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1 Introduction

A real self-similar Markov process X(x), starting from x is a càdlàg Markov process which fulfills
a scaling property, i.e., there exists a constant α > 0 such that for any k > 0,

(

kX
(x)
k−αt

, t ≥ 0
)

(d)
= (X

(kx)
t , t ≥ 0). (1.1)

Self-similar processes often arise in various parts of probability theory as limit of re-scaled pro-
cesses. Their properties have been studied by the early sixties under the impulse of Lamperti’s
work (14). The Markov property added to self-similarity provides some interesting features
as noted by Lamperti himself in (15) where the particular case of positive self-similar Markov
processes is studied. These processes are involved for instance in branching processes and frag-
mentation theory. In this paper, we will consider positive self-similar Markov processes and refer
to them as pssMp. Some particularly well known examples are transient Bessel processes, stable
subordinators or more generally, stable Lévy processes conditioned to stay positive.

The aim of this work is to describe the lower envelope at 0 and at +∞ of a large class of pssMp
throug integral tests and laws of the iterated logarithm (LIL for short). A crucial point in our
arguments is the famous Lamperti representation of self-similar IR+–valued Markov processes.
This transformation enables us to construct the paths of any such process starting from x > 0,
say X(x), from those of a Lévy process. More precisely, Lamperti (15) found the representation

X
(x)
t = x exp ξτ(tx−α), 0 ≤ t ≤ x−αI(ξ) , (1.2)

under Px, for x > 0, where

τt = inf{s : Is(ξ) ≥ t} , Is(ξ) =

∫ s

0
expαξu du , I(ξ) = lim

t→+∞
It(ξ) ,

and where ξ is a real Lévy process which is possibly killed at an independent exponential time.

Note that for t < I(ξ), we have the equality τt =
∫ t
0

(

X
(x)
s

)−α
ds, so that (1.2) is invertible and

yields a one to one relation between the class of pssMp and the one of Lévy processes.

In this work, we consider pssMp’s which drift towards +∞, i.e. limt→+∞X
(x)
t = +∞, a.s. and

which fulfills the Feller property on [0,∞), so that we may define the law of a pssMp, which we
will call X(0), starting from 0 and with the same transition function as X(x), x > 0. Bertoin and
Caballero (2) and Bertoin and Yor (3) proved that the family of processes X(x) converges, as
x ↓ 0, in the sense of finite dimensional distributions towards X(0) if and only if the underlying
Lévy process ξ in the Lamperti representation is such that

(H) ξ is non lattice and 0 < m
(def)
= E(ξ1) ≤ E(|ξ1|) < +∞ .

As proved by Caballero and Chaumont in (5), the latter condition is also a NASC for the weak
convergence of the family (X(x)), x ≥ 0 on the Skohorod space of càdlàg trajectories. In the
same article, the authors also provided a path construction of the process X(0). The entrance
law of X(0) has been described in (2) and (3) as follows: for every t > 0 and for every measurable
function f : IR+ → IR+,

E

(

f
(

X
(0)
t

))

=
1

m
E

(

I(−ξ)−1f(tI(−ξ)−1)
)

. (1.3)
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Several partial results on the lower envelope of X(0) have already been established before, the
oldest of which are due to Dvoretsky and Erdös (11) and Motoo (17) who studied the special
case of Bessel processes. More precisely, when X(0) is a Bessel process with dimension δ > 2, we
have the following integral test at 0: if f is an increasing function then

P(X
(0)
t < f(t), i.o., as t→ 0) =

{

0
1

according as

∫

0+

(

f(t)

t

)
δ−2
4 dt

t

{

<∞
= ∞ .

The time inversion property of Bessel processes, induces the same integral test for the behaviour
at +∞ of X(x), x ≥ 0. The test for Bessel processes is extended in section 4 of this paper
to pssMp’s such that the upper tail of the law of the exponential functional I(−ξ) is regularly
varying. Our integral test is then written in terms of the law of this exponential functional as
shown in Theorem 3.

Without giving here an exhaustive list of the results which have been obtained in that direction,
we may also cite Lamperti’s own work (15) in which he used his representation to describe the
asymptotic behaviour of a pssMp starting from x > 0 in terms of the underlying Lévy process.
Some cases where the transition function of X(x) admits some special bounds have also been
studied by Xiao (21).

The most recent result concerns increasing pssMp and is due to Rivero (18) who proved the
following LIL: suppose that ξ is a subordinator whose Laplace exponent φ is regularly varying
at infinity with index β ∈ (0, 1) and define the function ϕ(t) = φ(log | log t|)/ log | log t|, t > e,
then

lim inf
t↓0

X
(0)
t

(tϕ(t))1/α
= αβ/α(1 − β)(1−β)/α and lim inf

t↑+∞

X
(0)
t

(tϕ(t))1/α
= αβ/α(1 − β)(1−β)/α, a.s.

In Section 5 of this paper, we extend Rivero’s result to pssMp’s such that the logarithm of the
upper tail of the exponential functional I(−ξ) is regularly varying at +∞. In Theorem 4, we
give a LIL for the process X(0) at 0 and for the processes X(x), x ≥ 0 at +∞. Then the lower
envelope has an explicit form in terms of the tail of the law of I(−ξ).
All the asymptotic results presented in Sections 4 and 5 are consequences of general integral tests
which are stated and proved in Section 3 and which may actually be applied in other situations
than our ’regular’ and ’logregular’ cases. If Fq denotes the tail of the law of the truncated

exponential functionals
∫ T̂−q

0 exp−ξs ds, T̂−q = inf{t : ξs ≤ −q}, q ≥ 0, then we will show that
in any case, the knowledge of asymptotic behaviour of Fq suffices to describe the lower envelope
of the processes X(x), x ≥ 0.

Section 2 is devoted to preliminary results. We give a path decomposition of the process X(0)

up to its last passage time under a fixed level. This process, once reversed, corresponds to
a pssMp whose associated Lévy process in the Lamperti transformation is −ξ. In particular,
this allows us to get an expression of the last passage time process of X(0) in terms of I(−ξ).
The description of the last passage process is then used in section 3 for the study of the lower
envelope of X(x).
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2 Time reversal and last passage time of X
(0)

We consider processes defined on the space D of càdlàg trajectories on [0,∞), with real values.
The space D is endowed with the Skorohod’s topology and P will be our reference probability
measure.

