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Abstract

With the help of the methods developed in [21], we highlight condition (T ) as a source of
new examples of ’ballistic’ diffusions in a random environment when d ≥ 2 (’ballistic’ means
that a strong law of large numbers with non-vanishing limiting velocity holds). In particular
we are able to treat the case of non-constant diffusion coefficients, a feature that causes
problems. Further we recover the ballistic character of two important classes of diffusions in
a random environment by simply checking condition (T ). This not only points out to the
broad range of examples where condition (T ) can be checked, but also fortifies our belief
that condition (T ) is a natural contender for the characterisation of ballistic diffusions in a
random environment when d ≥ 2
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1 Introduction

Diffusions in random environment in higher dimensions are still poorly understood. An
important tool in the study of diffusions in random environment has been the “method of
the environment viewed from the particle”, cf. [16], [17] and the references therein, with the
serious drawback that it only applies in very specific situations where one can find an (most
often explicit) invariant measure for the process of the environment viewed from the particle.
However new ideas recently emerged in the discrete framework of random walks in random
environment that apply in the general setting, see for instance [30], [33] and the references
therein. In particular the renewal-type arguments introduced in Sznitman-Zerner [31], and
related developments centered around condition (T ) in Sznitman [27], [28], [29] shed some light
on walks with non-vanishing limiting velocity. Let us as well point out the recent breakthrough
in the diffusive regime, cf. Sznitman and Zeitouni [32], where new methods falling outside the
framework of these renewal techniques are developed.
In Shen [22] a renewal structure in the spirit of [31] was implemented in the continuous
space-time setting. In our recent work [21], we built up on these results, and showed that
condition (T ) is also instrumental in the continuous setting: when d ≥ 2, it implies a strong law
of large numbers with non-vanishing limiting velocity (which we refer to as ballistic behavior)
and an invariance principle governing corrections to the law of large numbers.
This article mainly follows two objectives. We first highlight condition (T ) as a source of
new examples of ballistic diffusions in random environment when d ≥ 2. Second, we rederive
the well-known ballistic character of a class of diffusions in random environment with a
divergence-free drift field by simply checking condition (T ). We also check condition (T ) for
an anisotropic gradient-type diffusion, the ballistic nature of which was shown in Shen [22].
This not only points out to the broad range of examples where condition (T ) can be checked,
but also fortifies our belief that condition (T ) is a natural contender for the characterisation of
ballistic behavior.

Before describing our results in more details, let us recall the setting.
The random environment ω is described by a probability space (Ω,A,P). We assume that there
exists a group {tx : x ∈ Rd} of transformations on Ω, jointly measurable in x, ω, which preserve
the probability P:

txP = P . (1)

On (Ω,A,P) we consider random variables a(·) and b(·) with respective values in the space of
symmetric d× d matrices and Rd, and we define

a(x, ω) def= a(txω), b(x, ω) def= b(txω). (2)

We shall assume that a(·, ω) is uniformly elliptic and bounded, and that b(·, ω) is bounded, i.e.
there are constants ν ≥ 1, β > 0, such that for all ω ∈ Ω, all x, y ∈ Rd,

1
ν |y|

2 ≤ yt · a(x, ω) y ≤ ν|y|2, |b(x, ω)| ≤ β, (3)

where | · | denotes the Euclidean norm for vectors resp. for square matrices, and yt stands for
the transposed vector of y. We assume as well that a(·, ω), b(·, ω) are Lipschitz continuous, i.e.
there is a constant K > 0 such that for all ω ∈ Ω, x, y ∈ Rd,

|a(x, ω)− a(y, ω)|+ |b(x, ω)− b(y, ω)| ≤ K|x− y| . (4)
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We will further assume finite range dependence, i.e. there is an R > 0 such that, when we define
the σ-field HF

def= σ{a(x, ·), b(x, ·) : x ∈ F}, F a Borel subset of Rd, then

HA and HB are P-independent when d(A,B) > R , (5)

where d(A,B) = inf{|x − y| : x ∈ A, y ∈ B}. We define the differential operator attached to
a(·, ω), b(·, ω),

Lω = 1
2

d∑
i,j=1

aij(x, ω)∂2
ij +

d∑
i=1

bi(x, ω)∂i , (6)

and, for ω ∈ Ω, we denote with Px,ω the unique solution to the martingale problem for Lω
started at x ∈ Rd, see Theorem 4.3 p.146 in [1]. The laws Px,ω describe the diffusion in the
environment ω. We write Ex,ω for the corresponding expectation. We denote with (Xt)t≥0 the
canonical process on C(R+,Rd), with (Ft)t≥0 the canonical filtration, and F the Borel σ-field
on C(R+,Rd). The laws Px,ω are usually called the quenched laws. To restore some stationarity
to the problem, it is convenient to introduce the annealed laws Px, which are defined as the
semi-direct products:

Px
def= P× Px,ω, , for x ∈ Rd. (7)

The corresponding expectations are denoted with Ex = E × Ex,ω, where E denotes the
expectation with respect to the measure P. Observe that the Markov property is typically lost
under the annealed laws.

Let us now explain in more details the purpose of this work. We first recall from [21] the
definition of condition (T ) (where T stands for transience). Introduce, for ` a unit vector of Rd,
b, L > 0, the slabs U`,b,L

def= {x ∈ Rd : −bL < x · ` < L}.

Definition 1.1. We say that condition (T ) holds relative to ` ∈ Sd−1, in shorthand notation
(T )|`, if for all `′ ∈ Sd−1 in a neighborhood of `, and for all b > 0,

lim sup
L→∞

L−1 logP0[XTU`′,b,L
· `′ < 0] < 0 , (8)

where TU`′,b,L
denotes the exit time from the slab U`′,b,L.

Let us recall that, when d ≥ 2, and under our standing assumptions (1)-(5), condition (T )
implies a ballistic strong law of large numbers and an annealed invariance principle governing
corrections to the law of large numbers, see [21]:

P0 − a.s.,
Xt

t
→ ṽ, ṽ 6= 0, deterministic, with ṽ · ` > 0 , (9)

and under P0, Bs
· = X·s−·sṽ√

s
converges in law on C(R+,Rd), as s→∞, to a

Brownian motion B· with non-degenerate covariance matrix.
(10)

In Section 2, we provide a new class of examples where condition (T ) holds. Namely, we prove
that there is a constant c1(d, ν, β,K,R) > 1 such that, for ` ∈ Sd−1, the inequality

E[(b(0, ω) · `)+] > c1 E[(b(0, ω) · `)−]
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implies condition (T )|`, see Theorem 2.1. This theorem extends the result of Theorem 5.2 in
[21] in the sense that we drop the assumption that the diffusion coefficient a(·, ω) equals the
identity for all ω ∈ Ω. This is more than a technical improvement, for this new set-up leads
to severe difficulties. Let us recall that in [21] we introduced for each bounded C∞-domain
U containing 0, an auxiliary diffusion with characteristics independent of the environment that
exhibited the same exit distribution from U as the annealed diffusion in the random environment
when starting at 0. With the objective of checking condition (T ), we approximated the slab
U`,b,L by bounded C∞-domains, and using the auxiliary diffusion, we were able to restore some
Markovian character to the question of controlling the exit distribution from the slab U`,b,L
under the annealed measure P0. We keep this strategy in the present article, with the difference
that now, when d ≥ 2, the construction of an auxiliary diffusion exhibiting the same properties
as the auxiliary diffusion from [21] described above is more intricate.
Inspired by [21], we are naturally led to choose for a bounded C∞- domain U containing 0 the
following auxiliary diffusion and drift coefficients:

a′U (x) = E[gω,U (x)a(x,ω)]
E[gω,U (x)] , if x ∈ U r {0}, a′U (x) = Id, else,

b′U (x) = E[gω,U (x)b(x,ω)]
E[gω,U (x)] , if x ∈ U r {0}, b′U (x) = 0, else,

(11)

where gω,U is the Green function corresponding to the quenched diffusion started at 0 and killed
when exiting U . Notice that, when a(·, ω) ≡ Id for all ω ∈ Ω as in [21], then a′U ≡ Id, and
we recover the auxiliary diffusion from [21], i.e. a Brownian motion perturbed by a bounded
measurable drift b′U . In the present setting, a′U is uniformly elliptic and bounded, but in general
discontinuous at 0 and at the boundary ∂U . The massive discontinuity at the boundary may
very well imply nonuniqueness for the martingale problem attached to a′U and b′U .
Thus, in the key Proposition 2.4, we prove the existence of a solution P ′

