<1(0) = —1} will be suitable chosen in the following.
In a similar way, we estimate the denominator by

Zﬁ)”? 1] (776’41 (0) = 1) < 5 Lo(57H+40/55) ¢ oA [Lor log & &1 x 5 Locst log 7]
s 0 — -
» 6—% [inf{max emt) F(m®” |m§0,L0,11)] % (7.30)

2

% e+% [% Zyecé*(a[o Lo—1]) [ (y)} Zzecé*([D,LO—l]) Jé*(ffy)] .

The term e 205198 5] comes from counting the number of configurations of m® € Ms-([0, Lo — 1]). The

infimum in (7.30) is over the set M+ = M- ([0, Lo—1])N{n><(0) = 1} and it is attained on the configuration

{m® (z) = m%*,V:z: € Cs+([0, Lo — 1])}, since the boundary conditions are at one side zero and at the other

side already equal to mg* We need only that ¢; > 8y/d* to be sure that ||mg —mgll1 < (1 entails that the
configuration constantly equal to mﬁ belongs to M*. Taking in account (7.29), (7.30) we obtain

0,m 5,¢ =
216,101 (1" (0) = ) S o= 24 1m—1|[2Lo (6" +(1+¢) 5+ log & +40,/3F)]
0,m =
Zig ta (11 (0) = +1) (7.31)

X e ~,2‘771 1|[.7-'(m[0 Lo— 1"’”6[0 Lo-1])~ ]:(mﬁ ‘mBOLO 1])]

The exponent in the last line of (7.31) can be written as

[]:—(m?(;Lo—l] |m66*[0,L0—1]) - 7}( A 75*60,%_1])} = fo(m([s(;,Lo—l]) + [f(mp) — f(m%*)][Lo — 1]+

+ %* Z Z Js(x —y) [ﬁlé* (z) — méa*[o Lo—1] (l/)]2

2€Csx ([0,Lo—1]) y€Cs= (8[0,Lo—1])

(7.32)
B %* Z Z Js«(x —y) [Fn?; (z) — @68*[0,%71] (y)]2

z€Csx ([0,Lo—1]) y€Csx (0[0,Lo—1])
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where F° is the functional defined in (7.10). We take ¢ = 8z in Lemma 7.1, assuming that /6* is
smaller that the (y there, Ly = ﬁlog% with d > 2, and «(f,60) defined in (7.4). Then, Lemma 7.1
says that a suitable translate of m belongs to Vs r,, see (7.8), provided and 0 < 6 < Jp. By an abuse
of notation we always denote such translate by m. Since M~ C Vs, r,, we can choose m® € M~ such
that || (r) —m(r)||1 < 8y/6* for all r € [0, Ly — 1], where 7 is the previous chosen minimizer. An easy

computation gives

. e _ i
|f(mg) = F(m§)]|[Lo — 1] + |FO (@ 1y 1)) = FO (0, Lo-1))| < 8Lo(1+0)4 5 (7.33)
Since Mm% € Vs.c,L, and ¢ = 85, the difference of the last two sums in (7.32) is bounded from above by
645 < /& and & is small enough. Since F°(m;) < F* we obtain
0,m4 6,¢ - _
21, v no-y (17 () = 1) S o~ 2IFTH100146)(57V/F) Lo)] (7.34)
0, Z . .
Z[tzm’JIJrLo—l] (776’<1 () = 1)

Repeating similar arguments for the term with 72 we end the proof. O
e ITI: Shrinking of the typical profiles.