In all the rest of the paper, ξ will be a Lévy process satisfying condition (H). With no loss of
generality, we will also suppose that α = 1. Indeed, we see from (1.1) that if X(x), x ≥ 0, is a
pssMp with index α > 0, then

(

X(x)
)α

is a pssMp with index 1. Therefore, the integral tests
and LIL established in the sequel can easily be interpreted for any α > 0.

Let us define the family of positive self-similar Markov processes X̂(x) whose Lamperti’s repre-
sentation is given by

X̂(x) =
(

x exp ξ̂τ̂(t/x), 0 ≤ t ≤ xI(ξ̂)
)

, x > 0 , (2.4)

where ξ̂ = −ξ, τ̂t = inf{s :
∫ s
0 exp ξ̂u du ≥ t}, and I(ξ̂) =

∫∞
0 exp ξ̂s ds. We emphasize that the

r.v. xI(ξ̂), corresponds to the first time at which the process X̂(x) hits 0, i.e.

xI(ξ̂) = inf{t : X̂
(x)
t = 0} , (2.5)

moreover, for each x > 0, the process X̂(x) hits 0 continuously, i.e. X̂(x)(xI(ξ̂)−) = 0.

We now fix a decreasing sequence (xn), n ≥ 1 of positive real numbers which tends to 0 and we
set

U(y) = sup{t : X
(0)
t ≤ y} .

The aim of this section is to establish a path decomposition of the process X(0) reversed at time
U(x1) in order to get a representation of this time in terms of the exponential functional I(ξ̂),
see Corollaries 2 and 3 below.

To simplify the notations, we set Γ = X
(0)
U(x1)− and we will denote by K the support of the law

of Γ. We will see in Lemma 1 that actually K = [0, x1]. For any process X that we consider
here, we make the convention that X0− = X0.

Proposition 1. The law of the process X̂(x) is a regular version of the law of the process

X̂
(def)
= (X

(0)
(U(x1)−t)−, 0 ≤ t ≤ U(x1)) ,

conditionally on Γ = x, x ∈ K.

Proof: The result is a consequence of Nagasawa’s theory of time reversal for Markov processes.
First, it follows from Lemma 2 in (3) that the resolvent operators of X(x) and X̂(x), x > 0 are in
duality with respect to the Lebesgue measure. More specifically, for every q ≥ 0, and measurable
functions f, g : (0,∞) → IR+, with

V qf(x)
(def)
= E

(
∫ ∞

0
e−qtf(X

(x)
t ) dt

)

, and V̂ qf(x)
(def)
= E

(
∫ ζ

0
e−qtf(X̂

(x)
t ) dt

)

,
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we have
∫ ∞

0
f(x)V̂ qg(x) dx =

∫ ∞

0
g(x)V qf(x) dx . (2.6)

Let pt(dx) be the entrance law of X(0) at time t, then it follows from the scaling property that
for any t > 0, pt(dx) = p1(dx/t), hence

∫∞
0 pt(dx) dt =

∫∞
0 p1(dy)/y dx for all x > 0, where from

(1.3),
∫∞
0 p1(dy)/y dy = m−1. In other words, the resolvent measure of δ{0} is proportional to

the Lebesgue measure, i.e.:

m−1

∫ ∞

0
f(x) dx = E

(
∫ ∞

0
f(X

(0)
t ) dt

)

. (2.7)

Conditions of Nagasawa’s theorem are satisfied as shown in (2.6) and (2.7), then it remains to
apply this result to U(x1) which is a return time such that P(0 < U(x1) < ∞) = 1, and the
proposition is proved.

Another way to state Proposition 1 is to say that for any x ∈ K, the returned process

(X̂(xI(ξ̂)−t)−, 0 ≤ t ≤ xI(ξ̂)), has the same law as (X
(0)
t , 0 ≤ t < U(x1)) given Γ = x. In

(3), the authors show that when the semigroup operator of X(0) is absolutely continuous with
respect to the Lebesgue measure with density pt(x, y), this process is an h-process of X(0), the
corresponding harmonic function being h(x) =

∫∞
0 pt(x, 1) dt.

For y > 0, we set
Ŝy = inf{t : X̂t ≤ y} .

Corollary 1. Between the passage times Ŝxn and Ŝxn+1, the process X̂ may be described as
follows:

(

X̂Ŝ(xn)+t, 0 ≤ t ≤ Ŝxn+1 − Ŝxn

)

=
(

Γn exp ξ̂
(n)

τ̂ (n)(t/Γn)
, 0 ≤ t ≤ Hn

)

, n ≥ 1,

where the processes ξ̂(n), n ≥ 1 are mutually independent and have the same law as ξ̂. Moreover
the sequence (ξ̂(n)) is independent of Γ defined above and























τ̂
(n)
t = inf{s :

∫ s
0 exp ξ̂

(n)
u du ≥ t}

Hn = Γn

∫ T̂ (n)(log(xn+1/Γn))
0 exp ξ̂

(n)
s ds

Γn+1 = Γn exp ξ̂
(n)

T̂ (n)(log(xn+1/Γn))
, n ≥ 1, Γ1 = Γ

T̂
(n)
z = inf{t : ξ̂

(n)
t ≤ z}.

For each n, Γn is independent of ξ(n) and

x−1
n Γn

(d)
= x−1

1 Γ . (2.8)

Proof: From (2.4) and Proposition 1, the process X̂ may be described as

X̂ =
(

Γ exp ξ̂
(1)

τ̂ (1)(t/Γ)
, 0 ≤ t ≤ U(x1)

)

,
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where ξ̂(1)
(d)
= ξ̂ is independent of Γ = X

(0)
U(x1)− and τ̂

(1)
t = inf{s :

∫ s
0 exp ξ̂

(1)
u du ≥ t}. Note that

Γ ≤ x1, a.s., so between the passages times Ŝx1 = 0 and Ŝx2, the process X̂ is clearly described

as in the statement with ξ̂(1) = ξ̂ and Ŝx2 − Ŝx1 = H1 = Γ
∫ T̂ (1)(log(x2/Γ))
0 exp ξ̂

(1)
s ds.

