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1 Introduction

Let {Xn, n ∈ IN0} be a Markov process on a Polish space S, with transition kernel p(x, dy).
The empirical measure (or normalized occupation measure) for this process is defined by

Ln(A)
.
=

1

n

n−1∑

i=0

δXi
(A),

where δx is the probability measure that places mass 1 at x, and A is any Borel subset
of S. One of the cornerstones in the general theory of large deviations, due to Donsker
and Varadhan in [6], was the development of a large deviation principle for the occupation
measures for a wide class of Markov chains taking values in a compact state space. This
work also studied the empirical measure large deviation principle (LDP) for continuous time
Markov processes, where Ln is replaced by

LT (A)
.
=

1

T

∫ T

0
δX(t)(A)dt

and X(·) is a suitable continuous time Markov process. In subsequent work [7], the results
of [6] were extended to Markov processes with an arbitrary Polish state space. These
results significantly extended Sanov’s theorem, which treats the independent and identically
distributed (iid) case and was at that time the state-of-the-art. This work has found many
applications since that time, and the general topic has developed into one of the most fertile
areas of research in large deviations.

Three main assumptions appear in the empirical measure LDP results proved in [6, 7],
and also in most subsequent papers on the same subject. The first is a sort of mixing or
transitivity condition, and is the key to the proof of the large deviation lower bound. The
second condition is a Feller property on the transition kernel, which is used in the proof of
the upper bound. The third condition, and the one of prime interest in the present work,
is a strong assumption on the stability of the underlying Markov process. For example,
suppose that the underlying process is the solution to the IRn-valued stochastic differential
equation

dX(t) = b(X(t))dt+ σ(X(t))dW (t),

where the dimensions of the Wiener process W and b and σ are compatible, and b and σ
are Lipschitz continuous. Then satisfaction of the stability assumption would require the
existence of a Lyapunov function V : IRn → IR with the property that

〈b(x), Vx(x)〉+
1

2
tr
[
σ(x)σ′(x)Vxx(x)

]
→ −∞ as ‖x‖ → ∞.

Here Vx and Vxx denote the gradient and Hessian of V , respectively, tr denotes trace, and
the prime denotes transpose.

A condition of this sort implies a strong restoring force towards bounded sets, and in fact
a force that grows without bound as ‖x‖ → ∞. It is required for a simple reason, and that
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is to keep the probability that the occupation measure “charges” points at ∞ small from
a large deviation perspective. Under such conditions, the probability that a sample path
wanders out to infinity (i.e., eventually escapes every compact set) on the time interval [0, T ]
({0, 1, ..., n− 1} in discrete time) is super-exponentially small. It is a reasonable condition
in many circumstances. For example, in the setting of the linear system

dX(t) = AX(t)dt+BdW (t),

it simply requires that the matrix A correspond to a stable (deterministic) linear system.
Nonetheless, the condition is not satisfied by some very basic processes. Examples include
Brownian motion, reflecting Brownian motion, and the Markov process that corresponds to
the M/M/1 queue.

In the present paper we consider a class of one dimensional reflected (or constrained)
processes which includes the last two examples, and obtain the large deviation principle
for the empirical measures without any stability assumptions at all. The restriction to IR+

allows us to focus on one main issue: how to deal with the possibility that some of the mass of
the occupation measure is placed on the point ∞ (asymptotically and from the perspective
of large deviations). In a more general setting there are many ways the underlying process
can wander out to infinity, and hence the analysis becomes more complex. We defer this
general setup to later work.

We begin our study with a discrete time Markov process on IR+. This Markov chain
is introduced in Section 2. Once the empirical measure LDP for this family of models is
obtained, one can obtain the LDP for the continuous time Markov processes described by
a reflected Brownian motion and an M/M/1 queue via the standard technique of approxi-
mating by suitable super exponentially close processes (cf. [6, Section 3]). This is discussed
in greater detail in Section 6.

The removal of the strong stability assumption fundamentally changes the nature of both
the large deviation result and the proofs. In particular, given that the empirical measure
will put mass on infinity, one must have detailed information on how this happens. We
will adopt the weak convergence method of [9]. This approach is natural for the problem
at hand, and indeed the combination of appropriately constructed test functions and weak
convergence supplies us with exactly the sort of information we need (see, e.g., Lemma 3.9).

As stated earlier in the introduction, the fundamental results on the empirical measure
LDP for Markov processes were obtained in [6, 7]. Subsequently, a large amount of work
has been done by various authors in refining these basic results. We refer the reader to [4, 5]
for a detailed history of the problem. Most of the available work studies Markov processes
that satisfy the strong stability assumptions. One notable exception is the work by Ney and
Nummelin [13, 14], where large deviation probabilities for additive functionals of Markov
chain are considered, essentially assuming only the irreducibility of the underlying Markov
chain. However, the goals there are quite different from ours in that the authors obtain local
large deviation results. Other authors, such as [2, 10, 3], study the large deviation lower
bounds under weaker hypothesis than those in [6, 7]. The proof of the lower bound in these
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papers does not require any stability assumption on the underlying Markov chain. However,
in the absence of strong stability, their lower bound is not (in general) the best possible. To
illustrate the basic issue we restrict our attention to the discrete time model introduced in
Section 2. Let P(IR+) be the space of probability measures on IR+. Let F : P(IR+) 7→ IR
be a continuous and bounded map defined as

F (ν)
.
=

∫

IR+

f(x)ν(dx), ν ∈ P(IR+).

Here f is a real-valued continuous and bounded function on IR+ such that f(x) converges,
to say f∞, as x→∞. For such a function the lower bound in the cited papers will imply

lim inf
n→∞

1

n
log IE

[
exp

(
−n

∫

IR+

f(x)dLn(x)

)]

≥ − inf
ν∈P(IR+)

{
I1(ν) +

∫

IR+

f(x)ν(dx)

}
,

(1.1)

where I1 is defined in Section 2 (see (2.6)). In contrast, for the class of one dimensional
processes studied in this paper we will show that

lim
n→∞

1

n
log IE

[
exp

(
−n

∫

IR+

f(x)dLn(x)

)]

= − inf
ν∈P(IR+), ρ∈[0,1]

{
ρI1(ν) + (1− ρ)J + ρ

∫

IR+

f(x)ν(dx) + (1− ρ)f∞
}
,

(1.2)

where J is the part of the rate function that accounts for the possibility that mass might
wander off to infinity. Clearly, the expression on the right side of (1.2) provides a sharper
lower bound than the expression on the right side of (1.1). This paper considers a much more
general form of the function F , and in fact we prove the full Laplace principle (and hence
the large deviation principle) for the empirical measures {Ln, n ∈ IN} when considered as
elements of P(ĪR+), where P(ĪR+) is the space of probability measures on the one point
compactification of IR+.

It is important to note that even though we consider our underlying Markov chain to
evolve in a compact Polish space (ĪR+), the usual techniques of proving empirical measure
LDP for Markov chains with compact state spaces do not apply. One reason is that if
one extends the transition probability function of the Markov chain in (2.3) in the natural
fashion by setting p(∞, dy) .= δ{∞}(dy), i.e., by making the point at ∞ an absorbing state,
then the resulting Markov chain does not satisfy the typical transitivity conditions that are
needed for the proof of the lower bound. The proof of the upper bound for compact state
space Markov chains, in essence, only uses the Feller property of the Markov chain. It is
easy to see that the extended transition probability function introduced above is Feller with
respect to the natural topology on ĪR+ and so one can use the methodology of [6] to obtain
an upper bound. This upper bound will be governed by the function

I∗(ν) = inf
q

{∫

ĪR+

R(q(x, ·) ‖ p(x, ·))ν(dx)
}
, ν ∈ P(ĪR+),
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where infimum is taken over all transition probability kernels q on ĪR+ × ĪR+ with respect
to which ν is invariant and R(· ‖ ·) denotes the relative entropy function (see Section 2 for
precise definitions). Suppose that ν puts some mass on∞ and that I∗(ν) <∞. Let q(x, dy)
achieve the infimum in the definition of I∗(ν). Then the definition of relative entropy implies
q(∞, dy) = δ{∞}(dy), and hence there is no contribution from ∞:

I∗(ν) =

{∫

IR+

R(q(x, ·) ‖ p(x, ·))ν(dx)
}
.

The rate function I we obtain satisfies I(ν) ≥ I∗(ν), and I(ν) > I∗(ν) if I(ν) < ∞ and
ν({∞}) > 0. Thus the point at ∞ makes a contribution to the rate function, and in fact a
careful analysis of the manner in which mass tends to infinity is needed to properly account
for this contribution.

We now give a brief outline of the paper. In Section 2, we present the basic discrete
time model and state the empirical measure large deviation result (Theorem 2.9) for this
model. Sections 3, 4 and 5 are devoted to the proof of Theorem 2.9. Section 3 deals with
the Laplace principle upper bound. In Section 4 we present some useful properties of the
rate function. Section 5 proves the Laplace principle lower bound. Finally, in Section 6 we
indicate how to obtain the empirical measure large deviations for the M/M/1 queue and
reflected Brownian motion via super exponentially close approximations by discrete time
Markov chains of the form studied in Sections 3-5. In Section 6, (Remark 6.4) we also state
a conjecture on the form of the rate function for the LDP of the empirical measure of a
one-dimensional Brownian motion. We end the paper with an Appendix which gives details
for some of the proofs that are either standard or similar to others in the paper, and a list
of notation is collected there for the reader’s convenience.

2 The Discrete Time Model

In this section we consider a basic discrete time model and study its empirical measure large
deviations. Once the empirical measure LDP for this model is obtained, one can obtain
the LDP for empirical measures of a reflected Brownian motion and a M/M/1 queue via
the standard technique of super exponentially close approximations. This is discussed in
greater detail in Section 6.

In order to most easily relate the continuous time models of Section 6 with the discrete
time models of this section, it is convenient to work with a very general model here. In
particular, we will build the discrete time process with time step T > 0 by projecting (via
the Skorohod map) random processes defined on the time interval [0, T ]. The “standard”
sort of projected discrete time model is a special case (Example A below).

Let T ∈ (0,∞) be fixed and let {Zn, n ∈ IN0} be a sequence of iid D([0, T ] : IR+)-valued
random variables on the space (Ω,F , IP ). We assume that Z0(0) = 0 with probability one.
Let θ ∈ P(D([0, T ] : IR+)) denote the common probability law. Let Γ : D+([0, T ] : IR) 7→

5



D([0, T ] : IR+) be the Skorohod map, given as

Γ(z)(t)
.
= z(t)−

(
inf

0≤s≤t
z(s)

)
∧ 0, t ∈ [0, T ], z ∈ D+([0, T ] : IR+). (2.1)

Elementary calculations show that for z, z′ ∈ D+([0, T ] : IR)

sup
0≤t≤T

|Γ(z)(t)− Γ(z′)(t)| ≤ 2 sup
0≤t≤T

|z(t)− z′(t)|. (2.2)

We recursively define the IR+-valued constrained random walk {Xn, n ∈ IN0} by setting

Xn+1
.
= Γ(Xn + Zn(·))(T ), n ∈ IN0. (2.3)

If X0 has probability law δx, then we denote expectation by IEx. The transition proba-
bility function of the Markov chain Xn is denoted by p(x, dy). For f ∈ D([0, T ] : IR), let
||f ||T .

= sup0≤t≤T |f(t)|. Since T will be fixed throughout this section, it is suppressed in
the notation, and to further simplify we write D in lieu of D([0, T ] : IR). We are interested
in the large deviation properties of the empirical measure associated with {Xn, n ∈ IN0}.

There are two important special cases. The first corresponds to the standard sort of
projected discrete time model, while the second will be used to obtain large deviation results
for continuous time models.

Example A. Let θ be the probability law of Z(·), where Z(·) is defined as

Z(t)
.
= tξ, 0 ≤ t ≤ T

and ξ is a IR-valued random variable with probability law ζ.

Example B. Let θ be the probability law of Z(·), where Z(·) is defined as

Z(t)
.
= bt+ σW (t), 0 ≤ t ≤ T,

where W (·) is a standard Brownian motion, and σ, b ∈ IR.

The following conditions on θ will be used in various places.

Assumption 2.1 For all α ∈ IR
∫

D
exp(α||y||)θ(dy) <∞.

Let p(k)(x, dy) denote the k-step transition probability function of the Markov chain Xn.
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Assumption 2.2 There exist l0, n0 ∈ IN such that for all x1, x2 ∈ IR+

∞∑

i=l0

1

2i
p(i)(x1, dy)¿

∞∑

j=n0

1

2j
p(j)(x2, dy). (2.4)

Remark 2.3 Because p(x, dy) is the transition kernel for a constrained random walk driven
by iid noise, one can easily pose conditions on θ which guarantee Assumption 2.2. For
Example A one can assume that ζ is absolutely continuous with respect to λ, where λ
denotes Lebesgue measure on IR, and there exists δ > 0 such that dθ

dλ(y) > δ for y ∈ (−δ, δ).
For both Example A and Example B, the measures on the left and right side of (2.4) will be
of the form αiδ{0}(dy)+βimi(dy), i = 1, 2 respectively, where αi, βi > 0 and mi is mutually
absolutely continuous with respect to the Lebesgue measure on (0,∞). Thus Assumption
2.2 is clearly satisfied. If θ is supported on D([0, T ] : Z), where Z is the set of integers, as
would be the case in a discrete time approximation to a queueing model, then one cannot
expect a condition such as Assumption 2.2 to hold for all x1 and x2. For example consider
the case where θ is the probability law of the difference of two independent Poisson processes.
In this case if one takes x2 = 0 and x1 =

1
2 , it is easy to see that (2.4) is not satisfied for any

l0 and n0. However, Assumption 2.2 will hold when x1 and x2 are restricted to the integers,
and this suffices if one wishes to study the large deviations of the empirical measures when
only integer-valued initial conditions are considered. This is discussed further in Section 6.