Theorem 7.4 .  Given (8,0) € &, there exist 0 < v9 = v(8,0) < 1, 0 < do = do(B3,0) < 1 and
0 < o =1¢o(B,0) <1, such that for all 0 < v < ~g, v/6* < do, for all p € IN verifying the condition

(1+ p)o* 1og% <1 (7.35)

E)
there exists Qrp = Qre(v, 6%, p) with ZP[QRE] > 1—~2 such that for any w € Qgg, 1 € {—1,+1}, £y € IN,
8,Ca,Cs with 1> 8 > 6* >0, and any (o > (4 > (1 > (5 > 87/, we have

sup 13,0, (R1,4(77» [, £2]) N (R1,4,5(7, [£1, 52])(80))C>
ApC[—y~P,y7P]
(7.36)
< 2 72{—““;") aggfzgﬁfawﬁﬂo)mo]712(1+9)(4zg+1o)[5*v\/§]}
—€

b

where Ry 45(7, [l1,42]) (o) is defined in (6.39), and R14(7,[(1,42]) in (6.37), k(B3,0) > 0 satisfies (9.25),
a(B,0,¢) is defined in (6.1) and Ap = [€1, 2] is an interval of length L > 40y + 10. Moreover

20 g (R, [€1, £o]) N (Rua,5(7, [, £2]) (40))°)
sup

0,0 — (7.37)
ALCl=yPy7] Z, 0y (R1,4,5(7, [1, L2]))

satisfies the same estimates as (7.36).

Remark: Note the crucial fact that the last term in the exponent on the right hand side of (7.36) is
proportional to 44y + 10 and not to L.

The following corollary is an immediate consequence of Theorem 7.4. Its proof consists essentially in choosing
an appropriate £ in (7.36), see (7.40), and taking in account that, under (7.39) and 0* > ~, we have
V& =%

Corollary 7.5 . Under the same hypothesis of Theorem 7.4 with the further requirements

, 512(1 + 0) P
o > f-”»(ﬁ,@)a(ﬂﬁ,Co)\/;logv’ (7.38)
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(0)? _ 1

< .

< a3 (7.39)

where k(3,0) > 0 satisfies (9.25) and o(53,0,o) is defined in (6.1).

d 5
b= —2 1ol d>1, 7.40
0 20‘(@9’@) 8 Y ( )
then for w € Qrg and 7j € {—1,+1}, we have
_Br(B.0) 5 o3

sup Nﬁﬁn((RM(ﬁv [€1,€2]) N (Ry,a,5(7, [51,52])(50))C> <eTvT % (7.41)

ALCl=y=Py7]
where Ar, is an interval of length L > 4y + 10. Moreover (7.37) satisfies the same estimates as (7.41).

Proof of Theorem 7.4 Given an interval Ay = [¢1, 5], with o — {3 = L > 44y + 10 for some £y to be
chosen later, ¢ € [0y + 24y, {5 — 24y], 77 = £1, we denote

Eq(l) = {mé* (z),2 € Cs-(AL) : > () = 0,n>4 () =7 V' €[l —20o — 5,0+ 20y + 5}}. (7.42)
Since
Ry 4(7, 101, 62]) O (Ry,a,5(1, [01,62]))° € UE,20, Eq(0) (7.43)

it is enough to estimate pg.g (5,7(6)) and we assume 77 = +1. After an easy computation, calling I =
[0 —20g — 5,0+ 20y + 5], for w € Qrp, introduced in Lemma 3.3, for all £ € [—y~P, v~ P], we obtain

1
E1(0) <
pp.o(E1(0)) < Zooin
> €7ﬁH(U"\”’”)]I{n6~<4(z72e075):1}(07*181)11{776@4(e+2eo+5):1}(Urlaz)nge;,ajfu
IA\~y—1r1 (7.44)

_B {infe, 0 F(m3" Imdr (o)) ~8(1+0)(4b0+10)[5" v~/ 551}

e 7
o AF @ Im @) } ’

where F is given in (3.17) and m? is a fixed profile. This inequality is obtained as follows: writing

X

w.0.~(E1(€)) as a sum of the expression in (2.4) over the configurations in o5 € &1 (¢) we multiply and divide
by Z U’Ae\’x[l[, inside the sum over o, -1, perform a block spin transformation in the volume ~~1I and roughly
estimate the magnetic field applying Lemma 3.3. This last two steps are done in the numerator and the
denominator and they produce an error term 8(14-6) (44 +10)[6* V /5-]. We get an upper bound restricting
in the denominator the sum over all profiles to the single one mﬁ*. Notice the important fact that the term

5—2* > [ (y,0)] > Js(z—y) (7.45)

YECs= (A1) 2€Cs (1)

in (3.18) cancels out in the formula (7.44), since it is present both in the numerator and in the denominator.

