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Abstract. In this paper we consider the Laplace transforms of some random series, in
particular, the random series derived as the squared L2 norm of a Gaussian stochastic process.
Except for some special cases, closed form expressions for Laplace transforms are, in general,
rarely obtained. It is the purpose of this paper to show that for many Gaussian random
processes the Laplace transform can be expressed in terms of well understood functions using
complex-analytic theorems on infinite products, in particular, the Hadamard Factorization
Theorem. Together with some tools from linear differential operators, we show that in many
cases the Laplace transforms can be obtained with little work. We demonstrate this on
several examples. Of course, once the Laplace transform is known explicitly one can easily
calculate the corresponding exact L2 small ball probabilities using Sytaja Tauberian theorem.
Some generalizations are mentioned.

Key words and phrases: Small ball probability, Laplace Transforms, Hadamard’s factoriza-
tion theorem.

AMS 2000 subject classifications: Primary 60G15

Submitted to EJP on February 24, 2003. Final version accepted on August 14 , 2003.

1Department of Mathematics, University of Idaho, Moscow, ID 83844-1103, fuchang@uidaho.edu,
Research of F. Gao was partially supported by NSF grant EPS-0132626 and a seed grant from the University
of Idaho;

2corresponding author, Department of Statistics, Colorado State University, Fort Collins, CO 80523-1877,
hannig@stat.colostate.edu;

3Department of Mathematics, University of Maryland, College Park, MD 20742, tyl@math.umd.edu;
4Mathematical Sciences Department, The Johns Hopkins University, Baltimore, MD 21218,

torcaso@mts.jhu.edu;

1

DOI: 10.1214/EJP.v8-151

1

http://dx.doi.org/10.1214/EJP.v8-151


1 Introduction

Consider the random series

(1) U =
∞∑

n=1

anXn

where {Xn} is sequence of i.i.d. random variables and {an} is a sequence of numbers for
which U exists. The goal of this paper is to compute a closed form expression for the Laplace
transform of the distribution of U and, more importantly, to find conditions on the Xn and
an that would make this possible.

The main observation is that the Laplace transform LU of the distribution of U is the
infinite product

LU(s) =
∞∏

n=1

LX1(ans)

where, of course, LX1 represents the Laplace transform of the identical distribution. When
the Laplace transform takes the particular form

(2) LU(s) =

( ∞∏
n=1

(
1 + αaβ

nsβ
)
)c

one can often recognize this infinite product in closed form via Hadamard’s Factorization
theorem (see Section 2). Here α, β > 0, c < 0 and the sequence aβ

n is assumed to be a
summable sequence of positive real numbers.

This is especially true when Xn = ξ2
n and {ξn} is an independent standard Gaussian

sequence, implying (2) with α = 2, β = 1, c = −1/2, and when the sequence {an} is
nonnegative and nice enough. Exactly how nice is the content of Theorem 2 and Corollary 2
below. In fact, these results are merely consequences of the Hadamard Factorization theorem
and certain facts regarding the spectra of linear differential operators.

Our initial interest in finding a closed form expression for the Laplace transform in this
situation is that through certain Tauberian theorems one can readily compute quantities of
the following type:

P (U ≤ ε)

for ε tending to 0+. Indeed, computing the asymptotics of lower tail probabilities is receiving
much attention (see the recent survey by Li and Shao [12]). However, a closed form expression
for the Laplace transform is not only interesting in its own right, but it also carries all the
information about the distribution function not just the behavior of the distribution at
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particular values. Indeed, in principle one can attempt to recover the distribution function
by inversion.

The idea of using the Hadamard Factorization theorem is not a new one, but apparently
not well-known. The authors observed the connection with Hadamard’s theorem before the
fourth author noticed this connection was mentioned by Terence Chan in [2]. Although
the connection between the Laplace transform and Hadamard’s theorem is transparent, it
leads to results that are extremely powerful. In fact, many results regarding the small ball
probabilities of Gaussian processes in L2 norm follow easy from the results we present here.
Moreover, the technique is fairly general in that it will work not only for ξ2

n but for Xn

having Gamma or Mittag-Leffler type distributions (see comments in Sections 3 and 4 where
examples are given).

2 Hadamard Factorization

In this section we will present the main idea in the computation of an explicit Laplace
transform and the complex-analytic tools that are necessary.

Consider the random series U (see (1)) and suppose that the Laplace transform of its
distribution has the form given in (2). The sequence {an} necessarily tends to zero. There-
fore, zn = 1/aβ

n for any β > 0 tends to ∞. Now, if one can find an entire function (that is,
analytic in the entire complex plane) whose only zeros are zn, then this entire function can
be written as an infinite product with a very special form. The underlying tool is a classical
theorem due to Hadamard. In order to state it we need to define the order of an entire
function.