0,U to the martingale
problem for L′ started at 0 such that the respective exit distributions from U under P ′

0,U and
the annealed measure P0 agree. Any such measure will serve as an auxiliary measure.
We cannot adapt the methods used in [21] to prove Proposition 2.4 in the present setting. Due
to the discontinuity of a′U at 0, a certain Dirichlet problem in the domain U , attached to the
auxiliary coefficients a′U , b′U , may fail to have a strong solution in the Sobolev space W 2,p(U),
p ≥ 1. This is in contrast to the situation in [21], where a′U ≡ Id implied the existence of
a solution with good differentiability properties to the above Dirichlet problem. As a result,
when choosing arbitrary smooth and bounded approximations bn of the auxiliary drift b′U , we
obtained convergence of the smooth solutions, together with their derivatives, of the perturbed
Dirichlet problems attached to an ≡ Id and bn. This enabled us to conclude the proof of the
result corresponding to Proposition 2.4 in the setting of [21], see also Remark 2.7.
To avoid controls on derivatives in the present setting, we use results of Krylov [10], [11]. The
specific choice of the auxiliary coefficients a′U , b

′
U enables us to construct a diffusion started at 0

and attached to a′U , b
′
U , that, killed when exiting U , admits E[gω,U ] as occupation time density

in U . This implies that the above diffusion exhibits the same exit distribution from U as the
annealed diffusion in random environment.

In Section 3, we study a Brownian motion perturbed by a random divergence-free drift field
the P-expectation of which does not vanish. The ballistic character of this class of diffusions
(including time-dependent drift fields) follows for instance from the results in Landim, Olla,
Yau [12] via the method of “the environment viewed from the particle”. We use the pointwise
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Gaussian controls on the quenched semigroup from Norris [14] (see also Osada [19] for estimates
that only accommodate a drift term with vanishing P-expectation), that enable us to check
condition (T ) by a standard Markov-process-type computation, see Theorem 3.1. With the help
of our results in [21], we thus rederive the ballistic behavior (in the time-independent setting)
of this class of diffusions in random environment. Let us also mention that, in the case where
the P-expectation of the drift is zero, diffusive behavior has been shown, see for instance [4],[15],
[18] for the time-independent setting, and [3], [9], [12] for the time-dependent setting.

In Section 4, we consider Brownian motion perturbed by a random drift that can be written as
the gradient of a non-stationary scalar potential. The ballistic behavior of this class of diffusions
was only recently shown in Shen [22]. Whereas the method of “the environment viewed from
the particle” applies successfully when the potential is stationary, see [16] or section 3.7 in [17],
it does not apply in the above setting. Shen shows the existence of the first two moments of
a certain regeneration time, see Theorem 4.11 in [22], and obtains the ballistic character as
a direct consequence of his previous results, see Theorems 3.1 and 3.2. of [22]. With closely
related techniques, we are able to prove in Theorem 4.1 that condition (T ) holds in this setting.

Let us also mention that in the context of the examples handled in Sections 3 and 4, the
analogue of (8), where the annealed measure P0 is replaced by the quenched measure P0,ω,
holds uniformly in ω, cf. (63) and (76).

Convention on constants: Unless otherwise stated, constants only depend on the quantities
β, ν,K,R, d. Dependence on additional parameters appears in the notation. Generic positive
constants are denoted by c. When constants are not numerated, their value may change from
line to line.

Acknowledgement: I am sincerely indebted to my advisor Prof. A.-S. Sznitman for his
constant advice during the completion of this work. I would like to thank as well Laurent
Goergen for fruitful discussions, and the referee for helpful comments.

2 A new class of examples where Condition (T ) holds

We first introduce some additional notation. For z ∈ R, we denote with bzc def= sup{k ∈ Z : k ≤
z} the rounded value of z. We denote with | · | the Euclidean norm, and with | · |∞ the supremum
norm. For x ∈ Rd, r > 0, we write Br(x) for the open Euclidean ball with radius r and center
x. We call an open connected subset of Rd a domain, and for a subset A of Rd, we write Ac

for its complement, Ā for its closure, and ∂A for its boundary. The diameter of A is defined as
diamA = sup{d(x, y) : x, y ∈ A}. For two sets A,B in Rd, d(A,B) = inf{|x−y| : x ∈ A, y ∈ B}
stands for the distance between A and B. For an open subset U of Rd, the (Ft)-stopping time
TU = inf {t ≥ 0 : Xt /∈ U} denotes the exit time from U .
Given measurable functions a, b on Rd with values in the space of symmetric d × d matrices,
resp. in Rd, that satisfy the conditions in (3) with the respective constants ν, β (with a(·), b(·)
in place of a(·, ω), b(·, ω)), we say that the attached differential operator L is of class N (ν, β).
Recall the convention on constants at the end of the introduction. The main result of this section
is
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Theorem 2.1. (d ≥ 1)
Assume (1)-(5). There is a constant c1 > 1, such that for ` ∈ Sd−1, the inequality

E[(b(0, ω) · `)+] > c1 E[(b(0, ω) · `)−] (12)

implies (T )|`.

This is an extension of Theorem 5.2 in our previous work [21], where we proved the same
statement under the additional assumption that a ≡ Id.

Remark 2.2. One can easily argue that c1 ≥ 1, and the proof of Theorem 2.1 shows in fact
that c1 > 1. The true value of the constant is unknown. However, when P-a.s., (b(0, ω) · `)− = 0,
then Theorem 2.1 immediately implies, regardless of the value of c1:

Condition (T ) holds when d ≥ 1 and there is ` ∈ Sd−1 and δ > 0,
such that b(0, ω) · ` ≥ 0 for all ω ∈ Ω, and pδ = P[b(0, ω) · ` ≥ δ] > 0 .

(13)

If there is δ > 0 such that pδ = 1, this is in the spirit of the non-nestling case, which is in fact
already covered by Proposition 5.1 in [21], and else, of the marginal nestling case in the discrete
setting, see Sznitman [26]. Of course, Theorem 2.1 also comprises more involved examples of
condition (T ) where b(0, ω) · ` takes both positive and negative values for every ` ∈ Sd−1. They
correspond to the plain-nestling case in [26]. When d ≥ 2, and when the covariance matrix a
is not the identity, the examples of condition (T ) corresponding to the marginal- resp. plain-
nestling case provide new examples of ballistic diffusions in random environment. �

The main step in the proof of Theorem 2.1 is to construct for each bounded C∞-domain U
containing 0 an auxiliary diffusion with characteristics independent of the environment, that,
when started at 0, exhibits the same exit distribution from U as the annealed diffusion in random
environment started at 0. We provide this key result in subsection 2.1, cf. Proposition 2.4.
In subsection 2.2, we prove Theorem 2.1 using slight variations on the methods from [21].
The auxiliary diffusion enables us to restore some Markovian character to the task of checking
condition (T ). First, we show that condition (T ) is implied by a certain condition (K), which
is similar to Kalikow’s condition in the discrete set-up. We then check condition (K), which
finishes the proof of Theorem 2.1.