We can subtract from the two F in (7.44) the quantity f(m?)|I| obtaining F(-|md; (o)) instead of .7-:( .

Im$;(c)). Therefore to prove Theorem 7.4, it remains to prove that we can choose % in such a way that

6C3 — 2¢4e™B060)2 _ 4(404 4 10)(1 4 6) 51 +F(m9 [md;) (7.46)

- 0)
inf  F(md |md;) > w8,
m‘;*egl(f) ( I| 81)_ 2
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uniformly with respect to m%, € Ry 4(+1,[¢1,4s]). In fact the terms in the second line of (7.44) will be
bounded by Zg g4 uniformly in A and we get (7.36). It is rather delicate to prove (7.46).

Using (7.10) and (7.11), and splitting I = I~ U (¢ — 1,£] U It where I~ = (¢ — 20y — 5,/ — 1] and
It = (0,0 + 20y + 5], we get that for all m9™ € & (¢)

F(m3 |m;) > inf F(ms-

o m‘;i eM;_(C4,6,+1)

my, m‘(sgq,e]) + fo(m((sz*q,e])

5 5* §* (747)
inf FmS|ms _ om ’
el o T i)

where m(gg_lﬁé] = {m(s*(a:),ﬁ € Cs«((¢ — 1,£])}. Since mg*il belongs to Mg+7({4,d,+1) and m‘(sg_u] to
M—1,0(C4,0,+1), using Theorem 7.2, there exist unique minimizers VY1 € M+ (Ca,0,+1) and o7 €
M- (l4,8,+1) such that

F(my [mpy) = F@p-|my-y(0),mis_yg) + FO(mig1,0) + F@ | mys (@), m_y ), (7.48)
for any fixed boundary condition and any m§ € £;(¢). By (9.25)

#(5,6)
2

Fomly_y ) > (36s. (7.49)

Denote by I7 = (¢ — 20y — 5,0 — by — 3], I; C I~. By the positivity property of the functional, see (7.11),
f(w},|mgil(o)7m?;71,f]) > f(¢};|méail(a)aw(lefzofa,efeofz])-
Applying (7.17) of Theorem 7.2 we have that

F | mg*,,(o),w(leflofg’e%,z]) > }'(@bllf |mgiI(O'%mﬁ]l(g_go_&g_go_m) — (yeme(B0.Go)2t0],
1

Doing the same computations for f(w%Jr | mgll(a), m‘g;_l ﬂ) and setting I = (¢ + lo + 3,0 + 24y + 5], we
obtain

f(¢}f|m6311(0)7m?;71,z]) + f@?ﬂmg:z(a)?m?;fl,e])
> F(W! | my-1(0), mplie—go—s,0—t-11) + F @, MY 1(0), maiestg1,0043) — 2ae” P00 E]
1

= FW3Imy- (o), my, (o)) — 2e™ OO0
(7.50)
where we set 13 = 111}_ +mple_py—3,0400+3 + 1/)%. In the last equality in (7.50) we use that F°(mg) = 0.
1 2

By Theorem 7.2, there exists an unique ¢ € My((4,0,+1) such that

inf K 5" = F(* 0" . 7.51
wzeMir(l<4,6,+1) (Wrlmb) Wilmar) ( )

Therefore, since 3 € My((4,d,+1), we have
FW3my- (), mds 1(0)) > FW5|my- (o), m: (o). (7.52)