Definition 2.4 (Relative Entropy) For a complete separable metric space S and for
each ν ∈ P(S), the relative entropy R(· ‖ ν) is a map from P(S) to ĪR+ defined as fol-
lows. If γ ∈ P(IR) is absolutely continuous with respect to ν and if log dγ

dν is integrable with
respect to γ, then

R(γ ‖ ν) .=
∫

S

(
log

dγ

dν

)
dγ.

In all other cases, R(γ ‖ ν) is defined to be ∞.

For n ∈ IN , the empirical measure Ln corresponding to the Markov chain {Xi, i =
1, ..., n} is the P(IR+)-valued random variable defined by

Ln(A)
.
=

1

n

n−1∑

j=0

δXj
(A), A ∈ B(IR+).

The empirical measure is also called the (normalized) occupation measure. Let ĪR+
.
=

IR+ ∪ {∞}, the one point compactification of IR+. Then ĪR+ and P(ĪR+) (with the weak
convergence topology) are compact Polish spaces. With an abuse of notation, a probability
measure ν ∈ P(IR+) will be denoted by ν even when considered as an element of P(ĪR+).
In this paper we are interested in the large deviation properties for the family {Ln, n ∈ IN}
of random variables with values in the compact Polish space P(ĪR+). To introduce the
rate function that will govern the large deviation probabilities for this family, we need the
following notation and definition.
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Definition 2.5 (Stochastic Kernel) Let (V,A) be a measurable space and S a Polish
space. Let τ(dy|x) be a family of probability measures on (S,B(S)) parameterized by x ∈ V.
We call τ(dy|x) a stochastic kernel on S given V if for every Borel subset E of S the map
x ∈ V 7→ τ(E|x) is measurable. The class of all such stochastic kernels is denoted by
S(S|V).

If p∗ ∈ S(IR+|IR+), then p
∗ is a probability transition function and we will write p∗(dy|x)

as p∗(x, dy). We say that a probability measure ν ∈ P(IR+) is invariant with respect to a
stochastic kernel p∗ ∈ S(IR+|IR+), if ν(A) =

∫
IR+

p∗(x,A)ν(dx) for all A ∈ B(IR+). We will
also refer to ν as a p∗-invariant probability measure.

The rate function associated with the family {Ln, n ∈ IN} can now be defined. Given
q∗ ∈ S(D|IR+), we associate the stochastic kernel p∗ ∈ S(IR+|IR+) which is consistent with
q∗ under the constraint mechanism by setting

p∗(x,A)
.
=

∫

D
1{ΠT (x,z)∈A}q

∗(dz|x), A ∈ B(IR+), x ∈ IR+, (2.5)

where
ΠT (x, z)

.
= Γ(x+ z(·))(T ), x ∈ IR+, z ∈ D.

As before, T will be suppressed in the notation.

Note that if a D-valued random variable Z∗ has the probability law q∗(dz|x) then
p∗(x, dy) defined above is the probability law of Π(x, Z∗). Thus if one considers the sequence
(X∗j , Z

∗
j ) of IR+ ×D-valued random variables defined recursively as

{
P (Z∗j ∈ dz | (X∗k , Z∗k−1), 1 ≤ k ≤ j)

.
= q∗(dz|X∗j )

X∗j+1
.
= Γ(X∗j + Z∗j (·))(T ),

then {X∗j } is a Markov chain with transition probability kernel p∗(x, dy).

For ν ∈ P(IR+), let

I1(ν)
.
= inf
{q∗∈A1(ν)}

∫

IR+

R(q∗(·|x) ‖ θ(·))ν(dx), (2.6)

where A1(ν) is the collection of all q∗ for which ν is p∗-invariant.

Remark 2.6 Let ν be a probability measure on a complete, separable metric space S. It is
well known that there is a one-to-one correspondence between probability transition kernels
q for which ν is an invariant distribution, and probability measures τ on S×S such that the
first and second marginals of τ equal ν. Indeed, ν(dx)q(x, dy) is such a measure on S × S,
and given any such τ , the “conditional” decomposition τ(dx dy) = ν(dx)r(x, dy) for some
probability transition kernel r and

∫
S ν(dx)r(x, dy) = ν(dy) imply that ν is r-invariant. We

will need an analogous correspondence in the present setting. More precisely, we claim that
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for any ν ∈ P(IR+), there is a one-to-one correspondence between q∗ ∈ S(IR+|D) for which
ν is p∗-invariant, where p∗ is defined via (2.5), and τ ∈ P(IR+ ×D) such that

〈f, ν〉 = 〈f, (τ)1〉 =
∫

IR+×D
f(Π(x, z))τ(dx dz), for all f ∈ Cb(IR+), (2.7)

where (τ)1 ∈ P(IR+) is defined as (τ)1(dx)
.
= τ(dx × D). Define by A(ν) the class of all

τ ∈ P(IR+ × D) such that (2.7) holds and let A1(ν) be as defined below (2.6). The one
to one correspondence between A(ν) and A1(ν) can be described by the relations that if
τ ∈ A(ν) and τ is decomposed as τ(dx dz) = (τ)1(dx)q(dz|x), then (τ)1 = ν and q ∈ A1(ν).
Conversely, if q ∈ A1(ν) and τ ∈ P(IR+ ×D) is defined as τ(dx dz)

.
= ν(dx)q(dz|x), then

τ ∈ A(ν). The above equivalence will be used in the proofs of Theorem 4.1 and Lemma 5.4.

Define by Ptr(D) the class of all σ ∈ P(D) for which
∫
D ||z||σ(dz) <∞ and

∫
D z(T )σ(dz) ≥

0. Here the subscript tr stands for “transient.” Strictly speaking, this class includes mea-
sures that produce a null recurrent process, but transient is more suggestive of what is
intended. Let

J
.
= inf

σ∈Ptr(D)
R(σ ‖ θ). (2.8)

The following mild assumption will be used in the proof of Theorems 4.1 and 5.1. It
essentially asserts that there is some positive probability of moving both to the left and the
right under θ.

Assumption 2.7 There exist θ0, θ1 ∈ P(D) such that
∫

D
z(T )θ0(dz) < 0,

∫

D
z(T )θ1(dz) > 0

and for i = 0, 1, the following hold: (a)
∫
D ||z||θi(dz) < ∞, (b) θ and θi are mutually

absolutely continuous and (c) R(θi ‖ θ) <∞.

Note that under Assumption 2.7, J <∞.

Remark 2.8 For Example A in Remark 2.3, Assumption 2.2 implies that ζ(0,∞) > 0 and
ζ(−∞, 0) > 0. Using this and Assumption 2.1, one can easily show that Assumption 2.7
holds for Example A. Furthermore, Assumption 2.7 clearly holds for Example B.

For ν ∈ P(ĪR+), let ν̂ ∈ P(IR+) be defined as follows. If ν(IR+) 6= 0, then for A ∈ B(IR+)

ν̂(A)
.
=
ν(A ∩ IR+)

ν(IR+)
. (2.9)

Otherwise, ν̂ can be taken to be an arbitrary element of P(IR+). We define the rate function
as follows. For ν ∈ P(ĪR+)

I(ν)
.
= ν(IR+)I1(ν̂) + (1− ν(IR+))J. (2.10)

Our main result is the following.
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Theorem 2.9 Suppose that Assumptions 2.1, 2.2 and 2.7 hold. Then for all F ∈ Cb(P(ĪR+))
and all x ∈ IR+

lim
n→∞

1

n
log IEx [exp(−nF (Ln))] = − inf

µ∈P(ĪR+)
{I(µ) + F (µ)}.

Furthermore, I(·) is a rate function on P(ĪR+).

Proof: The fact that the left hand side in the last display is at most the expression in
the right hand side (Laplace principle upper bound) is proved in Theorem 3.1. The reverse
inequality (Laplace principle lower bound) is proved in Theorem 5.1. The proof that I(·) is
a rate function on P(ĪR+) is given in Theorem 4.1(c).

Remark 2.10 Theorem 2.9 can be summarized by the statement that the family {Ln, n ∈
IN} satisfies the Laplace principle on P(ĪR+) with the rate function I(·). From Theorem
1.2.3 of [9] it follows that the family {Ln, n ∈ IN} satisfies the large deviation principle on
P(ĪR+) with the rate function I(·).

Remark 2.11 The convergence in Theorem 2.9 is in fact uniform for x in compact subsets
of IR+. See [9, Section 8.4]

We now present an important corollary of Theorem 2.9. Denote by S0 the subclass
of Cb(IR+) consisting of functions f for which f(x) converges as x → ∞, with the limit
denoted by f∞. Such an f can be extended to a function f̄ on ĪR+ by defining f̄(∞)

.
= f∞.

It is easy to see that there is a one to one correspondence between S0 and Cb(ĪR+), given
by f ∈ S0 7→ f̄ 3 Cb(ĪR+) and g ∈ Cb(ĪR+) 7→ g|IR+

3 S0.

Corollary 2.12 Let F : P(IR+) 7→ IR be given by

F (µ)
.
= G(〈f1, µ〉, . . . , 〈fk, µ〉),

where G ∈ Cb(IR
k) and fi ∈ S0, i = 1, . . . , k. Then for all x ∈ IR+

lim
n→∞

1

n
log IEx [exp(−nF (Ln))] = − inf

ν∈P(IR+), ρ∈[0,1]
{ρI1(ν) + (1− ρ)J + F̄ (ρ, ν)},

where F̄ ∈ Cb([0, 1]× P(IR+)) is defined by

F̄ (ρ, ν)
.
= G(ρ〈f1, ν〉+ (1− ρ)f∞1 , . . . , ρ〈fk, ν〉+ (1− ρ)f∞k ).

The corollary is an immediate consequence of Theorem 2.9. If we set ρ
.
= ν̂(IR+), then for

f ∈ S0 and ν ∈ P(ĪR+)
〈f, ν〉 = ρ〈f, ν̂〉+ (1− ρ)f∞.

Thus the unique continuous extension of F to P(ĪR+) equals

F̄ (ρ, ν̂),

and the corollary follows.
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3 Laplace Principle Upper Bound

The main result of this section is the following.

Theorem 3.1 Suppose that Assumption 2.1 holds, and define I by (2.10). Then for all
F ∈ Cb(P(ĪR+)) and all x ∈ IR+

lim sup
n→∞

1

n
log IEx [exp(−nF (Ln))] ≤ − inf

µ∈P(ĪR+)
{I(µ) + F (µ)}. (3.1)

Throughout this paper there will be many constructions and results that are analogous
to those used in [9, Chapter 8] to study empirical measures under the classical strong
stability assumption. While there are some differences in these constructions, in an effort
to streamline the presentation we will emphasize those parts of the analysis that are new.

Our first step in the proof will be to give a variational representation for the prelimit ex-
pression on the left side of (3.1). This representation will take the form of the value function
for a controlled Markov chain with an appropriate cost function. The representation will
also be used in the proof of the lower bound in Section 5. We begin with the construction
of a controlled Markov chain. It follows a similar construction in Chapter 4 of [9] and thus
some details are omitted. In particular, the proof of Lemma 3.2 is not provided. We recall
that a table of notation is provided at the end of the paper.

For n ∈ IN and j = 0, . . . , n, let νnj (dy|x, γ) be a stochastic kernel in S(D|IR+×M(IR+)).
For n ∈ IN and x ∈ IR+, define a controlled sequence of IR+×M(IR+)×D-valued random
variables {(X̄n

j , L̄
n
j , Z̄

n
j ), j = 0, . . . , n} on some probability space (Ω̄, F̄ , ĪPx) as follows. Set

X̄n
0
.
= x and L̄n

0
.
= 0, and then for k = 0, . . . , n− 1 recursively define

ĪPx(Z̄
n
k ∈ dy|(X̄n

j , L̄
n
j ), j = 0, . . . , k)

.
= νnk (dy|X̄n

k , L̄
n
k)

X̄n
k+1

.
= Π(X̄n

k , Z̄
n
k )

L̄n
k+1

.
= L̄n

k +
1

n
δX̄n

k
.

(3.2)

Denote L̄n
n by L̄n. We now give the variational representation for

Wn(x)
.
= − 1

n
log IEx [exp(−nF (Ln))] (3.3)

in terms of the controlled sequences introduced above.

Lemma 3.2 Fix F ∈ Cb(P(ĪR+)) and let W n(x) be defined via (3.3). Then for all n ∈ IN
and x ∈ IR+,

Wn(x) = inf
{νn

j
}
ĪEx


 1
n

n−1∑

j=0

R
(
νnj (·|X̄n

j , L̄
n
j ) ‖ θ(·)

)
+ F (L̄n)


 , (3.4)

11



where the infimum is taken over all possible sequences of stochastic kernels {νnj , j = 0, . . . , n}
in S(D|IR+ ×M(IR+)).

The proof of this lemma is similar to the proof of Theorem 4.2.2 of [9]. The main
difference between the two results is that the latter gives a representation which involves
the transition probability function, p(x, dy), of the Markov chain rather than the probability
law, θ, of the noise sequence. In the representation, the original empirical measures Ln are
replaced by L̄n, which are the empirical measures for the process generated by the stochastic
kernels νnj . We pay a cost of relative entropy for “twisting” the distribution from θ to νnj ,
plus a cost of ĪExF (L̄

n) that depends on where the controlled empirical measure ends up.
The representation exhibits W n(x) as the minimum expected total cost.