Suppose f(z) is entire and set M(r) = max |f(z)| for |z| = r. The order λ ≥ 0 of an
entire function f(z) is given by

λ = lim sup
r→∞

log log M(r)

log r
.

That is, the order is the smallest number λ such that M(r) ≤ erλ+ε
for any positive ε and

sufficiently large r. For any nonnegative integer d let

Pd(z) = z + z2/2 + · · ·+ zd/d.

Theorem 1 (Hadamard’s Factorization Theorem). Let f(z) be an entire function and
{zk} be its zeros with 0 excluded and all zeros are repeated according to their multiplicity.
Suppose the order of f(z) is λ, then

f(z) = zmeH(z)

∞∏

k=1

(
1− z

zk

)
ePd(z/zk),
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where the integer m ≥ 0 is the multiplicity of 0, d ≥ 0 is an integer such that d ≤ λ < d + 1,
and H(z) is a polynomial of degree ≤ d.

For a proof see any advanced complex analysis textbook (e.g., [10] page 290). The
following corollary is immediate:

Corollary 1. Suppose f is an entire function of order λ < 1, and f(0) 6= 0. Then d = 0,
H(z) is a constant, and

f(z)

f(0)
=

∞∏

k=1

(
1− z

zk

)
.

Notice that f(z)/f(0) is just f standardized to take the value 1 at z = 0. If zn = 1/aβ
n

then

(3)
f(z)

f(0)
=

∞∏
n=1

(
1− zaβ

n

)
.

Therefore if the Laplace transform of interest has the form (2) then we can reconcile the
infinite product with f(z)/f(0) for some appropriately chosen value of z. Let us now demon-
strate this on a simple example.

Let X be a Gaussian process on [0, 1], and let {an} be the sequence of eigenvalues,
repeated according to their multiplicity, of the covariance operator of X. It is easy to show
via the Karhunen-Loève expansion that

(4) ‖X‖2
2 ≡

∫ 1

0

X2(t) dt =
∞∑

n=1

anξ2
n

where {ξn} is an i.i.d. sequence of standard Gaussian random variables, and the equality is
understood in distribution. The Laplace transform then becomes

(5) L(s) ≡ E
(
exp{−s‖X‖2

2}
)

=

( ∞∏
n=1

(1 + 2san)

)−1/2

.

If f satisfies the conditions of Corollary 1 with zn = 1/an, then by comparing (3) and
(5) we have

L(s) =

( ∞∏
n=1

(1 + 2san)

)−1/2

=

(
f(−2s)

f(0)

)−1/2

.

Thus, at least for squared L2 norms of Gaussian processes, we have the following:
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Corollary 2. Let X be a Gaussian process whose covariance operator has nonzero eigen-
values an, repeated according to their multiplicity. Suppose there is an entire function f(z)
of order λ < 1, such that, zn = 1/an, n ≥ 1, are the only zeros, counting multiplicities, of
f(z). Then the Laplace transform of (4) can be expressed as

E
(
exp{−s‖X‖2

2}
)

=

(
f(−2s)

f(0)

)−1/2

.

The above argument hinges on the fact that we can find an entire function f(z) with zeros
zn = 1/an. We demonstrate in the next section that such functions are usually obtained
naturally from the Gaussian process. However, the hard part in applications is to determine
that the multiplicities of the eigenvalues match those of the zeros of the entire function.
We show that in many cases such a difficulty can be avoided by using results from linear
differential operators.

Denote the covariance operator of X by A and recall that {an} are the eigenvalues of A.
Thus, they must satisfy

(6) Af = af

for some eigenfunction f . Set a = 1/ρ. In many cases the eigenvalue problem (6) is equiva-
lent, by successive differentiation, to an eigenvalue problem of a linear differential operator.

In order to present the idea clearly, instead of seeking the greatest generality, we assume
that (6) is equivalent to the following eigenvalue problem:

(7) Dy = ρg(t)y,

where the function g(t) is continuous on [0, 1] and g(t) 6= 0 on (0, 1), the linear differential
operator D defined on functions y = y(t) for 0 ≤ t ≤ 1 is given by

(8) Dy = p0(t)
dky

dtk
+ p1(t)

dk−1y

dtk−1
+ · · ·+ pk−1(t)

dy

dt
+ pk(t)y

and the function y satisfies the boundary conditions

(9) U0(y) = U1(y) = · · · = Uk−1(y) = 0.

Here, we suppose the functions 1/p0(t), p1(t), . . . , pk(t) are all continuous on the interval
[0, 1], and the boundary conditions are linear and given by:

Uj(y) =
k−1∑
i=0

(
αi,jy

(i)(0) + βi,jy
(i)(1)

)
for j = 0, 1, . . . , k − 1.
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As we will see through the examples in Section 3, this assumption is reasonably general.
Since the covariance operator is self-adjoint, the differential operator D taken with the
boundary condition (9) is also self-adjoint.