Then, from (7.48), (7.49), (7.50), (7.52) we obtain

) . . . . " Kk(06,0) . o
inf ]—“(m? |m531) > f(¢1|mg_1(a),mg+1(0)) + (s )C§55 — 2(e (8,0,C0)[260] (7.53)

mé* €€1(£) 2

14/july/2005; 12:06 854



Choosing for 1§ a D ~measurable approximation of 9% with values in M« (I), see (2.11), we get

Floilm) = £ (i) — 404t +1000+0) (5 v ). (750

Collecting (7.53) and (7.54) we get (7.46). W

8 Appendix: The cluster expansion

In this section we prove Lemma 3.4 of Section 4. We will write V' (m9 , ), defined in (3.16), as an absolute
convergent series and then estimate its Lipschitz norm.

To state the result we need some preliminary definitions. Let I C IR be a bounded, Ds«— measurable
interval, A(I) the set of blocks A(x), x € Cs«(I). We denote by A = (A, A’) a pair of different blocks
belonging to A(I) and by A = AU A’ its support. We define a graph g in A(I) as any collection of pairs of
different blocks g = {A1, A2, .., A}, with 0 < m < @(Vl([ﬂ —1), such that A\s # \; for all s #¢. A graph
g will be said to be connected if, for any pair B and C of disjoint subsets of .A(I) such that BUC = U™\,
there is a A\, € g such that A\, N B # ) and A\, N C # 0. Given a graph g = {1, A2, .., Am b, A1, A2, .y Ay are
called links of the graph g and the blocks A(z) belonging to U™ ; A, are called vertices of

g. We denote G 4(1) the set of all connected graphs of A(I). A connected tree graph 7 (or simply a tree
graph) is a connected graph with m vertices and m — 1 links. We denote by 7 4(;) the set of all tree graphs
in A(I). Given a tree graph 7 the incidence number of the vertex A(z), denoted by d A(z), 18 the number
of links A, in 7 such that A(z) N A, # (. In the following we denote by a polymer R a subset of blocks of
A(I), by Cs+(R) = {z € Cs(I) such that A(z) € R} and m$ = {m% (x);x € Cs«(R)}. We have the following
Theorem.

Theorem 8.1 . For all 8 >0, h € Q, for any bounded interval I C IR, for 6* > 0, g < 6613ﬁ, V(m(;*,h)

can be written as an absolutely convergent series:

5*

Vimd h) = %Zl' 3 @T(Rl,RQ,...,Rn)EP(Re), (8.1)

Ri,Ra,...,Rp,|Re|>2

where ®T(Ry, Ry, ..., R,) are the Ursell coefficients, see (8.10), and p(Ry) is given by

p(Re)=p(Re,h) =B~ | S ] [eﬁU("Aw%w—q . (8.2)

M (Ry)
9EGR, (z,y)€g,27#Y

Gr is the set of the connected graphs in R and x is a short notation for A(x). (So (x,y) € g is a short
notation for (A(x), A(y)) € g.) Moreover

Vs )] < fes (D15 1 (839
where
S =sup sup Z elFlp(R) < 663ﬂ@ <1 (8.4)
h z€Cs+(I) pocn y
and g
sup sup 10:Vr]loo < —SB (8.5)
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Proof: The proof is obtained via a standard tool of Statistical Mechanics, the so called cluster expansion,
see [11] and bibliography therein. This expansion is done in three steps:

(1) express the log V' as a formal series,

(2) establish sufficient conditions for the series to converge absolutely,

(3) control that under the hypothesis of Theorem 8.1 these conditions are indeed satisfied.