2.1 An auxiliary diffusion and its exit distribution

Unless otherwise stated, U denotes from now on a bounded C∞-domain containing 0. Recall
the subtransition density pω,U (s, x, ·) at time s > 0 for the quenched diffusion started at x ∈ Rd,
that fulfills for each open set G ⊂ U , Px,ω[Xs ∈ G,TU > s] =

∫
G pω,U (s, x, y) dy. It can for

instance be defined via Duhamel’s formula, see [24] p.331:

pω,U (s, x, y) = pω(s, x, y)− Ex,ω[pω(s− TU , XTU
, y), TU < s], s > 0, x, y ∈ Rd, (14)

where pω(s, x, ·) denotes the transition density corresponding to the quenched diffusion started
at x ∈ Rd. One then obtains the Green function for the quenched diffusion started at 0 and
killed when exiting U via

gω,U (x) =
∫ ∞

0
pω,U (s, 0, x) ds, x ∈ Rd. (15)
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We define the auxiliary diffusion and drift coefficients, see also (11), through

a′U (x) = E[gω,U (x)a(x,ω)]
E[gω,U (x)] , if x ∈ U r {0}, a′U (x) = Id, else,

b′U (x) = E[gω,U (x)b(x,ω)]
E[gω,U (x)] , if x ∈ U r {0}, b′U (x) = 0, else,

(16)

and we denote with L′ the attached differential operator.
Notice that the definition of a′U , b

′
U in 0 and outside U is quite arbitrary. Since we are interested

in the exit distribution from U of a suitable diffusion started at 0 and attached to a′U , b
′
U , cf.

Proposition 2.4 below, we only require that a′U , b
′
U are uniformly elliptic and bounded outside

U . Let us further mention that changing the value of a′U (0) within the class of symmetric and
elliptic matrices does not affect issues such as existence and uniqueness of the solution to the
martingale problem for L′, see for instance [1] p. 149 and Theorem 1.2 p.132 therein.
The next lemma will be useful in the remainder of this section.

Lemma 2.3. L′ ∈ N (ν, β). Moreover, a′U , b′U , and gω,U are continuous at U r {0}.

Proof. It follows from (3) and from the definition of a′U , b
′
U that L′ ∈ N (ν, β). Theorem 4.5

p.141 in [5] states that the transition density pω(s, x, y) is jointly continuous in s > 0, x, y ∈ Rd.
By Duhamel’s formula, see (14), and dominated convergence, it follows that the subtransition
pω,U (s, x, y) is continuous in y ∈ U . From Lemma 5.2 in the Appendix, and from similar
computations as carried out between (83) and (85) in the Appendix, and applying dominated
convergence, we obtain the continuity of gω,U in U r {0}. Further, by the upper bound in
Corollary 5.3 and dominated convergence, and by continuity of a(·, ω) resp. b(·, ω), see (4), we
see that a′U resp. b′U are continuous at U r {0}.

The following proposition restores some Markovian character to the exit problem of the diffusion
X· under the annealed measure P0 (recall P0 in (7)).

Proposition 2.4. (d ≥ 1) Let U be a bounded C∞-domain containing 0. Then there is a
solution P ′

0,U to the martingale problem for L′ started at 0, such that XTU
has same law under

P ′
0,U and the annealed measure P0.

In the sequel we will denote with P ′
0,U any such measure and refer to it as an auxiliary measure,

and we will denote with E′
0,U the corresponding expectation.

Remark 2.5. When d ≤ 2, Exercises 7.3.3 and 7.3.4 p.192 in [23], and the fact that L′ ∈ N (ν, β),
show that the martingale problem for L′ is well-posed, so that the auxiliary measure P ′

0,U

corresponds to the unique solution to the martingale problem. In higher dimensions, uniqueness
to the martingale problem may fail, see Nadirashvili [13]. Uniqueness holds for instance when the
set of discontinuities of the diffusion coefficient contains only a finite number of cluster points,
see Krylov [11]. In our case, where the diffusion coefficient a′U is in general discontinuous at the
boundary ∂U , the question of uniqueness is open. However, since a′U is continuous at U r {0},
one can in fact show with the above result from Krylov [11] that two arbitrary solutions to
the martingale problem for L′ started at 0 agree on FTU

, although we will not prove it here.
As a consequence, every solution to the martingale problem for L′ started at 0 can be used as
auxiliary measure, but we will not use this here. �
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2.1.1 The case d = 1

Proof of Proposition 2.4 when d = 1. According to Remark 2.5, we denote with P ′
0,U the

unique solution to the martingale problem for L′ started at 0. Corollary 4.8 p.317 in [8], com-
bined with Remark 4.3 p.173 therein, shows the existence of a Brownian motion W defined on
(C(R+,R),F , P ′

0,U ) such that

P ′
0,U − a.s., Xt =

∫ t

0

√
a′U (Xs) dWs +

∫ t

0
b′U (Xs) ds. (17)

Say that U = (α1, α2), α1 < 0 < α2, and define a scale function s,

s(x) =
∫ x

α1

exp{−2
∫ y

α1

b′U (z)
a′U (z)

dz} dy, x ∈ R. (18)

Notice that s ∈ C1(R), and that, due to Lemma 2.3, the second derivative of s exists outside
A = {α1, 0, α2}, and satisfies

∂2
xs(x) = −

2 b′U (x)
a′U (x)

∂xs(x), x ∈ Ac, and hence, L′s = 0 on Ac. (19)

On A, we define ∂2
xs through the equality in (19), so that L′s = 0 on R. Applying the generalised

Ito rule, cf. problem 7.3 p.219 in [8], and taking expectations, we find that,

E′
0,U [s(Xt∧TU

)] = s(0) + E′
0,U [

∫ t∧TU

0
L′s(Xu) du] = s(0), t ≥ 0. (20)

Using E′
0,U [TU ] <∞, together with dominated convergence, we obtain

E′
0,U [s(XTU

)] = s(0). (21)

A similar equation as (17) holds with P0,ω in place of P ′
0,U , and a(·, ω), b(·, ω) in place of

a′U (·), b′U (·) respectively. We proceed similarly as in (20) and below, and obtain from the defi-
nition of the Green function gω,U , cf. (15),

E0,ω[s(XTU
)] = s(0) + E0,ω[

∫ TU

0
Lωs(Xu) du]

(15)
=

∫ α2

α1

gω,U (x)Lωs(x) dx. (22)

We integrate out (22) with respect to P, and find from the definition of a′U , b
′
U , see (16),

E0[s(XTU
)] = s(0) +

∫ α2

α1

E[gω,U (x)]L′s(x) dx = s(0). (23)

Since s(α1) = 0, (21) and (23) imply that P ′
0,U [XTU

= α2] = P0[XTU
= α2], which is our

claim.
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2.1.2 The case d ≥ 2

The higher-dimensional case is more intricate. In Remark 2.6, we show that when d ≥ 3, then
a′U is in general discontinuous at the origin. In Remark 2.7, we first recall from [21] the main
points of the proof of Proposition 2.4 when in addition a = Id holds. Then we explain that these
methods fail when a′U is discontinuous. Hence, in the setting of a general covariance matrix a,
where a′U is in general discontinuous, the arguments from [21] break down.