Let ε > 0 be arbitrary. In view of the preceding lemma, for each n ∈ IN we can find a
sequence of “ε-optimal” stochastic kernels {ν̄nj , j = 0, . . . , n}, such that

Wn(x) + ε ≥ ĪEx


 1
n

n−1∑

j=0

R(ν̄nj (·|X̄n
j , L̄

n
j ) ‖ θ(·)) + F (L̄n)


 . (3.5)

Since F is bounded, both |F (L̄n)| and |W n(x)| are bounded above by ‖F‖∞. Thus

∆
.
= sup

n
ĪEx


 1
n

n−1∑

j=0

R(ν̄nj (·|X̄n
j , L̄

n
j ) ‖ θ(·))


 <∞. (3.6)

Define ν̄n ∈ P(ĪR+ ×D2) as follows. For A ∈ B(ĪR+) and B,C ∈ B(D),

ν̄n(A×B × C) .= 1

n

n−1∑

j=0

δX̄n
j
(A)ν̄nj (B|X̄n

j , L̄
n
j )δZ̄n

j
(C). (3.7)

Lemma 3.3 Suppose Assumption 2.1 holds. Then {ν̄n, n ∈ IN}, defined on the probability
space (Ω̄, F̄ , ĪPx), is a tight family of P(ĪR+ ×D2)-valued random variables.

The result is a consequence of (3.6) and follows along the lines of the proof of Proposition
8.2.5 of [9]. We remark that unlike in the cited Proposition, we do not need to make any
stability assumption on the underlying Markov chain. This is one of the key advantages
of working with the representation in Lemma 3.2 given in terms of the probability law of
the noise sequence (θ) rather than the transition probability function of the Markov chain
(p(x, dy)). For sake of completeness the proof is included in the Appendix.

Take a convergent subsequence of ν̄n and denote the limit point by ν̄. To simplify the
notation, we retain n to denote this convergent subsequence, so that

ν̄n ⇒ ν̄ as n→∞. (3.8)

For the rest of this section, we will assume that Assumption 2.1 is satisfied, and that (3.8)
holds.

12



For γ ∈ P(ĪR+ × D2) and 1 ≤ i < j ≤ 3, denote by (γ)i and (γ)i,j the i-th marginal
and the (i, j)-th marginal of γ, respectively. For example, (γ)2,3 is the element of P(D×D)
defined as

(γ)2,3(A×B)
.
= γ(ĪR+ ×A×B), A,B ∈ B(D).

Lemma 3.4 Let ν̄ be as in (3.8). Then

(ν̄)1,2 = (ν̄)1,3, a.s.

Proof: It suffices to show that for all g ∈ Cb(ĪR+) and h ∈ Cb(D),

∣∣∣∣∣

∫

ĪR+×D
g(x)h(y)(ν̄n)1,2(dx dy)−

∫

ĪR+×D
g(x)h(y)(ν̄n)1,3(dx dy)

∣∣∣∣∣ (3.9)

converges to 0, as n→∞, in probability. Observe that

∫

ĪR+×D
g(x)h(y)(ν̄n)1,2(dx dy) =

1

n

n−1∑

j=0

g(X̄n
j )

∫

D
h(y)ν̄nj (dy|X̄n

j , L̄
n
j )

and ∫

ĪR+×D
g(x)h(y)(ν̄n)1,3(dx dy) =

1

n

n−1∑

j=0

g(X̄n
j )h(Z̄

n
j ).

Thus the expression in (3.9) can be rewritten as

Λ
.
=

∣∣∣∣∣∣
1

n

n−1∑

j=0

g(X̄n
j )

(
h(Z̄n

j )−
∫

D
h(y)ν̄nj (dy|X̄n

j , L̄
n
j )

)∣∣∣∣∣∣
.

From (3.2) we have that the conditional distribution of Z̄n
k given {Z̄n

j , X̄
n
j+1, j = 0, 1, . . . , k−

1} is νnk (dy|X̄n
k , L̄

n
k). Therefore, for 0 ≤ j < k ≤ n − 1 and an arbitrary real bounded and

measurable function ψ,

ĪEx

[
ψ(X̄n

j , L̄
n
j , Z̄

n
j , X̄

n
k , L̄

n
k)

(
h(Z̄n

k )−
∫

D
h(y)ν̄nk (dy|X̄n

k , L̄
n
k)

)]
= 0.

This implies that ĪEx[Λ
2] is O(1/n) and thus the expression in (3.9) converges to 0 in

probability, as n→∞. This proves the lemma.

Lemma 3.5 Let {ν̄n} and ν̄ be as in (3.8). Then

lim sup
C→∞

sup
n
ĪEx

∫

||z||>C
||z|| (ν̄n)3(dz) = 0, (3.10)

ĪEx

∫

D
||z||(ν̄)3(dz) <∞. (3.11)

13



Proof: The proof follows along the lines of Lemma 5.3.2 and Theorem 5.3.5 of [9], however
for the sake of completeness we provide the details. We begin by showing that (3.11) follows
easily, once (3.10) is proven. So now suppose that (3.10) holds. In order to show (3.11), it
is enough to show that

lim sup
C→∞

ĪEx

∫

||z||>C
||z||(ν̄)3(dz) = 0. (3.12)

Recall that (ν̄n)3 converges in distribution to (ν̄)3. By the Skorohod representation theorem,
we can assume that (ν̄n)3 converges almost surely to (ν̄)3. Then by the lower semi-continuity
of the map P(D) 3 γ 7→

∫
||z||>C ||z||γ(dz) ∈ ĪR+ we have that

ĪEx

∫

||z||>C
||z||(ν̄)3(dz) ≤ ĪEx

[
lim inf
n→∞

∫

||z||>C
||z||(ν̄n)3(dz)

]

≤ lim inf
n→∞

ĪEx

[∫

||z||>C
||z||(ν̄n)3(dz)

]

≤ sup
n
ĪEx

[∫

||z||>C
||z||(ν̄n)3(dz)

]
,

where the second inequality above follows from Fatou’s lemma. This proves (3.12) and
hence (3.11).

Thus in order to complete the proof of the lemma we need to prove (3.10). We begin
by observing that

ĪEx

∫

||z||>C
||z||(ν̄n)3(dz) = ĪEx


 1
n

n−1∑

j=0

||Z̄n
j || 1||Z̄n

j
||>C




= ĪEx


 1
n

n−1∑

j=0

ĪEx

[
||Z̄n

j || 1||Z̄n
j
||>C |X̄n

j , L̄
n
j

]



= ĪEx


 1
n

n−1∑

j=0

∫

||z||>C
||z|| ν̄nj (dz|X̄n

j , L̄
n
j )


 . (3.13)

From (3.6) we have that for each j ∈ {0, . . . , n− 1}, R(ν̄nj (·|X̄n
j , L̄

n
j ) ‖ θ(·)) <∞, a.s. [P̄x].

Let fn
j be a measurable map from Ω̄×D → IR+ such that

fn
j (ω̄, z) =

dν̄nj (·|X̄n
j , L̄

n
j )(ω̄)

dθ(·) (z), a.s. [P̄x ⊗ θ].

Henceforth we will suppress ω̄ in the notation when writing fn
j (ω̄, z). Thus

ĪEx

[∫

||z||>C
||z||ν̄nj (dz | X̄n

j , L̄
n
j )

]

= ĪEx

[∫

||z||>C
||z||fn

j (z)dθ

]

≤
∫

||z||>C
eα||z||θ(dz) +

1

α
ĪEx

[∫

D

(
fn
j (z) log(f

n
j (z))− fn

j (z) + 1
)
θ(dz)

]
,
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where the inequality above follows from the well known inequality

ab ≤ eαa + 1

α
(b log b− b+ 1); a, b ∈ [0,∞) α ∈ (0,∞).

Next observing that
∫

D
fn
j (z) log(f

n
j (z))θ(dz) = R(ν̄nj (· | X̄n

j , L̄
n
j ) ‖ θ(·))

and ∫

D
fn
j (z)θ(dz) = ν̄nj (D | X̄n

j , L̄
n
j ) = 1,

we have that

lim sup
C→∞

sup
n

1

n

n−1∑

j=0

ĪEx

[∫

||z||>C
||z||ν̄nj (dz | X̄n

j , L̄
n
j )

]

≤ lim sup
C→∞

sup
n



∫

||z||>C
eα||z||θ(dz) +

1

α
ĪEx


 1
n

n−1∑

j=0

R(ν̄nj (· | X̄n
j , L̄

n
j ) ‖ θ(·))






≤ lim sup
C→∞

∫

||z||>C
eα||z||θ(dz) +

∆

α

≤ ∆

α
,

where the next to last inequality follows from (3.6) and the last inequality follows from
Assumption 2.1. Finally, (3.10) follows on taking limit as α→∞ in the above inequality.

One of the key steps in the proof of the upper bound is to show that
∫
ĪR+×D z(T )1{∞}(x)(ν̄)1,3(dx dz) ≥

0. Heuristically, this says that the drift of the controlled chain is non-negative when the
point at ∞ is charged and the chain is far from the origin. To prove this, the following test
function will be useful.

For c ∈ (0,∞), define a real continuously differentiable function Fc on IR+ by

Fc(x)
.
=





1

2
if x ∈ [0, c]

x2

2c2
− x

c
+ 1 if x ∈ (c, c2 + c]

x− c2

2
− c+ 1

2
if x ∈ (c2 + c,∞).

(3.14)

The function Fc has the property that F ′c ∈ S0 and |F ′c(x)| ≤ 1. Retaining F ′c to denote the
continuous extension of F ′c to ĪR+, we have that F

′
c(x)→ δ{∞}(x) for all x ∈ ĪR+ as c→∞.

We now present an elementary lemma concerning the function Fc.

Lemma 3.6 For all x, y ∈ IR+

Fc(y)− Fc(x) = (y − x)F ′c(x) +Rc(x, y),
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where F ′c denotes the derivative of Fc and the remainder Rc(x, y) satisfies the inequality

Rc(x, y) ≤
|y − x|
c

+ |y − x|1|y−x|≥c. (3.15)

Proof: We will only prove the result for the case when x ≤ y. The result for y ≤ x follows
in a similar fashion. Note that the derivative F ′c is given as

F ′c(x) =





0 if x ∈ [0, c]
x
c2
− 1

c if x ∈ (c, c2 + c]
1 if x ∈ (c2 + c,∞).

Since F ′c(x) is a continuous function, we have

Fc(y)− Fc(x) =

∫ y

x
F ′c(u)du

=

∫ y

x
(F ′c(u)− F ′c(x))du+ (y − x)F ′c(x).

Now define

Rc(x, y)
.
=

∫ y

x
(F ′c(u)− F ′c(x))du.

Since F ′c is an increasing function bounded above by 1,

Rc(x, y) ≤
(∫ y

x
(F ′c(u)− F ′c(x))du

)
1|y−x|≤c + |y − x|1|y−x|≥c. (3.16)

Now let x, y be such that |y − x| ≤ c. Then
∫ y

x
(F ′c(u)− F ′c(x))du ≤ (y − x)(F ′c(y)− F ′c(x))

≤ (y − x)2
c2

≤ |y − x|
c

,

where the first inequality follows on noting that F ′c(u) − F ′c(x) < F ′c(y) − F ′c(x) for all
u ≤ y, the second inequality is a consequence of the fact that for all 0 ≤ x < y < ∞,
F ′c(y) − F ′c(x) ≤ (y − x)/c2 and the final inequality is obtained on using that |y − x| ≤ c.
Using the last inequality in (3.16), we have (3.15). This proves the lemma.

Lemma 3.7 For c ∈ (0,∞), let Fc be given via (3.14). For n ∈ IN , let ν̄n be defined via
(3.7). Then

∫

ĪR+×D
y(T )F ′c(x)(ν̄

n)1,3(dx dy) ≥ −5
∫

D
||y||1||y||≥c/2(ν̄

n)3(dy)

− 2

c

∫

D
||y||(ν̄n)3(dy)−

Fc(X̄
n
0 )

n
.

(3.17)
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Proof: For j ∈ {0, . . . , n− 1}, define ξnj
.
= X̄n

j+1 − X̄n
j . We begin by observing that

∫

ĪR+×D
y(T )F ′c(x)(ν̄

n)1,3(dx dy)

=
1

n

n−1∑

i=0

Z̄n
i (T )F

′
c(X̄

n
i )

=
1

n

n−1∑

i=0

Z̄n
i (T )F

′
c(X̄

n
i )1||Z̄n

i
||≥c +

1

n

n−1∑

i=0

Z̄n
i (T )F

′
c(X̄

n
i )1||Z̄n

i
||<c

≥ − 1

n

n−1∑

i=0

||Z̄n
i ||1||Z̄n

i
||≥c +

1

n

n−1∑

i=0

Z̄n
i (T )F

′
c(X̄

n
i )1||Z̄n

i
||<c

≥ − 1

n

n−1∑

i=0

||Z̄n
i ||1||Z̄n

i
||≥c +

1

n

n−1∑

i=0

ξni F
′
c(X̄

n
i )1||Z̄n

i
||<c

≥ −3 1
n

n−1∑

i=0

||Z̄n
i ||1||Z̄n

i
||≥c +

1

n

n−1∑

i=0

ξni F
′
c(X̄

n
i ).

(3.18)

The first inequality follows on recalling that F ′c is non-negative and bounded above by 1.
The second equality is a consequence of the fact that F ′c(x) equals 0 for x ≤ c and that on
the set {X̄n

i > c} ∩ {||Z̄n
i || ≤ c}, X̄n

i is far enough from the origin that ξni equals Z̄n
i (T ).

The third inequality is a consequence of the fact that in all cases |ξni | ≤ 2||Z̄n
i ||, and that

F ′c(x) ∈ [0, 1]. Next observe that, from Lemma 3.6

0 ≤ 1

n
Fc(X̄

n
n )

=
1

n

n−1∑

i=0

(
Fc(X̄

n
i+1)− Fc(X̄

n
i )
)
+
Fc(X̄

n
0 )

n

=
1

n

n−1∑

i=0

ξni F
′
c(X̄

n
i ) +

1

n

n−1∑

i=0

Rc(X̄
n
i , X̄

n
i+1) +

Fc(X̄
n
0 )

n
. (3.19)

Also, note that

Rc(X̄
n
i , X̄

n
i+1) ≤

|ξni |
c

+ |ξni |1|ξn
i
|≥c.