Now if we set ξ̂(2)
(def)
= (ξ̂

(1)

T̂ (1)(log(x2/Γ1))+t
− ξ̂(1)

T̂ (1)(log(x2/Γ1))
, t ≥ 0), then with the definitions of the

statement,

(X̂Ŝ(x2)+t, t ≥ 0) = (Γ2 exp ξ̂
(2)

τ̂ (2)(t/Γ2)
, t ≥ 0) and (2.9)

Ŝx3 − Ŝx2 = inf{t : X̂Ŝ(x2)+t ≤ x3} = H2 .

The process ξ̂(2) is independent of [(ξ̂
(1)
t , 0 ≤ t ≤ T̂ (1)(log(x2/Γ1))), Γ1], hence it is clear that

we do not change the law of X̂ if, by reconstructing it according to this decomposition, we
replace ξ̂(2) by a process with the same law which is independent of [ξ̂(1),Γ1]. Moreover, ξ̂(2) is
independent of Γ2. Relation (2.8) is a consequence of the scaling property. Indeed, we have

(

x2

x1
X

(0)
tx1/x2

, 0 ≤ t ≤ x2

x1
U(x1)

)

(d)
=

(

X
(0)
t , 0 ≤ t ≤ U(x2)

)

,

which implies the identities in law

x−1
1 X

(0)
U(x1)−

(d)
= x−1

2 X
(0)
U(x2)− , and x−1

1 U(x1)
(d)
= x−1

2 U(x2) . (2.10)

On the other hand, we see from the definition of X̂ in Proposition 1 that

(

X̂Ŝ(x2)+t, 0 ≤ t ≤ U(x1) − Ŝ(x2)
)

=
(

X
(0)
(U(x2)−t)−, 0 ≤ t ≤ U(x2)

)

.

Then, we obtain (2.8) for n = 2 from this identity, (2.9) and (2.10). The proof follows by
induction.

Corollary 2. With the same notations as in Corollary 1, the time U(xn) may be decomposed
into the sum

U(xn) =
∑

k≥n

Γk

∫ T̂ (k)(log(xk+1/Γk))

0
exp ξ̂(k)

s ds , a.s. (2.11)

In particular, for all zn > 0, we have

zn1I{Γn≥zn}

∫ T̂ (n)(log(xn+1/zn))

0
exp ξ̂(n)

s ds ≤ U(xn) ≤ xnI(ξ
(n)

) , a.s., (2.12)

where ξ
(n)

, n ≥ 1 are Lévy processes with the same law as ξ̂.

Proof: Identity (2.11) is a consequence of Corollary 1 and the fact that U(xn) =
∑

k≥n Ŝk+1 − Ŝk. The first inequality in (2.12) is a consequence of (2.11), which implies:

Γn

∫ T̂ (n)(log(xn+1/Γn))
0 exp ξ̂

(n)
s ds ≤ U(xn).
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To prove the second inequality in (2.12), it suffices to note that by Proposition 1 and the strong
Markov property at time Ŝ(xn), for any n ≥ 1, we have the representation

(

X̂Ŝ(xn)+t, 0 ≤ t ≤ U(x1) − Ŝ(xn)
)

=
(

Γn exp ξ
(n)

τ (n)(t/Γn)
, 0 ≤ t ≤ U(x1) − Ŝ(xn)

)

,

where τ
(n)
t = inf{s :

∫ s
0 exp ξ

(n)
u du > t} and Γn = X̂Ŝ(xn) (see in Corollary 1) is independent of

ξ
(n)

which has the same law as ξ̂. It remains to note from (2.5) that U(x1) − Ŝ(xn) = U(xn) =

ΓnI(ξ
(n)

) and that Γn ≤ xn.

To establish our asymptotic results at +∞, we will also need to estimate the law of the time
U(x) when x is large. The same reasoning as we did for a sequence which tends to 0 can be
done for a sequence which tends to +∞ as we show in the following result.

Corollary 3. Let (yn) be an increasing sequence of positive real numbers which tends to +∞.

There exists some sequences (ξ̌(n)), (ξ̃(n)) and (Γ̌n), such that for each n, ξ̌(n) (d)
= ξ̃(n) (d)

= ξ̂, Γ̌n
(d)
=

Γ, Γ̌n and ξ̌(n) are independent; moreover the Lévy processes (ξ̌(n)) are mutually independent
and we have for all zn > 0,

zn1I{Γ̌n≥zn}

∫ Ť (n)(log(yn−1/zn))

0
exp ξ̌(n)

s ds ≤ U(yn) ≤ ynI(ξ̃
(n)) , a.s. (2.13)

where Ť
(n)
z = inf{t : ξ̌

(n)
t ≤ z}.

Proof: Fix an integer n ≥ 1 and define the decreasing sequence x1, . . . , xn by xn = y1, xn−1 =
y2, . . . , x1 = yn, then construct the sequences ξ̂(1), . . . , ξ̂(n) and Γ1, . . . ,Γn from x1, . . . , xn as

in Corollary 1 and construct the sequence ξ
(1)
, . . . , ξ

(n)
as in Corollary 2. Now define ξ̌(1) =

ξ̂(n), ξ̌(2) = ξ̂(n−1), . . . , ξ̌(n) = ξ̂(1) and ξ̃(1) = ξ
(n)
, ξ̃(2) = ξ

(n−1)
, . . . , ξ̃(n) = ξ

(1)
and Γ̌1 = Γn, Γ̌2 =

Γn−1, . . . , Γ̌n = Γ1. Then from (2.12), we deduce that for any k = 2, . . . , n,

zk1I{Γ̌k≥zk}

∫ Ť (k)(log(yk−1/zk))

0
exp ξ̌(k)

s ds ≤ U(yk) ≤ ykI(ξ̃
(k)) , a.s.

Hence the whole sequences (ξ̃(n)), (ξ̌(n)) and (Γ̌n) are well constructed and fulfill the desired
properties.

Remark: We emphasize that T̂ (n)(log(xn+1/Γn)) = 0, a.s. on the event Γn ≤ xn+1; moreover,
we have Γn ≤ xn, a.s., so the first inequality in (2.12) is relevant only when xn+1 < zn < xn.
Similarly, in Corollary 2, the first inequality in (2.13) is relevant only when yn−1 < zn < yn.