In what follows we will be interested in computing the eigenvalues of D where Dy =
ρg(t)y and y satisfies (9). Let y0 = y0(t, ρ), y1 = y1(t, ρ), . . . , yk−1 = yk−1(t, ρ) denote
a fundamental system of solutions to the equation Dy = ρg(t)y which satisfy the initial

conditions y
(i)
j (0, ρ) = 0 (1, respectively) when j 6= i (j = i, respectively), j, i = 0, 1, . . . , k−1.

For fixed t in the interval [0, 1], the functions yj are entire functions of ρ. The boundary
value problem (7),(9) has a nontrivial solution if and only if the rank r of the matrix

(10) U(ρ) =




U0(y0) · · · U0(yk−1)
...

. . .
...

Uk−1(y0) · · · Uk−1(yk−1)




is less than k. The quantity f(ρ) = detU(ρ) is called the characteristic determinant. Notice
that the function f is a sum of products of entire functions and therefore is itself entire.

It is clear that if ρ0 is an eigenvalue of the differential operator, then f(ρ0) = 0. The
main issue is with the multiplicities. The geometric multiplicity of the eigenvalue ρ0 is
k − rankU(ρ0), which is the multiplicity relevant to computation of the Laplace transform.
On the other hand, it is well-known that the algebraic multiplicity of the zero of f(ρ0) is
always greater than or equal to the geometric multiplicity (see for example [14] page 15).

In view of self-adjointness, and the fact that our operator D and boundary conditions
do not depend on ρ, it follows from [14] pages 16-20 that the geometric and algebraic mul-
tiplicities agree.

Indeed, fix an eigenvalue ρ0 and a particular eigenfunction φ0 and define ly = Dy−ρ0y as
in [14] (page 16 formulas (9), (10) there). Suppose there is a function associated with φ0. Now
since the boundary conditions do not depend on ρ, all associated functions have to satisfy
the same boundary conditions as φ0 by (9) of [14]. Let us now consider (10) of [14]. The
first line l(φ0) = 0 is satisfied by definition as the eigenfunction has to satisfy the differential
equation. Since D does not depend on ρ the second line simplifies to l(φ1) = g(t)φ0. Finally
the self-adjoint property implies

0 6= (g(t)φ0, φ0) = (l(φ1), φ0) = (φ1, l(φ0)) = 0,

where ( , ) means inner product. This contradiction allows us to conclude there is no
function associated with φ0. Thus by [14] page 18, statement VI the geometric and algebraic
multiplicities agree.

Combining this with Corollary 2 we have proved:
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Theorem 2. Let X be a Gaussian process whose covariance operator has nonzero eigenvalues
an, repeated according to their multiplicities. Suppose the covariance operator is equivalent,
as discussed above, to a linear differential operator (8) associated with a set of boundary
conditions (9), and the characteristic determinant f is of order λ < 1. Then the Laplace
transform of (4) can be expressed as

E
(
exp{−s‖X‖2

2}
)

=

(
f(−2s)

f(0)

)−1/2

.

Remark 1. Here we have sacrificed much generality and flexibility, in exchange for simplicity.
Remarks will be made at the end of the examples to address this issue: for example, what
if it is easier to get a basis of solutions, but not the system of fundamental solutions? And
what if 1/p0(t) blows up at the boundary points?

Remark 2. The method of converting the integral operator (6) to the differential operator (7)
is routine. In a recent preprint of Nazarov and Nikitin [16] they also converted the integral
equation to a boundary value problem. Their interest was to use theorems from bound-
ary value problems to estimate the spectra. They achieve very precise asymptotics of the
spectra which allow them to prove many results regarding the exact small ball probabilities
mentioned in this paper (see Section 4). Our use of the boundary value theory lies in the
fact that the characteristic determinant (10) is always an entire function. Thus, the main
difference in the approach of this paper with that of [16] is that they are estimating the zeros
of the characteristic determinant whereas we do not need to know the zeros explicitly at all.

3 Examples

Now, we will present some uses of Theorem 2.
First, we will compute the Laplace transforms for both a stationary Ornstein-Uhlenbeck

process and an Ornstein-Uhlenbeck process starting from the origin. We shall see that the
computation of the Laplace transform of the squared L2 norm is very simple in light of
Corollary 2. This result reaffirms the results of Dankel [4] who already obtained this result
using functional integration methods.

Consider the stationary Ornstein-Uhlenbeck process X(t) on the interval [0, 1], that is,
the centered Gaussian process determined by the covariance kernel K(s, t) = e−α|t−s|/(2α).