Combining the last two observations we have

1

n

n−1∑

i=0

ξni F
′
c(X̄

n
i ) ≥ − 1

n

n−1∑

i=0

|ξni |1|ξn
i
|≥c −

1

c

1

n

n−1∑

i=0

|ξni | −
Fc(X̄

n
0 )

n

≥ − 2

n

n−1∑

i=0

||Zn
i ||1||Zn

i
||≥ c

2
− 2

c

1

n

n−1∑

i=0

||Zn
i || −

Fc(X̄
n
0 )

n
.

(3.20)

Finally, substituting (3.20) in (3.18) gives
∫

ĪR+×D
y(T )F ′c(x)(ν̄

n)1,3(dx dy)
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≥ −5 1
n

n−1∑

i=0

||Z̄n
i ||1||Z̄n

i
||≥ c

2
− 2

c

1

n

n−1∑

i=0

||Z̄n
i || −

Fc(X̄
n
0 )

n

= −5
∫

D
||y||1||y||≥ c

2
(ν̄n)3(dy)−

2

c

∫

D
||y||(ν̄n)3(dy)−

Fc(X̄
n
0 )

n
.

This proves the lemma.

Lemma 3.8 Let ν̄ be as in (3.8). For c ∈ (0,∞), let Fc be defined via (3.14). Let {ck}k∈IN
be a sequence in (0,∞) such that ck →∞ as k →∞, and for all k ∈ IN

ĪEx

[
(ν̄)3

{
z(·) : ||z|| = ck

2

}]
= 0.

Then

lim inf
k→∞

∫

ĪR+×D
z(T )F ′ck

(x)(ν̄)1,3(dx dz) ≥ 0, a.s. (3.21)

Proof: Note that from Lemma 3.7
∫

ĪR+×D
z(T )F ′ck

(x)(ν̄n)1,3(dx dz)

≥ −5
∫

D
||z||1||z||≥ ck

2
(ν̄n)3(dz)−

2

ck

∫

D
||z||(ν̄n)3(dz)−

Fck
(X̄n

0 )

n
,

(3.22)

for all k ∈ IN , a.s. We would like to show that the analogous inequality holds with ν̄n

replaced by ν̄. By using the Skorohod representation theorem, we can assume without
loss of generality that ν̄n converges to ν̄ almost surely. The term Fc(X̄

n
0 )/n disappears in

the limit n → ∞, since X̄n
0 takes a fixed deterministic value for all n. We will now show

that if ν̄n → ν̄ almost surely then all other terms in the above inequality converge to the
corresponding terms with ν̄n replaced by ν̄.

We begin by considering
∫
ĪR+×D z(T )F

′
ck
(x)(ν̄n)1,3(dxdz). Note that for all g ∈ Cb(IR),

∫

ĪR+×D
g(z(T ))F ′ck

(x)(ν̄n)1,3(dxdz)→
∫

ĪR+×D
g(z(T ))F ′ck

(x)(ν̄)1,3(dxdz)

a.s. We can approximate the identity by a bounded continuous function g(u) which equals
u when |u| ≤ C for a large constant C. The uniform integrability expressed in Lemma 3.5
then justifies the replacement of g(z(T )) in the last display by z(T ), giving

∫

ĪR+×D
z(T )F ′ck

(x)(ν̄n)1,3(dxdz)→
∫

ĪR+×D
z(T )F ′ck

(x)(ν̄)1,3(dxdz) (3.23)

a.s. See, e.g., the proof of Lemma 5.3.6 in [9]. In exactly the same way, we have that

∫

D
||z|| (ν̄n)3(dz)→

∫

D
||z|| (ν̄)3(dz), (3.24)
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a.s. as n → ∞. Finally we consider
∫
||z||≥

ck
2
||z||(ν̄n)3(dz). The condition assumed of the

sequence ck implies that the function z 7→ ||z||1||z||≥ ck
2

is continuous w.p.1 under ν̄, a.s.

When combined with the uniform integrability stated in Lemma 3.5, it follows that
∫

||z||≥
ck
2

||z||(ν̄n)3(dz)→
∫

||z||≥
ck
2

||z||(ν̄)3(dz), (3.25)

a.s. Thus taking the limit as n→∞ in (3.22), we have from (3.23), (3.24) and (3.25) that

∫

ĪR+×D
z(T )F ′ck

(x)(ν̄)1,3(dx dz) ≥ −5
∫

D
||z||1||z||≥ ck

2
(ν̄)3(dz)

− 2

ck

∫

D
||z||(ν̄)3(dz).

Finally the proof is completed by letting k →∞ in the last display and using Lemma 3.5.

Let ν̄ be as in (3.4) and let q̄ be a stochastic kernel in S(D|ĪR+) such that

(ν̄)1,2(dx dy) = (ν̄)1(dx)⊗ q̄(dy|x), (3.26)

i.e. for A ∈ B(ĪR+), B ∈ B(D),

(ν̄)1,2(A×B) =

∫

A
q̄(B|x)(ν̄)1(dx).

As an immediate consequence of Lemma 3.8, we have the following result.

Lemma 3.9 For ĪPx - a.e. ω̄ in the set {(ν̄)1(IR+) < 1},
∫

D
||y||q̄(dy|∞) <∞ (3.27)

and ∫

D
y(T )q̄(dy|∞) ≥ 0. (3.28)

Proof: The inequality in (3.27) follows from the fact that

(1− (ν̄)1(IR+))

∫

D
||y||q(dy|∞) ≤

∫

ĪR+×D
||y||(ν̄)1,2(dx dy)

=

∫

ĪR+×D
||z||(ν̄)1,3(dx dz)

=

∫

D
||z||(ν̄)3(dz)

< ∞

a.s., where the last step follows from Lemma 3.5. In order to see (3.28), note that if the
sequence {ck} is chosen as in Lemma 3.8, then (3.21) holds. Furthermore, note that for all
(x, z) ∈ ĪR+ × D, |z(T )F ′ck

(x)| ≤ ||z|| and z(T )F ′ck
(x) → z(T )1{∞}(x), as k → ∞. Thus
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observing that
∫
ĪR+×D ||z||(ν̄)1,3(dx dz) < ∞, we have via an application of the dominated

convergence theorem that

lim
k→∞

∫

ĪR+×D
z(T )F ′ck

(x)(ν̄)1,3(dx dz) =

∫

ĪR+×D
z(T )1{∞}(x)(ν̄)1,3(dx dz)

=

∫

ĪR+×D
y(T )1{∞}(x)(ν̄)1,2(dx dy)

= (ν̄)1{∞}
∫

D
y(T )q̄(dy|∞), (3.29)

where the second equality follows from Lemma 3.4. Combining (3.21) and (3.29), we have
the result.

Let ν̄ and q̄ be related as in (3.26). Define a stochastic kernel p̄ ∈ S(IR+|IR+) via

p̄(x,A)
.
=

∫

D
1{Π(x,z)∈A}q̄(dz|x).

Recall that (ν̄)1 can be decomposed as

(ν̄)1(·) = (ν̄)1(IR+)(̂ν̄)1(·) + (1− (ν̄)1(IR+))δ∞(·),

where (̂ν̄)1 is given via (2.9) with ν there replaced by (ν̄)1.

The following lemma characterizes (̂ν̄)1 as a p̄-invariant probability measure.

Lemma 3.10 Let ν̄, q̄ and p̄ be as above. For ĪPx - a.e. ω̄ in the set {(ν̄)1(IR+) > 0}, (̂ν̄)1
is p̄-invariant, i.e.

(̂ν̄)1(A) =

∫

IR+

p̄(x,A)(̂ν̄)1(dx), for all A ∈ B(IR+).

Proof: It suffices to show that for all g ∈ Cc(IR+)

∫

ĪR+

g(x)(ν̄)1(dx) = (ν̄)1(IR+)

∫

IR+

(∫

IR+

g(y)p̄(x, dy)

)
(̂ν̄)1(dx),

a.s. We begin by observing that

(ν̄)1(IR+)

∫

IR+

(∫

IR+

g(y)p̄(x, dy)

)
(̂ν̄)1(dx)

= (ν̄)1(IR+)

∫

IR+

(∫

D
g(Π(x, y))q̄(dy|x)

)
(̂ν̄)1(dx)

= (ν̄)1(IR+)

∫

IR+×D
g(Π(x, y)) ̂(ν̄)1,2(dx dy)

=

∫

ĪR+×D
Hg(x, y)(ν̄)1,2(dx dy)

=

∫

ĪR+×D
Hg(x, z)(ν̄)1,3(dx dz) (3.30)
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a.s., where ̂(ν̄)1,2 ∈ P(IR+ ×D) is defined as

̂(ν̄)1,2(A×B)
.
=

(ν̄)1,2(A×B)

(ν̄)1,2(IR+ ×D)
, A ∈ B(IR+), B ∈ B(D),

and Hg ∈ Cb(ĪR+ ×D) is defined as

Hg(x, z)
.
=

{
g(Π(x, z)), if (x, z) ∈ IR+ ×D
0, otherwise.

The next to last equality in (3.30) follows from the compact support property of g and the
last equality is a consequence of Lemma 3.4. Thus in order to complete the proof of the
lemma, it suffices to show that

∫

ĪR+

g(x)(ν̄n)1(dx)−
∫

ĪR+×D
Hg(x, z)(ν̄

n)1,3(dx dz)→ 0 (3.31)

in probability as n→∞. Note that the expression in (3.31) equals

1

n

n−1∑

j=0

g(X̄n
j )−

1

n

n−1∑

j=0

g(Π(X̄n
j , Z̄

n
j ))

=
1

n

n−1∑

j=0

g(X̄n
j )−

1

n

n−1∑

j=0

g(X̄n
j+1)

=
1

n
[g(X̄n

0 )− g(X̄n
n )].

From the boundedness of g, it follows that the above expression is O(1/n). This proves
(3.31) and hence the lemma.

Finally, we ready to prove Theorem 3.1.

Proof of Theorem 3.1: Recall from (3.5) that

Wn(x) + ε ≥ ĪEx


 1
n

n−1∑

j=0

R(ν̄nj (·|X̄n
j , L̄

n
j ) ‖ θ(·)) + F (L̄n)




= ĪEx


 1
n

n−1∑

j=0

R(δX̄n
j
⊗ ν̄nj (·|X̄n

j , L̄
n
j ) ‖ δX̄n

j
⊗ θ(·)) + F (L̄n)




≥ ĪEx


R


 1

n

n−1∑

j=0

δX̄n
j
⊗ ν̄nj (·|X̄n

j , L̄
n
j ) ‖

1

n

n−1∑

j=0

δX̄n
j
⊗ θ(·)


+ F (L̄n)




= ĪEx [R((ν̄
n)12 ‖ (ν̄n)1 ⊗ θ) + F ((ν̄n)1)] , (3.32)

where the second line in the above display exploits a property of relative entropy with
respect to the decomposition of measures according to their marginals ([9, C.3.3]), the
second inequality follows from Jensen’s inequality, and the last equality uses the definition
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of ν̄n. Next, recalling (3.8), we can assume without loss of generality that ν̄n ⇒ ν̄ a.s. as
n→∞. Thus from (3.32) we have that

lim inf
n→∞

Wn(x) + ε ≥ ĪEx

[
lim inf
n→∞

(R((ν̄n)12 ‖ (ν̄n)1 ⊗ θ) + F ((ν̄n)1))
]

≥ ĪEx [R((ν̄)12 ‖ (ν̄)1 ⊗ θ) + F ((ν̄)1)] , (3.33)

where the first inequality follows from Fatou’s lemma and the last inequality is a consequence
of lower semi-continuity of R(· ‖ ·) and the continuity of F .

Next note that the definitions of I1 and J and Lemmas 3.9 and 3.10 imply

R((ν̄)12 ‖ (ν̄)1 ⊗ θ) =

∫

ĪR+

R(q̄(·|x) ‖ θ(·))(ν̄)1(dx)

= (ν̄)1(IR+)

∫

IR+

R(q̄(·|x) ‖ θ(·))(̂ν̄)1(dx)

+ (1− (ν̄)1(IR+))R(q̄(·|∞) ‖ θ(·))
≥ (ν̄)1(IR+)I1((̂ν̄)1) + (1− (ν̄)1(IR+))J

= I((ν̄)1).

When combined with (3.33) we have

lim inf
n→∞

Wn(x) + ε ≥ ĪEx{I((ν̄)1) + F ((ν̄)1)}
≥ inf

µ∈P(ĪR+)
{I(µ) + F (µ)}.

Since ε > 0 is arbitrary, the result follows.

4 Properties of the Rate Function

In this section we will prove some important properties of the rate function I(·) defined in
(2.10). The proof of part (a) of Theorem 4.1 below is similar to the proof of Proposition
8.5.2 of [9] and therefore is omitted. Part (b) of Theorem 4.1 is crucially used in the proof
of the lower bound in Section 5 and even though the ideas in the proof are quite standard,
we present the proof for the sake of completeness. Finally part (c) of the Theorem follows
on using arguments similar to those in Section 3 and its proof is given in the Appendix.

Theorem 4.1 Let the function I : P(ĪR+) 7→ [0,∞] be given via (2.10). Then the following
conclusions hold.

(a) I is a convex function.

(b) Suppose that for all α ∈ (0,∞),
∫

D
eα||z||θ(dz) <∞.
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Let π ∈ P(ĪR+). Then there exists σ0 ∈ P(D) and q̄ ∈ S(IR+|D) such that the
following are true.

1.
∫
D ||z||σ0(dz) <∞ and

∫
D z(T )σ0(dz) ≥ 0.

2. If π̂ is defined via (2.9) with ν there replaced by π, then π̂ is p̄-invariant, where
p̄ ∈ S(IR+|IR+) is defined as

p̄(x,A)
.
=

∫

D
1{Π(x,z)∈A}q̄(dz|x), A ∈ B(IR+), x ∈ IR+. (4.1)

3. The infimum in (2.6) (with ν replaced by π̂) and (2.8) are attained at q̄ and σ0,
respectively. I.e.

I(π) = π(IR+)

∫

IR+

R(q̄(·|x) ‖ θ(·))π̂(dx) + (1− π(IR+))R(σ0 ‖ θ).