We end this section with the computation of the law of Γ. Recall that the upward ladder
height process (σt) associated to ξ is the subordinator which corresponds to the right continuous
inverse of the local time at 0 of the reflected process (ξt − sups≤t ξs), see (1) Chap. V for a
proper definition. We denote by ν the Lévy measure of (σt).
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Lemma 1. The law of Γ is characterized as follows:

log(x−1
1 Γ)

(d)
= −UZ ,

where U and Z are independent r.v.’s, U is uniformly distributed over [0, 1] and the law of Z is
given by:

P(Z > u) = E(σ1)
−1

∫

(u,∞)
s ν(ds), u ≥ 0 . (2.14)

In particular, for all η < x1, P(Γ > η) > 0.

Proof. It is proved in (10) that under our hypothesis, (that is E(|ξ̂1|) < +∞, E(ξ̂1) < 0 and ξ is
not arithmetic), the overshoot process of ξ converges in law, that is

ξ̂T̂ (x) − x −→ −UZ, in law as x tends to −∞,

and the limit law is computed in (8) in terms of the upward ladder height process (σt).

On the other hand, we proved in Corollary 1, that

x−1
n+1Γn+1 = exp[ξ̂

(n)

T̂ (n)(log(xn+1/Γn))
− log(xn+1/Γn)]

(d)
= x−1

1 Γ

(d)
= exp[ξ̂T̂ (log(xn+1/xn)+log(x−1

1 Γ)) − log(xn+1/xn) − log(x−1
1 Γ)] .

Then by taking xn = e−n2
, we deduce from these equalities that log(x−1

1 Γ) has the same law as

the limit overshoot of the process ξ̂, i.e.

ξ̂T̂ (x) − x −→ log(x−1
1 Γ), in law as x tends to −∞.

As a consequence of the above results we have the following identity in law:

U(x)
(d)
=
x

x1
ΓI(ξ̂) ,

(Γ and I(ξ̂) being independent) which has been proved in (2), Proposition 3 is the special case
where the process X(0) is increasing.

3 The lower envelope

The main result of this section consists in integral tests at 0 and +∞ for the lower envelope of

X(0). When no confusion is possible, we set I
(def)
= I(ξ̂) =

∫∞
0 exp ξ̂s ds. This theorem means in

particular that the asymptotic behaviour of X(0) only depends on the tail behaviour of the law

of I, and on that of the law of
∫ T̂−q

0 exp ξ̂s ds, with T̂x = inf{t : ξ̂t ≤ x}, for x ≤ 0. So also we
set

Iq
(def)
=

∫ T̂−q

0
exp ξ̂s ds , F (t)

(def)
= P(I > t) , Fq(t)

(def)
= P(Iq > t) .

The following lemma will be used to show that actually, in many particular cases, F suffices to
describe the envelope of X(0).
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Lemma 2. Assume that there exists γ > 1 such that, lim supt→+∞ F (γt)/F (t) < 1. For any
q > 0 and δ > γe−q,

lim inf
t→+∞

Fq((1 − δ)t)

F (t)
> 0 .

Proof: It follows from the decomposition of ξ into the two independent processes (ξ̂s, s ≤ T̂−q)

and ξ̂′
(def)
= (ξ̂s+T̂−q

− ξ̂T̂−q
, s ≥ 0) that

I = Iq + e
ξ̂
T̂
−q I ′ ≤ Iq + e−qI ′

where I ′ =
∫∞
0 exp ξ̂′s ds is a copy of I which is independent of Iq. Then we can write for any

q > 0 and δ ∈ (0, 1), the inequalities

P(I > t) ≤ P(Iq + e−qI ′ ≥ t)

≤ P(Iq > (1 − δ)t) + P(e−qI > δt) ,

so that if moreover, δ > γe−q then

1 − P(I > γt)

P(I > t)
≤ 1 − P(I > eqδt)

P(I > t)
≤ P(Iq > (1 − δ)t)

P(I > t)
.

We start by stating the integral test at time 0.

Theorem 1. The lower envelope of X(0) at 0 is described as follows:

Let f be an increasing function.

(i) If
∫

0+
F

(

t

f(t)

)

dt

t
<∞ ,

then for all ε > 0,

P(X
(0)
t < (1 − ε)f(t), i.o., as t→ 0) = 0 .

(ii) If for all q > 0,
∫

0+
Fq

(

t

f(t)

)

dt

t
= ∞ ,

then for all ε > 0,

P(X
(0)
t < (1 + ε)f(t), i.o., as t→ 0) = 1 .

(iii) Suppose that t 7→ f(t)/t is increasing. If there exists γ > 1 such that,

lim supt→+∞ P(I > γt)/P(I > t) < 1 and if

∫

0+
F

(

t

f(t)

)

dt

t
= ∞ ,

then for all ε > 0,

P(X
(0)
t < (1 + ε)f(t), i.o., as t→ 0) = 1 .
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Proof: Let (xn) be a decreasing sequence such that limn xn = 0. Recall the notations of Section
2. We define the events

An = {There exists t ∈ [U(xn+1), U(xn)] such that X
(0)
t < f(t).} .

Since U(xn) tends to 0, a.s. when n goes to +∞, we have:

{X(0)
t < f(t), i.o., as t→ 0} = lim sup

n
An . (3.1)

Since f is increasing, the following inclusions hold:

{xn ≤ f(U(xn))} ⊂ An ⊂ {xn+1 ≤ f(U(xn))} . (3.2)

Then we prove the convergence part (i). Let us choose xn = r−n for r > 1, and recall from

relation (2.12) above that U(r−n) ≤ r−nI(ξ
(n)

). From this inequality and (3.2), we can write:

An ⊂ {r−(n+1) ≤ f(r−nI(ξ
(n)

))} . (3.3)

Let us denote I(ξ̂) simply by I. From the Borel-Cantelli Lemma, (3.3) and (3.1),

if
∑

n P(r−(n+1) ≤ f(r−nI)) <∞ then P(X
(0)
t < f(t), i.o., as t→ 0) = 0. (3.4)

Note that
∫ +∞
1 P(r−t ≤ f(r−tI)) dt =

∫ +∞
0+ P(s < f(s)I, s < I/r)/(s log r) ds, hence since f is

increasing, we have the inequalities:

∞
∑

n=1

P(r−n ≤ f(r−(n+1)I)) ≤
∫ +∞

0+
P

(

s

f(s)
< I, s <

I

r

)

ds

s log r
≤
∞
∑

n=1

P(r−(n+1) ≤ f(r−nI)) .