Theorem 3. For the stationary Ornstein-Uhlenbeck process X with parameter α > 0,

E
(
exp{−σ‖X‖2

2}
)

= eα/2

(
σ + α2

α
√

α2 + 2σ
sinh(

√
α2 + 2σ) + cosh(

√
α2 + 2σ)

)−1/2

.
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Proof. The covariance operator takes the form Ay(t) =
∫ 1

0
K(s, t)y(s) ds. Therefore, the

eigenvalue equation is Ay(t) = ay(t). Differentiating this equation twice yields the following
boundary value problem:

y′′(t)− (
α2 − ρ

)
y(t) = 0

y′(1) + αy(1) = 0 and y′(0)− αy(0) = 0.

The fundamental solutions are

y0(t, ρ) = cosh(t
√

α2 − ρ) and y1(t, ρ) =
1√

α2 − ρ
sinh(t

√
α2 − ρ).

The characteristic determinant is

f(ρ) =
2α2 − ρ√

α2 − ρ
sinh(

√
α2 − ρ) + 2α cosh(

√
α2 − ρ),

which is clearly of order 1/2. Therefore, Theorem 2 implies

L(σ) =

(
f(−2σ)

f(0)

)−1/2

=
√

2αeα/2

(
2σ + 2α2

√
α2 + 2σ

sinh(
√

α2 + 2σ) + 2α cosh(
√

α2 + 2σ)

)−1/2

.

This finishes the proof.

Remark 3. What if we use some other basis of solutions, rather than the system of funda-
mental solutions, to plug in the boundary conditions and obtain a determinant h(ρ) instead
of the characteristic determinant f(ρ)? It is readily checked that

h(ρ) = f(ρ)p(ρ),

for a certain function p(ρ) which never vanishes. Thus, h(ρ) and f(ρ) share zeros and
multiplicities.

Now consider the Ornstein-Uhlenbeck process X0(t) starting at 0, that is, the centered
Gaussian process with the covariance kernel K(s, t) = (e−α|t−s| − e−α(t+s))/(2α).

Theorem 4. For the Ornstein-Uhlenbeck process X0 starting at 0 with parameter α ∈ R,

E
(
exp{−σ‖X0‖2

2}
)

= eα/2

(
α

sinh(
√

α2 + 2σ)√
α2 + 2σ

+ cosh(
√

α2 + 2σ)

)−1/2

.

The method of the proof is the same as in the previous case, and the calculation is very
similar. We omit the details.
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Remark 4. Notice that in Theorem 4 all values of α ∈ R have probabilistic interpretation.
Indeed, the Ornstein-Uhlenbeck process starting at 0 can be defined as a solution to the
equation

X0(t) = W (t)− α

∫ t

0

X0(s) ds

where W (t) is a standard Brownian motion. It is well known (see, for example, [17] page
379) that this equation has a strong solution for all values of α. When α = 0 the solution
is just the ordinary Brownian motion, and Theorem 4 reduces to the Laplace transform of
the integrated square of Brownian motion as it should. When α > 0 the origin “attracts”
the Brownian particle with a force proportional to the distance from the origin while α < 0
corresponds to the origin repelling the particle in a similar fashion.

Remark 5. Another related example is a harmonic oscillator. In [2], Chan considered the
harmonic oscillator Z = (X,V ) that satisfies the stochastic differential equations

dX(t) = V (t)dt, dV (t) = −X(t)dt + dW (t),

where W (t) is a Brownian motion. Through some lengthy calculations, Chan obtained the
Laplace transform L(t) = E(exp{−t

∫ τ

0
(V 2

s −X2
s )ds}). We remark that, by using Theorem 2,

some calculations in [2] can be simplified. Indeed, following [2], one can find eigenvalues an

and eigenfunctions en = (eX
n , eV

n ) that can be used in calculating the Laplace transform in
the same way as described in the introduction. By setting u(s) = eX

n − en(τ) cos(τ − s), it
is readily checked that the defining differential equation (3.17a)-(3.17d) of [2] has the same
dimension of solutions as the following boundary value problem:

u′′ + u + ρu = 0, sin(τ)u(0)− cos(τ)u′(0) = 0, u(τ) = 0.

Thus, by applying Theorem 2 we obtain the Laplace transform

L(t) =





(
cos(τ) cosh(τ

√
2t− 1) + sin(τ) sinh(τ

√
2t−1)√

2t−1

)−1/2

for t ≥ 1
2
,

(
cos(τ) cos(τ

√
1− 2t) + sin(τ) sin(τ

√
1−2t)√

1−2t

)−1/2

for t < 1
2
.

The main simplification here came from the fact that we did not have to check the multiplicity
of the eigenvalues.

