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1 Introduction

1.1 Background and motivation

In [DF97a], a continuous super-Brownian reactant process X% with a super-Brownian catalyst % was
introduced. This pair (%,X%) of processes serves as a model of a chemical (or biological) reaction of two
substances, called ‘catalyst’ and ‘reactant’. There the catalyst is modelled by an ordinary continuous
super-Brownian motion % in Rd, whereas the reactant is a continuous super-Brownian motion X% whose
branching rate, for ‘particles’ sitting at time t in the space element dx, is given by %t(dx) (random
medium). This model has further been analyzed in [DF97b, EF98, FK99, DF01, FK00, FKX02]. Actually,
the reactant process X% makes non-trivial sense only in dimensions d ≤ 3 since a “generic Brownian
reactant particle” hits the super-Brownian catalyst only in these dimensions (otherwise X% degenerates
to the heat flow, [EP94, BP94]).

In a sense, (%,X%) is a model with only a ‘one-way interaction’: the catalyst % evolves autonomously,
but it catalyzes the reactant X%. There is a natural desire to extend this model to the case in which each
of the two substances catalyzes the other one, so that one has a ‘true interaction’. This, however, leads
to substantial difficulties since the usual log-Laplace approach to superprocesses breaks down for such an
interactive model. In particular, the analytic tool of diffusion-reaction equations is no longer available.

Dawson and Perkins [DP98, Theorem 1.7] succeeded in constructing such a continuum mutually catalytic
model in the one-dimensional case, whereas in higher dimensions they obtained only a discrete version
in which Rd is replaced by the lattice Zd, and Brownian motion is replaced by a random walk. More
precisely, in the R–case they showed that, for given (sufficiently nice) initial functions X0 =

(
X1

0 , X
2
0

)
,

the following system of stochastic partial differential equations is uniquely solvable in a non-degenerate
way:

∂

∂t
Xi

t(x) =
σ2

2
∆Xi

t(x) +
√
γ X1

t (x)X
2
t (x) Ẇ

i
t (x), (1)

(t, x) ∈ R+×R, i = 1, 2. Here ∆ is the one-dimensional Laplacian, σ, γ are (strictly) positive constants
(migration and collision rate, respectively), and Ẇ 1, Ẇ 2 are independent standard time-space white
noises on R+ × R. The intuitive meaning of X i

t(x) is the density of mass of the ith substance at time t
at site x, which is dispersed in R according to a heat flow (Laplacian), but additionally branches with
rate γXj

t (x), j 6= i (and vice versa).

For the existence of a solution X =
(
X1, X2

)
to (1) they appealed to standard techniques as known, for

instance, from [SS80], whereas uniqueness was made possible by Mytnik [Myt98] through a self-duality
argument. For the existence part, their restriction to dimension one was substantial, and they pointed
out that non-trivial existence of such a model (as measure-valued processes) in higher dimensional Rd

remained open.

Major progress was made in Dawson et al. [DEF+02] where it was shown that also in R2 such a mutually
catalytic branching process X makes sense as a pair X =

(
X1, X2

)
of non-degenerate continuous finite-

measure-valued Markov processes, provided that the collision rate γ is not too large compared with the
migration rate σ. In order to make this more precise, we write 〈µ, f〉 or 〈f, µ〉 to denote the integral of
a function f with respect to a measure µ. Intuitively, X =

(
X1, X2

)
could be expected to satisfy the

following system of stochastic partial differential equations

〈
Xi

t , ϕ
i
〉
=
〈
µi, ϕi

〉
+

∫ t

0

ds
〈
Xi

s ,
σ2

2
∆ϕi

〉
(2)

+

∫

[0,t]×R2
W i
(
d(s, x)

)
ϕi(x)

√
γ X1

s (x)X
2
s (x), t ≥ 0,

[compare with equation (1)]. Here the µi are sufficiently regular finite (initial) measures, the ϕi are
suitable test functions, ∆ is the two–dimensional Laplacian, the W 1

(
d(s, x)

)
,W 2

(
d(s, x)

)
are indepen-
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dent standard time-space white noises on R+ × R2, and Xi
s(x) is the “generalized density” at x of the

measure Xi
s(dx).

More precisely, consider the following martingale problem (MP)
σ,γ
µ (for still more precise formulations,

see Definition 3 below). For fixed constants σ, γ > 0, let X =
(
X1, X2

)
be a pair of continuous measure-

valued processes such that

M i
t (ϕ

i) :=
〈
Xi

t , ϕ
i
〉
−
〈
µi, ϕi

〉
−
∫ t

0

ds
〈
Xi

s ,
σ2

2
∆ϕi

〉
, (3)

t ≥ 0, i = 1, 2, are orthogonal continuous square integrable (zero mean) martingales starting from 0 at
time t = 0 and with continuous square function

〈〈
M i(ϕi)

〉〉
t
= γ

∫

[0,t]×R2
LX

(
d(s, x)

)
(ϕi)2(x). (4)

Here LX is the collision local time of X1 and X2, loosely described by

LX

(
d(s, x)

)
= ds X1

s (dx)

∫

R2
X2

s (dy) δx(y) (5)

(a precise description is given in Definition 1 below).

The main result of [DEF+02] is that, provided the collision rate γ is not too large compared with the
migration rate σ, for initial states µ = (µ1, µ2) in the set Mf,e of all pairs of finite measures on R2

satisfying the energy condition

∫

R2
µ1(dx1)

∫

R2
µ2(dx2) log+

1

|x1 − x2| < ∞, (6)

there is a (non-trivial) solution X to the martingale problem (MP)
σ,γ
µ with the property that Xt ∈Mf,e

for all t > 0 with probability 1.

1.2 Sketch of main results, and approach

The main purpose of this paper is to extend this existence result to certain infinite measures (see Theorem
4 below), where questions of long-term behavior can be properly studied. In contrast to the case of
superprocesses, there does not seem to be a natural way to couple two versions of the process with
different initial conditions and consequently we construct the process with infinite initial measures as a
weak limit of a sequence of approximating processes. To this end, as in [DEF+02], we start from the Z2–
model 1X of [DP98], scale it to εX on εZ2, and seek a limit as ε ↓ 0. As in [DEF+02], to prove tightness
of the rescaled processes, we derive some uniform 4th moment estimates in the case of a sufficiently small
collision rate. But in contrast to [DEF+02], we work with moment equations for εX instead of exploiting
a moment dual process to εX. We stress the fact that the construction of the infinite-measure-valued
process is by no means a straightforward generalization of the finite-measure-valued case of [DEF+02].

The proof of uniqueness of solutions to the martingale problem (MP)
σ,γ
µ is provided in the forthcoming

paper [DFM+02, Theorem 1.8] under an integrability condition (IntC) involving fourth moments. This
integrability condition has been verified for a class of finite initial measures, and a simpler integrability
condition (SIntC) (see Definition (45) below) that implies (IntC) has been verified for absolutely con-
tinuous measures with bounded densities. However it has not yet been verified for the class of infinite
measures with sub-exponential growth at infinity which are treated in the present paper. Nevertheless
we will be able to use the self-duality technique and convergence of the rescaled lattice models in the
finite measures case to show that the lattice approximations for the case of infinite initial measures also
converge weakly to a canonical solution of (MP)

σ,γ
µ (Theorem 6 below) and study this process.
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We complement the existence result by showing that the process X which we construct has the following
properties. (In the case of absolutely continuous measures, we often use the same symbol to denote both
the measure and its density function.)

(i) For any fixed t > 0 and for each i = 1, 2, the state X i
t is absolutely continuous,

Xi
t(dx) = Xi

t(x) dx a.s.,

and for almost all x ∈ R2, the law of the vector Xt(x) of random densities at x can
explicitly be described in terms of the exit distribution of planar Brownian motion from the
first quadrant. In particular the types are separated:

X1
t (x)X

2
t (x) = 0 for Lebesgue almost all x ∈ R2, a.s.,

and for both types the density blows up as one approaches the interface. See Theorem 11
below.

(ii) Starting X with multiples of Lebesgue measure `, that is X0 = c` = (c1`, c2`), Xt

converges in law as t ↑ ∞ to a limit X∞ which can also explicitly be described:

X∞
L
= X1(0) ` =

(
X1

1 (0)`, X
2
1 (0)`

)

with X1(0) the vector of random densities at time 1 at the origin 0 of R2 described in (i). In
this case the law of X1(0) is the exit distribution from the first quadrant of planar Brownian
motion starting at c. In particular, locally only one type survives in the limit (non-coexistence
of types), and it is uniform as a result of the smearing out by the heat flow. See Theorem 13
below for the extension to more general initial states.

Clearly, the statements in (ii) are the continuum analogue of results in [DP98], and the interplay be-
tween X∞ and X1(0) is based on a self-similarity property of X, starting with Lebesgue measures (see
Proposition 16 (b) below).

We mention that the proofs of the aforementioned approximation theorem, of the separation of types,
and of the long-term behavior require properties of the finite-measure-valued case which are based on
uniqueness arguments provided in the forthcoming paper [DFM+02].

The problem of existence or non-existence of a mutually catalytic branching model in dimensions d ≥ 3,
as well as in R2 for large γ remains unresolved.

2 Mutually catalytic branching X in R2 (results)

The purpose of this section is to rigorously introduce the infinite-measure-valued mutually catalytic
branching process X =

(
X1, X2

)
in R2, and to state some of its properties.

2.1 Preliminaries: notation and some spaces

We use c to denote a positive (finite) constant which may vary from place to place. A c with some
additional mark (as c or c1) will, however, denote a specific constant. A constant of the form c(#) or
c# means, this constant’s first occurrence is related to formula line (#) or (for instance) to Lemma #,
respectively.