We start with the following identity

Emi* [H eﬁU(UA(z)JA(y))] — lEmf* H[eﬁU(aA(I)voA(y)) — 14+ 1]

TFY TH£yY
n (8.6)
S S S
n= 1 " Ri,Rz,..,Rn,|Re|>2 (=1
where
U(Ry,...,Ry)= Y U(Re R, (8.7)
1<¢,s<n
- o0, if RenRs;=10;
U(Re, Rs) = {oo, it Ry R, 0. (8.8)

and p(Ry) is given in (8.2). Since |A(I)| < oo the number of terms contributing to (8.6) is finite. We have
that the log of the right hand side of (8.6) can be written as a formal expansion

BV(m =log |1+ i Z e*U(Rl""’R")ﬁp(Rz)

n=1 " Ry Ra.. R |Re|>2 =1 (8.9)
o0 1 n
:Zil Z @T(RlyRQ)"'7Rn)Hp(RZ
n=1"" Ry,Ry,....Rp,|R¢|>2 =1
where ®7(Ry, Ry, ..., R,) are the Ursell coefficients
T 11 [e—mRevRs) - 1}  ifn > 2
@T(Rly R27 ey R’ﬂ) = gegRl ----- Rp (678)65]76753 (8.10)

1,ifn = 1.

Observe that ®T(Ry, Ry, ..., R,) = 0if g € Gg, g, is not connected.

n

We must now prove that the formal series (8.9) actually converges. Fix x € Cs«(I) and a polymer R, such
that A(x) € R. Recall that ®7(R) = 1, when n = 1. Then, (8.9) can be written as

BV(my h)y= Y > p(R) 1+Z%Bn(R) : (8.11)

2€Cs«(I) R,wER,|R|>2 n>2

where

B,(R) = > HpRz (R,Ra,...,Ry). (8.12)

Ra,..., nleZ|22£ 2
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From the definition of ®7(R, Ry, ..., R,) we see that B, (R) can be written as
Bu(R)y= > Y (=u > [e@, (8.13)
9€GR,R,....,Ry fCY Ra,...,Rp,|Re|>2 £=2

where f C g means that every link of f is also a link of g. Recall that, from Rota inequality, see [31],

fCyg

where N(g) is the number of connected tree graphs in g. Setting Tr gr,.....r, = 7, we have that

X =X X ww

9EGR,,...,Ry, T€T, 97'69

and then we can express

Bu(R) =Y w(r) (8.14)

where

w(r) = > [1o(R). (8.15)

RQ,...,Rn,|R[|22,T€g(R,R2,...,Rn) (=2

For any fixed set R’ we have the bound

> <IRlswp Y

R,RNR/#£0) v€R p.aer
then

7 p(Ry)|

; (8.16)

w<f>s|R|d1H[ s S IR

=2 [*€Cs+ () R .zeR,

where dy is the incidence number of the vertex £ in the tree 7. Using Caley formula [11], we get

T€T,

n

=Y |R|d1%r[[ swp 3 R (R

dy,...,dn (=2 mEC(;*(I)Ri:IGR[
i[5 e ] s

I

2 weC‘S*(I)Rz x€Ry de=1
< (1)1 (eR—l)H[ wp Y Ip(Rofel

(=2 z€Csx (I) Re:x€Ry

< (n—1)lelfilgn—1,

where in the second inequality we used that n —1 > d; to obtain the factor d%! and in the last inequality we
set

S =sup sup Z eBlp(R). (8.18)
h rE€Cs+ (I) R:z€R
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Thus, under the condition that S < 1 we obtain

> @ 1e Y B < Y )] |1 H Y Lo

R,|R|>2,2€R n>2 R,|R|>2,2€R n>2

S S e s

R,|R|>2.2€R

(8.19)

Therefore, recalling (8.11), we obtain (8.3). The important remark to prove (8.5) is that to obtain the
Lipschitz norm we make the difference of two absolute convergent series having the only difference in one
site . We then obtain

1 & 1 n n
E Zﬁ Z q)T(R17R27"'7Rn) H RZ7 H R@,
n=1 R1,R3,....R,,|R¢|>2 (=1 (=1 (820)
2 = 1 n
< BZE Z ’(I)T(RlaRQv7Rn)|HSI}ip|p(Rbh)|
n=1 R1,Ra,...,Ry,|Ri|>231:€R, (=1