One more remark is in order. Depending on the value of τ it is possible that some or
all of the eigenvalues are negative. This is not a big problem because our discussion readily
generalizes to this situation. However, one has to be careful since L(t) will exist only for t
inside of a certain neighborhood of 0 and not for all t > 0 as is usually the case.
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As our next example we consider the time-changed Brownian bridge. Let B(t) for 0 ≤
t ≤ 1 be a Brownian Bridge. Consider the time-changed process Bα(t) ≡ B(tα) where α > 0.
The random variable of interest here is

‖Bα‖2
2 ≡

∫ 1

0

B2(tα) dt =

∫ 1

0

1

αt1−1/α
B2(t) dt

which can be seen as a weighted L2-norm of the Brownian Bridge.

Theorem 5. Let α > 0. The Laplace transform of the squared L2 norm of Bα is

E
(
exp{−t‖Bα‖2

2}
)

=

(
c
√

2t

2

)ν/2 (
Γ(1 + ν)Iν

(
c
√

2t
))−1/2

,

where Iν is the modified Bessel function of fractional order

ν =
α

α + 1
and c =

2
√

α

α + 1
.

Proof. We will first follow a calculation in [11]. The covariance kernel of Bα is K(s, t) =
sα ∧ tα − sαtα. Differentiating the equation that defines the eigenvalues twice yields the
following equivalent boundary value problem:

ty′′(t)− (α− 1)y′(t) + αρtαy(t) = 0

y(0) = y(1) = 0.

Strictly speaking, Theorem 2 does not apply here since p0(t) = t and 1/p0(t) blows up
at t = 0. However, the proof of Theorem 2 can be easily modified. Indeed, notice that
y(t) = Ktα/2(ρ)−ν/2Jν(c[t

α+1ρ]1/2) is the only solution with y(0) = 0 where K is a constant,
and Jν is the Bessel function [1]. Thus ρ is an eigenvalue if y(1) = 0, that is,

Jν(cρ
1/2) = 0.

All eigenvalues have multiplicity 1 as the Bessel function Jν has only simple positive ze-
ros. (In particular this means that the geometric and algebraic multiplicities agree.) Since
Jν(cρ

1/2)/ρν/2 is entire of order 1/2 (see [1] formulas 9.1.10, 9.1.62 and 9.2.1), Corollary 2
now implies

L(t) =

(
f(−2t)

f(0)

)−1/2

=

(
c
√

2t

2

)ν/2 (
Γ(1 + ν)Iν

(
c
√

2t
))−1/2

,

where the last equality follows from the fact Iν(x) = e−
1
2
νπiJν(ix) for positive real x (see [1]

formula 9.6.3).
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Remark 6. The above discussion reveals that Theorem 2 can be generalized to cover differen-
tial operators with singular boundary points of certain kinds. Indeed, differential operators
with singular boundary points are well studied with many complete results obtained in the
literature.

This next example is motivated by the work in [3]. In [3] they tried to extend a stochastic
Fubini argument from [9] and [5] to produce a closed form expression for the Laplace trans-
form of the squared L2 norm of m-times integrated Brownian motion. The expression they
obtained, although not in closed form for m ≥ 2, does reduce to the result obtained in [9],
that is, the case m = 1. In what follows we will compute not only the closed form expression
in the case of m-times integrated Brownian motion for all m but also for the slightly more
difficult case of m-times integrated Brownian bridge.

Let W (t) be a standard Brownian motion. For integer m ≥ 0, the m-times integrated
Brownian motion on [0, 1] is the Gaussian process

Xm(t) =

∫ t

0

∫ sm

0

∫ sm−1

0

· · ·
∫ s2

0

W (s1) ds1 ds2 · · · dsm.

We will use the following notation in the rest of this section:

ωj = ei j
m+1

π, υj = ei 2j+1
2m+2

π, and βj = (2t)1/(2m+2)iυj.

Theorem 6. The Laplace transform of the squared L2-norm of m-times integrated Brownian
motion is

(11) E
(
exp{−t‖Xm‖2

2}
)

= (2m + 2)(m+1)/2 |det NW (t)|−1/2 ,

where

NW (t) =




1 1 · · · 1
ω0 ω1 · · · ω2m+1

· · · · · · · · · · · ·
ωm

0 ωm
1 · · · ωm

2m+1

ωm+1
0 eβ0 ωm+1

1 eβ1 · · · ωm+1
2m+1e

β2m+1

· · · · · · · · · · · ·
ω2m+1

0 eβ0 ω2m+1
1 eβ1 · · · ω2m+1

2m+1e
β2m+1




.

Proof. For convenience, we define two operators, T0 and T1, on L2[0, 1]:

T0f(t) =

∫ t

0

f(s) ds and T1f(t) =

∫ 1

t

f(s) ds.
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Thus, Xm(t) = Tm
0 W (t). By Fubini’s theorem, for any f, g ∈ L2[0, 1], 〈f, T0g〉 = 〈T1f, g〉.