Write | · | for the Euclidean norm in Rd, d ≥ 1. For x =
(
x1, . . . , xn

)
in (Rd)n, n ≥ 1, we set

‖x‖ := |x1|+ · · ·+ |xn|. (7)

5



For λ ∈ R, introduce the reference function φλ = φdλ :

φdλ(x) := e−λ|x|, x ∈ Rd. (8)

At some places we will need also a smoothed version φ̃λ of φλ . For this purpose, introduce the mollifier

ρ(x) := c(9) 1{|x|<1} exp
[
− 1/(1− x2)

]
, x ∈ R, (9)

with c(9) the normalizing constant such that
∫
R
dx ρ(x) = 1. For λ ∈ R, set

φ̃1λ(x) :=

∫

R

dy φ1λ(y) ρ(y − x), x ∈ R, (10)

and introduce the smoothed reference function

φ̃λ(x) := φ̃1λ(x1) · · · φ̃1λ(xd), x = (x1, . . . , xd) ∈ Rd. (11)

Note that to each λ ∈ R and n ≥ 0 there are (positive) constants c1λ,n and c1λ,n such that

c1λ,n φλ(x) ≤
∣∣∣ d

n

dxn
φ̃1λ (x)

∣∣∣ ≤ c1λ,n φλ(x), x ∈ R, (12)

(cf. [Mit85, (2.1)]). Hence, for λ ≥ 0 and n ≥ 0,

cλ,n φ
√
d λ(x) ≤

∣∣∣ ∂
n

∂xni
φ̃λ (x)

∣∣∣ ≤ cλ,n φλ(x), (13)

x = (x1, . . . , xd) ∈ Rd, 1 ≤ i ≤ d, for some constants c λ,n and cλ,n . In particular, there exist constants
cλ and cλ such that

cλ φ
√
d λ(x) ≤

∣∣∣∆φ̃λ (x)
∣∣∣ ≤ cλ φλ(x), x ∈ Rd. (14)

For f : Rd → R, put
|f |λ := sup

x∈Rd
|f(x)| / φλ(x), λ ∈ R. (15)

For λ ∈ R, let Bλ = Bλ(R
d) denote the set of all measurable (real-valued) functions f such that |f |λ

is finite. Introduce the spaces

Btem = Btem(Rd) :=
⋂

λ>0

B−λ , Bexp = Bexp(Rd) :=
⋃

λ>0

Bλ (16)

of tempered and exponentially decreasing functions, respectively. (Roughly speaking, the functions in
Btem are allowed to have a subexponential growth, whereas the ones in Bexp have to decay at least
exponentially.) Of course, Bexp ⊂ B = B(Rd), the set of all measurable functions on Rd.

Let Cλ refer to the subsets of continuous functions f in Bλ with the additional property that f(x)/φλ(x)
has a finite limit as |x| ↑ ∞. Define Ctem = Ctem(Rd) and Cexp = Cexp(Rd) analogously to (16), based on

Cλ . Write C(m)
λ = C(m)

λ (Rd) and C(m)
exp = C(m)

exp (Rd) if we additionally require that all partial derivatives
up to the order m ≥ 1 belong to Cλ and Cexp , respectively.
For each λ ≥ 0, the linear space Cλ equipped with the norm | · |λ is a separable Banach space. The
space Ctem is topologized by the metric

dtem(f, g) :=
∞∑

n=1

2−n
(
|f − g|−1/n ∧ 1

)
, f, g ∈ Ctem , (17)

making it a Polish space.
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Ccom = Ccom(Rd) denotes the set of all f in Cexp with compact support, and we write C∞com = C∞com(Rd)
if, in addition, they are infinitely differentiable.

If E is a topological space, by ‘measure on E’ we mean a measure defined on the σ–field of all Borel
subsets of E. If µ is a measure on a countable subset E0 of a metric space E, then µ is also considered
as a discrete measure on E. If µ is absolutely continuous with respect to some (fixed) measure ν, then we
often denote the density function (with respect to ν) by the same symbol µ, that is µ(dx) = µ(x) ν(dx),
(and vice versa).

Let Mtem = Mtem(R
d) denote the set of all measures µ defined on Rd such that 〈µ, φλ〉 < ∞, for

all λ > 0. On the other hand, let Mexp =Mexp(R
d) be the space of all measures µ on Rd satisfying

〈µ, φ−λ〉 <∞, for some λ > 0 (exponentially decreasing measures). Note that Mexp ⊂Mf =Mf(R
d),

the set of all finite measures on Rd equipped with the topology of weak convergence.

We topologize the set Mtem of tempered measures by the metric

dtem(µ, ν) := d0(µ, ν) +
∞∑

n=1

2−n
(
|µ− ν|1/n ∧ 1

)
, µ, ν ∈Mtem . (18)

Here d0 is a complete metric on the space of Radon measures on Rd inducing the vague topology, and

|µ − ν|λ is an abbreviation for
∣∣〈µ, φ̃λ〉 − 〈ν, φ̃λ〉

∣∣. Note that (Mtem ,dtem) is a Polish space, and that
µn → µ in Mtem if and only if

〈µn , ϕ〉 −→
n↑∞

〈µ, ϕ〉 for all ϕ ∈ Cexp . (19)

For each m ≥ 1, write C := C (R+ ,Mm
tem) for the set of all continuous paths t 7→ µt in Mm

tem , where
(Mm

tem,d
m
tem) is defined as the m–fold Cartesian product of (Mtem,dtem). When equipped with the

metric

dC(µ· , µ
′
·) :=

∞∑

n=1

2−n
(

sup
0≤t≤n

dmtem (µt , µ
′
t) ∧ 1

)
, µ· , µ

′
· ∈ C, (20)

C is a Polish space. Let P denote the set of all probability measures on C. Endowed with the Prohorov
metric dP , P is a Polish space ([EK86, Theorem 3.1.7]).

Let p denote the heat kernel in Rd related to σ2

2 ∆ :

pt(x) := (2πσ2t)−d/2 exp
[
− |x|2

2σ2t

]
, t > 0, x ∈ Rd, (21)

and {St : t ≥ 0} the corresponding heat flow semigroup. Write ξ = (ξ,Πx) for the related Brownian
motion in Rd, with Πx denoting the law of ξ if ξ0 = x ∈ Rd.

Recall that ` refers to the (normalized) Lebesgue measure on Rd. We use ‖µ‖ to denote the total mass
of a measure µ, whereas |µ| is the total variation measure of a signed measure µ.

The upper or lower index + on a set of real-valued functions will refer to the collection of all non-negative
members of this set, similar to our notation R+ = [0,∞). The Kronecker symbol is denoted by δk,` .

Random objects are always thought of as defined over a large enough stochastic basis (Ω,F ,F·,P)
satisfying the usual hypotheses. If Y = {Yt : t ≥ 0} is a random process starting at Y0 = y, then as
a rule the law of Y is denoted by P Y

y . If there is no ambiguity which process is meant, we also often

simply write Py instead of P Y
y . In particular, we usually use Py in situations in which Y comes from

the unique solution of a martingale problem. Also the corresponding P -letter (instead of E) is used in
expectation expressions. We use FY

t to denote the completion of the σ–field
⋂

ε>0 σ {Ys : s ≤ t+ ε},
t ≥ 0.

As a rule, bold face letters refer to pairs as X =
(
X1, X2

)
, c` =

(
c1`, c2`

)
, etc.

Next we introduce a version of a definition from [DEF+02] which is used throughout this work.
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Definition 1 (Collision local time) Let X =
(
X1, X2

)
be an M2

tem–valued continuous process. The
collision local time of X (if it exists) is a continuous non-decreasing Mtem–valued stochastic process
t 7→ LX(t) = LX(t, · ) such that

〈
L∗,δX (t), ϕ

〉
−→

〈
LX(t), ϕ

〉
as δ ↓ 0 in probability, (22)

for all t > 0 and ϕ ∈ Ccom(Rd), where

L∗,δX (t,dx) :=
1

δ

∫ δ

0

dr

∫ t

0

ds X1
s ∗pr(x)X2

s ∗pr(x) dx, t ≥ 0, δ > 0.

The collision local time LX will also be considered as a (locally finite) measure LX

(
d(s, x)

)
on R+×Rd.

3

We now consider the scaled lattice εZd, for fixed 0 < ε ≤ 1. In much the same way as in the Rd–
case, we use the reference functions φλ , λ ∈ R, now restricted to εZd, to introduce |f |λ , εBλ =
εBλ(εZ

d), εBexp = εBexp(εZd), and εBtem = εBtem(εZd). Let ε∆ denote the discrete Laplacian:

ε∆f (x) := ε−2
∑

{y∈εZd: |y−x|=ε}

[
f(y) − f(x)

]
, x ∈ εZd, (23)

(acting on functions f on εZd). Note that ε∆φλ belongs to εBλ , for each positive λ. The spaces
( εMtem ,

εdtem) and C(R+ ,
εMm

tem) are also defined analogously to the Rd–case.

Write
ε` := εd

∑

x∈εZd
δx (24)

for the Haar measure on εZd (approximating the Lebesgue measure ` in Mtem(R
d) as ε ↓ 0). Let εp

denote the transition density (with respect to ε`) of the simple symmetric random walk ( εξ,εΠa) on

εZd which jumps to a randomly chosen neighbor with rate dσ2/ε2, that is has generator σ2

2
ε∆, with

the related semigroup denoted by {εSt : t ≥ 0}. In other words, εpt(x) := ε−d εΠ0(
εξt = x) and so

εpt(x) = ε−d 1pε−2t(ε
−1x), t ≥ 0, x ∈ εZd. (25)

In the case d = 2 we will need some random walk kernel estimates that for convenience we now state as
a lemma. For a proof, see, for instance, [DEF+02, Lemma 8].

Lemma 2 (Random walk kernel estimates)

(a) (Local central limit theorem) For all t > 0, with the heat kernel p from (21),

lim
ε↓0

sup
x∈εZ2

∣∣εpt(x)− pt(x)
∣∣ = 0.

(b) (Uniform bound) There exists an absolute constant crw such that

sup
t>0, x∈εZ2

σ2 t εpt(x) = crw, 0 < ε ≤ 1, σ > 0.

In fact crw ∈ (.15, .55) (See Remark 9 in [DEF+02, Lemma 8].)

Often we will need the constant
c2 := c2(σ) := crw/σ

2 (26)

instead of crw.
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2.2 Existence of X on R2

First we want to introduce in detail the martingale problem (MP)
σ,γ
µ mentioned already in Subsection 1.1

(extended versions of the martingale problem will be formulated in Lemma 42 and Corollary 43 below).
Let d = 2.

Definition 3 (Martingale Problem (MP)σ,γµ ) Fix constants σ, γ > 0, and µ = (µ1, µ2) ∈
M2

tem(R
2). A continuous F·–adapted and M2

tem(R
2)–valued process X = (X1, X2) [on a stochastic

basis (Ω,F ,F·,P)] is said to satisfy the martingale problem (MP)
σ,γ
µ , if for all ϕ1, ϕ2 ∈ C(2)

exp(R2),

M i
t (ϕ

i) = 〈Xi
t , ϕ

i〉 − 〈µi, ϕi〉 −
∫ t

0

ds
〈
Xi

s ,
σ2

2
∆ϕi

〉
, t ≥ 0, i = 1, 2, (27)

are orthogonal continuous (zero mean) square integrable FX
· –martingales such that M i

0(ϕ
i) = 0 and

〈〈
M i(ϕi)

〉〉
t
= γ

〈
LX(t), (ϕi)2

〉
, t ≥ 0, i = 1, 2, (28)

(with LX the collision local time of X). 3

The existence of the infinite-measure-valued mutually catalytic branching process X =
(
X1, X2

)
in R2

is established in the following theorem.