(c) Suppose that Assumption 2.1 is satisfied. Then for all M ∈ [0,∞), the level set
{π ∈ P(ĪR+) : I(π) ≤M} is a compact set in P(ĪR+).

Proof: The proof of (a) is omitted. We now consider (b).

We can assume without loss of generality that I(π) < ∞. It suffices to show that the
infimum in (2.8) is attained for some σ0 ∈ P(D), and that for ν ∈ P(IR+) with I1(ν) <∞,
the infimum in (2.6) is attained for some q ∈ A1(ν), where A1(ν) is defined in Remark 2.6.
We consider the last issue first. Fix ν ∈ P(IR+) for which I1(ν) <∞. Observe that

I1(ν) = inf
τ∈A(ν)

{R(τ ‖ (τ)1 ⊗ θ)}

= inf
τ∈A∗(ν)

{R(τ ‖ (τ)1 ⊗ θ)}, (4.2)

where
A∗(ν) .= {τ ∈ A(ν) : R(τ ‖ (τ)1 ⊗ θ) ≤ I1(ν) + 1}.

We now show that A∗(ν) is compact. This will prove that the infimum in (4.2) is attained.
From the one to one correspondence between A(ν) and A1(ν) (see Remark 2.6) we will
then have that the infimum in (2.6) is attained for some q ∈ A1(ν). From the lower semi-
continuity of the map

P(IR+ ×D)× P(IR+ ×D) 3 (τ 1, τ2) 7→ R(τ1 ‖ τ2) ∈ [0,∞]

and the fact that A(ν) is closed, it follows that A∗(ν) is closed. Hence we need only
show that A∗(ν) is relatively compact in P(IR+ × D). Since (τ)1 = ν for all τ ∈ A∗(ν),
{(τ)1 : τ ∈ A∗(ν)} is relatively compact in P(IR+). Thus it suffices to show the relative
compactness of {(τ)2 : τ ∈ A∗(ν)} in P(D). From Theorem 13.2 of [1] and an application of
Chebychev’s inequality it follows that, to prove the above relative compactness, it suffices
to show

sup
τ∈A∗(ν)

∫

D
||z||τ(dx dz) <∞ (4.3)
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and

sup
τ∈A∗(ν)

∫

D
w′(z, δ)τ(dx dz)→ 0, as δ → 0, (4.4)

where w′(x, δ) is the usual modulus of continuity in the Skorohod space (cf. [1] page 122).

The proof of (4.3) is similar to that of (4.4) so we only consider the latter. For k, α ∈
(0,∞) and z ∈ D, let ck(z)

.
= min{αw′(z, δ), k}. Then for τ ∈ A∗(ν),

∫

D
ck(z)(τ)2(dz) =

∫

IR+×D
ck(z)τ(dx dz)

=

(∫

IR+×D
ck(z)τ(dx dz)− log

∫

IR+×D
eck(z)((τ)1 ⊗ θ)(dx dz)

)

+ log

∫

D
eck(z)θ(dz)

≤ R(τ ‖ (τ)1 ⊗ θ) + log

∫

D
eck(z)θ(dz)

≤ I1(ν) + 1 + log

∫

D
eαw

′(z,δ)θ(dz),

where the first inequality uses the Donsker-Varadhan variational formula for relative entropy
[9, Lemma 1.4.3(a)]. Letting k →∞, we have

sup
τ∈A∗(ν)

∫

D
w′(z, δ)(τ)2(dz) ≤

1

α

(
I1(ν) + 1 + log

∫

D
eαw

′(z,δ)θ(dz)

)
.

Observe that for all z ∈ D, w′(z, δ) → 0 as δ → 0 and that w′(z, δ) ≤ 2||z||. Thus (4.3)
follows from the above display in view of Assumption 2.1 upon taking first δ → 0 and
then α→∞. Thus A∗(ν) is relatively compact, and since it is closed, we have the desired
compactness. Thus the infimum in (2.6) is attained for some q ∈ A1(ν).

Now we consider the infimum in (2.8). Observe that

J
.
= inf

σ∈P(D)

{
R(σ ‖ θ) :

∫

D
||z||σ(dz) <∞,

∫

D
z(T )σ(dz) ≥ 0

}

= inf
σ∈P∗

tr(D)
R(σ||θ), (4.5)

where

P∗tr(D)
.
=

{
σ ∈ P(D) :

∫

D
||z||σ(dz) <∞,

∫

D
z(T )σ(dz) ≥ 0, R(σ ‖ θ) ≤ J + 1

}
.

Again using the variational formula for relative entropy, one can show in a manner similar
to the proof of (4.3) and (4.4) that

sup
σ∈P∗

tr(D)

∫

D
||z||σ(dz) <∞ (4.6)
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and

sup
σ∈P∗

tr(D)

∫

D
w′(z, δ)σ(dz)→ 0, as δ → 0. (4.7)

This proves the relative compactness of P∗tr(D) in P(D). Finally observing that P∗tr(D) is
closed, we have that P∗tr(D) is compact. Thus the infimum in (4.5) is attained. This proves
(b).

As is often the case when applying weak convergence arguments to prove large deviation
results, the compactness of the level sets of I (item (c) in the theorem) is proved using a
deterministic analogue of the argument used to prove the upper bound in Section 3. Details
of the argument are given in the Appendix.

5 Laplace Principle Lower Bound

The main result of this section is the following.

Theorem 5.1 Suppose that Assumptions 2.1, 2.2 and 2.7 hold. Then for all F ∈ Cb(P(ĪR+))
and x ∈ IR+,

lim inf
n→∞

1

n
log IEx [exp(−nF (Ln))] ≥ − inf

µ∈P(ĪR+)
{I(µ) + F (µ)}.

Note that by Theorem 3.1

inf
µ∈P(ĪR+)

{I(µ) + F (µ)} ≤ ||F ||∞ <∞.

Let ε ∈ (0,∞) be arbitrary and let π ∈ P(ĪR+) satisfy

I(π) + F (π) < inf
µ∈P(ĪR+)

{I(µ) + F (µ)}+ ε. (5.1)

In view of Lemma 3.2, to prove the theorem it suffices to show the following. There exists a
sequence of stochastic kernels {νnj , j = 0, . . .} in S(D|IR+ ×M(IR+)), and a corresponding
controlled sequence of IR+×M(IR+)×D-valued random variables {X̄n

j , L̄
n
j , Z̄

n
j }nj=0 on some

probability space (Ω̄, F̄ , ĪPx) defined as in (3.2), such that

lim sup
n→∞

ĪEx


 1
n

n−1∑

j=0

R
(
νnj (·|X̄n

j , L̄
n
j ) ‖ θ(·)

)
+ F (L̄n)


 ≤ I(π) + F (π). (5.2)

For the rest of section we will assume, without loss of generality, that 0 < π(IR+) < 1.
The cases where π(IR+) is 0 or 1 are proved using simple modifications of the argument
used in this (harder) case.
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To prove an inequality like (5.2) we must find controls νnj which steer the controlled
occupation measures L̄n to π and for which the expected mean relative entropy converges
to the rate function. An appropriate definition of the control is suggested by q̄ and σ0
in part (b) of Theorem 4.1. In fact, if π̂ were the unique invariant measure for p̄ and
if
∫
z(T )σ0(dz) > 0 then we could use the following scheme. Consider the time interval

1, ..., n. For a fraction π(IR+) of this time (i.e., from 0 till approximately nπ(IR+)) we
use νnj (dz|X̄n

j , L̄
n
j ) = q̄(dz|X̄n

j ). The ergodic theorem would then guarantee the desired
convergence of the controlled occupation measures and the expected mean relative entropy.
For the remaining time (from nπ(IR+) to n) we make the process transient by using νnj = σ0,
with the associated relative entropy cost. With this partitioning of time, the occupation
measures and normalized relative entropies will converge to their proper limits. The main
difficulty is that without additional conditions p̄ need not be ergodic. To deal with this,
a perturbation argument is used to approximate p̄ by an ergodic probability transition
function. In fact, we will perturb p̄ is the direction of an ergodic transition function p0,
introduced below, and this will suffice. In addition, the measure σ0 is not transient, and it
must also be perturbed slightly. Some of the arguments parallel those under more standard
assumptions, and therefore in places where the arguments are more or less identical we refer
the reader to [9].

Let θ0 be as in Assumption 2.7. The Markov chain defined via (2.3) with {Zn} having
the common law θ0 instead of θ will be denoted by {X0

n, n ∈ IN0}, and the transition
probability function of this Markov chain will be denoted by p0(x, dy). Note that from part
(c) of Assumption 2.7, it follows that Assumption 2.2 is satisfied with p replaced by p0. I.e.,
with l0, n0 as in Assumption 2.2 we have that for all x1, x2 ∈ IR+

∞∑

i=l0

1

2i
p
(i)
0 (x1, dy)¿

∞∑

j=n0

1

2j
p
(j)
0 (x2, dy).

We begin with an elementary stability result regarding the random walk.

Lemma 5.2 Suppose that Assumptions 2.1 and 2.2 hold. For x ∈ IR+ and n ∈ IN0, let
µx
n ∈ P(IR+) be defined by

µx
n(A)

.
=

1

n

n∑

j=0

IPx(X
0
j ∈ A), A ∈ B(IR+).

Then for all C ∈ (0,∞), the family {µx
n : n ∈ IN0, |x| ≤ C} is relatively compact in P(IR+).

Proof: Using the Lyapunov function V (x)
.
= x, the lemma follows from a standard result

in stochastic stability (cf. Theorems 11.3.4 and 12.4.4 of [12]).

Lemma 5.3 Suppose that Assumptions 2.1 and 2.2 hold. Then the following conclusions
hold.
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(a) The IR+-valued Markov chain X0
n has a unique invariant measure µ∗. The Markov

chain having µ∗ as its initial distribution and p0(x, dy) as the transition probability function
is ergodic.
(b) Let A ∈ B(IR+) be such that p(l0)(x0, A) > 0 for some x0 ∈ IR+, where l0 is as in
Assumption 2.2. Then µ∗(A) > 0.
(c) If ν ∈ P(IR+) is such that I1(ν) <∞, then ν ¿ µ∗.

Proof: Tightness proved in Lemma 5.2 and the Feller property of the Markov chain {X0
n}

implies that there is at least one p0(x, dy)-invariant probability measure. The proof of the
uniqueness of the invariant measure and part (b) is same as that of Lemma 8.6.2 of [9] on

noting that p(l0)(x0, dy) and p
(l0)
0 (x0, dy) are mutually absolutely continuous. Finally we

consider (c). From Theorem 4.1 (b)(3), we have that there exists q̄ ∈ S(D|IR+) such that

I1(ν) =

∫

IR+

R(q̄(·|x) ‖ θ(·))ν(dx).

Since I1(ν) <∞, we have that Γ
.
= {x ∈ IR+ : q̄(·|x)¿ θ(·)} satisfies ν(Γ) = 1. Since θ and

θ0 are mutually absolutely continuous, we can replace θ by θ0 in the definition of Γ. Let
p̄ ∈ S(IR+|IR+) be defined via (4.1). Then the above observations imply that, for all x ∈ Γ,

p̄(x, dy)¿ p0(x, dy).

Now let A ∈ B(IR+) be such that ν(A) > 0. It follows as in the proof of Lemma 8.6.2 of [9],

that p
(l0)
0 (x0, A) > 0 for some x0 ∈ IR+. Combining this with (b) we have that µ∗(A) > 0.

This proves (c).

Lemma 5.4 Let π ∈ P(ĪR+) be as in (5.1) and F ∈ Cb(P(ĪR+)) be given. Let ε0 ∈ (0,∞)
be arbitrary. Then there exists π∗ ∈ P(ĪR+), q

∗ ∈ A1(π̂∗) and σ
∗ ∈ Ptr(D) such that the

following hold.

(a) µ∗ ¿ π̂∗ and π̂∗ ¿ µ∗, where µ∗ is the unique invariant measure of the IR+-valued
Markov chain X0

n, as in Lemma 5.3.

(b)

I1(π̂∗) ≤
∫

IR+

R(q∗(·|x)‖θ(·))π̂∗(dx) ≤ I1(π̂) +
ε0
3
.

(c)

π∗(IR+)

∫

IR+

R(q∗(·|x)‖θ(·))π̂∗(dx) + (1− π∗(IR+))R(σ
∗‖θ) + F (π∗)

≤ I(π) + F (π) + ε0.

(d) The IR+-valued Markov chain with transition probability function p∗(x, dy) defined as

p∗(x,A)
.
=

∫

D
1{Π(x,z)∈A}q

∗(dz|x), x ∈ IR+, A ∈ B(IR+),

is ergodic with π̂∗ its unique invariant measure.
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(e)
∫
D z(T )σ

∗(dz) > 0.

Proof: Since F ∈ Cb(P(ĪR+)), there exists δ1 ∈ (0,∞) such that |F (π) − F (π̃)| ≤ ε0
3

whenever π̃ ∈ P(ĪR+) is such that ||π̃ − π||v ≤ δ1. Here, || · ||v denotes the total variation
norm. Define

δ0
.
= min

{
1, δ1,

ε0π(IR+)

3R(θ0 ‖ θ)
,

2ε0
3I1(π̂)

}
> 0

and let π∗ ∈ P(ĪR+) be given by the formula

π∗
.
=

(
1− δ0

2

)
π +

δ0
2
µ∗,

where µ∗ is as in Lemma 5.3. Then clearly

F (π∗) ≤ F (π) + ε0
3
. (5.3)

A straightforward calculation shows that

π̂∗ = (1− α)π̂ + αµ∗, (5.4)

where

α =
δ0

2((1− δ0
2 )π(IR+) +

δ0
2 )
≤ δ0

2
.