Remark 2.6. Theorem 4.1 p.80 in [2] states that there is a constant c > 0, such that for all
ω ∈ Ω, ε > 0, there is η > 0 such that if x ∈ U , |x| ≤ η, then

1− ε ≤
gω,U (x)
c hω(x)

≤ 1 + ε , (24)

where hω(x) = (xt · a(0, ω)x)
2−d
2 . Choose a real-valued sequence {rn}n converging to 0, and

define sequences x(i)
n = rnei, where ei is the i-th unit vector of the canonical basis. We find with

the help of (24) and dominated convergence that

lim
n
a′U (x(i)

n ) = E[aii(0, ω)
2−d
2 a(0, ω)]

/
E[aii(0, ω)

2−d
2 ] ,

so that the limit depends on i ∈ {1, . . . , d}. Hence a′U is in general discontinuous at 0.
Let us point out that there are examples of diffusions, attached to uniformly elliptic, but dis-
continuous diffusion coefficients, that return to their starting point with probability one, cf.
Proposition 3.1 p.104 in [1]. �

Remark 2.7. 1. Let us recall that in [21], the additional assumption that a ≡ Id in Theorem
5.2 allowed us to choose for each bounded C∞-domain U containing 0 a Brownian motion
perturbed by a bounded measurable drift b′U (defined as in (16)) as the (uniquely defined)
auxiliary diffusion. We emphasize that in this setting a′U = Id.
We recall the main points in the proof of Proposition 5.4 in [21] (which corresponds to Proposition
2.4 when a = Id): from the martingale problem, and by definition of b′U , we derive a sort of
“forward” equation, namely for all f ∈ C2(Ū),

E0[f(XTU
)]− E′

0,U [f(XTU
)] =

∫
U
(E[gω,U (x)]− g′U (x))(1

2 ∆ + b′U (x)∇)f(x) dx , (25)

where gω,U and g′U are the respective Green functions corresponding to the quenched resp.
auxiliary diffusion started at 0 and killed when exiting U . We choose an arbitrary smooth
function φ, and we denote with u the unique strong solution in the Sobolev space W 2,p(U),
p > d, to the problem

1/2 ∆u+ b′U ∇u = 0 in U, u = φ on ∂U. (26)

By considering the perturbed Dirichlet problems 1/2 ∆un + b′U,n∇un = 0 in U , un = φ on
∂U , where the b′U,n are smooth and converge a.e. in U to the bounded measurable drift b′U ,
we obtain smooth solutions un that converge in W 2,p(U) to u. Sobolev’s inequality yields an
upper bound, uniform in n ≥ 1, of the supremum norm on U of the gradients of the un. Since
on U , 1/2 ∆un + b′U ∇un = (b′U − b′U,n )∇un holds, we then conclude the proof by inserting the
smooth functions un in (25) and using dominated convergence.
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2. Unlike the above setting (where a′U = Id), a′U is now in general discontinuous at the origin
when d ≥ 3, see Remark 2.6. However, the existence of a unique strong solution in the Sobolev
space W 2,p(U), p ≥ 1, for the Dirichlet problem corresponding to (26),

L′u = 0 in U, u = φ on ∂U, (27)

is only guaranteed when a′U is continuous on Ū , see [6] p.241. Hence, we have no controls on
derivatives as above, and the arguments from [21] break down. �

To avoid controls on derivatives, we use a result of Krylov [11]. The specific choice of the
auxiliary coefficients a′U , b

′
U enables us to find a diffusion started at 0 and attached to a′U , b

′
U

that, killed when exiting U , admits E[gω,U ] as occupation time density in U , and we show that
this diffusion exhibits the same exit distribution from U as the annealed diffusion in random
environment.

Proof of Proposition 2.4 when d ≥ 2. From the martingale problem, we find for f ∈ C2(Ū):

E0,ω[f(Xt∧TU
)] = f(0) + E0,ω[

∫ t∧TU

0
Lωf(Xs) ds]. (28)

Using ellipticity and standard martingale controls, it is immediate that supω E0,ω[TU ] <∞. By
dominated convergence, and by the definition of the quenched Green function gω,U , cf. (15), we
find that

E0,ω[f(XTU
)] = f(0) +

∫
U
gω,U (y)Lωf(y) dy. (29)

After P-integration, and from the definition of L′, cf. (16), we obtain that

E0[f(XTU
)] = f(0) +

∫
U

E[gω,U (y)]L′f(y) dy. (30)

In particular the assumption of Theorem 2.14 in [11] is satisfied (with the respective choice of
the domains Q = Rd and D = U in the notations of [11]), and we infer the existence of a process
X and a Brownian motion W , defined on some probability space (C, C, Q0), such that

Q0 − a.s., Xt =
∫ t

0
σ′U (Xs) dWs +

∫ t

0
b′U (Xs) ds , (31)

where σ′U is a measurable square root of a′U , i.e. a′U = σ′Uσ
′t
U , and such that for every bounded

measurable function ψ, ∫
U

E[gω,U (y)]ψ(y) dy = E′
0,U [

∫ TU

0
ψ(Xs) ds], (32)

where E′
0,U denotes the expectation with respect to the measure P ′

0,U induced by X on
(C(R+,Rd),F). Corollary 4.8 p.317 in [8] shows that P ′

0,U solves the martingale problem for
L′ started at 0. Insert ψ = 1 in (32) to find E′

0,U [TU ] = E0[TU ] < ∞, see below (28). For all
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f ∈ C2(Ū), we derive a similar equation as (28) under the measure P ′
0,U , so that, when letting

t→∞, and using dominated convergence, we find that

E′
0,U [f(XTU

)] = f(0) + E′
0,U [

∫ TU

0
L′f(Xs) ds]

(32)
= f(0) +

∫
U

E[gω,U (y)]L′f(y) dy
(30)
= E0[f(XTU

)].

Since f ∈ C2(Ū) is arbitrary, the claim of the proposition follows.

Remark 2.8. Although we will not use it here, one can show that in the terminology of Krylov
[10], [11], E[gω,U ] is the unique (up to Lebesgue equivalence) Green function of L′ in U with pole
at 0. (This is a rather straightforward consequence of (32) and the fact that any two solutions
to the martingale problem for L′ started at 0 agree on FTU

, cf. Remark 2.5). �

2.2 The proof of Theorem 2.1

We now recall from [21] the definition of condition (K), which is similar to Kalikow’s condition
in the discrete set-up. With the help of Proposition 2.4, we show that it implies condition (T ).
The proof of Theorem 2.1 is finally concluded by checking condition (K). The proofs in this
subsection are adaptations from the corresponding proofs in section 5 in [21].

Definition 2.9. (d ≥ 1) Let ` ∈ Sd−1. We say that condition (K)|` holds, if there is an ε > 0,
such that for all bounded domains U containing 0

inf
x∈Ur{0}, d(x,∂U)>5R

b′U (x) · ` > ε , (33)

with the convention inf ∅ = +∞.

As alluded to above, the next step is

Proposition 2.10. (K)|`⇒ (T )|` .

Proof. The set of ` ∈ Sd−1 for which (33) holds is open and hence our claim will follow if for
such an ` we show that

lim sup
L→∞

L−1 logP0[XTU`,b,L
· ` < 0] < 0 . (34)

Denote with Π`(w) def= w − (w · `)`, w ∈ Rd, the projection on the orthogonal complement of `,
and define

V`,b,L
def=

{
x ∈ Rd : −bL < x · ` < L, |Π`(x)| < L2

}
. (35)

In view of Proposition 2.4, we choose bounded C∞-domains Ṽ`,b,L such that

V`,b,L ⊂
{
x ∈ Rd : −bL < x · ` < L, |Π`(x)| < L2 + 5R

}
⊂ Ṽ`,b,L ⊂ U`,b,L . (36)

(When d = 1, Π`(w) ≡ 0, and we simply have that U`,b,L = V`,b,L = Ṽ`,b,L.) We denote with
P ′

0,Ṽ`,b,L
an auxiliary measure, i.e. P ′

0,Ṽ`,b,L
solves the martingale problem for L′ started at 0, and
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XTṼ`,b,L
has same law under P ′

0,Ṽ`,b,L
and P0, cf. Proposition 2.4. To prove (34), it will suffice to

prove that
lim sup
L→∞

L−1 logP ′
0,Ṽ`,b,L

[XTV`,b,L
· ` < L] < 0 . (37)

Indeed, once this is proved, it follows from (36) that

lim sup
L→∞

L−1 logP ′
0,Ṽ`,b,L

[XTṼ`,b,L
· ` < L] < 0 . (38)

Then, by construction of P ′
0,Ṽ`,b,L

, (38) holds with P ′
0,Ṽ`,b,L

replaced by P0, and, using (36) once

more, (34) follows.
We now prove (37). By (36) and (33), we see that for x ∈ V`,b,L,

b′
Ṽ`,b,L

(x) · ` ≥

{
ε, if − bL+ 5R < x · ` < L− 5R and x 6= 0,
−β, else .