Theorem 4 (Mutually catalytic branching in R2) Fix constants σ, γ > 0, and assume that

γ

σ2
<

1

64
√
6π crw

. (29)

Let µ = (µ1, µ2) be a pair of absolutely continuous measures on R2 with density functions in Btem(R2)
(abbreviated to µ ∈ B2

tem).

(a) (Existence) There exists a solution X = (X1, X2) to the martingale problem (MP)σ,γµ .

(b) (Some moment formulae) For the process constructed in Theorem 6 below, X = (X1, X2),
solving the martingale problem (MP)

σ,γ
µ , the following moment formulae hold. The mean measures

are given by
PX
µ X

i
t(dx) = µi ∗ pt (x) dx ∈ Mtem , i = 1, 2, t ≥ 0,

and X has covariance measures

CovX
µ

(
Xi1

t1 , X
i2
t2

)
(dz) = dz δi1,i2 γ

∫ t1∧t2

0

ds

∫

R2
dx µ1 ∗ ps (x)µ2 ∗ ps (x)

× pt1−s(z
1 − x) pt2−s(z

2 − x) ∈M2
tem ,

t1, t2 > 0, i1, i2 ∈ {1, 2}, z = (z1, z2) ∈ (R2)2. Moreover, for the expected collision local times we
have

PX
µ LX(t) (dx) = dx

∫ t

0

ds µ1∗ps(x)µ2∗ps(x) ∈ Mtem , t ≥ 0.

Recall that

CovX
µ

( 〈
Xi1

t1 , ϕ1
〉
,
〈
Xi1

t1 , ϕ2
〉 )

=

∫

R2×R2
CovX

µ

(
Xi1

t1 , X
i2
t2

)
(dz)ϕ1(z1)ϕ2(z2),

ϕ1, ϕ2 ∈ C+
exp(R

2).
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Remark 5 (Non-deterministic limit) The covariance formula in (b) shows that (for non-zero initial
measures) the constructed process X is non-deterministic. Moreover, the variance densities explode
along the diagonal, as can easily be checked in specific cases. For instance, if µ = c` =

(
c1`, c2`

)
with

c1, c2 > 0, the variance densities

VarXc`X
i
t (z) = c1 c2 γ

∫ t

0

ds p2s(z
1 − z2), i = 1, 2, (30)

are infinite along the diagonal
{
z1 = z2

}
. 3

The existence claim in Theorem 4 (a) will be verified via a convergence theorem for εZ2–approximations.

Fix again 0 < ε ≤ 1. Let εµ = (εµ1,εµ2) ∈ εM2
tem and let (εX, Pεµ) denote the mutually catalytic

branching process on εZ2 based on the symmetric nearest neighbor random walk. This process was
introduced in [DP98, Theorems 2.2 (a), (b)(iv) and 2.4 (a)] in the special case ε = 1, where it was
constructed as the unique solution of the stochastic equation

∂

∂t
1Xi

t(x) =
σ2

2
1∆ 1Xi

t (x) +
√
γ 1X1

t (x)
1X2

t (x) Ẇ
i
t (x), (31)

(t, x) ∈ R+ × Z2, i = 1, 2, where
{
W i(x) : x ∈ Z2, i = 1, 2

}
is a family of independent standard Brow-

nian motions in R. Of course, (31) is the Z2–counterpart of the stochastic equation (1). We consider the
process 1X with the ε-dependent initial state 1X0(x) :=

εµ(εx), x ∈ Z2, and define εX by rescaling

εXi
t(x) := 1Xi

ε−2t(ε
−1x), (t, x) ∈ R+ × εZ2, i = 1, 2. (32)

We can interpret
{
εXi

t(x) : x ∈ εZ2
}

as a density function with respect to ε` [defined in (24)] of the
measure

εXi
t(B) :=

∫

B

ε`(dx) εXi
t(x), B ⊆ εZ2. (33)

On the other hand, one can also define this process εX directly as the unique (in law) εM2
tem –valued

continuous solution of the following system of equations:

〈
εXi

t , ϕ
i
〉

=
〈
εµi, ϕi

〉
+

∫ t

0

ds
〈
εXi

s ,
σ2

2
ε∆ϕi

〉
(34)

+

∫

εZ2

ε`(dx)

∫ t

0

dW i
s(x)ϕ

i (x)
√
γ εX1

s (x)
εX2

s (x),

t ≥ 0, i = 1, 2. Here
{
W i(x) : x ∈ εZ2, i = 1, 2

}
is again a family of independent standard Brownian

motions in R, the ϕi are test functions in εBexp and the discrete Laplacian ε∆ was defined in (23). Note

that εX =
(
εX1, εX2

)
satisfies the following martingale problem (MP)

σ,γ,ε
µ :





εM i
t (ϕ

i) :=
〈
εXi

t , ϕ
i
〉
−
〈
εµi, ϕi

〉
−
∫ t

0

ds
〈
εXi

s ,
σ2

2
ε∆ϕi

〉
, t ≥ 0,

ϕi ∈ εBexp , εµi ∈ εMtem , i = 1, 2, are continuous square integrable

(zero-mean) F εX
· –martingales with continuous square function

〈〈
εM i(ϕi), εM j(ϕj)

〉〉
t
= δi,j γ

〈
εL εX(t), ϕiϕj

〉
, where

〈
εL εX(t), ϕ

〉
:=

∫ t

0

ds

∫

εZ2

ε`(dy) εX1
s (y)

εX2
s (y)ϕ(y), t ≥ 0, ϕ ∈ εBexp .

(35)

The continuous εMtem–valued random process εL εX is the collision local time of εX, in analogy to
Definition 1.
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The scaled process εX = (εX1, εX2) can be started with any pair εX0 = εµ of initial densities (with
respect to ε`) such that

{
for each λ > 0 there is a constant cλ such that

εµi(x) ≤ cλ e
λ|x|, x ∈ εZ2, i = 1, 2.

(36)

It is also convenient for us to think of εX as continuousM2
tem(R

2)–valued processes (recall our convention
concerning measures on countable subsets). Now the existence Theorem 4 (a) will follow from the following
convergence theorem.

Theorem 6 (Lattice approximation) Let γ, σ, and µ satisfy the conditions of Theorem 4. For each
ε ∈ (0, 1], choose a pair εX0 = εµ = (εµ1, εµ2) of measures on εZ2 with densities (with respect to ε`)
satisfying the domination condition (36) with the constants cλ independent of ε and such that εµ→ µ
in M2

tem(R
2). Then the limit in law

lim
ε↓0

εX =: X exists in C
(
R+ ,M2

tem(R
2)
)
, (37)

satisfies the martingale problem (MP)
σ,γ
µ , and the law of X does not depend on the choice of the ap-

proximating family {εµ : 0 < ε ≤ 1} of µ.

For instance, the hypotheses on εµ will be satisfied if

εµi(x) := ε−2µi
(
x + [0, ε)2

)
, x ∈ εZ2, i = 1, 2. (38)

From now on, by the mutually catalytic branching process X on R2 with initial density X0 = µ ∈ B2tem
we mean the unique (in law) limiting process X from the previous theorem.

Remark 7 (Uniqueness in (MP)
σ,γ
µ via self-duality) Uniqueness of solutions to the martingale

problem (MP)
σ,γ
µ under an additional integrability condition will be shown in [DFM+02]. This will

be done via self-duality (see also Proposition 15 below) with the finite-measure-valued mutually catalytic
branching process in R2 of [DEF+02]. However the integrability condition required for uniqueness will
be established in [DFM+02, Theorem 1.11] for the solutions constructed in Theorem 6 only under the
additional condition that the initial densities are uniformly bounded. 3

Remark 8 (Phase transition for higher moments) In order to establish tightness of processes in
Theorem 6, we will need to establish uniform bounds on the fourth moments of the increments of these
processes (see Lemma 34 below). For γ/σ2 large enough, it is not hard to see that these fourth moments
(in fact even third moments) will explode as ε approaches zero. The bound (29) is sufficient to ensure
finiteness of these fourth moments for the limiting model; a somewhat more generous bound appeared
in [DEF+02]. We believe Theorems 4 and 6 should be valid for all positive values of γ and σ as the
existence of 2 + ε moments should suffice for our tightness arguments, and for any given γ and σ these
should be finite for sufficiently small ε. For this reason we have not tried very hard to find the critical
value of γ/σ2 for finiteness of fourth moments (but see the next remark). 3

Remark 9 (Bounded initial densities) (i) If the initial densities are bounded, then Theorems 4 and
6 remain valid if

γ/σ2 <
1√

6crwπ
. (39)

The proofs go through with minor changes, using Corollary 27 in place of Lemma 26.
(ii) An alternative construction of the process in Theorem 4(a) is also possible if the initial densities
are bounded. This is briefly described in Remark 12(ii) of [DEF+02]. Here the process exists and the

limiting 4th moments are finite if γ/σ2 <
√

2
3 ∼ 0.8. These improved moment bounds are obtained using

a modified version of the dual process introduced in [DEF+02]. Basically one then may replace crw with
its “limiting” value, namely 1

2π and this substitution in (39) gives the bound stated above. 3
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2.3 Properties of the states

To prepare for the next results, we need the following definition.

Definition 10 (Brownian exit time τ from (0,∞)2) For a ∈ R2
+ , let τ = τ(a) denote the first

time, Brownian motion ξ in R2 starting from a hits the boundary of R2
+ . 3

Here we state some properties of X. Recall that we identify absolutely continuous measures with their
density functions.

Theorem 11 (State properties) Let µ = (µ1, µ2) denote a pair of absolutely continuous measures on
R2 with density functions in B+

tem(R
2). Then the following statements hold. Fix any t > 0.

(a) (Absolutely continuous states) If X is any solution of the martingale problem (MP)
σ,γ
µ , then,

for i = 1, 2, with probability one, X i
t , is absolutely continuous:

Xi
t(dx) = Xi

t(x) dx.

Now let X be the mutually catalytic branching process from Theorem 6.

(b) (Law of the densities) For `–almost all x ∈ R2, the law of Xt(x) coincides with the law of the
exit state ξτ(a) of planar Brownian motion starting from the point a :=

(
µ1∗pt (x), µ2∗pt (x)

)
. In

particular,
VarXµ X

i
t(x) ≡ ∞, i = 1, 2,

provided that µj 6= 0, j = 1, 2.