So, T1 = T ∗
0 , that is, T1 is the adjoint operator to T0. It is easy to check that if a Gaussian

process X(t) has a covariance operator A the covariance operator of T0X(t) is T0AT1.
It is well-known the covariance kernel of W is min(s, t). Thus the covariance operator

A0 of W is

AW f(t) =

∫ t

0

sf(s)ds + t

∫ 1

t

f(s)ds = T0T1f(t).

From here the covariance operator of the m-times integrated Brownian motion Xm(t) is

(12) Amf(t) = (T0)
m+1(T1)

m+1f(t).

Consider the eigenvalue problem af(t) = Amf(t). Upon successive differentiation and
using (12), we see that the covariance kernel is associated with the following boundary value
problem:

(13) y(2m+2)(t) = (−1)m+1ρy(t)

(14) y(0) = y′(0) = · · · = y(m)(0) = y(m+1)(1) = y(m+2)(1) · · · = y(2m+1)(1) = 0

where ρ = 1/α. This is a higher order Sturm-Loiuville problem with separated boundary
conditions. In particular, notice that this example satisfies the assumptions of Theorem 2.

Recall ωj = ei j
m+1

π. For ρ 6= 0, denote

yk(t, ρ) =
2m+1∑
j=0

exp(iωjρ
1/(2m+2)t)

(2m + 2)(iωj)kρ1/(2m+2)
.

Since
∑2m+1

j=0 (2m + 2)−1(iωj)
k = 0 for k = ±1,±2, . . . ,±(2m + 1), we see that y0, . . . , y2m+1

forms a fundamental system of solutions to the equation (13). Denote the diagonal matrix

DW = diagonal
(
1, iρ1/(2m+2), (iρ1/(2m+2))2, . . . , (iρ1/(2m+2))2m+1

)

and the Vandermonde matrix

(15) V = Vandermonde
(
(ω0iρ

1/(2m+2))−1, (ω1iρ
1/(2m+2))−1, . . . , (ω2m+1iρ

1/(2m+2))−1
)
.

A straightforward calculation yields

U(ρ) = DW ·MW (ρ1/(2m+2)) · V >
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where

MW (z) =




1 1 · · · 1
ω0 ω1 · · · ω2m+1

· · · · · · · · · · · ·
ωm

0 ωm
1 · · · ωm

2m+1

ωm+1
0 eiω0z ωm+1

1 eiω1z · · · ωm+1
2m+1e

iω2m+1z

ωm+2
0 eiω0z ωm+2

1 eiω1z · · · ωm+2
2m+1e

iω2m+1z

· · · · · · · · · · · ·
ω2m+1

0 eiω0z ω2m+1
1 eiω1z · · · ω2m+1

2m+1e
iω2m+1z




.

Therefore, the characteristic determinant is

f(ρ) ≡ detU(ρ) =
det MW (ρ1/(2m+2))

(−i)m(2m + 2)m+1
.

The function f(ρ) is of order 1/(2m + 2) and f(0) = 1. Thus, Theorem 2 implies

L(t) = (f(−2t)/f(0))−1/2.

To finish the proof notice that the calculation of f(−2t) involves (−2t)1/(2m+2), where t ∈ R.
There are 2m + 2 different choices of (−1)1/(2m+2). For t > 0, choose (−2t)1/(2m+2) =
υ0(2t)

1/(2m+2). Then (−2t)1/(2m+2)iωj = (2t)1/(2m+2)iυj = βj and the equation (11) follows
from the fact that the Laplace transform is always a non-negative real function.

Let us now consider the m-times integrated Brownian bridge. Let B(t) be a standard
Brownian bridge. For integer m ≥ 0, the m-times integrated Brownian bridge on [0, 1] is the
Gaussian process

Ym(t) =

∫ t

0

∫ sm

0

∫ sm−1

0

· · ·
∫ s2

0

B(s1) ds1 ds2 · · · dsm.

Theorem 7. The Laplace transform of the squared L2-norm of m-times integrated Brownian
bridge is

(16) E
(
exp{−t‖Ym‖2

2}
)

= (2t)1/(4m+4)(2m + 2)(m+1)/2 |det NB(t)|−1/2 ,
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where

NB(t) =




1 1 · · · 1
ω0 ω1 · · · ω2m+1

· · · · · · · · · · · ·
ωm

0 ωm
1 · · · ωm

2m+1

ωm
0 eβ0 ωm

1 eβ1 · · · ωm
2m+1e

β2m+1

ωm+2
0 eβ0 ωm+2

1 eβ1 · · · ωm+2
2m+1e

β2m+1

ωm+3
0 eβ0 ωm+3

1 eβ1 · · · ωm+3
2m+1e

β2m+1

· · · · · · · · · · · ·
ω2m+1

0 eβ0 ω2m+1
1 eβ1 · · · ω2m+1

2m+1e
β2m+1




.