(39)

We thus consider the process Xt · `. We introduce the function u(·) on R, which is defined on
[−bL, L] through

u(r) def=


α1e

α2
ε
ν (bL−5R)(α3 − e4νβ(r−(−bL+5R))), if r ∈ [−bL,−bL+ 5R] ,

e−α2
ε
ν r, if r ∈ (−bL+ 5R,L− 5R) ,

α4e
−α2

ε
ν (L−5R)(α5 − e4νβ(r−(L−5R))), if r ∈ [L− 5R,L] ,

(40)

and which is extended boundedly and in a C2 fashion outside [−bL, L], and such that u is twice
differentiable in the points −bL and L. The numbers αi, 1 ≤ i ≤ 5, are chosen positive and
independent of L, via

α5 = 1 + e20νβR, α4 = e−20νβR, α2 = min(1,
4ν2β

ε
e−20νβR), α1 =

εα2

4ν2β
, α3 = 1 +

4ν2β

εα2
. (41)

Then, on [−bL, L], u is positive, continuous and decreasing. In addition, one has with the
definition j(r) = u′(r+)− u′(r−),

j(−bL+ 5R) = 0, and j(L− 5R) ≤ 0 . (42)

On Rd we define the function ũ(x) = u(x · `), and for λ real, we define on R+ × R the function

vλ(t, r)
def= eλtu(r), and on R+ × Rd the function ṽλ(t, x)

def= vλ(t, x · `) = eλtũ(x). We will now
find λ0 positive such that

vλ0(t ∧ TV`,b,L
, Xt∧TV`,b,L

· `) is a positive supermartingale under P ′
0,Ṽ`,b,L

. (43)

Corollary 4.8 p.317 in [8], combined with Remark 4.3 p.173 therein, shows the existence of a
d-dimensional Brownian motion W defined on (C(R+,Rd),F , P ′

0,Ṽ`,b,L
), such that

P ′
0,Ṽ`,b,L

− a.s., Yt
def= Xt · ` =

∫ t

0
σ′
Ṽ`,b,L

(Xs) · ` dWs +
∫ t

0
b′
Ṽ`,b,L

(Xs) · ` ds ,
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where σ′
Ṽ`,b,L

is a measurable square root of a′
Ṽ`,b,L

, i.e. a′
Ṽ`,b,L

= σ′
Ṽ`,b,L

σ′t
Ṽ`,b,L

. Writing u as a

linear combination of convex functions, we find from the generalised Itô rule, see [8] p.218, that

P ′
0,Ṽ`,b,L

− a.s., u(Yt) = 1 +
∫ t

0
D−u(Ys)dYs +

∫ ∞

−∞
Λt(a)µ(da), (44)

where D−u is the left-hand derivative of u, Λ(a) is the local time of Y in a, and µ is the second
derivative measure, i.e. µ([a, b)) = D−u(b)−D−u(a), a < b real. Notice that the first derivative
of u exists and is continuous outside L−5R, and the second derivative of u exists (in particular)
outside the Lebesgue zero set A = {−bL + 5R, 0, L − 5R}. Hence we find by definition of the
second derivative measure, and with the help of equation (7.3) in [8] that P ′

0,Ṽ`,b,L
-a.s.,∫ ∞

−∞
Λt(a)µ(da) =

∫ ∞

−∞
Λt(a)1Ac(a)u′′(a) da+ Λt(L− 5R) j(L− 5R)

=1
2

∫ t

0
u′′(Ys)1Ac(Ys)d〈Y 〉s + Λt(L− 5R) j(L− 5R) .

(45)

Another application of equation (7.3) p.218 in [8] shows that

P ′
0,Ṽ`,b,L

− a.s.,
∫ t

0
1A(Ys)d〈Y 〉s = 2

∫ ∞

−∞
1A(a)Λt(a) da = 0 . (46)

Since d〈Y 〉s = l · a′
Ṽ`,b,L

(Xs) l ds ≥ ds/ν, see Lemma 2.3, we deduce from (46) that,

P ′
0,Ṽ`,b,L

− a.s.,
∫ t

0
1A(Ys) ds = 0 , and hence, P ′

0,Ṽ`,b,L
− a.s.,

∫ t

0
D−u(Ys)1A(Ys)dYs = 0 . (47)

Combining (45) and (47), and by definition of the operator L′, see below (16), we can now
rewrite (44) as the P ′

0,Ṽ`,b,L
-a.s. equalities

u(Yt) =1 +
∫ t

0
u′(Ys)1Ac(Ys)dYs + 1

2

∫ t

0
u′′(Ys)1Ac(Ys)d〈Y 〉s + Λt(L− 5)j(L− 5R)

=1 +
∫ t

0
L′ũ(Xs)1Ac(Ys) ds+ Λt(L− 5R) j(L− 5R) +Mt ,

where Mt is a continuous martingale. In particular, ũ(Xt) (=u(Yt)) is a continuous semimartin-
gale, and applying Itô’s rule to the product eλt · ũ(Xt) = ṽλ(t,Xt), and using (47) once again,
we obtain that, P ′

0,Ṽ`,b,L
-a.s.,

vλ(t,Xt) = 1 +
∫ t

0
λeλsũ(Xs) ds+

∫ t

0
eλs dũ(Xs)

= 1 +
∫ t

0

(
∂
∂s + L′

)
ṽλ(s,Xs)1Ac(Ys) ds+ j(L− 5R)

∫ t

0
eλsdΛL−5R

s +Nt ,

(48)

where Nt is a continuous martingale. Using 1
ν ≤ l · a′

Ṽ`,b,L
(x) l ≤ ν, we find through direct

computation that for x ∈ V`,b,L, and a suitable ψ(x) ≥ 0, using the notation I1 = (−bL,−bL+
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5R), I2 = (−bL+ 5R,L− 5R), I3 = (L− 5R,L),

[( ∂∂s + L′)ṽλ](s, x) ≤ ψ(x)eλs ·


λ(e20νβRα3 − 1)− 4νβ(2β + b′

Ṽ`,b,L
(x) · `) , if x · ` ∈ I1 ,

λ+ α2
ε
ν (

1
2α2ε− b′

Ṽ`,b,L
(x) · `) , if x · ` ∈ I2 ,

λ(α5 − 1)− 4νβ(2β + b′
Ṽ`,b,L

(x) · `) , if x · ` ∈ I3 .