(c) (Segregation of types) For `–almost all x ∈ R2,

X1
t (x)X

2
t (x) = 0, a.s.

(d) (Blow-up at the interface) Define a canonical and jointly measurable density field X =
(
X1, X2

)

of X on Ω× R+ × R2 by

Xi
s(x) :=

{
lim
n↑∞

Xi
s∗p2−n (x) if the limit exists,

0 otherwise,

s > 0, x ∈ R2, i = 1, 2. Note that by (a) for all t > 0,

X t(x) = Xt(x) for `–almost all x, a.s.

If U is an open subset of R+ × R2, write

‖Xi‖U := ess sup
(s,x)∈U

Xi
s(x), i = 1, 2,

where the essential supremum is taken with respect to Lebesgue measure. Then

LX(U) > 0 implies ‖X1‖U = ‖X2‖U = ∞, a.s.

12



Consequently, at each fixed time point t > 0, our constructed mutually catalytic branching process
X has absolutely continuous states with density functions which are segregated: at almost all space
points there is only one type present (despite the spread by the heat flow), although the randomness of
the process stems from the local branching interaction between types. On the other hand, if a density
field X is defined simultaneously for all times as in (d) (although the theorem leaves open whether
non-absolutely continuous states might exist at some random times), then this field X (related to the
absolutely continuous parts of the measure states) blows up as one approaches the interface of the two
types described by the support of the collision local time LX . This local unboundedness is reflected in
simulations by “hot spots” at the interface of types.

At first sight, the separation of types looks paradoxical. But since the densities blow up as one approaches
the interface of the two types, despite disjointness there might be a contribution to the collision local
time which is defined only via a spatial smoothing procedure. In particular, the usual intuitive way of
writing the collision local time as LX

(
d(s, x)

)
= dsX1

s (x)X
2
s (x) dx gives the wrong picture in this case

of locally unbounded densities.

Remark 12 (State space for X) Our construction of X (Theorem 6) was restricted to absolutely
continuous initial states with tempered densities. The latter requirement is unnatural for this process
because this regularity is not preserved by the dynamics of the process, which typically produces locally
unbounded densities [recall Theorem 11 (d)].

It would be desirable to find a state space described by some energy condition in the spirit of (6). Our
use of tempered initial densities is also an obstacle to establishing the Markov property for X. Both
problems are solved in the finite-measure case, see [DEF+02, Theorem 11(b)] and [DFM+02, Theorem
1.9(c)]. 3

2.4 Long-term behavior

Recall Definition 10 of the Brownian exit state ξτ(a) . The long-term behavior of X is quite similar to

that in the recurrent Zd case (see [DP98]).

Theorem 13 (Impossible longterm coexistence of types) Assume additionally that the initial
state X0 = µ of our mutually catalytic branching process has bounded densities satisfying, for some
c = (c1, c2) ∈ R2

+ ,

µi∗pt (x) −→
t↑∞

ci, x ∈ R2, i = 1, 2. (40)

Then the following convergence in law holds:

Xt =⇒
t↑∞

ξτ(c)`. (41)

Consequently, if the initial densities are bounded and have an overall density in the sense of (40) [as
trivially fulfilled in the case X i

0 ≡ ci `], a long-term limit exists with full expectation (persistence), and
the limit population is described in law by the state ξτ(c) of planar Brownian motion, starting from c,
at the time τ(c) of its exit from (0,∞)2. In particular, only one type survives locally in the limiting
population (impossible coexistence of types) and it is uniform in space.

Of course, this does not necessarily mean that one type almost surely dies out as t ↑ ∞. In fact, the
method of [CK00] should show that as t ↑ ∞, the predominant type in any compact set changes infinitely
often, as they proved is the case for the lattice model. However, this would require the Markov property
for our X, and so we will not consider this question here.

Remark 14 (Random initial states) In Theorem 13 one may allow random initial states which satisfy

sup
x
PX(Xi

0(x)
2) <∞

13



and
lim
t→∞

PX((Xi
0 ∗ pt(x)− ci)2) = 0 for all x, i = 1, 2.

Note first that the law of X is a measurable function of the initial state by the self-duality in Proposition
15(b) below and so the process with random initial densities may be defined in the obvious manner. The
derivation of (41) now proceeds with only minor changes in the proof below (see [CKP00] for the proof
in the lattice case). 3

2.5 Self-duality, scaling, and self-similarity

Recall that we identify a non-negative ϕ ∈ Cexp with the corresponding measure ϕ(x) dx, also denoted
by ϕ.

One of the crucial tools for investigating the mutually catalytic branching process is self-duality:

Proposition 15 (Self-duality) Consider the mutually catalytic branching processes X = (X1, X2) and

X̃ = (X̃1, X̃2) with initial densities X0 = µ ∈ B2tem(R2) and X̃0 = ϕ ∈ C2exp(R2), respectively. Then the
following two statements hold for each fixed t ≥ 0 :

(a) (States in M2
exp) With probability one, X̃t ∈M2

exp(R
2).

(b) (Self-duality relation) The processes X and X̃ satisfy the self-duality relation

PX
µ exp

[
−
〈
X1

t +X2
t , ϕ

1 + ϕ2
〉
+ i

〈
X1

t −X2
t , ϕ

1 − ϕ2
〉]

= P X̃
ϕ exp

[
−
〈
µ1 + µ2, X̃1

t + X̃2
t

〉
+ i

〈
µ1 − µ2, X̃1

t − X̃2
t

〉]
, t ≥ 0,

(with i =
√
−1 ).

Self-duality, for instance, makes it possible to derive the convergence Theorem 13, in the case of uniform
initial states in a simple way from the total mass convergence of the finite-measure-valued mutually
catalytic branching process of [DEF+02] (see Subsection 5.3 below).

Our class of mutually catalytic branching processes X on R2 is invariant under mass-time-space scaling,
and spatial shift:

Proposition 16 Let θ, ε > 0 and z ∈ R2 be fixed. Let X and X(ε) denote the mutually catalytic

branching processes with initial measures X0 = µ and X
(ε)
0 = µ(ε) = ε2θµ

(
z + ε−1 ·

)
, respectively, with

densities in B2
tem . Then, for t ≥ 0 fixed, the following statements hold.

(a) (Scaling formula) The following pairs of random measures in Mtem coincide in law:

θε2Xε−2t

(
z + ε−1 ·

) L
= X

(ε)
t .

(b) (Self-similarity) In the case of uniform initial states µ = c` (c ∈ R2
+),

ε2Xε−2t(ε
−1 · ) L

= Xt .

IfX0 has bounded densities, the uniqueness of the solutions to (MP)
σ,γ
X0

established in [DFM+02, Theorem
1.11(b)] shows that the equivalence in (a) (and hence (b)) holds in the sense of processes in t.
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Remark 17 (Invariance of densities) Together with spatial shift invariance, the self-similarity ex-
plains in particular why, in the case of uniform initial states, the law of the density at a point described
in Theorem 11 (b) is constant in space and time. 3

Remark 18 (Growth of blocks of different types) Recall that the types are segregated [Theorem
11 (c)], and in the long run compact sets are occupied by only one type (Theorem 13). So it is natural to
ask about the growth of blocks of different types. To this end, for ε, β > 0, consider the scaled process
Xε,β defined by

Xi,ε,β
t := ε2βXi

ε−2t(ε
−β · ), t ≥ 0, i = 1, 2, (42)

and start again with X0 = c`, c ∈ R2
+ . Note that this scaling preserves the expectations: PX

c` X
ε,β
t ≡ c`.

If β = 1, we are in the self-similarity case of Proposition 16 (b), that is Xε,1 ≡ X. Consequently,
essentially disjoint random blocks of linear size of order ε−1 form at time ε−2t. On the other hand, for
any β > 0,

Xε,β
t = ε2(β−1)Xε,1

t (ε1−β · ) L
= ε2(β−1)Xt(ε

1−β · ), (43)

by self-similarity. If now β > 1, then by the L2–ergodic theorem, using the covariance formula of
Theorem 4 (b), from (43) it can easily be shown that in L2(PX

c` ),

Xε,β
t −→

ε↓0
c` in M2

tem , t ≥ 0. (44)

That is, for β > 1, at length scales of ε−β one has instead a homogeneous mixing of types, so ε−1 is
the maximal order of pure type blocks. Finally, if β < 1, then from (43) by Theorem 11 (a),(b), we can
derive the convergence in law

〈Xi,ε,β
t , ϕ〉 −→

ε↓0
Xi

t(0)ϕ(0)
L
= ξτ(c)ϕ(0), i = 1, 2, t ≥ 0, ϕ ∈ Ccom(R2). (45)

Consequently, in the β < 1 case, at blocks of order ε−β one sees essentially only one type.

This discussion also explains why in our construction of X starting from the lattice model εX, we used
the critical scaling, β = 1. Indeed, if instead we scaled with

ε2(β−1) εXt(ε
−β · ) ε`(dx), (46)

where β 6= 1, then we would have obtained a degenerate limit when ε → 0, namely, for β > 1 a
homogeneous mixing of types, whereas for β < 1 a pure type block behavior.

Moreover, from the point of view of the lattice model, our approximation Theorem 6 (under the critical
scaling) together with the discussion above also leads to a description of the growth of blocks in the lattice
model. In particular, at time ε−2t essentially disjoint blocks of linear size ε−1 do form for solutions of
(31) and by the above these are the largest pure blocks that form. (Recall, as in the ε = 1 case of [DP98]
and as in Theorem 13, in εXt locally only one type survives as t ↑ ∞.) These considerations served as a
motivation for us to start from the lattice model in constructing the two-dimensional continuum model
X.

Further elaboration on these ideas would involve the possibility of diffusive clustering phenomena, as,
for instance, in the two-dimensional voter model [CG86] or for interacting diffusions on the hierarchical
group in the recurrent but not strongly recurrent case [FG94, FG96]. In fact, the possibility of diffusive
clustering phenomena of εX on εZ2 is a topic of current study. 3

2.6 Relation to the super-Brownian catalyst reactant pair

At the beginning of the paper we motivated the investigation of the mutually catalytic branching process
X by the model of a super-Brownian reactant X% with a super-Brownian catalyst % ([DF97a]). We
now want to mention a few similarities in the models (%,X%) and X in dimension two.
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Both models can be described by a martingale problem, where the collision local time enters as an
intrinsic part (see [DF01, Corollary 4]). Also for X%, one has to restrict the possible initial states for
% (see [FK99, Proposition 5]). At each fixed time t, the measures %t and X%

t are separated, more
precisely, the absolutely continuous reactant X%

t lives outside the closed support of the catalyst %t
([FK99, Theorem 1 (a)]), which however is singular. Moreover, under the annealed measure (the case in
which the random law of X% is replaced by its expectation obtained by integrating with respect to the
law of %), the variance of the random densities X%

t (x) is infinite ([FK99, 4th Remark after Theorem 1
]), as in our mutually catalytic model.