(3.5)
With no loss of generality, we can restrict ourselves to the case f(0) = 0, so it is not difficult to
check that for any r > 1,

∫

0+
P

(

s

f(s)
< I, s <

I

r

)

ds

s
< +∞, if and only if

∫

0+
P

(

s

f(s)
< I

)

ds

s
< +∞ . (3.6)

Suppose the latter condition holds, then from (3.5), for all r > 1,
∑∞

n=2 P(r−(n+1) ≤
r−2f(r−nI)) < +∞ and from (3.4), for all r > 1, P(X

(0)
t < r−2f(t), i.o., as t→ 0) = 0 which

proves the desired result.

Now we prove the divergence part (ii). Again, we choose xn = r−n for r > 1, and zn = kr−n,
where k = 1 − ε+ ε/r and 0 < ε < 1, (so that xn+1 < zn < xn). We set

Bn = {r−n ≤ fr,ε(kr
−n1I{Γn≥kr−n}I

(n))} ,

where, fr,ε(t) = rf(t/k) and with the same notations as in Corollary 2, for each n,

I(n) (def)
=

∫ T̂ (n)(log(xn+1/zn))

0
exp ξ̂(n)

s ds
(d)
=

∫ T̂ (log(1/rk))

0
exp ξ̂s ds (3.7)
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is independent of Γn, and Γn is such that x−1
n Γn

(d)
= x−1

1 Γ. Moreover the r.v.’s I(n), n ≥ 1 are
independent between themselves and identity (3.7) shows that they have the same law as Iq
defined in Lemma 2, where q = − log(1/rk). With no loss of generality, we may assume that
f(0) = 0, so that we can write Bn = {r−n ≤ fr,ε(kr

−nI(n)), Γn ≥ kr−n} and from the above
arguments we deduce

P(Bn) = P(r−n ≤ fr,ε(kr
−nIq))P(Γ ≥ kr−1) . (3.8)

The arguments which are developed above to show (3.5) and (3.6), are also valid if we replace
I by Iq. Hence from the hypothesis, since

∫

0+ P(s < f(s)Iq) ds/s = +∞, then from (3.5) and

(3.6) applied to Iq, we have
∑∞

n=1 P(r−(n+1) ≤ f(r−nIq)) =
∑∞

n=1 P(r−n ≤ fr,ε(kr
−nIq)) = ∞,

and from (3.8) we have
∑

n P(Bn) = +∞. Then another application of (3.8), gives for any n
and m,

P(Bn ∩Bm) ≤ P(r−n ≤ fr,ε(kr
−nIq))P(r−m ≤ fr,ε(kr

−mIq))

P(Bn ∩Bm) ≤ P(Γ ≥ kr−1)−2
P(Bn)P(Bm) ,

where P(Γ ≥ kr−1) > 0, from (2.14). Hence from the extension of Borel-Cantelli’s lemma given
in (13),

P(lim supBn) ≥ P(Γ ≥ kr−1)2 > 0 . (3.9)

Then recall from Corollary 2 the inequality kr−n1I{Γn≥kr−n}I
(n) ≤ U(r−n) which implies from

(3.2) that Bn ⊂ An, (where in the definition of An we replaced f by fr,ε). So, from (3.9),
P(lim supnAn) > 0, but since X(0) is a Feller process and since lim supnAn is a tail event, we
have P(lim supnAn) = 1. We deduce from the scaling property of X(0) and (3.1) that

P(X
(0)
t ≤ fr,ε(t), i.o., as t→ 0.) = P(X

(0)
kt ≤ rf(t), i.o., as t→ 0.)

= P(X
(0)
t ≤ k−1rf(t), i.o., as t→ 0.) = 1 .

Since k = 1 − ε+ ε/r, with r > 1 and 0 < ε < 1 arbitrary chosen, we obtain (ii).

Now we prove the divergence part (iii). The sequences (xn) and (zn) are defined as in the proof
of (ii) above. Recall that q = − log(1/rk) and take δ > γe−q as in Lemma 2. With no loss of
generality, we may assume that f(t)/t → 0, as t → 0. Then from the hypothesis in (iii) and
Lemma 2, we have

∫

0+
Fq

(

(1 − δ)t

f(t)

)

dt

t
= ∞ .

As already noticed above, this is equivalent to
∫ +∞
1 P((1 − δ)r−t ≤ f(r−tIq)) dt = ∞. Since

t 7→ f(t)/t increases,
∫ +∞
1 P((1 − δ)r−t ≤ f(r−tIq)) dt ≤

∑∞
1 P((1 − δ)r−n ≤ f(r−nIq)) = ∞.

Set f
(δ)
r (t) = (1 − δ)−1f(t/k), then

∞
∑

1

P(r−n ≤ f (δ)
r (kr−nIq)) = ∞ .

Similarly as in the proof of (ii), defineB′n = {r−n ≤ f
(δ)
r (kr−nI(n)), Γn ≥ kr−n}. ThenB′n ⊂ An,

(where in the definition of An we replaced f by f
(δ)
r ). From the same arguments as above, since
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∑∞
P(B′n) = ∞, we have P(lim supnAn) = 1, hence from the scaling property of X(0) and (3.1)

P(X
(0)
t ≤ f (δ)

r (t), i.o., as t→ 0.) = P(X
(0)
kt ≤ (1 − δ)−1f(t), i.o., as t→ 0.)

= P(X
(0)
t ≤ k−1(1 − δ)−1f(t), i.o., as t→ 0.) = 1 .

Since k = 1− ε+ ε/r, with r > 1 and 0 < ε < 1 and δ > γe−q = γ/(r+ ε(1− r)), by choosing r
sufficiently large and ε sufficiently small, δ can be taken sufficiently small so that k−1(1 − δ)−1

is arbitrary close to 1.

The divergence part of the integral test at +∞ requires the following Lemma.

Lemma 3. For any Lévy process ξ such that 0 < E(ξ1) ≤ E(|ξ1|) <∞, and for any q ≥ 0,

E
(
∣

∣inft≤Tq ξt
∣

∣

)

<∞ ,

where Tq = inf{t : ξt ≥ q}.

Proof. The proof bears upon a result on stochastic bounds for Lévy processes due to Doney
(9) which we briefly recall. Let νn be the time at which the n-th jump of ξ whose value lies in
[−1, 1]c, occurs and define

In = inf
νn≤t<νn+1

ξt .