Hence, by (39) and (41), we can find λ0 > 0 small such that for x ∈ V`,b,L, x · ` /∈ A, the
right-hand side of the last expression is negative. Since j(L− 5R) ≤ 0, see (42), we obtain from
(48) applied to the stopping time t ∧ TV`,b,L

that (43) holds.
We now derive the claim of the proposition from (43). When d ≥ 2, the probability to exit V`,b,L
neither from the “right” nor from the “left” can be bounded as follows:

P ′
0,Ṽ`,b,L

[−bL < XTV`,b,L
· ` < L ] ≤

P ′
0,Ṽ`,b,L

[−bL < XTV`,b,L
· ` < L, TV`,b,L

> 2α2ε
λ0

L ] + P ′
0,Ṽ`,b,L

[ sup |Xt| ≥ L2 : t ≤ 2α2ε
λ0

L ] .
(49)

By Chebychev’s inequality and Fatou’s lemma, we find that the first term on the right-hand side
is smaller than

1
vλ0(

2α2ε
λ0

L,L)
E′

0,Ṽ`,b,L
[vλ0(TV`,b,L

, XTV`,b,L
· `)]

≤c(ε)e−α2εL lim inf
t→∞

E′
0,Ṽ`,b,L

[vλ0(t ∧ TV`,b,L
, Xt∧TV`,b,L

· `)]

≤c(ε)e−α2εLvλ0(0, 0) = c(ε)e−α2εL,

(50)

where, in the last inequality, we used (43). Applying Lemma 5.1 iii) to the second term in the
right-hand side of (49), we obtain together with (50), that

lim sup
L→∞

L−1 logP ′
0,Ṽ`,b,L

[−bL < XTV`,b,L
· ` < L] < 0 . (51)

When d ≥ 1, we bound the probability to exit V`,b,L from the left by a similar argument as in
(50), and find that

P ′
0,Ṽ`,b,L

[XTV`,b,L
· ` = −bL] ≤ vλ0(0, 0)

vλ0(0,−bL)
≤ e−c(ε)L . (52)

(52), together with (51), when d ≥ 2, show (37), which implies condition (T )|`.

Now the proof of Theorem 2.1 is carried out by checking condition (K)|`. The proof remains
the same as for the case a = Id, which can be found in [21], see (5.38) and the subsequent
computations.
This finishes the proof of Theorem 2.1. �

3 Condition (T ) for a diffusion with divergence-free drift

In this section, we assume that d ≥ 2. On (Ω,A,P) we consider a random variable H(·)
with values in the space of skew-symmetric d × d-matrices, and we define for ω ∈ Ω, x ∈ Rd,
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H(x, ω) = H(txω), so that H is stationary under P. We assume that H obeys finite range
dependence, i.e.

(5) holds with H in place of a, b, (53)

and that H is bounded and has bounded and Lipschitz continuous derivatives, i.e. there are
constants η, β̃, K̃ such that for all 1 ≤ i, j, k ≤ d, ω ∈ Ω,

• |H(·, ω)| ≤ η (54)

• ∂kHij(·, ω) exists, |∂kHij(·, ω)| ≤ β̃, and (55)

• |∂kHij(y, ω)− ∂kHij(z, ω)| ≤ K̃|y − z|, for all y, z ∈ Rd. (56)

For a constant vector v 6= 0, we define diffusion and drift coefficients as

a(·, ω) = Id, b(·, ω) = ∇ ·H(·, ω) + v, ω ∈ Ω , (57)

i.e. for 1 ≤ j ≤ d, bj(·, ω) =
∑d

i=1 ∂iHij(·, ω) + vj . It follows from the skew-symmetry of H and
from (57) that for all ω, ∇· b(·, ω) = 0 in the weak sense. Then the measures Px,ω can be viewed
as describing the motion of a diffusing particle in an incompressible fluid and equipped with a
random stationary velocity field obeying finite range dependence. It further follows from (57)
that the operator Lω defined in (6) can be written with a principal part in divergence form:

Lω = ∇ · ((1
2 Id+H(·, ω))∇) + v∇ . (58)

Theorem 3.1. (d ≥ 2)
Assume (54), (55) and (57). Then (T )|v̂ holds, where v̂ = v

|v| . Moreover we have a strong law
of large numbers with an explicit velocity:

for all ω ∈ Ω, P0,ω − a.s., lim
t→∞

Xt

t
−→ E[b(0, ω)] = v . (59)

If (53)-(57) hold, then in addition a functional CLT holds:

under P0, Bs
· = X·s−·sE[b(0,ω)]√

s
converges in law on C(R+,Rd), as s→∞, to a

Brownian motion B· with non-degenerate covariance matrix.
(60)

Proof. We recall the convention on constants stated at the end of the Introduction. It follows
from (55)-(57) that our standing assumptions (3), (4) hold with ν = 1, β = d2β̃ + d|v| and
K = d2K̃. The following upper bound on the heat kernel from Theorem 1.1 in Norris [14] will
be instrumental in checking (T )|v̂ and in proving (59): there is a constant c2 that depends only
on η and d, such that for all ω ∈ Ω, x, y ∈ Rd and t > 0,

pω(t, x, y + vt) ≤ c2 t
−d/2 exp{− |y−x|2

c2 t
} . (61)

We first prove (59). Choose ε > 0. For n ≥ 1, we define An = {|Xn
n −v| > ε} and Bn = {Z1◦θn

n >
ε} (recall Z1 in Lemma 5.1). With the help of (61), we find for ω ∈ Ω, and for n large,

P0,ω[An] =
∫
Bc

εn(0)
pω(n, 0, y + nv) dy ≤

∫
Bc

εn(0)
c2 n

−d/2e
− |y|2
c2 n dy ≤ c22 n

1−d/2 e
− ε2

2c2
n
.
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From the Markov property, and from Lemma 5.1 ii), we find that

sup
ω
P0,ω[Bn] ≤ sup

x,ω
Px,ω[Z1 > εn] ≤ c̃(ε) e−c(ε)n

2
.

For t > 0, we write

Xt
t = btc

t

(
Xbtc
btc + Xt−Xbtc

btc

)
,

and an application of Borel-Cantelli’s lemma to the sets An resp. Bn shows that for all ω ∈ Ω,
P0,ω-a.s., limt

Xt
t = v. Observe that, due to the stationarity of b and H, for all x ∈ Rd,

E[b(0, ω)] = E[b(x, ω)] = ∇ ·
∫

Ω
H(txω) P(dω) + v = ∇ ·

∫
Ω
H(ω) P(dω) + v = v,

and (59) follows. Once we have checked (T )|v̂, then (60) immediately follows from (10) and (59).
To conclude the proof of Theorem 3.1, it thus remains to show that (T )|v̂ holds.
For x ∈ Rd and ` ∈ Sd−1, define the projection on the orthogonal complement of `, as well as a
bounded approximation V`,b,L of the slab U`,b,L,

Π`(x)
def= x− (x · `) ` , V`,b,L

def= {x ∈ U`,b,L : |Π`(x)| < L2} . (62)

We choose unit vectors `′ such that v̂ · `′ > 2
3 , and we will show that for all such `′ and all b > 0,

lim sup
L→∞

L−1 sup
ω∈Ω

log P0,ω[XTV`′,b,L
· `′ < L] < 0 , (63)

which clearly implies condition (T )|v̂. Define γ = 3
|v| , and observe that for all ω ∈ Ω,

P0,ω[XTV`′,b,L
· `′ < L] ≤ P0,ω[XTV`′,b,L

· `′ < L, TV`′,b,L
≤ γL] + P0,ω[TV`′,b,L

> γL] . (64)

We first estimate the second term on the right-hand side. Notice that for all y ∈ V`′,b,L, |y −
γLv| ≥ ((L`′ − γLv) · `′)− = L(3v̂ · `′ − 1) > L. An application of (61) yields that

sup
ω
P0,ω[TV`′,b,L

> γL] ≤ sup
ω
P0,ω[XγL ∈ V`′,b,L]

≤c2γ−d/2L−d/2
∫
V`′,b,L

exp{− |y−vγL|2
c2γL

} dy ≤ c(b, γ, η)L3d/2−1 exp{− L
c2γ
} .