The method of the proof is the same as in the previous case. The only difference is that
the boundary condition (14) is replaced by

y(0) = y′(0) = · · · = y(m−1)(0) = y(m)(0) = y(m)(1)

= y(m+2)(1) = y(m+3)(1) · · · = y(2m+1)(1) = 0.

This leads to the characteristic determinant

detU(ρ) = det
(
DB ·MB(ρ1/(2m+2)) · V >)

,

where V was defined in (15),

DB = diagonal
(
1, iρ1/(2m+2), (iρ1/(2m+2))2, . . . , (iρ1/(2m+2))m,

(iρ1/(2m+2))m, (iρ1/(2m+2))m+2, (iρ1/(2m+2))m+3, . . . , (iρ1/(2m+2))2m+1
)
,

and

MB(z) =




1 1 · · · 1
ω0 ω1 · · · ω2m+1

· · · · · · · · · · · ·
ωm−1

0 ωm−1
1 · · · ωm−1

2m+1

ωm
0 ωm

1 · · · ωm
2m+1

ωm
0 eiω0z ωm

1 eiω1z · · · ωm
2m+1e

iω2m+1z

ωm+2
0 eiω0z ωm+2

1 eiω1z · · · ωm+2
2m+1e

iω2m+1z

ωm+3
0 eiω0z ωm+3

1 eiω1z · · · ωm+3
2m+1e

iω2m+1z

· · · · · · · · · · · ·
ω2m+1

0 eiω0z ω2m+1
1 eiω1z · · · ω2m+1

2m+1e
iω2m+1z




.

The rest of the calculation is very similar and we omit the details.
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Remark 7. In the case of m = 1, 2 the formulas (11) and (16) simplify to:

E
(
exp{−t‖X1‖2

2}
)

=

(
4

2 + cos(23/4t1/4) + cosh(23/4t1/4)

)1/2

E
(
exp{−t‖Y1‖2

2}
)

=

(
27/4t1/4

sin(23/4t1/4) + sinh(23/4t1/4)

)1/2

E
(
exp{−t‖X2‖2

2}
)

=6
(
9 + 16 cos(31/2 2−5/6 t1/6) cosh(2−5/6 t1/6) + 8 cosh(21/6 t1/6)

+ 2 cos(21/6 31/2 t1/6) cosh(21/6 t1/6) + cosh(27/6 t1/6)
)−1/2

E
(
exp{−t‖Y2‖2

2}
)

=3
√

2(2t)1/12
(
4
√

3 cosh(2−5/6 t1/6) sin(31/2 2−5/6 t1/6)

+
√

3 cosh(21/6 t1/6) sin(21/6 31/2 t1/6)

+ 4 cos(31/2 2−5/6 t1/6) sinh(2−5/6 t1/6) + 4 sinh(21/6 t1/6)

+ cos(21/6 31/2 t1/6) sinh(21/6 t1/6)

+ 2 cosh(21/6 t1/6) sinh(21/6 t1/6)
)−1/2

In particular, we see that in the case of once integrated Brownian motion our formula recovers
the result of [3] and [9] as it should.

Remark 8. The method presented here also works for many other processes, e.g., any general-
ized integrated Brownian motion (see [8] for the definition of generalized integrated Brownian
motions and some results), the so-called bridged integrated Brownian motion and integrated
centered Brownian motion of [16]. Since the calculations are very similar to the calculations
presented here we will not include the details.

4 Small Ball Rates

The revelation of this paper came about when the authors were attempting to obtain an
exact form for the small deviation probability of the random variable (4). As a consequence
of Hadamard’s factorization, if one is dealing with the L2 norm of Gaussian processes then
this exact asymptotic follows from the Sytaja Tauberian theorem [18]:

(17) P

( ∞∑
n=1

anξ
2
n ≤ ε2

)
∼ (−2πt2h′′(t))−1/2 exp{tε2 − h(t)}
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where h(t) = − log L(t) where L(t) is the Laplace transform and t = t(ε) satisfies

(18)
tε2 − th′(t)√
−t2h′′(t)

→ 0.

It is important to point out that the Sytaja’s result (17) has been extended by Lifshits
[13] (see also Dunker, Lifshits and Linde [6]) to more general sums

∑∞
n=1 anZn, where {Zn}

is a sequence of i. i. d. non-negative random variables with finite second moment and whose
distribution satisfies some weak regularity conditions, and {an} is a summable sequence of
positive constants. Thus, the method of this paper in principle generalizes to other cases
mentioned in the introduction. However, we wish to emphasize that the exact asymptotics of
the small ball probability including all constants are completely determined by the approach
we propose.