In the case of uniform initial states, both models are self-similar ([DF97b, Proposition 13 (b)]), and in the
long-term behavior of X% one has persistent convergence in law to a non-degenerate random multiple of
Lebesgue measure ([FK99, Corollary 2 (b)]), whereas % locally dies.

For a recent survey on catalytic super-Brownian motions, we refer to [DF02].

2.7 Outline

The remainder of the paper is organized as follows. In the next section, we start from the εZ2–model εX
of mutually catalytic branching and provide some fourth moment calculations that will lead to the uniform
estimate of the second moment of the collision measure for sufficiently small parameters, see Corollary
30 below which is our key estimate for the existence proof. Via a tightness argument (Proposition 37),
this then leads, in Section 4, to the proof of the approximation Theorem 6, hence to the construction of
a solution X satisfying the martingale problem (MP)

σ,γ
µ . In the last section, the claimed properties of

X are verified. Finally, in the appendix, some auxiliary facts about random walks that we shall need
are gathered together, a lengthy proof of a basic estimate related to our fourth moment calculations is
provided, and a simple Feynman integral estimate is derived.

3 Mutually catalytic branching on lattice spaces

In this section we first recall the Green function representation of the εZ2–version of the mutually catalytic
branching process εX. Then, in the case ε = 1 we will derive a 4th moment formula, and in Subsection
3.5 a 4th moment estimate. We will use this estimate in Proposition 29 to bound the second moment of
the collision measure. After rescaling with ε, this finally gives a uniform estimate for second moments
of collision measures (Corollary 30), the main result in the section.

3.1 Green function representation of εX

An obvious adaptation of Theorem 2.2 (b) (ii) in [DP98] for the present simple random walk case (bearing
in mind our Lemmas A1 and A2) gives that εX also satisfies the following Green function representation
of the martingale problem (MP)

σ,γ,ε
µ :

For ϕi ∈ εBexp and µi ∈ εMtem ,

〈
εXi

t , ϕ
i
〉
−
〈
µi, εStϕ

i
〉

=

∫

[0,t]×εZ2

εM i
(
d(s, x)

)
εSt−sϕ

i (x), (47)

t ≥ 0, i = 1, 2, where εM1, εM2 are (zero mean) F εX
· –martingale measures with predictable

square function
〈〈∫

[0, · ]×εZ2

εM i
(
d(s, x)

)
f i(s, x),

∫

[0, · ]×εZ2

εM j
(
d(s, x)

)
f j(s, x)

〉〉

t

= δi,j γ

∫

[0,t]×εZ2

εL εX

(
d(s, x)

)
f i(s, x) f j(s, x), (48)
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i, j ∈ {1, 2} (see Chapter 2 of [Wal86] for information about martingale measures). Here
f1, f2 belongs to the set of predictable functions ψ defined on Ω× R+ × εZ2 such that

Pµ

∫

[0,t]×εZ2

εL εX

(
d(s, x)

)
ψ2(s, x) < ∞, t ≥ 0. (49)

Hence, the expectation of the Markov process εX =
(
εX1, εX2

)
is given by

Pµ
εXi

t(dx) = µi ∗ εpt (x)
ε`(dx). (50)

In particular,
Pc ὲ

εXi
t (x) ≡ ci and Pµ

∥∥εXi
t

∥∥ ≡
∥∥µi
∥∥ . (51)

On the other hand, by the Markov property, (50), and orthogonality (as in (48) the cross term cancels),
the ‘mixed’ second moment measure equals

Pµ
εX1

t1(dx
1) εX2

t2(dx
2) = ε`(dx1) ε`(dx2) µ1 ∗ εpt1 (x

1) µ2 ∗ εpt2 (x
2) (52)

(bilinearity). Thus, we get the following formula for the expected collision local time:

Pµ
εL εX

(
d(s, x)

)
= ds ε`(dx) µ1 ∗ εps (x) µ

2 ∗ εps (x). (53)

Moreover, again by the Markov property, (50), (47), (48), and (53), the second moment measure of εXi

is given by

Pµ
εXi

t1(dz
1) εXi

t2(dz
2) = ε`(dz1) ε`(dz2) µi ∗ εpt1 (z

1) µi ∗ εpt2 (z
2) (54)

+ ε`(dz1) ε`(dz2) γ

∫ t1∧t2

0

ds

∫

εZ2

ε`(dx) µ1 ∗ εps (x) µ
2 ∗ εps (x)

εpt1−s(z
1 − x) εpt2−s(z

2 − x),

t1, t2 > 0. Combined with (50) and (52), we get the following covariance densities with respect to ε`×ε` :

Covµ
(
εXi1

t1 ,
εXi2

t2

)
(z) = δi1,i2 γ

∫ t1∧t2

0

ds

∫

εZ2

ε`(dx) (55)

µ1 ∗ εps (x) µ
2 ∗ εps (x)

εpt1−s(z
1 − x) εpt2−s(z

2 − x),

i1, i2 ∈ {1, 2}, z = (z1, z2) ∈ (εZ2)2. In particular,

Covc ὲ
(
εXi1

t1 ,
εXi2

t2

)
(z) = δi1,i2 c

1 c2 γ

∫ t1∧t2

0

ds εpt1+t2−2s(z
1 − z2) (56)

and

Covµ
(
‖εXi1

t1 ‖, ‖
εXi2

t2 ‖
)

= δi1,i2 γ

∫

εZ2
µ1(da1)

∫

εZ2
µ2(da2)

∫ t1∧t2

0

ds εp2s(a
1 − a2),

where by (53) the triple integral coincides with the expected collision local time Pµ
εL εX

(
t1 ∧ t2 , εZ2

)
.

3.2 Finite higher moments on Z2

As announced, we need some higher moment bounds, uniformly in ε. But first we proceed with ε = 1,
and in Subsection 3.8 we will go back to general ε by scaling.

Using differential notation, we can rewrite (31) as

d 1Xi
t(x) =

σ2

2
1∆ 1Xi

t (x) dt +
√
γ 1X1

t (x)
1X2

t (x) dW
i
t (x), (57)
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(t, x) ∈ R+ × Z2, i = 1, 2.

Fix for now µ ∈ 1M2
tem . For n ≥ 1, i = (i1, . . . , in) ∈ {1, 2}n, x =

(
x1, . . . , xn

)
∈ (Z2)n, and t ≥ 0,

we introduce the following higher moment density notation:

1mi
t(x) := Pµ

n∏

j=1

1X
ij
t (xj). (58)

Note that these moment density expressions are invariant with respect to simultaneous reordering of i
and x. For instance,

Pµ
1X1

t (x
1) 1X2

t (x
2) = Pµ

1X2
t (x

2) 1X1
t (x

1). (59)

First we check that the fourth moments are finite:

Lemma 19 (Finite fourth moments) Let µ ∈ 1M2
tem(Z

2) and λ > 0. Then

sup
0≤t≤T

Pµ

∑

i=1,2

∑

x∈Z2

(
1Xi

t(x)
)4

e−λ|x| < ∞, T > 0. (60)

Proof Itô’s formula gives for t ≥ 0,
∑

i=1,2

∑

x∈Z2

(
1Xi

t(x)
)4

e−λ|x| =
∑

i=1,2

∑

x∈Z2

(
µi(x)

)4
e−λ|x|

+ 2σ2
∑

i=1,2

∑

x∈Z2

∫ t

0

ds
(
1Xi

s(x)
)3 1∆1Xi

s(x) e
−λ|x|

+ 4
∑

i=1,2

∑

x∈Z2

∫ t

0

dW i
s(x)

√
γ 1X1

s (x)
1X2

s (x)
(
1Xi

s(x)
)3

e−λ|x|

+ 6γ
∑

i=1,2

∑

x∈Z2

∫ t

0

ds 1X1
s (x)

1X2
s (x)

(
1Xi

s(x)
)2

e−λ|x|.

(61)

Note that the convergence of each of the series and continuity in t follows from the fact that the 1Xi

are 1Mtem–valued processes (use the convergence of the predictable square function to handle the local
martingale term). The continuity allows us to introduce a sequence of stopping times Tn ↑ ∞ as n ↑ ∞,
in such a way that each term in (61) is bounded if t is replaced by t∧Tn . Then, by Hölder’s inequality,

Pµ

∑

i=1,2

〈
(1Xi

t∧Tn)
4, φλ

〉

≤
∑

i=1,2

〈
(µi)4, φλ

〉
+ cγ,σ Pµ

∫ t∧Tn

0

ds
∑

i=1,2

〈
(1Xi

s)
4, φλ

〉 (62)

for some constant cγ,σ . But the latter expectation expression can further be bounded from above by

∫ t

0

dsPµ

∑

i=1,2

〈
(1Xi

s∧Tn)
4, φλ

〉
. (63)

A simple application of the Gronwall and Fatou Lemmas now gives the claim. ¤

Remark 20 (Refinement) By a refinement of the previous proof, the supremum could be moved under
the expectation sign. Clearly, also the fourth moment could be replaced by a moment of any higher order,
but fourth moments are enough for our purpose. 3
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3.3 Moment equations

From (57), by Itô’s formula,

d

4∏

j=1

1X
ij
t (xj) =

σ2

2

4∑

k=1

1∆xk

4∏

j=1

1X
ij
t (xj) dt + d (martingale)

+ γ
∑

1≤j<k≤4
δ(ij ,xj),(ik,xk)

1Xi∧

t (x∧) 1Xi∨

t (x∨) 1X1
t (x

j) 1X2
t (x

k) dt,

where 1∆xk indicates that 1∆ is applied to the variable xk ∈ Z2, and the local martingale term is a
martingale by Lemma 19. Moreover, the index ∧ stands for the number min({1, . . . , 4}\{j, k}) whereas
∨ refers to max({1, . . . , 4} \ {j, k}). Taking expectations and using Lemma 19 to see that 1mi

t(x) < ∞
for i ∈ {1, 2}4, we immediately get the following result:

Lemma 21 (4th moment equations) Let µ ∈ M2
tem(Z

2) and λ > 0. Then the 4th moment density
functions are finite and satisfy the following closed linear system of equations:

∂

∂t
1mi

t(x) =
σ2

2

4∑

k=1

1∆xk
1mi

t(x)

+ γ
∑

1≤j<k≤4
δ(ij ,xj),(ik,xk)

1m
(i∧,i∨,1,2)
t

(
x∧, x∨, xj , xk

)
,

(64)

i = (i1, . . . , i4) ∈ {1, 2}4, x =
(
x1, . . . , x4

)
∈ (Z2)4, and t > 0.