(65)

In view of (63) and (64), it remains to show that for all b > 0, and `′ as above (63),

lim sup
L→∞

L−1 sup
ω∈Ω

log P0,ω[XTV`′,b,L
· `′ < L, TV`′,b,L

≤ γL] < 0. (66)

Introduce the subsets of V`′,b,L,

V −
`′,b,L

def= {x ∈ V`′,b,L : x · `′ < − bL
2 } , V

0
`′,b,L

def= {x ∈ V`′,b,L : |Π`′(x)| > L2

2 } ,

as well as the union of these two sets, Ṽ`′,b,L
def= V −

`′,b,L ∪ V
0
`′,b,L, and write

P0,ω[XTV`′,b,L
· `′ < L, TV`′,b,L

≤ γL] ≤ P0,ω[TV`′,b,L
≤ 1] + (67)

+
bγLc∑
n=1

P0,ω[TV`′,b,L
∈ (n, n+ 1], XTV`′,b,L

· `′ < L, Xn /∈ Ṽ`′,b,L] +
bγLc∑
n=1

P0,ω[Xn ∈ Ṽ`′,b,L] .
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Lemma 5.1 ii) shows that supω P0,ω[TV`′,b,L
≤ 1] ≤ c̃(b) exp{−c(b)L2}. With the help of the

Markov property and Lemma 5.1 ii) we find that for large L, the middle term on the right-hand
side of (67) is smaller than

bγLc∑
n=1

sup
ω
P0,ω[ sup

0≤t≤1
|Xt −X0| ◦ θn > bL

2 ] ≤ γL sup
x,ω

Px,ω[ sup
0≤t≤1

|Xt −X0| > bL
2 ]

≤ c̃(b, γ)L exp{−c(b)L2}.

(68)

We now bound the third term on the right-hand side of (67):

bγLc∑
n=1

sup
ω
P0,ω[Xn ∈ Ṽ`′,b,L] ≤

bγLc∑
n=1

sup
ω
P0,ω[Xn ∈ V −

`′,b,L] + γL sup
ω
P0,ω[ sup

t≤γL
|Xt| > L2/2] . (69)

Lemma 5.1 iii) shows that the second term on the right-hand side is smaller than
c̃(γ)L exp{−c(γ)L3}. Using (61) we can bound the first term on the right-hand side of (69)
with

bγLc∑
n=1

∫
V −

`′,b,L

c2 n
−d/2 exp{− |y−nv|2

c2n
}dy ≤ c(b, γ, η)L2d exp{− b2

4c2γ
L} , (70)

where, in the last inequality, we simply used that 1 ≤ n ≤ γL and, and that for all n ≥ 1, and
y ∈ V −

`′,b,L, |y − nv| ≥ ((y − nv) · `′)− ≥ bL/2 since `′ · v̂ > 0. We now obtain (66) by collecting
the results between (67) and (70).This finishes the proof of the theorem.

4 Condition (T ) for an anisotropic gradient-type diffusion

Let ϕ be a real-valued random variable on (Ω,A,P), and define for ω ∈ Ω, x ∈ Rd, ϕ(x, ω) def=
ϕ(txω), so that ϕ is stationary. We assume that ϕ obeys finite range dependence, i.e.

(5) holds with ϕ in place of a, b, (71)

and that ϕ is bounded and has bounded and Lipschitz continuous derivatives, i.e. there are
constants η, β, K such that for all 1 ≤ i, j, k ≤ d, ω ∈ Ω,

• |ϕ(·, ω)| ≤ η (72)

• |∇ϕ(·, ω)| ≤ β̃, and |∇ϕ(y, ω)−∇ϕ(z, ω)| ≤ K|y − z|, y, z ∈ Rd. (73)

Fix λ > 0 and ` ∈ Sd−1, and define the non-stationary function ψ(x, ω) = ϕ(x, ω)+λ` ·x, ω ∈ Ω,
x ∈ Rd. We now define diffusion and drift coefficients

a(·, ω) = Id, b(·, ω) = ∇ψ(·, ω) = ∇ϕ(·, ω) + λ` , all ω ∈ Ω . (74)

It follows from (72) that

e−2ηe2λ`·x ≤ e2ψ(x,ω) ≤ e2ηe2λ`·x , x ∈ Rd, ω ∈ Ω. (75)

Under the above assumptions, Shen has shown that a ballistic law of large numbers and an
invariance principle holds under the annealed measure P0, see Section 4 of [22]. Our aim is to
verify that condition (T )|` holds.
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Theorem 4.1. (d ≥ 1) Condition (T )|` holds under the assumptions (72)-(74).

Proof. We recall the convention on constants stated at the end of the Introduction. It follows
from (73),(74) that our standing assumptions (3), (4) hold with ν = 1, β = β̃ + λ and K. We
first introduce some notation. Recall the projection Π in (62), and define for `′ ∈ Sd−1 and
δ > 0, V`′,δ = {x ∈ U`′,b,L : |Π`′(x)| < L/

√
δ}. In fact, we will show that there exists 0 < δ < 1

such that for all `′ ∈ Sd−1 with `′ · ` >
√

1− δ2,

lim sup
L→∞

L−1 sup
ω

logP0,ω[XTV`′,δ
· `′ < L] < 0 , (76)

which easily implies condition (T )|`. The strategy of proof of (76) relies on the methods intro-
duced in Section 4.1 in Shen [22]. We recall some important facts from there.
We denote with P tωf(x) = Ex,ω[f(Xt)], f bounded measurable, the quenched semi-group gen-
erated by the operator Lω defined in (6), and with mω(dx) = exp(2ψ(x, ω)) dx the reversible
measure to P tω. The following key estimate is contained in Proposition 4.1 of [22]: there is a
positive constant c3(η, λ) such that

sup
ω,U

‖P tω,U‖mω ≤ exp{−c3t} , t > 0 , (77)

where (P tω,Uf)(x) def= Ex,ω[f(Xt), TU > t], t > 0, f ∈ L2(mω), ‖ · ‖mω denotes the operator norm
in L2(mω) and U varies over the collection of non-empty open subsets of Rd.
The claim (76), and hence Theorem 4.1, follow from the next two propositions:

Proposition 4.2. Let 0 < δ < 1. There is a positive constant c4(δ, b, η) such that for `′ ∈ Sd−1

with `′ · ` >
√

1− δ2 and L > 0,

sup
ω
P0,ω[TV`′,δ ≥

3λ
c3
L] ≤ c4e

−λ2L . (78)

Proposition 4.3. There exist 0 < δ < 1 and positive constants c5(δ, b, η, λ), c6(b, η, λ) such that
for all `′ ∈ Sd−1 with `′ · ` >

√
1− δ2 and L > 0,

sup
ω
P0,ω[TV`′,δ <

3λ
c3
L, XTV`′,δ

· `′ < L] ≤ c5e
−c6L . (79)

The proofs are close to the proofs of Propositions 4.2 and 4.3 in Shen [22]. We indicate the main
steps of the proofs in the Appendix.

5 Appendix

5.1 Bernstein’s Inequality

The following Lemma follows in essence from Bernstein’s inequality (see [20] page 153-154). A
proof of an inequality similar to those below can be found in the appendix of [21]. Recall the
definition of the class of operators N (ν, β) at the beginning of Section 2.
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Lemma 5.1. Let L ∈ N (ν, β), denote with Qx an arbitrary solution to the martingale problem
for L started at x ∈ Rd, and set Zt = sups≤t |Xs − X0|. For every γ > 0, there are positive
constants c, c̃, depending only on γ, ν, β, d such that for L > 0,

i) sup
x
Qx

[
ZγL ≥ 2γβL

]
≤ c̃ e−cL, ii) sup

x
Qx

[
Z1 ≥ γL

]
≤ c̃ e−cL

2
,

iii) sup
x
Qx

[
ZγL ≥ L2

]
≤ c̃ e−cL

3
.