Following the same strategy used above we obtain (8.5). Next we show that S, see (8.18), satisfies (8.4).
Taking into account (3.20) and setting ®(z,y) = W1 5o <o jomy|<ito) (ﬁ(aT)"‘) we obtain that if g is a

connected graph with support R, then:

SUp I, I1 {JU(M(@%“@)_@ < I e@y. (8.21)
(z,y)€g,2#Y (z,y)€9,2#Y

In the last estimate we used (3.19). From (8.18) we have that

S =sup sup Z Ip(R)|e!F

h 2eCsx (1) R:z€R

< sup Y [ @),

2€Cs+(I) R:ve R geGr (z,9)€9,27y

(8.22)

An essential fact to prove (8.4) is that ®(z,y) # 0 only when 1 —§* < §*|z —y| < 2 +6*, i.e., the block A(z)
interacts only with three blocks, the A(y) block which is at distance % from it and the two blocks, to the
left and to the right of A(y)* . Therefore for any fixed polymer R, x € R, |R| = ¢, the number of graphs
that contribute to the sum in (8.22) is at most 3(~1). Namely, £ — 1 is the number of links connecting the
£ vertices of the graph and 3 is the maximum number of links that a vertex can have with the others, since

*  This depends on the particular choice of the potential, ]I‘m|<%. For general potential, always with support {:E : \:c| < %}

this will be not true. In that case (I)(Z, y) # 0 when 6*|Z — y| < %, therefore the block A( ) will interact with 5= blocks.

Nevertheless this will not cause problems to get (8.4). Namely in this case the function ®, using Taylor formula to estimate

(6")?

the potential, becomes <I>(x y) = H{é*‘w yl<i} ( co* ), where C is a positive constant depending on the potential.

Performing the sums in (8.23) we should replace 3 with 6_*' The result will be similar. The only difference is given by the

presence of the constant C.
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®(z,y) # 0 only when 1 — 6% < §*|z —y| < § + 6*. Since ® is translational invariant we can assume z = 0.
Then from (8.22) we obtain that

S < Z Z el Bl H D(z,y) = Z Z Z el H D(z,y)

R:0€R geGR (2,y)€9,22Y £>2 R,0€ER,|R|=£ gEGR (z,9)€9,2#y
(8.23)

=1y 015 [ cv2q—1 @ B 3B
S;Ki 6[7(5)] <3L—3€2%(5*)2] 7(5) < 6e 7(5).

9 Appendix: The random field Curie Weiss model

The Random Field Curie-Weiss model is defined as follows: Let (€2, A, IP) be a probability space on which
we have defined h = {h;};cv, a family of independent identicaly distributed Bernoulli random variable with
IPlh; = +1] = IP[h; = —1] = 1/2. The configuration space is S = {—1,+1}V. For N € IN, we denote
Sy = {-1,+1}". Given ¢ € Sy and a realization of the random field, the Hamiltonian is the volume
{1,...,N}is

N N
1
Hy(o)(w) = ~oN Z 00 92h1 (w)o;
ij=1 i=1

Using a partition of {1,..., N} similar to the one done for the volume A(z) before (2.8), calling N*,\, D
what was called B¥(x), \(x), D(z), we define

2
my(+,0) = N Z o (9.2)
iENTE
and as in (2.9) and (2.10) one has
1 < 1
N;m = 5 (mx(+,0) + my(=,0)) (9.3)
and
1 & 1 2
Nth = 5 (mx(+,0) —mN(—,U))—I—)\NZJi (9.4)
i=1 €D

The “ canonical” free energy is defined as follows: For mq,mg € [—1, +1)?