Theorem 1.1 in (9) asserts that the sequence (In) admits the representation

In = S(−)
n + ı̃0, n ≥ 0 ,

where S(−) is a random walk with the same distribution as (ξ(νn), n ≥ 0) and ı̃0 is independent

of S(−). For a ≥ 0, let σ(a) = min{n : S
(−)
n > a}, then for any q ≥ 0, we have the inequality

min
n≤σ(q+|̃ı0|)

(S(−)
n + ı̃0) ≤ inf

t≤Tq

ξt . (3.10)

On the other hand, it follows from our hypothesis on ξ that 0 < E(S
(−)
1 ) ≤ E(|S(−)

1 |) < +∞,
hence from Theorem 2 of (12) and its proof, there exists a finite constant C which depends only
on the law of S(−) such that for any a ≥ 0,

E

(
∣

∣

∣
minn≤σ(a) S

(−)
n

∣

∣

∣

)

≤ CE(σ(a))E(|S(−)
1 |) . (3.11)

Moreover from (1.5) in (12), there are finite constants A and B depending only on the law of
S(−) such that for any a ≥ 0

E(σ(a)) ≤ A+Ba . (3.12)

Since ı̃0 is integrable (see (9)), the result follows from (3.10), (3.11), (3.12) and the independence
between ı̃0 and S(−).

Theorem 2. The lower envelope of X(x) at +∞ is described as follows:

Let f be an increasing function.
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(i) If
∫ +∞

F

(

t

f(t)

)

dt

t
<∞ ,

then for all ε > 0, and for all x ≥ 0,

P(X
(x)
t < (1 − ε)f(t), i.o., as t→ +∞) = 0 .

(ii) If for all q > 0,
∫ +∞

Fq

(

t

f(t)

)

dt

t
= ∞ ,

then for all ε > 0, and for all x ≥ 0,

P(X
(x)
t < (1 + ε)f(t), i.o., as t→ +∞) = 1 .

(iii) Assume that there exists γ > 1 such that, lim supt→+∞ P(I > γt)/P(I > t) < 1. Assume
also that t 7→ f(t)/t is decreasing. If

∫ +∞

F

(

t

f(t)

)

dt

t
= ∞ ,

then for all ε > 0, and for all x ≥ 0,

P(X
(x)
t < (1 + ε)f(t), i.o., as t→ +∞) = 1 .

Proof: We first consider the case where x = 0. The proof is very similar to this of Theorem 1.
We can follow the proofs of (i), (ii) and (iii) line by line, replacing the sequences xn = r−n and
zn = kr−n respectively by the sequences xn = rn and zn = krn, and replacing Corollary 2 by
Corollary 3. Then with the definition

An = {There exists t ∈ [U(rn), U(rn+1)] such that X
(0)
t < f(t).} ,

we see that the event lim supAn belongs to the tail sigma-field ∩tσ{X(0)
s : s ≥ t} which is trivial

from the representation (1.2) and the Markov property.

The only thing which has to be checked more carefully is the counterpart at +∞ of the
equivalence (3.6). Indeed, since in that case

∫∞
1 P(rt < f(rtI) dt =

∫∞
0+ P(s/f(s) < Iq, s >

rIq) ds/(s log r), in the proof of (ii) and (iii), we need to make sure that for any r > 1,

∫ +∞

P

(

s

f(s)
< Iq

)

ds

s
= +∞ implies

∫ +∞

P

(

s

f(s)
< Iq < sr

)

ds

s
= +∞ . (3.13)

To this aim, note that
∫ ∞

1
P

(

s

f(s)
< Iq < sr

)

ds

s
=

∫ ∞

1
P

(

s

f(s)
< Iq

)

− P

(

s

f(s)
< Iq, sr < Iq

)

ds

s
,

and since f is increasing, we have
∫ ∞

1
P

(

s

f(s)
< Iq, sr < Iq

)

ds

s
< +∞ if and only if

∫ ∞

1
P (s < Iq)

ds

s
< +∞ .
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But
∫ ∞

1
P (s < Iq)

ds

s
= E(log+ Iq) .

Note that from our hypothesis on ξ, we have E(T̂−q) < +∞, then the conclusion follows from
the inequality

E(log+ Iq) ≤ E

(

sup0≤s≤T̂−q
ξ̂s

)

+ E(T̂−q)

and Lemma 3. This achieves the proof of the theorem for x = 0.

Now we prove (i) for any x > 0. Let f be an increasing function such that
∫ +∞

F
(

t
f(t)

)

dt
t <

+∞. Let x > 0, put Sx = inf{t : X
(0)
t ≥ x} and denote by µx the law of X

(0)
Sx

. From the Markov
property at time Sx, we have for all ε > 0,

P(X
(0)
t < (1 − ε)f(t− Sx), i.o., as t→ +∞)

=

∫

[x,∞)
P(X

(y)
t < (1 − ε)f(t), i.o., as t→ +∞)µx(dy)

≤ P(X
(0)
t < (1 − ε)f(t), i.o., as t→ +∞) = 0 . (3.14)

If x is an atom of µx, then the inequality (3.14) shows that

P(X
(x)
t < (1 − ε)f(t), i.o., as t→ +∞) = 0

and the result is proved. Suppose that x is not an atom of µx. Recall from section 1 that
log(x−1

1 Γ) is the limit in law of the overshoot process ξ̂T̂z
− z, as z → +∞. Moreover, it

follows from (5), Theorem 1 that X
(0)
Sx

(d)
= xx1

Γ . Hence, from Lemma 1, we have for any η > 0,
µx(x, x+η) > 0. Then, the inequality (3.14) implies that for any η > 0, there exists y ∈ (x, x+η)

such that P(X
(y)
t < (1 − ε)f(t), i.o., as t→ +∞) = 0, for all ε > 0. It allows us to conclude.

Parts (ii) and (iii) can be proved through the same way.

We recall that to obtain these tests for any scaling index α > 0, it suffices to consider the pro-
cess (X(0))1/α in the above theorems. The same remark holds for the results of the next sections.

4 The regular case

The first type of tail behaviour of I that we consider is the case where F is regularly varying at
infinity, i.e.

F (t) ∼ λt−γL(t) , t→ +∞ , (4.1)

where γ > 0 and L is a slowly varying function at +∞. As shown in the following lemma, under
this assumption, for any q > 0 the functions Fq and F are equivalent, i.e. Fq ≍ F .