(80)

5.2 Bounds on the transition density and on the Green function

Recall the convention on the constants stated at the end of the Introduction.

Lemma 5.2. Let Lω be as in (6), and let assumptions (3) and (4) be in force. Then the linear
parabolic equation of second order ∂u

∂t = Lωu has a unique fundamental solution pω(t, x, y), and
there are positive constants c, c̃, such that for ω ∈ Ω, and 0 < t ≤ 1,

|pω(t, x, y)| < c̃
td/2 exp

{
− c|x−y|2

t

}
. (81)

For the proof of (81) we refer the reader to [7]. The statement (4.16) therein corresponds to
(81). Recall the Green function gω,U in (15). In Corollary 6.3 in [21], we obtained the following

Corollary 5.3. Assume (3) and (4), and let U be a bounded C∞-domain. There are positive
constants c̃, c(U) such that for x ∈ U , and all ω ∈ Ω,

gω,U (x) ≤


c̃ |x|2−d + c, if d ≥ 3 and x 6= 0,
c̃ log diamU

|x| + c, if d = 2 and x 6= 0,

c, if d = 1 .

(82)

Proof. We repeat here the computations from [21] for the convenience of the reader. From the
definition of gω,U and pω,U , see (15) and (14), we obtain

gω,U (x) =
∫ ∞

0
pω,U (t, 0, x) dt ≤

∫ 1

0
pω(t, 0, x) dt+

∞∑
k=2

∫ k+1
2

k
2

pω,U (t, 0, x) dt . (83)

With the help of (81), we find positive constants c̃, c such that
∫ 1
0 pω(t, 0, x) dt is smaller than

the right-hand side of (82), and hence, it suffices to show that for some constant c(U),

sup
ω

∞∑
k=2

∫ k+1
2

k
2

pω,U (t, 0, x) dt ≤ c <∞. (84)

We obtain by a repeated use of the Chapman-Kolmogorov equation and by (81), that for k ≥ 2,∫ k+1
2

k
2

pω,U (t, 0, x) dt ≤
∫
U
pω,U (1

2 , 0, v) dv sup
v∈U

∫ k
2

k−1
2

pω,U (t, v, x) dt

induction
≤

(
sup
v∈U

Pv,ω[TU > 1
2 ]

)k−1

sup
v∈U

∫ 1

1
2

pω,U (t, v, z) dt ≤ c

(
sup
v∈U

Pv,ω[TU > 1
2 ]

)k−1

. (85)

The Support Theorem of Stroock-Varadhan, see [1] p.25, shows that
supω, v∈U Pv,ω[TU > 1

2 ] ≤ 1− c(U) for some positive constant c(U), and (84) follows.
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5.3 The proof of propositions 4.2 and 4.3

Proof of Proposition 4.2. For sake of notations, we write V and B for V`′,δ resp. BL(1∧b)
2

(0). The
Markov property and Cauchy-Schwarz’s inequality yield for t > 0

P0,ω[TV > t] ≤E0,ω[PX1,ω[TV > t− 1], X1 ∈ B] + P0,ω[X1 /∈ B]

≤‖1B(·)pω(1, 0, ·)e−2ψ(·,ω)‖L2(mω) ‖P t−1
ω,V ‖mω ‖1V ‖L2(mω) + P0,ω[X1 /∈ B] ,

where pω(s, x, y) denotes the transition density function under the quenched measure Px,ω.
Lemma 5.1 ii) shows that P0,ω[X1 /∈ B] ≤ c(b) exp(−c(b)L2). Further, using (75) and Lemma
5.2, we obtain

‖1B(·)pω(1, 0, ·)e−2ψ(·,ω)‖2
L2(mω) ≤ c e2η

∫
1B(y)e−2λ`·ydy ≤ c(η, b)Ldeλ(1∧b)L .

Choose a unit vector ˜̀, orthogonal to `′, and such that ˜̀ lies in the span of ` and `′. Then
` · `′ >

√
1− δ2 implies that ` · ˜̀< δ, and for y ∈ V , we find that y · ` ≤ (1 +

√
δ)L < 2L. As a

result, and using again (75) and Lemma 5.2,

‖1V ‖2
L2(mω) ≤ e2η

∫
1V (y)e2λ`·ydy ≤ c(δ, η)Ld exp{4λL}. (86)

Jointly with (77), we find that P0,ω[TV > t] ≤ c(δ, η, b)Ld exp(5
2λL) exp(−c3t), and the claim

follows from the choice of t.

Proof of Proposition 4.3. We write V for V`′,δ, `′ ∈ Sd−1, and B for B (1∧b)L
4

(0), and we recall

the projection Π in (62). We define

V 0 def= {x ∈ V : |Π`′(x)| > 1
2
√
δ
L}, V − def= {x ∈ V : x · `′ < −3

4(1 ∧ b)L} .

We proceed in a similar fashion as in the proof of Proposition 3.1, see (67) and the following
lines, and find with µ0 = 3λ/c3 that

P0,ω[TV < µ0L, XTV
· `′ < L] ≤

bµ0Lc∑
n=1

P0,ω[Xn ∈ V − ∪ V 0] + c(δ, b) exp{−c(δ, b)L} .

The first term in the right-hand side can be bounded by

bµ0Lc∑
n=1

P0,ω[Xn ∈ V 0] +
bµ0Lc∑
n=1

P0,ω[Xn ∈ V −, X1 ∈ B] + µ0LP0,ω[X1 /∈ B] . (87)

Lemma 5.1 ii) shows that the righmost term in (87) is smaller than c(b, η, λ)Le−c(b)L, and,
when in addition δ−1/2 ≥ 4µ0β, Lemma 5.1 i) shows that the leftmost sum in (87) is smaller
than c(η, λ)L exp{−c(η, λ)L}. It thus suffices to bound the middle term in (87). Introduce the
measure m(dx) = exp{2λ` · x}dx. It follows from the Markov property and Lemma 5.2 that the
second sum in (87) is smaller than

bµ0Lc∑
n=1

∫
B
pω(1, 0, y)(Pn−1

ω 1V −)(y)dy ≤
bµ0Lc∑
n=1

c exp{1
2λ(1 ∧ b)L}〈Pn−1

ω 1V − , 1B〉m , (88)
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where, for two measurable functions f, g, 〈f, g〉m denotes the integral of the product f · g w.r.t.
the measure m. It follows from Theorem 1.8 in [25] (for details see the proof of Proposition 4.3
in [22]) that there is a constant c7(η) such that for all ω ∈ Ω, and any open sets A,D in Rd,

〈Pn−1
ω 1A, 1D〉m ≤

√
m(A)

√
m(D) exp{− d(A,D)2

4c7(n−1)} . (89)

We find by definition of B, V and, by a similar argument as given above (86), that

m(B) ≤ c(b)Ld exp{1
2λ(1 ∧ b)L}, m(V −) ≤ c(δ, b)Ld exp{−3

2λ(1 ∧ b)
√

1− δ2 L+ 2λ
√
δL}.

Since d(B, V −) = 1
2(1 ∧ b)L, (89) applied to the open sets B, V , yields that for large L, the

right-hand side of (88) is smaller than

bµ0Lc∑
n=1

c exp{1
2λ(1 ∧ b)L}

√
m(B)

√
m(V −) exp{−d(B,V−)2

4c7µ0L
}

≤ c(δ, b)µ0L
d+1 exp{

√
δλL} exp{3

4λ(1 ∧ b)(1−
√

1− δ2)L} exp{− (1∧b)2
c(λ,η) L}

≤ c(δ, b) e−c(b,η,λ)L ,

provided δ is chosen small enough. This finishes the proof.
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