Let ic arise from i by interchanging the types 1 and 2. Pass in (64) from i to ic. Note that concerning
the new Kronecker symbol expression, icj = ick holds if and only if ij = ik is true. Thus we can add
up the new system with the original one, and we get a system in terms of functions which are invariant
according to the transition i 7→ ic. This justifies the following convention.

Convention 22 (Type symmetrization) For our later purpose of establishing upper moment esti-
mates, by an abuse of notation we assume that the moment density functions 1mi, i ∈ {1, 2}4, are
invariant with respect to the type interchange i 7→ ic. In short, we will now be writing 1mi for
1mi + 1mic without changing our notation. Also, for simplification of notation, in calculations we often
drop the upper index 1 in front of m, p, and S, and we delete some commas in writing m1122 instead
of m1,1,2,2, for instance. 3

Our next goal is to derive a formula for m1122
s0 (x10, x

2
0, x

1
0, x

3
0), with s0 > 0 and x0 = (x10, x

2
0, x

3
0) ∈ (Z2)3.

For this purpose, set

1fs0(x0) := 1Ss0m
1122
0 (x10, x

2
0, x

1
0, x

3
0) + γ

∫ s0

0

ds1
∑

x1∈(Z2)3
(65)

[
1ps0−s1(x

2
0 − x31) 1ps0−s1(x

3
0 − x11) + 1ps0−s1(x

3
0 − x31) 1ps0−s1(x

2
0 − x11)

]

1ps0−s1(x
1
0 − x21) 1ps0−s1(x

1
0 − x31) 1Ss1m

1112
0 (x11, x

2
1, x

3
1, x

3
1),

where 1S denotes the semigroup of four independent random walks each with generator σ2

2
1∆. Moreover,
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for s0 > · · · > s2n > 0, and x` ∈ (Z2)3, 1 ≤ ` ≤ 2n, write Πn(s2n;x0, . . . ,x2n) for the n–fold product

n∏

j=1

{[
1ps2j−2−s2j−1(x

2
2j−2−x32j−1) 1ps2j−2−s2j−1(x

3
2j−2−x12j−1)

+ 1ps2j−2−s2j−1(x
3
2j−2−x32j−1) 1ps2j−2−s2j−1(x

2
2j−2−x12j−1)

]

1ps2j−2−s2j−1(x
1
2j−2−x22j−1) 1ps2j−2−s2j−1(x

1
2j−2−x32j−1) 1ps2j−1−s2j (x

3
2j−1−x32j)(

1ps2j−1−s2j (x
1
2j−1−x12j) 1ps2j−1−s2j (x

2
2j−1−x12j) 1ps2j−1−s2j (x

3
2j−1−x22j)

+ 1ps2j−1−s2j (x
1
2j−1−x12j) 1ps2j−1−s2j (x

2
2j−1−x22j) 1ps2j−1−s2j (x

3
2j−1−x12j)

+ 1ps2j−1−s2j (x
1
2j−1−x22j) 1ps2j−1−s2j (x

2
2j−1−x12j) 1ps2j−1−s2j (x

3
2j−1−x12j)

)}
.

3.4 A 4th moment density formula on Z2

Here now is the desired formula which we derive from (64) by iteration and using our Convention 22:

Lemma 23 (A fourth moment density formula) Under Convention 22, for s0 > 0 and x0 =
(x10, x

2
0, x

3
0) in (Z2)3,

1m1122
s0 (x10, x

2
0, x

1
0, x

3
0) = 1fs0(x0) +

∞∑

n=1

γ2n
∫ s0

0

ds1 · · ·
∫ s2n−1

0

ds2n

∑

x`∈(Z2)3 for 1≤`≤2n

1fs2n(x2n)Πn(s2n;x0, . . . ,x2n).

Proof Take i1 = i2 = 1 and i3 = i4 = 2 in (64) and using simultaneous (in both ij and xj) reordering
as well as our Convention 22, we obtain for t > 0 and x0 ∈ (Z2)4,

∂

∂t
m1122

t (x0) =
σ2

2

4∑

k=1

1∆xk0
m1122

t (x0) + γ δx10x20 m
1112
t (x0) + γ δx30x40 m

1112
t (x0),

where x0 := (x40, . . . , x
1
0). By integration,

m1122
t (x0) = 1Stm

1122
0 (x0) (66)

+ γ

∫ t

0

ds
∑

x1∈(Z2)4

4∏

i=1

pt−s(x
i
0 − xi1)

(
δx11x21 m

1112
s (x1) + δx31x41 m

1112
s (x1)

)
.

Specializing the x0–vector as well as using simultaneous reordering and renaming of the summation
variables, we get, for x0 = (x10, x

2
0, x

1
0, x

3
0) ∈ (Z2)4 and s0 > 0,

m1122
s0 (x10, x

2
0, x

1
0, x

3
0) = 1Ss0m

1122
0 (x10, x

2
0, x

1
0, x

3
0) + γ

∫ s0

0

ds1
∑

x1∈(Z2)3
(67)

[
ps0−s1(x

2
0 − x31) ps0−s1(x

3
0 − x11) + ps0−s1(x

3
0 − x31) ps0−s1(x

2
0 − x11)

]

ps0−s1(x
1
0 − x21) ps0−s1(x

1
0 − x31)m1112

s1 (x11, x
2
1, x

3
1, x

3
1).
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On the other hand, from (64) combined with our Convention 22, we have for x1 ∈ (Z2)4,

∂

∂t
m1112

t (x1) =
σ2

2

4∑

k=1

1∆xk m
1112
t (x1) + γ δx1x2 m

1122
t (x11, x

3
1, x

2
1, x

4
1) (68)

+ γ δx11x31 m
1122
t (x1) + γ δx21x31 m

1122
t (x1).

A similar derivation to that of equation (67) above yields, for x1 ∈ (Z2)3,

m1112
s1 (x11, x

2
1, x

3
1, x

3
1) = 1Ss1m

1112
0 (x11, x

2
1, x

3
1, x

3
1) (69)

+ γ

∫ s1

0

ds2
∑

x2∈(Z2)3

(
ps1−s2(x

1
1 − x12) ps1−s2(x

2
1 − x12) ps1−s2(x

3
1 − x22)

+ ps1−s2(x
1
1 − x12) ps1−s2(x

2
1 − x22) ps1−s2(x

3
1 − x12)

+ ps1−s2(x
1
1 − x22) ps1−s2(x

2
1 − x12) ps1−s2(x

3
1 − x12)

)

ps1−s2(x
3
1 − x32)m1122

s2 (x12, x
2
2, x

1
2, x

3
2).

Substituting (69) into (67) gives the following “closed” equation for the moment density
m1122

s0 (x10, x
2
0, x

1
0, x

3
0) :

m1122
s0 (x10, x

2
0, x

1
0, x

3
0) = 1fs0(x0) + γ2

∫ s0

0

ds1

∫ s1

0

ds2
∑

x1,x2∈(Z2)3
(70)

[
ps0−s1(x

2
0 − x31) ps0−s1(x

3
0 − x11) + ps0−s1(x

3
0 − x31) ps0−s1(x

2
0 − x11)

]

ps0−s1(x
1
0 − x21) ps0−s1(x

1
0 − x31) ps1−s2(x

3
1 − x32)(

ps1−s2(x
1
1 − x12) ps1−s2(x

2
1 − x12) ps1−s2(x

3
1 − x22)

+ ps1−s2(x
1
1 − x12) ps1−s2(x

2
1 − x22) ps1−s2(x

3
1 − x12)

+ ps1−s2(x
1
1 − x22) ps1−s2(x

2
1 − x12) ps1−s2(x

3
1 − x12)

)
m1122

s2 (x12, x
2
2, x

1
2, x

3
2),

where 1fs0(x0) was defined in (65).

Denote by S∞ the right-hand side of the claimed identity in Lemma 23 (series expansion). Recall the
notation Πn(s2n;x0, . . . ,x2n) introduced immediately before the lemma, and set

Tn(s2n;x0, . . . ,x2n) :=
∑

x`∈(Z2)3 for 1≤`≤2n−1
Πn(s2n;x0, . . . ,x2n). (71)

Iteration of the closed equation (70) implies that

m1122
s0 (x10, x

2
0, x

1
0, x

3
0) = S∞ + lim

n↑∞
γ2n

∫ s0

0

ds1 · · ·
∫ s2n−1

0

ds2n

∑

x2n∈(Z2)3
Tn(s2n;x0, . . . ,x2n)m

1122
s2n (x2n), (72)

where the series S∞ and the latter limit must converge by the monotonicity of the partial sums and
the finiteness of the left-hand side (by Lemma 19). To finish the proof, we have to show that the limit
expression in (72) will disappear.

If λ > 0, then Lemma 19 implies that

m1122
s2n (x2n) ≤ c(73) exp

[
λ‖x2n‖

]
(73)
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(recall the definition (7) of the norm ‖ · ‖ and that s2n ≤ s0) for some constant c(73) = c(73)(λ, s0). In
Lemma 24 (see Remark 25) we will show that

∑

x2n∈(Z2)3
Tn(s2n;x0, . . . ,x2n) exp

[
λ ‖x2n‖

]
≤ c(74) exp

[
2λ ‖x0‖

]
6n (74)

for some constant c(74) = c(74)(s0, λ, σ) [note that the left hand side of (74) is Ln(1)]. Use (73) and (74)
to see that the limit in (72) is bounded by

lim
n↑∞

c(73)c(74) (6γ
2)n

s2n0
(2n)!

exp
[
2λ‖x0‖

]
= 0. (75)

Thus, the limit expression in (72) vanishes, and the proof is finished. ¤

3.5 A 4th moment density estimate on Z2

Now we temporarily fix a λ ≥ 0, and assume that the initial state 1X0 = 1µ ∈ 1M2
tem is deterministic

with density function (also denoted by 1X0 = 1µ) satisfying

1µi(x) ≤ cλ e
λ|x|, x ∈ Z2, i = 1, 2, (76)

for some constant cλ . (In other words, 1µi ∈ B−λ .) For 1fs0(x0), defined in (65), with 0 < s0 ≤ T and
x0 = (x10, x

2
0, x

3
0) ∈ (Z2)3, by Lemma A2 in the appendix we obtain

1fs0(x0) ≤ c4λ c
4
A2 exp

[
2λ|x10|+ λ|x20|+ λ|x30|

]
+ γ

∫ s0

0

ds1
∑

x1∈(Z2)3[
ps0−s1(x

2
0 − x31) ps0−s1(x

3
0 − x11) + ps0−s1(x

3
0 − x31) ps0−s1(x

2
0 − x11)

]

ps0−s1(x
1
0 − x21) ps0−s1(x

1
0 − x31) c4λ c4A2 exp

[
λ
(
|x11|+ |x21|

)]
exp

[
2λ|x31|

]
,

with cA2 = cA2(T, λ, σ) ≥ 1 (defined in that lemma). For the integral term on the right hand side, we
again use Lemma A2 (to eliminate the summation variables x11 and x21 ,) to obtain the upper estimate

γ c4λ c
6
A2

∫ s0

0

ds1
∑

x31∈Z2

[
ps0−s1(x

2
0 − x31) exp

[
λ
(
|x10|+ |x30|

)]

+ ps0−s1(x
3
0 − x31) exp

[
λ
(
|x10|+ |x20|

)]]
ps0−s1(x

1
0 − x31) exp

[
2λ|x31|

]
.