Lemma 4. Recall that Iq =
∫ T−q

0 exp ξ̂s ds and Fq(t) = P(Iq > t). If (4.1) holds then for all
q > 0,

(1 − e−γq)F (t) ≤ Fq(t) ≤ F (t) , (4.2)

for all t large enough.
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Proof: Recall from Lemma 2, that if (ξ̂s, s ≤ T̂−q) and ξ̂′
(def)
= (ξ̂s+T̂−q

− ξ̂T̂−q
, s ≥ 0) then

I = Iq + exp(ξ̂T̂−q
)I ′ ≤ Iq + e−qI ′ (4.3)

where I ′ =
∫∞
0 exp ξ̂′s ds is a copy of I which is independent of Iq. It yields the second equality

of the lemma. To show the first inequality, we write for all δ > 0,

P(I > (1 + δ)t) ≤ P(Iq + e−qI ′ ≥ (1 + δ)t)

≤ P(Iq > t) + P(e−qI > t) + P(Iq > δt)P(e−qI > δt)

≤ P(Iq > t) + P(e−qI > t) + P(I > δt)P(e−qI > δt) ,

so that

lim inf
t→+∞

P(Iq > t)

P(I > t)
≥ (1 + δ)−γ − e−qγ ,

and the result follows since δ can be chosen arbitrary small.

The regularity of the behaviour of F allows us to drop the ε of Theorems 1 and 2 in the next
integral test.

Theorem 3. Under condition (4.1), the lower envelope of X(0) at 0 and at +∞ is as follows:

Let f be an increasing function, such that either limt↓0 f(t)/t = 0, or lim inft↓0 f(t)/t > 0, then:

P(X
(0)
t < f(t), i.o., as t→ 0) =

{

0
1

,

according as
∫

0+
F

(

t

f(t)

)

dt

t

{

<∞
= ∞ .

Let g be an increasing function, such that either limt↑+∞ g(t)/t = 0, or lim inft↑+∞ g(t)/t > 0,
then for all x ≥ 0,

P(X
(x)
t < g(t), i.o., as t→ +∞) =

{

0
1

,

according as
∫ +∞

F

(

t

g(t)

)

dt

t

{

<∞
= ∞ .

Proof: First let us check that for any constant β > 0:

∫ λ

0+
F

(

s

f(s)

)

ds

s
<∞ if and only if

∫ λ

0+
F

(

βs

f(s)

)

ds

s
<∞ . (4.4)

From the hypothesis, either lims↓0 f(s)/s = 0, or lim infs↓0 f(s)/s > 0. In the first case, we
deduce (4.4) from (4.1). In the second case, since for any 0 < λ < ∞, P(I > λ) > 0, and

lim supu↓0 u/f(u) < +∞, we have for any s, 0 < P

(

lim supu↓0
u

f(u) < I
)

< P

(

s
f(s) < I

)

so both

of the integrals above are infinite.
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Now it follows from Theorem 1 that if
∫

0+ F
(

t
f(t)

)

dt
t < ∞ then for all ε > 0, P(X

(0)
t <

(1 − ε)f(t), i.o., as t→ 0) = 0. If
∫

0+ F
(

t
f(t)

)

dt
t = ∞ then from Lemma 4, for all q > 0,

∫

0+ Fq

(

t
f(t)

)

dt
t = ∞, and it follows from Theorem 1 (ii) that for all ε > 0, P(X

(0)
t < (1 +

ε)f(t), i.o., as t→ 0) = 1. Then the equivalence (4.4) allows us to drop ε in these implications.

The test at +∞ is proven through the same way.

Remarks:
1. It is possible to obtain the divergence parts of Theorem 3 by applying parts (iii) of Theorems
1 and 2 but then, one has to assume that f(t)/t is an increasing (respectively a decreasing)
function for the test at 0 (respectively at +∞), which is slightly stronger than the hypothesis
on f of Theorem 3.
2. This result is due to Dvoretzky and Erdös (11) and Motoo (17) when X(0) is a transient
Bessel process, i.e. the square root of the solution of the SDE:

Zt = 2

∫ t

0

√

Zs dBs + δt , (4.5)

where δ > 2 and B is a standard Brownian motion. (Recall that when δ is an integer, X(0) =
√
Z

has the same law as the norm of the δ-dimensional Brownian motion.) Processes X(0) =
√
Z

such that Z satisfies the equation (4.5) with δ > 2 are the only continuous self-similar Markov
process with index α = 2, which drifts towards +∞. In this particular case, thanks to the
time-inversion property, i.e.:

(Xt, t > 0)
(d)
= (tX1/t, t > 0),

we may deduce the test at +∞ from the test at 0.
3. A possible way to improve the test at ∞ in the general case (that is in the setting of
Theorem 1) would be to first establish it for the Ornstein-Uhlenbeck process associated to X(0),
i.e. (e−tX(0)(et), t ≥ 0), as Motoo did for Bessel processes in (17). This would allow us to
consider test functions which are not necessarily increasing.

Examples:
1. Examples of such behaviours are given by transient Bessel processes raised to any power and
more generally when the process ξ satisfies the so called Cramer’s condition, that is,

there exists γ > 0 such that E(e−γξ1) = 1. (4.6)

In that case, Rivero (19) and Maulik and Zwart (16) proved by using results of Kesten and
Goldie on tails of solutions of random equations that the behavior of P (I > t) is given by

F (t) ∼ Ct−γ , as t→ +∞, (4.7)

where the constant C is explicitly computed in (18) and (16).

2. Stable Lévy processes conditioned to stay positive are themselves positive self-similar Markov
processes which belong to the regular case. These processes are defined as h-processes of the
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initial process when it starts from x > 0 and killed at its first exit time of (0,∞). Denote by (qt)
the semigroup of a stable Lévy process Y with index α ∈ (0, 2], killed at time R = inf{t : Yt ≤ 0}.
The function h(x) = xα(1−ρ), where ρ = P(Y1 ≥ 0), is invariant for the semi-group (qt), i.e. for
all x ≥ 0 and t ≥ 0, Ex(h(Yt)1I{t<R}) = h(x), (Ex denotes the law of Y + x). The Lévy process
Y conditioned to stay positive is the strong Markov process whose semigroup is

p↑t (x, dy) :=
h(y)

h(x)
qt(x, dy), x > 0, y > 0, t ≥ 0 . (4.8)

We will denote this process by X(x) when it is issued from x > 0. We refer to (6) for more on
the definition of Lévy processes conditioned to stay positive and for a proof of the above facts.
It is easy to check that the process X(x) is self-similar and drifts towards +∞. Moreover, it
is proved in (6), Theorem 6 that X(x) converges weakly as x → 0 towards a non degenerated
process X(0) in the Skorohod’s space, so from (5), the underlying Lévy process in the Lamperti
representation of X(x) satisfies condition (H).