From (5.4) it is clear that µ∗ ¿ π̂∗. Also, since I1(π̂) < ∞, we have from Lemma 5.3
that π̂ ¿ µ∗. Combining this with (5.4) we have that π̂∗ ¿ µ∗. This proves (a). We now
consider (b). From Theorem 4.1 (b)(3), we have that there exists q̄ ∈ A1(π̂) such that

I1(π̂) =

∫

IR+

R(q̄(·|x) ‖ θ(·))π̂(dx).

Define λ∗ ∈ P(IR+ ×D) as

λ∗(A×B)
.
= (1− α)

∫

A
q̄(B|x)π̂(dx) + αθ0(B)µ∗(A), A ∈ B(IR+), B ∈ B(D).

We recall the definition of A given right after (2.7). Since q̄ ∈ A1(π̂) and µ
∗ is p0-invariant,

we have that λ∗ ∈ A(π̂∗). Let q∗ ∈ S(IR+|D) be such that

λ∗(A×B) =

∫

A
q∗(B|x)π̂∗(dx).

Then q∗ ∈ A1(π̂∗). This implies that

I1(π̂∗) ≤
∫

IR+

R(q∗(·|x) ‖ θ(·)) π̂∗(dx)

= R(λ∗ ‖ π̂∗ ⊗ θ)

≤ (1− α)
∫

IR+

R(q̄(·|x) ‖ θ(·))π̂(dx) + α

∫

IR+

R(θ0 ‖ θ)µ∗(dx)

= (1− α)I1(π̂) + αR(θ0 ‖ θ), (5.5)
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where the second inequality above follows from the convexity of the relative entropy func-
tion. Next note that our choice of δ0 is such that α ≤ ε0π(IR+)

6R(θ0‖θ)
≤ ε0

3R(θ0‖θ)
. Using this

observation in (5.5) it follows that

I1(π̂∗) ≤
∫

IR+

R(q∗(·|x) ‖ θ(·)) π̂∗(dx) ≤ I1(π̂) +
ε0
3
.

This proves (b).

Next, let σ0 ∈ P(D) be as in Theorem 4.1. Then J = R(σ0 ‖ θ),
∫
D ||z||σ0(dz) < ∞

and
∫
D z(T )σ0(dz) ≥ 0. Let θ1 be as in Assumption 2.7 and let κ ∈ (0, ε0

3R(θ1||θ)
). Define

σ∗
.
= (1− κ)σ0 + κθ1. Then

R(σ∗‖θ) ≤ (1− κ)R(σ0‖θ) + κR(θ1‖θ)
≤ R(σ0‖θ) +

ε0
3

= J +
ε0
3
.

Clearly
∫
R z(T )σ

∗(dz) > 0, and thus part (e) of the lemma holds. Now observe that

π∗(IR+)

∫

IR+

R(q∗(·|x)‖θ(·))π̂∗(dx) + (1− π∗(IR+))R(σ
∗‖θ)

≤ π∗(IR+)

∫

IR+

R(q∗(·|x)‖θ(·))π̂∗(dx) + (1− π(IR+))R(σ
∗‖θ)

≤ π∗(IR+)I1(π̂) + (1− π(IR+))J +
ε0
3

≤ π(IR+)I1(π̂) + (1− π(IR+))J +
2ε0
3

≤ I(π) +
2ε0
3
, (5.6)

where the first inequality follows on noting that π∗(IR+) > π(IR+) and the third inequality
is a consequence of the fact that with our choice of δ0, π

∗(IR+)− π(IR+) ≤ ε0
3I1(π̂)

. Now (c)

follows on combining (5.3) and (5.6). Since we assumed that π(IR+) > 0, it follows that
π∗(IR+) > 0 and so we have from (c) that

∫

IR+

R(q∗(·|x) ‖ θ(·))π̂∗(dx) ≤ I(π) + ε0 + 2‖F‖∞
π∗(IR+)

<∞.

Using this fact and the definition of λ∗ it follows as in the proof of Lemma 8.6.3 of [9] that
q∗(dy|x), θ and θ0 are mutually absolutely continuous, π̂∗− a.e. x. By modifying q∗ over
a π̂∗ null set we have the above mutual absolute continuity to hold for all x ∈ IR+. From
this it then follows that Assumption 2.2 is satisfied with p replaced by p∗. This combined
with the fact that π̂∗ is p∗-invariant, gives (d).

Now let π∗, q∗ and σ∗ be as in the previous lemma. We would like to show that there
exists a family of controls {νnj ∈ S(D|IR+ ×M(IR+)), j = 0, . . . , n, n ∈ IN} such that

lim sup
n→∞

ĪEx


 1
n

n−1∑

j=0

R(νnj (·|X̄n
j , L̄

n
j ) ‖ θ(·)) + F (L̄n)



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≤ π∗(IR+)

∫

IR+

R(q∗(·|x) ‖ θ(·))π̂∗(dx) + (1− π∗(IR+))R(σ
∗ ‖ θ) + F (π∗),

(5.7)

where {X̄n
j , L̄

n
j } are defined as in (3.2). Note that π∗(IR+) = (1−δ0/2)π(IR+)+δ0/2. Since

π(IR+) ∈ (0, 1) we have that π∗(IR+) ∈ (0, 1). Henceforth, we will denote π∗(IR+) by ρ. We
introduce the following canonical spaces. Let

(Ω1,F1) .= ((IR+)
∞,B((IR+)

∞)),

and
(Ω2,F2, Q)

.
= (D∞,B(D∞), (σ∗)⊗∞).

Denote by ĨPx the probability measure on (Ω1,F1) under which the canonical sequence

ξn(ω1)
.
= ω1(n), ω1 ∈ Ω1, n ∈ IN0,

is a Markov chain with transition probability function p∗(x, dy) and ξ0 ≡ x. From the
ergodicity of this Markov chain it follows that there exists a Φ ∈ B(IR+) such that π̂∗(Φ) = 1
(or equivalently, from Lemma 5.4, µ∗(Φ) = 1) and such that for all x ∈ Φ

L̃n
.
=

1

n

n∑

j=0

δξj
⇒ π̂∗, a.s. [ĨPx].

On the probability space (Ω2,F2, Q) define the canonical sequence ηn as

ηn(ω2)
.
= ω2(n), ω2 ∈ Ω2, n ∈ IN0

Now define
(Ω̄, F̄ , ĪPx)

.
= (Ω1 × Ω2,F1 ⊗F2, ĨPx ⊗Q).

We will continue to denote the canonical sequences {ξn}, {ηn} on this extended space by
the same symbols. Now define, for n ∈ IN and j ∈ 0, . . . , n, the random variables

X̄n
j
.
=

{
ξj j = 0, . . . [nρ]
Π(X̄n

j−1, ηj−[nρ]) j = [nρ] + 1, . . . , n,

where [·] denotes the greatest integer function. Clearly, {X̄n
j , j = 0, . . . , n} is a controlled

Markov chain, as in (3.2) with

νnj (dz|x, γ) =
{
q∗(dz|x) j = 0, . . . [nρ]− 1
σ∗(dz) j = [nρ], . . . , n.

(5.8)

In what follows, we will show that with this choice of {νnj } and {X̄n
j }, (5.7) holds. We begin

with the following lemma.

Lemma 5.5 Let Φ be as above. Then for all x ∈ Φ

L̄n ⇒ π∗, a.s. [ĪPx].
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Proof: It suffices to show that for all x ∈ Φ and continuous and bounded g ∈ Cb(ĪR+),

L̄n(g)→ 〈g, π∗〉, a.e. [ĪPx].

Now fix x ∈ Φ and let g ∈ Cb(ĪR+). Let ε > 0 be arbitrary, and let Ωx
1 ∈ F1 be such that

ĨPx(Ω
x
1) = 1, and for all ω1 ∈ Ωx

1

1

n

n∑

j=0

g(ξj(ω1))→ 〈g, π̂∗〉

as n→∞. Fix such an ω1 ∈ Ω1, and let N0 ∈ IN be such that
∣∣∣∣∣∣
1

n

[nρ]∑

j=0

g(ξj(ω1))− ρ〈g, π̂∗〉

∣∣∣∣∣∣
≤ ε for all n ≥ N0. (5.9)

Since g ∈ Cb(ĪR+), there exists L ∈ (0,∞) such that

|g(x)− g(∞)| < ε for all x > L. (5.10)

Next let Ω∗2 ∈ F2 be such that Q(Ω∗2) = 1 and for all ω2 ∈ Ω∗2, as n→∞,

1

n

n∑

j=0

ηj(ω2)(T )→
∫

D
z(T )σ∗(dz) > 0.

Fix such an ω2 ∈ Ω∗2 and let J0 ∈ IN be such that

inf
n≥J0

1

n

n∑

j=0

ηj(ω2)(T )
.
= κ > 0.

Without loss of generality we can assume that J0κ ≥ L. Now define

N1
.
= max

{
N0,

J0 + 1

1− ρ

}
.

Let ω
.
= (ω1, ω2). For n ≥ N1∣∣∣∣∣∣
1

n

n∑

j=0

g(X̄n
j (ω))− 〈g, π∗〉

∣∣∣∣∣∣
=

∣∣∣∣∣∣
1

n

n∑

j=0

g(X̄n
j (ω))− ρ〈g, π̂∗〉 − (1− ρ)g(∞)

∣∣∣∣∣∣

≤

∣∣∣∣∣∣
1

n

[nρ]∑

j=0

g(X̄n
j (ω))− ρ〈g, π̂∗〉

∣∣∣∣∣∣

+

∣∣∣∣∣∣
1

n

n∑

j=[nρ]+1

g(X̄n
j (ω))− (1− ρ)g(∞)

∣∣∣∣∣∣

≤ ε+
1

n

n∑

j=[nρ]+J0

|g(X̄n
j (ω))− g(∞)|

+ ‖g‖∞
[
J0
n

+
n− [nρ]− J0 + 1− n(1− ρ)

n

]

≤ ε+ sup
[nρ]+J0≤j≤n

|g(X̄n
j (ω))− g(∞)|

+ ‖g‖∞
J0 + 2

n
, (5.11)
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where the second inequality follows from (5.9) and the observation that since n ≥ J0+1
1−ρ , we

have that n ≥ [nρ] + J0. Since the constraining action on the controlled random walk acts
only in the positive direction, for n ≥ N1 and j ≥ [nρ] + J0

X̄n
j (ω) ≥ ξ[nρ](ω1) +

j−[nρ]∑

k=1

ηk(ω2)(T ).

This implies

X̄n
j (ω)

j − [nρ]
≥

ξ[nρ](ω1)

j − [nρ]
+

∑j−[nρ]
k=1 ηk(ω2)(T )

j − [nρ]

≥
∑j−[nρ]

k=1 ηk(ω2)(T )

j − [nρ]

≥ κ,

and thus
X̄n

j ≥ κ(j − [nρ]) ≥ κJ0 ≥ L.
In view of (5.10), for such n and j

|g(X̄n
j (ω))− g(∞)| ≤ ε.

Substituting this in (5.11) we have
∣∣∣∣∣∣
1

n

n∑

j=0

g(X̄n
j (ω))− 〈g, π∗〉

∣∣∣∣∣∣
≤ 2ε+

J0 + 2

n
.

We send n → ∞ in the last display. Since ε > 0 is arbitrary, ω = (ω1, ω2) ∈ Ωx
1 × Ω∗2 is

arbitrary, and ĪPx(Ω
x
1 × Ω∗2) = 1, the result follows.

Finally, we prove Theorem 5.1.

Proof of Theorem 5.1. In order to prove the theorem we will show that every subsequence
{n′} has a further subsequence along which the limsup of − 1

n log IEx [exp(−nF (Ln))] is
bounded above by infµ∈P(ĪR+){I(µ) + F (µ)}. To minimize notation, we will denote the
subsequence {n′} once more by {n}.

From Corollary 1.2.5 of [9], it follows that we can assume without loss of generality that
F is Lipschitz continuous on P(ĪR+) with respect to the Levy-Prohorov metric. By Lemma
3.2

lim sup
n→∞

− 1

n
log IEx [exp(−nF (Ln))]

= lim sup
n→∞

inf
{νn

j
}
ĪEx


 1
n

n−1∑

j=0

R
(
νnj (·|X̄n

j , L̄
n
j ) ‖ θ(·)

)
+ F (L̄n)




≤ lim sup
n→∞

ĪEx


 1
n

n−1∑

j=0

R
(
νnj (·|X̄n

j , L̄
n
j ) ‖ θ(·)

)
+ F (L̄n)


 ,
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where {νnj } are as defined in (5.8).

Now suppose that x ∈ Φ, where Φ is as in Lemma 5.5. Then from Lemma 5.5,

ĪEx[F (L̄
n)]→ F (π∗). (5.12)

Also,

1

n

n−1∑

j=0

R
(
νnj (·|X̄n

j , L̄
n
j ) ‖ θ(·)

)

=
1

n

[nρ]−1∑

j=0

R (q∗(·|ξj) ‖ θ(·)) +
1

n

n−1∑

j=[nρ]

R (σ∗ ‖ θ)

Thus

lim sup
n→∞

ĪEx


 1
n

n−1∑

j=0

R
(
νnj (·|X̄n

j , L̄
n
j ) ‖ θ(·)

)



≤ lim sup
n→∞

1

n

[nρ]∑

j=0

ĪEx [R (q∗(·|ξj) ‖ θ(·))] + (1− ρ)R (σ∗ ‖ θ) . (5.13)

For x ∈ IR+ let

Dn
x
.
= Ēx

∣∣∣∣∣∣
1

n

n∑

j=0

R (q∗(·|ξj) ‖ θ(·))−
∫

IR+

R(q∗(·|y) ‖ θ(·))π̂∗(dy)

∣∣∣∣∣∣
.