N 1 _ -
fﬁ,e(mla m2) = lelg)l Jl’lTnolc 767N IOg UEZSN ]I{|mN(+,o)—m1|§e,\mN(—,a)—m2|§e}e PHN () (95)

It is not too difficult to check that the above limit exists uniformly with respect to mi,ms €] — 1, +1[?
IP—-almost surely and that
(m1 —+ m2)2 9

——(m —mg)—&—i(l(ml)—FI(mg)), (9.6)

fa,0(mi,ma) = — S 5 %
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where Z(m) = (5 log (M) + U5 log (152).

2
Differentiating (9.6) we see that (mq,m2) €] —1,1[? is a critical point of fz4(,-) if and only if

my = tanh(B(m1 + mo2)/2 + 50)

(9.7)
mgy = tanh(B(m; + msg)/2 — 506).
The sum of the two equations in (9.7) is closed with respect to m = (mq + mg)/2
1 1
m = gg(m,0) = §tanhﬁ(m—|—9) + §tanhﬂ( m — ). (9.8)
The needed results for the Random Field Curie Weiss model are collected in the following lemma.
Lemma 9.1 . If 0 < 8 <1 then for all 8, m = 0 is the only solution of
m = gg(m, 0). (99)
If 6> 1, let
1 1
01..(8) = = arctanh (1 — =)%/? (9.10)
B B
and &, the region defined by
3
0<8<b1c(8) for 1<p< 3 (9.11)
or 5
0<60<6,.(06) for B> 3 (9.12)

Then, (3,0) € £ is necessary and sufficient for the existence of only one strictly positive solution mg of
(9.9) that satisfies
995 , - s p
b (mﬂv 0) = 2 - + 2 ~
om 2cosh” B(mg +6)  2cosh® B(msz —0)

<1 (9.13)

Proof: Note that m = 0 is a solution of (9.9) for all § and g positive. It is immediate to verify that m =0
is indeed the only solution of (9.9) when 0 < 8 < 1. Indeed %L"‘j(m, 0) < B [1—(1/2)tanh*(860)] < 1 for all
m € IR and 6 > 0.

To treat the case § > 1, we introduce the variables x = tanh 0m and y = tanh 86, and notice that

993 _ _ 2
8—m(m_0’0) =B —y7). (9.14)
Recalling (9.10), we have
0<6<6.0) = 8ﬂ(m =0,0) > 1,
om
) (9.15)
01..(8) < 0 <> a—fjg(m =0,0) < 1.

On the other hand,

0295 o <tanhﬁ(m+9) tanh B(m — 0) >
om? (m,0) = =5 cosh? B(m + ) * cosh? B(m — 0) )’
_28%a(1—a?)(1—y?)

_ 2, 2(0,2 4
- T2 [1-3y*+2%(3y* —y")],

(9.16)
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so that, for m > 0

gjgg (m,0) <0 <= 2% > 32122_;4,
& gs o 3y*—1 47
8mz(m,9) >0« 2" < 37—t
Therefore, calling
0s..(8) = % arctanh % (9.18)
one sees that
0<0<0.00) = 82ﬂ(mﬁ) <0,¥m >0 (9.19)

om?

while, using (3y* — 1)/(3y* — y*) < 1 with equality only when y = 1, it is easy to check that for 8 > 65 .(3)
there exists an unique mj = m3(3,0) > 0 such that tanh?(3m3) = (3y® — 1)/(3y> — y*) and we have

2
g gg (m,0) > 0 form < mj,
827” (9.20)
awglg (m,0) <0 form > mj.
Another fact to be used is that for all m > 0,6 > 0
dg —40zy
20 ( ) = Gyl ey <0 (9.21)

and the function 6 € (0,00) — gg(m, ) is strictly decreasing for all 0 < m < +o0.
Now we can consider the various cases:
o1 <3< 3 (thatis 61,c(3) < 02,.(8)).
If 0 < 6 < 61,(8), then Zinf(m =0,60) > 1 and using (9.19) gg(m, ) is a strictly concave function of m.

Therefore there is one and only one strictly positive solution to (9.9), say mg. It satisfies (9.13) since by

strict concavity we have
995

gp(m, 0) < gz(mo,0) + %(m079)(m —my) (9.22)

Taking m = 0 and mg = mg in (9.22) it is immediate to get (9.13).