Then, by Lemma A6, altogether we obtain

1fs0(x0) ≤ c4λ c
4
A2 exp

[
2λ|x10|+ λ|x20|+ λ|x30|

]

+ γ c4λ c
6
A2 cA6 exp

[
2λ|x10|+ λ|x20|+ λ|x30|

] ∫ s0

0

ds1

3∑

k=2

p2e20λ2 (s0−s1)
(x10 − xk0)

with cA6 = cA6(T, 2λ, σ) ≥ 1.

To apply this estimate to 1fs2n(x2n) occurring in the 4th moment density formula of Lemma 23, it is
convenient to introduce two quantities Ln(a) and Mk

n(a, b). To describe them, we set a :=
(
a1, a2, a3

)

with numbers ai ∈ [0, 2] satisfying a1 + a2 + a3 = 4, and write A for the set of all these a. Moreover,
with a slight abuse of notation (7), we set

‖ax‖ := a1|x1|+ a2|x2|+ a3|x3| if x =
(
x1, x2, x3

)
∈ (Z2)3. (77)
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Here now is the definition of Ln(a), n ≥ 1 :

Ln(a) = Ln(a, λ, s2n;x0)

:=
∑

x`∈(Z2)3 for 1≤`≤2n
exp

[
λ ‖ax2n‖

]
Πn(s2n;x0, . . . ,x2n),

(78)

with Πn(s2n;x0, . . . ,x2n) as introduced in the end of Subsection 3.3. On the other hand, M k
n(a, b) =

Mk
n(a, b, λ, s2n+1;x0), with k = 2, 3 and b ≥ 1, is defined as Ln(a) but with the additional factor

p2b (s2n−s2n+1)(x
1
2n − xk2n) under the summation symbol. With these definitions, the moment density

function of Lemma 23 becomes

m1122
s0 (x10, x

2
0, x

1
0, x

3
0) ≤ c4λ c

4
A2

{
exp

[
λ ‖ax0‖

]
(79)

+ γ c2A2 cA6 exp
[
λ ‖ax0‖

] ∫ s0

0

ds1

3∑

k=2

p2b (s0−s1)(x
1
0 − xk0)

+

∞∑

n=1

γ2n
∫ s0

0

ds1 · · ·
∫ s2n−1

0

ds2n Ln(a, λ, s2n;x0)

+ c2A2cA6

∞∑

n=1

γ2n+1

∫ s0

0

ds1 · · ·
∫ s2n

0

ds2n+1

3∑

k=2

Mk
n(a, b, λ, s2n+1;x0)

}

where a := (2, 1, 1) , b = e20λ
2

, cA2 = cA2(T, λ, σ) and cA6 = cA6(T, 2λ, σ).

Now we need estimates for Ln(a) and Mk
n(a, b). Recall the definition (7) of the norm ‖ · ‖.

Lemma 24 (Basic estimates) For λ ≥ 0, n ≥ 1, T ≥ s0 > · · · > sn+1 > 0, x0 ∈ (Z2)3, a ∈ A,
b ≥ 1, and k = 2, 3,

Ln(a) ≤
c2A2 c

2n−1
24

2n∏
j=2

(sj−2 − sj)
e2λ‖x0‖

∑

1≤ i≤ 6n/2
k=2,3

1p2bi,k (s0−s1)(x
1
0−xk0), (80)

Mk
n(a, b) ≤

c2n24
2n+1∏
j=2

(sj−2 − sj)
e2λ‖x0‖

∑

1≤ ı̄≤ 6n/2
k̄=2,3

1p2bı̄,k̄ (s0−s1)(x
1
0−xk̄0), (81)

where the bi,k ≥ 1 might depend on a, λ, s2n−1 , and the bı̄,k̄ ≥ 1 even on a, b, k, λ, s2n+1 . Moreover,
cA2 = cA2(T, 2λ, σ) ≥ 1 and

c24 = c24(T, λ, σ) := c̃24 σ
−2 exp

[
6σ2T

(
e80λ

2 − 1
)]
, (82)

with the absolute constant c̃24 := 64 c̃2 .

The proof of this lemma will be postponed to the appendix (Subsection A.2).

Remark 25 (Simplified bound) The proof of (80) will also show that

Ln(a) ≤ c2A2 6
n e2λ‖x0‖. (83)

To see this, instead of using Lemma 2 (b) to bound ps(x), use the trivial bound of 1 throughout the proof
and the factors of c24

s2j−2−s2j
effectively disappear. This bound was already exploited in (74) but will not

be of further use because it does not scale properly. 3
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Inserting these bounds into (79) gives the following result.

Lemma 26 (4th moment density estimate) Suppose the initial state 1X0 = 1µ has density functions
satisfying (76) for some λ ≥ 0. Then, for 0 < s0 ≤ T and x ∈ (Z2)3,

1m1122
s0 (x1, x2, x1, x3)

≤ c4λ c
4
A2 e

2λ‖x‖
{
1 + γ c2A2 cA6

∫ s0

0

ds1

3∑

k=2

1p2b (s0−s1)(x
1 − xk)

+ c2A2

∞∑

n=1

γ2nc2n−124

∫ s0

0

ds1 · · ·
∫ s2n−1

0

ds2n

1
2n∏
j=2

(sj−2 − sj)

∑

1≤ i≤ 6n/2
k=2,3

1p2bi,k (s0−s1)(x
1−xk)

+ c2A2cA6

∞∑

n=1

γ2n+1c2n24

∫ s0

0

ds1 · · ·
∫ s2n

0

ds2n+1

1
2n+1∏
j=2

(sj−2 − sj)

∑

1≤ ı̄≤ 6n

k̄=2,3

1p2bı̄,k̄ (s0−s1)(x
1−xk̄)

}

where b = e20λ
2

, whereas bi,k ≥ 1 and bı̄,k̄ ≥ 1 might depend on λ, s2n−1 and b, λ, s2n+1 , respectively.
Moreover, cA2 = cA2(T, 2λ, σ) ≥ 1, cA6 = cA6(T, 2λ, σ) ≥ 1, and c24 = c24(T, λ, σ).

3.6 A 4th moment estimate on Z2 under bounded initial densities

For the forthcoming paper [DFM+02] we will need the following more handy version of the previous
estimate concerning the special case λ = 0.

Corollary 27 (Bounded initial densities) Let 0 < p < 1. Assume

γ

σ2
<

sin
[
π (1− p)

]
√
6 crw π

, (84)

and that the initial state 1X0 = 1µ has bounded density functions,
∥∥1Xi

0

∥∥
∞ ≤ a, say, i = 1, 2. Then for

s0 > 0, and x = (x1, x2, x3, x4) ∈ (Z2)4,

1m1122
s0 (x) ≤ a4

(
1 + c27 s

p
0

∫ s0

0

ds1 s
−p
1

[
1p2s1(x

1 − x2) + 1p2s1(x
3 − x4)

])

and
1m1112

s0 (x1, x2, x3, x3) ≤ a4
(
1 + c27 s

p
0

∫ s0

0

ds1 s
−p
1

∑

1≤j<k≤3

1p2s1(x
j − xk)

)

for some constant c27 = c27(p, γ, σ).

Proof Step 1◦. First we restrict our attention to x = (x1, x2, x3) in (Z2)3. According to Remark A7,
in the λ = 0 case, cA2 = 1 = cA6 , hence, by (A40), we can chose c24 = c2 = crw σ

−2. Moreover, under
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λ = 0, the b in (79) equals one, therefore all the b’s in Lemma 24 and its proof are one. Putting these
simplifications in the inequality in Lemma 26 yields (with a instead of cλ)

m1122
s0 (x1, x2, x1, x3) ≤ a4

{
1 + γ

∫ s0

0

ds1 gs0−s1(x)

+

∞∑

n=1

γ2n c2n−12

∫ s0

0

ds1 · · ·
∫ s2n−1

0

ds2n
1

∏2n
j=2 (sj−2 − sj)

6n

2
gs0−s1(x)

+

∞∑

n=1

γ2n+1 c2n2

∫ s0

0

ds1 · · ·
∫ s2n

0

ds2n+1
1

∏2n+1
j=2 (sj−2 − sj)

6n gs0−s1(x)

}
,

where for x = (x1, x2, x3) ∈ (Z2)3 we put

gs(x) :=
3∑

k=2

p2s(x
1 − xk), s > 0. (85)

Applying the Feynman integral estimate of Lemma A8 with n replaced by 2n and 2n + 1, respectively,
we obtain

m1122
s0 (x1, x2, x1, x3) ≤ a4

{
1 + γ

∫ s0

0

ds1 gs0−s1(x) (86)

+
1

p

∞∑

n=1

6n

2
γ2n c2n−12

∫ s0

0

ds1 c
2n−2
A8

(
s0

s0 − s1

)p

gs0−s1(x)

+
1

p

∞∑

n=1

6n γ2n+1c2n2

∫ s0

0

ds1 c
2n−1
A8

(
s0

s0 − s1

)p

gs0−s1(x)

}
.

Changing variable in the integration (to interchange s0 − s1 and s1), and recalling that with (84) we
assumed that

√
6 γ c2 cA8 < 1, we may sum the series (adding the initial term in the second case) to

obtain the estimate

m1122
s0 (x1, x2, x1, x3) ≤ a4

{
1 + γ

∫ s0

0

ds1 gs1(x) (87)

+
1

p
γ [3 γ c2 + c−1A8 ]

1

1− 6 γ2 c22 c
2
A8

∫ s0

0

ds1 (s0/s1)
p gs1(x)

}
.