We can check that the law of X(x) belongs to the regular case by using the equality in law (2.4).
Indeed, it follows from Proposition 1 and Theorem 4 in (6) that the law of the exponential
functional I is given by

P(t < xαI) = x1−αρE−x(Ŷ
αρ−1
t 1I{t<R̂}) , (4.9)

where Ŷ = −Y and R̂ = inf{t : Ŷt ≤ 0}. If Y (and thus X(0)) has no positive jumps, then
αρ = 1 and it follows from (4.9) and Lemma 1 in (7) that

P(t < I) = Ct−ρ . (4.10)

We conjecture that (4.10) is also valid when Y has positive jumps. We also emphasize the
possibility that the underlying Lévy process in the Lamperti representation of X(x) even
satisfies (4.6) with γ = ρ.

5 The log regular case

The second type of behaviour that we shall consider is when logF is regularly varying at +∞,
i.e.

− logF (t) ∼ λtβL(t) , as t→ ∞, (5.1)

where λ > 0, β > 0 and L is a function which varies slowly at +∞. Define the function ψ by

ψ(t)
(def)
=

t

inf{s : 1/F (s) > | log t|} , t > 0 , t 6= 1 . (5.2)

Then the lower envelope of X(0) may be described as follows:

Theorem 4. Under condition (5.1), the process X(0) satisfies the following law of the iterated
logarithm:
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(i)

lim inf
t→0

X
(0)
t

ψ(t)
= 1 , almost surely. (5.3)

(ii) For all x ≥ 0,

lim inf
t→+∞

X
(x)
t

ψ(t)
= 1 , almost surely. (5.4)

Proof: We shall apply Theorem 1. We first have to check that under hypothesis (5.1), the
conditions of part (iii) in Theorem 1 are satisfied. On the one hand, from (5.1) we deduce that
for any γ > 1, lim supF (γt)/F (t) = 0. On the other hand, it is easy to see that both ψ(t) and
ψ(t)/t are increasing in a neighbourhood of 0.

Let L be a slowly varying function such that

− logF (λ−1/βt1/βL(t)) ∼ t , as t → +∞. (5.5)

Th. 1.5.12, p.28 in (4) ensures that such a function exists and that

inf{s : − logF (s) > t} ∼ λ−1/βt1/βL(t) , as t→ +∞. (5.6)

Then we have for all k1 < 1 and k2 > 1 and for all t sufficiently large,

k1λ
−1/βt1/βL(t) ≤ inf{s : − logF (s) > t} ≤ k2λ

−1/βt1/βL(t)

so that for ψ defined above and for all k′2 > 0,

− logF

(

t k′2
k2ψ(t)

)

≤ − logF (k′2λ
−1/β(log | log t|)1/βL(log | log t|)) (5.7)

for all t sufficiently small. But from (5.5), for all k′′2 > 1 and for all t sufficiently small,

− logF (k′2λ
−1/β(log | log t|)1/βL(log | log t|)) ≤ k′′2k

′
2
β

log | log t| ,

hence

F

(

t k′2
k2ψ(t)

)

≥ (| log t|)−k′′

2 k′

2
β

.

By choosing k′2 < 1 and k′′2 < (k′2)
−β, we obtain the convergence of the integral

∫

0+
F

(

t k′2
k2ψ(t)

)

dt

t
,

for all k2 > 1 and k′2 < 1, which proves that for all ε > 0,

P(X
(0)
t < (1 + ε)ψ(t), i.o., as t→ 0) = 1

from Theorem 1 (iii). The convergence part is proven through the same way so that from
Threorem 1 (i), one has for all ε > 0,

P(X
(0)
t < (1 − ε)ψ(t), i.o., as t→ 0) = 0
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and the conclusion follows.

Condition (5.1) implies that ψ(t) is increasing in a neighbourhood of +∞ whereas ψ(t)/t is
decreasing in a neighbourhood of +∞. Hence, the proof of the result at +∞ is done through
the same way as at 0, by using Theorem 2, (i) and (iii).

Example:
An example of such a behaviour is provided by the case where the process X(0) is increasing,
that is when the underlying Lévy process ξ is a subordinator. Then Rivero (18), see also Maulik
and Zwart (16) proved that when the Laplace exponent φ of ξ which is defined by

exp(−tφ(λ)) = E(exp(λξ̂t)) , λ > 0, t ≥ 0

is regularly varying at +∞ with index β ∈ (0, 1), the upper tail of the law of I and the asymptotic
behavior of φ at +∞ are related as follows:

Proposition 2. Suppose that ξ is a subordinator whose Laplace exponent φ varies regularly at
infinity with index β ∈ (0, 1), then

− logF (t) ∼ (1 − β)φ←(t) , as t→ ∞,

where φ←(t) = inf{s > 0 : s/φ(s) > t}.

Then by using an argument based on the study of the associated Ornstein-Uhlenbeck process
(e−tX(0)(et), t ≥ 0) Rivero (18) derived from Proposition 2 the following result. Define

ϕ(t) =
φ(log | log t|)

log | log t| , t > e .

Corollary 4. If φ is regularly varying at infinity with index β ∈ (0, 1) then

lim inf
t↓0

X(0)

tϕ(t)
= (1 − β)1−β and lim inf

t↑+∞

X(0)

tϕ(t)
= (1 − β)1−β , a.s.

This corollary is also a consequence of Proposition 2 and Theorem 4. To establish Corollary
4, Rivero assumed moreover that the density of the law of the exponential functional I is
decreasing and bounded in a neighbourhood of +∞. This additional assumption is actually
needed to establish an integral test which involves the density of I and which implies Corollary 4.

Acknowledgment: We are much indebted to professor Zhan Shi for many fruitful discussions
on integral tests and laws of the iterated logarithm. We also warmly thank professor Ron Doney
for having provided to us the idea of the proof of Lemma 3.
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