Since ∫

IR+

R(q∗(·|y) ‖ θ(·))π̂∗(dy) ≤ I(π∗)

ρ
<∞,

we have by the L1 ergodic theorem that
∫

IR+

Dn
x π̂
∗(dx)→ 0, as n→∞.

Thus we can find a subsequence, denoted once more by {n}, and Φ1 ∈ B(IR+) such that
π̂∗(Φ1) = 1 and for all x ∈ Φ1, D

n
x → 0 as n→∞. Combining this observation with (5.12)

and (5.13) we have that for all x ∈ Φ ∩ Φ1

lim sup
n→∞

− 1

n
log IEx [exp(−nF (Ln))] ≤ ρ

∫

IR+

R (q∗(·|y) ‖ θ(·)) π̂∗(dy)

+ (1− ρ)R(σ∗ ‖ θ) + F (π∗)

≤ I(π) + F (π) + ε0

≤ inf
µ∈P(ĪR+)

{I(µ) + F (µ)}+ ε+ ε0.

(5.14)

The last two inequalities follow from Lemma 5.4 and (5.1), respectively. Now an argument,
as on pages 316-318 of [9], using the Lipschitz property of F and the transitivity condition
(Assumption 2.2) shows that the above inequality, in fact, holds for all x ∈ IR+. Letting
ε→ 0 and ε0 → 0 in (5.14) completes the proof.
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6 Reflected Brownian Motion and the M/M/1 Queue

In this section we use the large deviation results for the discrete time Markov chain con-
sidered in Sections 3, 4 and 5 to obtain the empirical measure LDP for two very basic
continuous time models: reflected Brownian motion and the M/M/1 queue.

We begin with the study of reflected Brownian motion. Let {W (t), t ∈ [0,∞)} be a
standard Brownian motion on some probability space (Ω,F , IP ). Let b ∈ IR and σ ∈ IR+

be fixed. Define
Y (t)

.
= Y (0) + bt+ σW (t), t ∈ [0,∞).

We will only consider the case when Y (0) = x for some point x ∈ IR+, in which case
expectation will be denoted by IEx.

Reflected Brownian motion X(·) is defined by the relation

X(t)
.
= Γ(Y )(t), t ∈ [0,∞),

where Γ is the Skorohod map defined in (2.1). It is well known that X(·) is a Feller Markov
process with values in IR+. For T ∈ (0,∞) define the empirical measure LT corresponding
to this Markov process as the P(IR+)-valued random variable given by

LT (A)
.
=

1

T

∫ T

0
δXs(A)ds, A ∈ B(IR+). (6.1)

We now introduce the rate function that will govern the large deviation probabilities of
{LT , T ∈ (0,∞)}.

Let

H+ .
=

{
u ∈ C2(IR+) : u′(0) = 0, inf

x∈IR+

u(x) > 0, lim
x→∞

Au

u
(x) = −(b−)2

2σ2

}
,

where

(Au)(x)
.
=
σ2

2
u′′(x) + bu′(x), (6.2)

and for x ∈ IR, (x)− .
= −min{x, 0}. For ν ∈ P(IR+), let

I1(ν)
.
= − inf

u∈H+

∫

IR+

(
Au

u

)
(x)ν(dx), (6.3)

The rate function I(·) for the empirical measure LDP for the reflected Brownian motion
X(·) is then given as

I(ν)
.
= ν(IR+)I1(ν̂) + (1− ν(IR+))

(b−)2

2σ2
, ν ∈ P(ĪR+). (6.4)
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Theorem 6.1 Let I(·) be defined as in (6.4). Then for all F ∈ Cb(P(ĪR+)) and x ∈ IR+

lim
T→∞

1

T
log IEx

[
exp(−TF (LT ))

]
= − inf

µ∈P(IR+)
{I(µ) + F (µ)}. (6.5)

Furthermore, I(·) is a rate function on P(ĪR+).

For h ∈ (0,∞), define the approximating occupation measures by the relation

Ln
h(A)

.
=

1

n

n−1∑

j=0

δX(jh)(A), A ∈ B(IR+), n ∈ IN. (6.6)

Note that since
X((n+ 1)h) = Π(X(nh), ξhn), n ∈ IN0, (6.7)

where
ξhn

.
= (σ(W (nh+ t)−W (nh)) + bt)0≤t≤h, n ∈ IN0,

the LDP for Ln
h for each fixed h follows from Theorem 2.9 on setting T equal to h.

A main estimate in the proof of Theorem 6.1 is the following lemma.

Lemma 6.2 For every δ > 0.

lim sup
h→0

lim sup
n→∞

1

nh
log IPx

{
d(Lnh, Ln

h) > δ
}
= −∞,

where d is the Levy-Prohorov metric on P(ĪR+).

Proof. The proof is an immediate consequence of Lemma 3.4 of [6] on using the Markov
property of X(·) and observing that for all δ > 0

sup
x∈IR+

IPx

{
sup

0≤s≤h
|X(s)− x| ≥ δ

}
→ 0

as h→ 0.

Sketch of the Proof of Theorem 6.1: It suffices to prove (6.5) for functions F which are
Lipschitz continuous. Fix such an F and denote the Lipschitz constant of F by M . From
Theorem 2.9 we have that

lim
n→∞

1

n
log IEx[exp(−nF (Ln

h))] = − inf
µ∈P(ĪR+)

{Ih(µ) + F (µ)},

where
Ih(µ)

.
= µ(IR+)Ih,1(µ̂) + (1− µ(IR+))Jh. (6.8)
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Here

Ih,1(ν)
.
= inf

q∗∈A1(ν)

∫

IR+

R(q∗(·|x) ‖ θh(·))ν(dx), (6.9)

θh is a Wiener measure with drift b and variance σ2, and

Jh
.
= inf

γ∈Ptr(Dh)
R(γ ‖ θh).

Using the property u′(0) = 0 for u ∈ H+, a minor modification of the proof of Theorem 2.1
of [7] shows that for ν ∈ P(IR+)

Ih,1(ν) = − inf
u∈H+

∫

IR+

log

((
Thu

u

)
(x)

)
ν(dx), (6.10)

where

(Thu)(x)
.
=

∫

D
u(Πh(x, z))θh(dz).

The main difference, from Theorem 2.1 of [7], in (6.10) is that we use H+ as the class of
test functions rather than

H̃+ .
=

{
u ∈ C2

b (IR+) : u′(0) = 0, inf
x∈IR+

u(x) > 0

}
.

However, note that every u in H̃+ (and H+) can be modified outside a compact interval to
yield a test function in H+ (resp. H̃+). Furthermore, for all test functions u in H+ and H̃+,

supx∈IR+
| log

((
Thu
u

)
(x)
)
| < ∞. These observations imply that the above modification in

the class of test functions does not change the value of the infimum. More precisely, the
infimum on the right side of (6.10) is the same as

inf
u∈H̃+

∫

IR+

log

((
Thu

u

)
(x)

)
ν(dx).

We will next show that

inf
ν∈P(ĪR+)

{I(ν) + F (ν)} = lim
h→0

inf
ν∈P(ĪR+)

{
Ih(ν)

h
+ F (ν)

}
. (6.11)

Once (6.11) is proved we have the result as follows. Using the boundedness and Lipschitz
continuity of F ,

1

T
log IEx[exp(−TF (LT ))] =

1

h[T/h]
log IEx[exp(−[T/h]hF (L[T/h]h))] +O(h/T ),

where for x ∈ IR+, [x] denotes the integer part of x. Thus,

lim inf
T→∞

1

T
log IEx

[
exp(−TF (LT ))

]

= lim inf
n→∞

1

nh
log IEx

[
exp(−nhF (Lnh))

]

≥ lim inf
n→∞

1

nh
log IEx

[
1d(Lnh,Ln

h
)≤δ exp(−nhF (Lnh))

]

≥ lim inf
n→∞

1

nh
log {IEx [exp(−nh(F (Ln

h)−Mδ))

− exp (nh(||F ||∞ +Mδ))IPx(d(L
nh, Ln

h) > δ)
]}
.
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Taking the limit as h→ 0 and using Lemma 6.2 gives

lim inf
T→∞

1

T
log IEx

[
exp(−TF (LT ))

]

≥ lim inf
h→0

lim inf
n→∞

1

nh
log IEx [exp(−n(hF (Ln

h)−Mhδ))]

≥ lim inf
h→0

−1

h
inf

µ∈P(ĪR+)
{Ih(µ) + hF (µ)} −Mδ

= lim inf
h→0

− inf
µ∈P(ĪR+)

{
1

h
Ih(µ) + F (µ)

}
−Mδ

= − inf
µ∈P(ĪR+)

{I(µ) + F (µ)} −Mδ,

where the last step follows from (6.11). Since δ > 0 is arbitrary, this proves the Laplace
principle lower bound. For the upper bound, one has in a similar way that

lim inf
T→∞

1

T
log IEx

[
exp(−TF (LT ))

]
≤ lim sup

h→0
− inf

µ∈P(ĪR+)

{
1

h
Ih(µ) + F (µ)

}
.

= − inf
µ∈P(ĪR+)

{I(µ) + F (µ)} ,

where the last step, once more, follows from (6.11). Thus in order to complete the proof it
suffices to prove (6.11). Now as in the proof of Lemma 3.1 of [6], one can show that for all
ν ∈ P(IR+)

lim
h→0

1

h
Ih,1(ν) = I1(ν) (6.12)

and
1

h
Ih,1(ν) ≤ I1(ν). (6.13)

A standard argument (see, e.g., the proof of [9, Lemma C.5.1]) shows that

inf
γ∈P(Dh):

∫
Dh

x(h)γ(dx)=a
R(γ ‖ θh) =

h

2

(a− b)2
σ2

.

Thus,

Jh = inf
a≥0

h

2

(a− b)2
σ2

=
[(b)−]2h

2σ2
.

Let ε > 0 be arbitrary and let ν∗ ∈ P(ĪR+) be such that

I(ν∗) + F (ν∗) ≤ inf
µ∈P(ĪR+)

{I(µ) + F (µ)}+ ε. (6.14)

Note that

inf
µ∈P(ĪR+)

{
1

h
Ih(µ) + F (µ)

}
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≤ 1

h

(
ν∗(IR+)Ih,1(ν̂

∗) + (1− ν∗(IR+))
[(b)−]2

2σ2
h

)
+ F (ν∗)

≤ ν∗(IR+)I1(ν̂
∗) + (1− ν∗(IR+))

[(b)−]2

2σ2
+ F (ν∗)

= inf
µ∈P(ĪR+)

{I(µ) + F (µ)}+ ε,

where the second inequality follows from (6.13). Since ε > 0 is arbitrary, we have that

inf
ν∈P(ĪR+)

{I(ν) + F (ν)} ≥ lim sup
h→0

inf
ν∈P(ĪR+)

{
Ih(ν)

h
+ F (ν)

}
. (6.15)

Now we prove the reverse inequality. Let ε > 0 be arbitrary and let νh ∈ P(ĪR+) be such
that

Ih(νh)

h
+ F (νh) ≤ inf

ν∈P(ĪR+)

{
Ih(ν)

h
+ F (ν)

}
+ ε. (6.16)

From (6.10) and [6] (see page 34) we have that for all u ∈ H+ and µ ∈ P(IR+)

Ih,1(µ)

h
≥ −1

h

∫

IR+

log

(
Thu

u

)
(x)µ(dx)

= −
∫

IR+

(
Au

u

)
(x)µ(dx) + o(1),

where the term o(1) may depend on u but is independent of µ. Since P(ĪR+) is compact,
we can assume without loss of generality that νh converges weakly to some ν ∈ P(ĪR+).
Choose u ∈ H+ such that

−
∫

ĪR+

(
Au

u

)
(x)ν(dx) ≥ I(ν)− ε.

Then

lim inf
h→0

inf
µ∈P(ĪR+)

{
Ih(µ)

h
+ F (µ)

}
+ ε ≥ lim inf

h→0

{
Ih(νh)

h
+ F (νh)

}

≥ lim inf
h→0

{
−νh(IR+)

∫

IR+

(
Au

u

)
(x)ν̂h(dx)

+ (1− νh(IR+))
[(b)−]2

2σ2
+ F (νh)

}

= lim inf
h→0

{
−
∫

ĪR+

(
Au

u

)
(x)νh(dx) + F (νh)

}

=

{
−
∫

ĪR+

(
Au

u

)
(x)ν(dx) + F (ν)

}

≥ I(ν) + F (ν)− ε
≥ inf

ν∈P(ĪR+)
{I(ν) + F (ν)− ε},
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where in the fourth line of the display we have denoted the continuous extension of function
Au
u to ĪR+ by the same notation. Such a continuous extension is uniquely defined in view
of the constraint on the test functions in H+. The fifth line of the display follows on using
the weak convergence of νh to ν and the continuity and boundedness of Au

u and F . The
above inequality along with (6.15) proves (6.11) and hence the result.

We now consider the empirical measure LDP for the M/M/1 queue. Strictly speaking,
the discrete time approximations to this model do not satisfy the transitivity condition
(Assumption 2.2) for all x ∈ IR+. However, if X(0) is an integer then X(t) is an integer for
all t ∈ [0,∞), and it is easy to check that the corresponding condition is satisfied for all x1
and x2 in IN0.

Let N1, N2 be independent Poisson processes with constant rates λ and µ respectively.
Define

X(t)
.
= Γ(N1 −N2)(t), t ∈ [0,∞),

where Γ is, as before, the Skorohod map. Define the occupation measure LT via (6.1). Let
A be the generator of the Markov process X(·). For f : IN0 7→ IR, a bounded function,
(Af) : IN0 7→ IR is the map given as

(Af)(x) =

{
λ(f(x+ 1)− f(x)) + µ(f(x− 1)− f(x)) if x ∈ IN

λ(f(x+ 1)− f(x)) if x = 0.