After we submitted this paper, we were made aware of a preprint by Nazarov [15] where
he computes the exact small ball probabilities for many of the processes we include in this
section. Nazarov entends the work of [16] to compute exact constants for many of the
processes considered there using slightly different methods. In fact, some exact constants
for the integrated Brownian motions have already appeared in [7]. Nevertheless, although
our work was done independently, in order to avoid overlaps with [15] we omit most of the
proofs of the following corollaries which are simple consequences of the theorems proved in
section 3 and the Sytaja Tauberian theorem.

Corollary 3. Let X be the stationary Ornstein-Uhlenbeck process with parameter α > 0,
Then

P (‖X‖2 ≤ ε) ∼ 8

√
α

π
eα/2ε2 exp{−1

8
ε−2} as ε → 0.

Let X0 be the Ornstein-Uhlenbeck process starting at 0 with parameter α ∈ R, then

P (‖X0‖2 ≤ ε) ∼ 4√
π

eα/2ε exp{−1

8
ε−2} as ε → 0.

The constant
√

α reflects the degeneracy of the measure when α tends to 0. The reader
will also notice the small ball probability for X0 reduces to that of Brownian motion when
α = 0 as it should. Finally, the apparent discrepancy between Corollary 3 and the results
in [16] and [15] comes from the fact that we use a different covariance kernel to define the
Ornstein-Uhlenbeck process (see the sentence preceding Theorem 3). This result also differs
from [15] in that it shows the explicit dependence on the parameter α.

To show how simply the calculations follow from the Laplace transform we include a proof
for the stationary Ornstein-Uhlenback process. The proofs of all other corollaries below are
similar and we leave the details to the reader.

16



Proof. Let h(t) = − log L(t) as given in (17). We need to compute the asymptotic behavior
of h(t), th′(t) and t2h′′(t) as t →∞. Using Theorem 3 we get:

h(t) = −α

2
+

1

2
log

√
t√

2α
+

√
t√
2
− 1

2
log 2 + o(1),

th′(t) =

√
t

2
√

2
+

1

4
+ o(

√
1),

−2πt2h′′(t) =
π
√

t

2
√

2
+ o(

√
t),

and therefore (18) allows us to choose

√
t =

ε−2

2
√

2
.

Substituting these into (17) yields the result.

Corollary 4. Let Bα(t) = B(tα) be the time changed Brownian bridge. Then

P (‖Bα‖2 ≤ ε) ∼ cαε1/2−ν exp

{
− ν

2(α + 1)
ε−2

}
, as ε → 0+

where

cα = 2(π)−1/4

(
ν

α + 1

) ν
2
− 1

4

(Γ (ν + 1))−1/2 and ν =
α

α + 1

This example was considered in [11]. The reader will notice when α = 1 the constant in
front becomes

√
8/
√

π as is well-known for the Brownian bridge.

Corollary 5. Let Xm(t) be the m-times integrated Brownian motion and Ym(t) be the m-
times integrated Brownian bridge. Then

P (‖Xm‖2 ≤ ε) ∼ CW
m ε

1
2m+2 exp{−Dmε−

2
2m+1} as ε → 0+

and
P (‖Ym‖2 ≤ ε) ∼ CB

m exp{−Dmε−
2

2m+1} as ε → 0+,
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where

Dm =
2m + 1

2

(
(2m + 2) sin

π

2m + 2

)− 2m+2
2m+1

,

CW
m =

(2m + 2)(m+1)/2

| det U |
(

2m + 2

(2m + 1)π

)1/2 [
(2m + 2) sin

π

2m + 2

](m+1)/(2m+1)

,

CB
m =

(
(2m + 2)m+3 sin π

2m+2

(2m + 1)π| det U det V |

)1/2

,

and

U =




1 1 · · · 1
ω0 ω1 · · · ωm

ω2
0 ω2

1 · · · ω2
m

· · · · · · · · · · · ·
ωm

0 ωm
1 · · · ωm

m




, V =




ωm
m+1 ωm

m+2 · · · ωm
2m+1

ωm+2
m+1 ωm+2

m+2 · · · ωm+2
2m+1

ωm+3
m+1 ωm+3

m+2 · · · ωm+3
2m+1

· · · · · · · · · · · ·
ω2m+1

m+1 ω2m+1
m+2 · · · ω2m+1

2m+1




.(19)

We would like to remark when m = 1 we obtain the value CW
1 = 8

√
2/
√

3π, which is the
value quoted in [16] page 4, i.e., Cdist =

√
2. In fact, for generalized integrated Brownian

motions, the exact small ball asymptotics were obtained in [7] by different methods.
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