If 61,.(0) <0 <63.(0), then ginf(m =0,0) <1 and by concavity there is no strictly positive solution to
(9.9).
e 3 < 33 (that is 0s,.(8) < 61..(8)).

If 0 < 6 <6y, then ginf(m =0,0) > 1 and gg(m, ) is a strictly concave function of m therefore there is
one and only one strictly positive solution of (9.9), it satisfies (9.13) by the same argument as before.

If 05 . < 6 < 61, recalling (9.15) and (9.20), for 0 < m < m3, gz(m, ) is a strictly convex function of m
and therefore, see (9.14)

gs(m,0) > B(1 — tanh®(36))m > m, (9.23)

so there is no strictly positive solution of (9.9) in this region. On the other hand for m > mj, gg(m,0) is
strictly concave and since lim,,100 gg(m, #) = 1 there is one and only one strictly positive solution of (9.9).
It satisfies (9.13) by the same argument as before.

It is not difficult to check that when 0 > 6; . but 0 — 0, . is small enough there exist two strictly positive
solutions of (9.9), say 0 < mj < mi. The heuristic argument is the following: using Taylor formula
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one has gg(m,0) ~ m[B(1 — y?) + %263(3@2 — 1)]. Therefore it remains to solve 0 = m — gg(m,0) =
m[l — B(1 — y?) — mTzﬁ?’(?)yZ —1)], and m* = (3[1 — B(1 — y?)]/(B*(3y> — 1)))/? is the strictly positive
solution of this equation.

To make it rigorous, call m;()\) = [(3Xe)/(3%(3y> — 1))]*/2, and take ¢y = 238(3y> — 1)/(3y?), it can be
checked that gg(m1(27%),0) < m1(27%) for all 0 < € < €. On the other hand, taking 0 < ¢ < ¢; for some
suitably small €; one can check that gz(m1(2),6) > m1(2) and mq(2) < mj. This implies that there exists
a strictly positive solution of (9.9) that satisfies 0 < m1(27%) < m} < m4(2) < mj. Moreover by convexity,

aainf(m’{) > 1. The existence and uniqueness of mj > mj follows from the fact that gg(m,8) is a concave

function of m for m > m}, that gg(m3,0) > m3, that g%(m;‘) > 1, and that lim,,1- gg(m, ) = 1. Moreover
ity 298 (i
by concavity 5 2(m3) < 1.
If mg,p is a solution of (9.9), we have
(9771[379 o 3g[3

895 3mg,9
50— g0 M8 0+ 5 (mee.0) =5

from which it follows that m7] is an increasing function of 6 and mj; a decreasing function of 6.

(9.24)

Now using (9.21) one sees that there exists a unique 03 . > 61 . such that for 6 = 03 . there exists a unique
strictly positive solution mj; of (9.9), however by continuity %(mg, 0s.) = 1. This ends the proof of the

Lemma. W

In the region &, fg,0(m1, m2) has exactly three critical points, two points of minima around which fg ()
is quadratic and a local maximum. Moreover there exists a strictly positive constant (3, 8) so that for each
m € [—1,+1]2

fa.0(m) = fa,0(mp) > £(3,0) min{|lm —mgs||%, m — Tmgs|1}, (9.25)

where || - |1 is the £! norm in IR? and mg = (mg,1,ms2) with

mga,1 = tanh(Bmg + 00)

_ (9.26)
mg,2 = tanh(Bmg — 49),

where mg is the unique, strictly positive solution of (9.9) and Tmg = (—mg2, —mg,1).
Remark: Note that for 1 < 8 < 3/2, as 6 1 61, we have x(5,0) | 0. We stress that in £, we have always
k(B,0) > 0. Since we work in the whole region &, care of the k(3, 8) dependence has been taken into account
when writing the constraints, see (2.29) for example.
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