Define

H+ .
=

{
u : IN0 → IR : inf

u∈IN0

u(x) > 0, lim
x→∞

Au

u
(x) = −((

√
λ−√µ)−)2

}
.

For ν ∈ P(IR+) with ν(IN0) = 1, define I1(ν) via (6.3). Now the rate function I(·) governing
the empirical measure LDP for X(·) is given by

I(ν) =

{
ν(IR+)I1(ν̂) + (1− ν(IR+))((

√
λ−√µ)−)2 if ν̂(IN0) = 1

∞ otherwise.
(6.17)

The large deviation result for {LT , T ∈ (0,∞)} is now given as follows.

Theorem 6.3 Let I(·) be defined as in (6.17). Then for all F ∈ Cb(P(ĪR+)) and x ∈ IN0

lim
T→∞

1

T
log IEx

[
exp(−TF (LT ))

]
= − inf

µ∈P(ĪR+)
{I(µ) + F (µ)}. (6.18)

Furthermore, I is a rate function.

The proof is very similar to the proof of Theorem 6.1 and therefore omitted.

Remark 6.4 We expect that the techniques developed in this paper can also be applied
to analogous processes on IR (rather than IR+), which leads to the following conjecture.
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Let X be a Brownian motion with drift b and diffusion σ, and without loss of generality
assume b ≤ 0. Let LT denote the empirical measure for X. We consider the two-point
compactification of IR, and denote a probability measure on this space by ν = (ν̂, a1, a2),
where ν̂ is a sub-probability measure on IR, a1 is the mass ν places on −∞, and a2 is the
mass placed on ∞. Our conjecture is that {LT , T ∈ (0,∞)} satisfies a LDP, with the rate
function

I(ν)
.
= − inf

u∈H+

∫

IR

(
Au

u

)
(x)ν̂(dx) + a2

b2

2σ2
,

where

H+ .
=

{
u ∈ C2(IR) : inf

x∈IR
u(x) > 0, lim

x→∞

Au

u
(x) = − b2

2σ2
, lim

x→−∞

Au

u
(x) = 0

}
,

where A is given by (6.2).

7 Appendix

Proof of Lemma 3.3. In order to prove the lemma, it suffices to prove the tightness of
the family {

L̄n, n ∈ IN
}
,

of P(ĪR+)-valued random variables and the tightness of the following families of P(D)-valued
random variables: 



1

n

n−1∑

j=0

ν̄nj (dy | X̄n
j , L̄

n
j ), n ∈ IN



 , (7.1)




1

n

n−1∑

j=0

δZ̄n
j
, n ∈ IN



 . (7.2)

The tightness of the first family is immediate on observing that P(ĪR+) is a compact Polish
space.

The proofs of tightness of (7.1) and (7.2) are essentially the same, and so we give details
for just the harder case of (7.2). In order to show tightness, it suffices to show that the
family

{mn(dz), n ∈ IN}
is tight, where

mn(dz)
.
=

1

n

n−1∑

j=0

P̄x(Z̄
n
j ∈ dz).

From Theorem 13.2 of [1] and an application of Chebychev’s inequality it follows that, in
order to prove this statement it suffices to show

sup
n∈IN

∫

D
‖x‖mn(dx) <∞ (7.3)
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and

sup
n∈IN

∫

D
w′(x, δ)mn(dx)→ 0, as n→∞, (7.4)

where w′(x, δ) is the usual modulus of continuity in the Skorohod space (cf. [1] page 122).
The proof of (7.3) is similar to that of (7.4), and so we only consider the latter. We now prove
(7.4). For k ∈ (0,∞), α, δ ∈ (0,∞) and y ∈ D, let ck(y, α, δ) ≡ ck(y)

.
= min{αw′(y, δ), k}.

Then for j ∈ {0, 1, . . . , n− 1},

ĪExck(Z̄
n
j ) = ĪEx

[
ĪEx

[
ck(Z̄

n
j ) | (X̄n

j , L̄
n
j )
]]

= ĪEx

[∫

D
ck(z)ν̄

n
j (dz | X̄n

j , L̄
n
j )

]

= ĪEx

[∫

D
ck(z)ν̄

n
j (dz | X̄n

j , L̄
n
j )− log

∫

D
eck(z)θ(dz)

]

+ log

∫

D
eck(z)θ(dz)

≤ ĪEx

[
R(ν̄nj (· | X̄n

j , L̄
n
j ) ‖ θ(·))

]
+M(α, δ),

where the last inequality follows from the variational representation for relative entropy
(e.g., Lemma 1.4.3 (a) of [9]) and M(α, δ)

.
= log

∫
D e

αw′(z,δ)θ(dz). Summing over j =
0, 1, . . . , n− 1,

ĪEx



n−1∑

j=0

ck(Z̄
n
j )


 ≤ ĪEx



n−1∑

j=0

R(ν̄nj (· | X̄n
j , L̄

n
j ) ‖ θ(·))


+M(α, δ)n

≤ (∆ +M(α, δ))n.

Thus
∫

D
ck(x)mn(dx) =

1

n
ĪEx



n−1∑

j=0

ck(Z̄
n
j )


 ≤ ∆+M(α, δ).

Taking k →∞, we have that

sup
n

∫

D
w′(x, δ)mn(dx) ≤

∆

α
+
M(α, δ)

α
. (7.5)

Observing that w′(x, δ)→ 0 as δ → 0 and that w′(x, δ) ≤ 2α||x|| we have from Assumption
2.1 and an application of dominated convergence theorem that for all α ∈ (0,∞),M(α, δ)→
0 as δ → 0. Now (7.4) follows on taking δ → 0 and then taking α → ∞ in (7.5). This
proves the tightness of the family in (7.2).

Proof of part (c) of Theorem 4.1. As noted previously, the proof that the rate function
has compact level sets is essentially a simplified version of the proof of the Laplace principle
upper bound, and is included here only for completeness.

Since P(ĪR+) is compact, the set {π ∈ P(ĪR+) : I(π) ≤ M} is relatively compact for
all M ∈ (0,∞). Thus compactness of this set follows if the rate function is lower semi-
continuous. Let πn ∈ P(ĪR+) be such that πn → π ∈ P(ĪR+). We need to show that

I(π) ≤ lim inf
n→∞

I(πn).

41



We can assume without loss of generality that

lim inf
n→∞

I(πn) <∞.

Choose a subsequence {nk}k∈IN such that

sup
k
I(πnk

)
.
= L <∞

and
lim
k→∞

I(πnk
) = lim inf

n→∞
I(πn).

Henceforth, we denote the subsequence {πnk
} by {πk}. Let πk have the decomposition

πk = ρkπ̂k + (1− ρk)δ∞.

From (b) of Theorem 4.1, there exists qk ∈ A1(π̂k) and σ ∈ Ptr(D) such that

I(πk) = ρk

∫

IR+

R(qk(·|x) ‖ θ(·))π̂k(dx) + (1− ρk)R(σ ‖ θ)

= R(τk ‖ πk ⊗ θ), (7.6)

where τk ∈ P(ĪR+ ×D) is defined as

τk(A×B) = ρk

∫

A
qk(B|x)π̂k(dx) + (1− ρk)σ(B)δ∞(A)

and the last equality in (7.6) follows from Lemma 1.4.3 (f) of [9]. Since ĪR+ is compact
and supk R(τk ‖ πk ⊗ θ) <∞, we have as in the proof of (b) that {τk, k ∈ IN} is relatively
compact in P(ĪR+ ×D). Now assume without loss of generality that τk → τ ∈ P(ĪR+ ×D)
as k → ∞. Observe that since (τk)1 = πk, we have that (τ)1 = π. Using the lower
semi-continuity of relative entropy, it follows from (7.6) that

L ≥ lim
k→∞

I(πk) ≥ R(τ ‖ π ⊗ θ). (7.7)

Now let q∗ ∈ S(ĪR+ ‖ D) be such that τ(dx dz) = q∗(dz|x)π(dx) and let the decomposition
for π be given as

π = ρπ̂ + (1− ρ)δ∞.
Using Lemma 1.4.3 (f) of [9], once more, we have that

R(τ ‖ π ⊗ θ) = ρ

∫

IR+

R(q∗(·|x) ‖ θ(·))π̂(dx) + (1− ρ)R(q∗(·|∞) ‖ θ(·)).

An argument similar to the one in the proof of Lemma 3.10 shows that if ρ > 0 then
q∗ ∈ A1(π̂). We claim now that if ρ < 1 then q∗(·|∞) ∈ Ptr(D). Observe that once the
claim is proved, the lower semicontinuity follows on noting that

lim
k→∞

I(πk)

≥ R(τ ‖ π ⊗ θ)
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= ρ

∫

IR+

R(q∗(·|x) ‖ θ(·))π̂(dx) + (1− ρ)R(q∗(·|∞) ‖ θ(·))

≥ ρ inf
q∗∈A1(π̂)

∫

IR+

R(q∗(·|x) ‖ θ(·))π̂(dx) + (1− ρ) inf
σ∈Ptr(D)

R(σ ‖ θ)

= ρI1(π̂) + (1− ρ)J
= I(π).

We now prove the claim. Using the observation that supk R(τk ‖ πk⊗ θ) ≤ L <∞, we have
as in the proof of Lemma 3.9 (cf. (3.29)) that

(1− ρ)
∫

D
z(T )q∗(dz|∞) = lim

k→∞

∫

IR+×D
z(T )F ′ck

(x)τ(dx dz), (7.8)

where {ck} is a sequence of positive reals increasing to ∞ and Fc is as in (3.14).

Also, an argument parallel to the one in the proof of Lemma 3.7 shows that for c ∈ (0,∞),
∫

IR+×D
z(T )F ′c(x)τ̂k(dx dz) ≥ −5

∫

D
||z||1||z||≥ c

2
(τ̂k)2(dz)−

2

c

∫

D
||z||(τ̂k)2(dz). (7.9)

The main difference from the proof of Lemma 3.7 is that instead of using the inequality

1

n

n−1∑

i=0

(
Fc(X̄

n
i+1)− Fc(X̄

n
i )
)
≥ −Fc(X̄

n
0 )

n

as in (3.19), one uses the invariance property of τ̂k to conclude that
∫

IR+×D
(Fc(ΠT (x, z))− Fc(x)) τ̂k(dx dz) = 0.

Because of this invariance property, unlike in (3.17), one does not obtain the third ”residual
term” in (7.9). Hence

∫

ĪR+×D
z(T )F ′c(x)τk(dx dz) (7.10)

= ρk

∫

IR+×D
z(T )F ′c(x)τ̂k(dx dz) + (1− ρk)

∫

D
z(T )σ(dz)

≥ −5ρk
∫

D
||z||1||z||≥ c

2
(τ̂k)2(dz)−

2ρk
c

∫

D
||z||(τ̂k)2(dz) + (1− ρk)

∫

D
z(T )σ(dz)

≥ −5
∫

D
||z||1||z||≥ c

2
(τk)2(dz)−

2

c

∫

D
||z||(τk)2(dz),

(7.11)

where the last step follows on recalling that
∫
D z(T )σ(dz) ≥ 0 for σ ∈ Ptr(D). Now it

follows via arguments similar to those in the proof of Lemma 3.8 (See (3.23), (3.24) and
(3.25)) that there exists a sequence of positive reals {cm} such that cm → ∞ as m → ∞,
and for all m ∈ IN ,

∫

ĪR+×D
z(T )F ′cm

(x)τk(dx dz)→
∫

ĪR+×D
z(T )F ′cm

(x)τ(dx dz),
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∫

D
||z||1||z||≥ cm

2
(τk)2(dz)→

∫

D
||z||1||z||≥ cm

2
(τ)2(dz)

and ∫

D
||z||(τk)2(dz)→

∫

D
||z||(τ)2(dz)

as k →∞. Now taking the limit as k →∞ in (7.11) with c replaced by cm, we have that

∫

ĪR+×D
z(T )F ′cm

(x)τ(dx dz) ≥ −5
∫

D
||z||1||z||≥ cm

2
(τ)2(dz)−

2

cm

∫

D
||z||(τ)2(dz).

Finally taking limit as m→∞, we have from (7.8) that

(1− ρ)
∫

D
z(T )q∗(dz|∞) ≥ 0.

This proves the claim.
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Notation and conventions. We summarize here for the readers convenience various
notations and conventions that are used throughout the paper.

IN the set of positive integers
IN0 the set of nonnegative integers
IR the set of reals
IR+ the set of nonnegative reals
DT right continuous functions with left limits from [0, T ] to

IR, endowed with the usual Skorohod topology
Cc(IR+) the space of real continuous functions on IR+ with

compact support
C2

b (IR+) the space of real, bounded twice continuously
differentiable functions on IR+

BM(S) the class of real-valued bounded measurable
functions on S

Cb(S) the subclass of BM(S) of continuous functions on S
B(S) the Borel σ-field on a complete separable metric space S
P(S) the space of probability measures on (S,B(S)) with the

weak convergence topology
D([0, T ] : S) the Skorohod space of S-valued right continuous functions

with left hand limits
D+([0, T ] : IR) the subspace of D([0,∞) : IR) of functions f satisfying

f(0) ∈ IR+

νn ⇒ ν the sequence νn in P(S) converges weakly to ν
M(S) denotes the space of positive measures on (S,B(S)) with

total mass not exceeding 1, with the topology of
weak convergence of measures

〈f, ν〉
∫
S f(x)dν(x) for f ∈ BM(S), ν ∈ P(S)

||g||∞ supx∈S |g(x)| for g ∈ Cb(S)
δx the probability measure which is concentrated at the

point x ∈ S
1A the indicator function of the set A

A function I mapping S into [0,∞] is called a rate function if for all M ∈ [0,∞) the
level set {x ∈ S : I(x) ≤ M} is compact. The infimum over an empty set is taken to be
∞. As another convention, 0×∞ is taken to be 0. A family of random variables with val-
ues in a Polish space is said to be tight if the corresponding family of probability laws is tight.
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