Hence,

m1122
s0 (x1, x2, x1, x3) ≤ a4

{
1 + c(88)

∫ s0

0

ds1 (s0/s1)
p gs1(x)

}
(88)

for some constant c(88) = c(88)(p, γ, σ).

Step 2◦. Next we want to substitute this estimate into (69) to derive the second of the claimed inequalities.
For this purpose, for x = (x1, x2, x3) and y = (y1, y2, y3) in (Z2)3 and r > 0, set





Ir(x,y) :=
[
pr(x

1 − y1) pr(x2 − y1) pr(x3 − y2)

+ pr(x
1 − y1) pr(x2 − y2) pr(x3 − y1)

+ pr(x
1 − y2) pr(x2 − y1) pr(x3 − y1)

]
pr(x

3 − y3),

(89)
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to obtain from (69) and (88),

m1112
s0 (x1, x2, x3, x3) ≤ a4 + γ

∫ s0

0

ds1
∑

y∈(Z2)3
Is0−s1(x,y)

a4
{
1 + c(88)

∫ s1

0

ds2 (s1/s2)
p gs2(y)

}
.

(90)

First we calculate two sums over y. Trivially,
∑

y∈(Z2)3
Ir(x,y) =

∑

1≤j<k≤3
p2r(x

j − xk) =: hr(x), (91)

whereas
∑

y∈(Z2)3
Ir(x,y) p2s2(y

1 − y2) (92)

=
∑

y1∈Z2

[
pr(x

1 − y1) pr(x2 − y1) pr+2s2(x
3 − y1)

+ pr(x
1 − y1) pr+2s2(x

2 − y1) pr(x3 − y1)

+ pr+2s2(x
1 − y1) pr(x2 − y1) pr(x3 − y1)

]

≤ c2 (r + 2s2)
−1 hr(x),

and a similar calculation gives

∑

y∈(Z2)3
Ir(x,y) p2s2(y

1 − y3) ≤ c2
hr(x)

r + 2s2
. (93)

Recalling the definition (85) of gs2(y), put these three bounds into (90) to conclude

m1112
s0 (x1, x2, x3, x3) ≤ a4 + a4 γ

∫ s0

0

ds1 hs0−s1(x)

+ a4 c(94)

∫ s0

0

ds1

∫ s1

0

ds2 (s1/s2)
p hs0−s1(x)

s0 − s1 + 2s2

(94)

for some constant c(94) = c(94)(p, γ, σ). The substitution r :=
(

2s2
s0−s1

)1−p

gives

∫ s1

0

ds2
sp1

sp2 (s0 − s1 + 2s2)
≤ 1

2(1− p)
( 2s0
s0 − s1

)p ∫ ∞

0

dr
1

1 + r
1

1−p

(95)

= c(95) s
p
0 (s0 − s1)−p

with a constant c(95) = c(95)(p). Consequently,

m1112
s0 (x1, x2, x3, x3)

≤ a4 + a4 γ

∫ s0

0

ds1 hs1(x) + a4 c(94) s
p
0

∫ s0

0

ds1 c(95) (s0 − s1)−p hs0−s1(x)

≤ a4
(
1 + c(96) s

p
0

∫ s0

0

ds1 s
−p
1 hs1(x)

)
(96)

with a constant c(96) = c(96)(p, γ, σ). This gives the second estimate claimed in the corollary [recall the
definition (91) of hs1(x)].
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Step 3◦. It remains to prove the first estimate claimed in Corollary 27. According to (66), for x =
(x1, x2, x3, x4) ∈ (Z2)4,

m1122
s0 (x) = Ss0m

1122
0 (x) + γ

∫ s0

0

ds1
∑

y∈(Z2)3
[
ps0−s1(x

1 − y3) ps0−s1(x
2 − y3) ps0−s1(x

3 − y2) ps0−s1(x
4 − y1)

+ ps0−s1(x
1 − y1) ps0−s1(x

2 − y2) ps0−s1(x
3 − y3) ps0−s1(x

4 − y3)
]

m1112
s1 (y1, y2, y3, y3).

(97)

Substituting (96) and using the definition (91) of hs2(y) gives

m1122
s0 (x) ≤ a4 + γ

∫ s0

0

ds1
∑

y∈(Z2)3

[
ps0−s1(x

1 − y3) ps0−s1(x
2 − y3) ps0−s1(x

3 − y2) ps0−s1(x
4 − y1)

+ ps0−s1(x
1 − y1) ps0−s1(x

2 − y2) ps0−s1(x
3 − y3) ps0−s1(x

4 − y3)
]

a4
(
1 + c(96) s

p
1

∫ s1

0

ds2 s
−p
2

[
p2s2(y

1 − y2) + p2s2(y
1 − y3) + p2s2(y

2 − y3)
])
.

(98)

By Chapman-Kolmogorov we have

∑

y∈(Z2)3
pr(x

1 − y3) pr(x2 − y3) pr(x3 − y2) pr(x4 − y1) (99)

[
p2s2(y

1 − y2) + p2s2(y
1 − y3) + p2s2(y

2 − y3)
]

=
∑

y3∈Z2

pr(x
1 − y3) pr(x2 − y3)

[
p2r+2s2(x

3 − x4) + pr+2s2(x
4 − y3) + pr+2s2(x

3 − y3)
]
.

According to Lemma 2 (b),

p2r+2s2(x
3 − x4) ≤ c2

1

2r + 2s2
, (100)

whereas for the second and third term in the final bracket of (99) one gets twice this estimate. Thus,
again by Chapman-Kolmogorov, (99) can be bounded by

5 c2
1

2r + 2s2
p2r(x

1 − x2). (101)
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Use this estimate, a symmetrical counterpart, and the fact that (99) without the square bracket expres-
sions equals p2r(x

1 − x2), to conclude from (98) that

m1122
s0 (x) ≤ a4 + γ

∫ s0

0

ds1
[
p2(s0−s1)(x

1 − x2) + p2(s0−s1)(x
3 − x4)

]

a4
(
1 + c(96) 5 c2 s

p
1

∫ s1

0

ds2
1

sp2 (2(s0 − s1) + 2s2)

)

≤ a4 + γ

∫ s0

0

ds1
[
p2(s0−s1)(x

1 − x2) + p2(s0−s1)(x
3 − x4)

]

a4
(
1 + c(96) 5 c2 s

p
1 c(95)

(
2(s0 − s1)

)−p
)
,

where in the last step we used (95). Consequently,

m1122
s0 (x) ≤ a4

(
1 + c(102) s

p
0

∫ s0

0

ds1 s
−p
1

[
p2s1(x

1 − x2) + p2s1(x
3 − x4)

])
, (102)

finishing the proof. ¤

3.7 An estimate for the 2nd moment of the collision measure on Z2

For the desired tightness properties, we will restrict our consideration to a finite time interval [0, T ]. So
let us fix now a T > 0.

Later we will need estimates for certain moments in the case of tempered initial density functions and
we will provide them for γ/σ2 not too large. More precisely, we will impose the following hypothesis.

Hypothesis 28 (Small collision rate) Assume that

0 < γ <
σ2√
6π c̃24

=: γσ , (103)

with the absolute constant c̃24 = 64 crw from Lemma 24. 3

Later we will consider initial density functions 1Xi
0 = 1µi belonging to 1Btem ⊂ 1B−λ , λ > 0. Actually,

under Hypothesis 28, we will restrict ourselves to those λ ∈ [0, 1] satisfying

γ exp
[
6σ2T

(
e80λ

2 − 1
)]

< γσ . (104)

We will use Lemma 26 to derive the following statement. Recall that we fixed T > 0.

Proposition 29 (2nd moment of collision measure) Assume that both γ > 0 and λ ∈ [0, 1] are
small as in Hypothesis 28 and condition (104), respectively. Suppose that 1X0 = 1µ has density functions
satisfying (76) (for the present λ). Then, for 0 < t ≤ T and non-negative test functions ϕ,

P 1µ

[ ∑

x∈Z2

1X1
t (x)

1X2
t (x)ϕ(x)

]2
≤ c029

[( ∑

x∈Z2

ϕ(x) e4λ|x|
)2

+ c29 t
∑

x∈Z2

ϕ2(x) e8λ|x|
]

where c029 = c029(T, λ, σ) := 2 c4λ c
6
A2(T, 2λ, σ) cA6(T, 4λ, σ) and

0 < c29 = c29(T, λ, σ, γ) := γ + 24 γ2 c24
(1 + 2π γ c24)

1− 6π2 γ2 c224
< ∞ (105)

with c24 = c24(T, λ, σ) from (82).
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Proof The left hand moment expression in the claim (with t = s0) equals

∑

x1,x2 ∈ Z2

ϕ(x1)ϕ(x2)m1122
s0 (x1, x2, x1, x2). (106)

By Lemma 26 with x2 = x3, we bound the latter sum by

c029
∑

x=(x1,x2)∈ (Z2)2

ϕ(x1)ϕ(x2) e4λ‖x‖
{
1 + γ

∫ s0

0

ds1 p2b (s0−s1)(x
1 − x2)

+

∞∑

n=1

γ2nc2n−124

∫ s0

0

ds1 · · ·
∫ s2n−1

0

ds2n

1
2n∏
j=2

(sj−2 − sj)

∑

1≤ i≤ 6n/2
k=2,3

1p2bi,k (s0−s1)(x
1−x2)

+
∞∑

n=1

γ2n+1c2n24

∫ s0

0

ds1 · · ·
∫ s2n

0

ds2n+1

1
2n+1∏
j=2

(sj−2 − sj)

∑

1≤ ı̄≤ 6n

k̄=2,3

1p2bı̄,k̄ (s0−s1)(x
1−x2)

}

(note that we passed from x ∈(Z2)3 to x ∈(Z2)2). We write the right hand side as c029 (S1 + · · ·+ S4)
in the obvious correspondence. Trivially,

S1 =

( ∑

x∈Z2

ϕ(x) e4λ|x|
)2

(107)

(recall (7) which now reads as ‖x‖ = |x1| + |x2|) giving the first term in the claim. By Chapman-
Kolmogorov and a change of variable,

S2 = γ

∫ s0

0

ds1
∑

y∈Z2

∑

x1,x2 ∈ Z2

ϕ(x1)ϕ(x2) e4λ‖x‖ pbs1(x
1 − y) pbs1(x2 − y)

= γ

∫ s0

0

ds1
∑

y∈Z2

( ∑

x∈Z2

ϕ(x) e4λ|x| pbs1(x− y)
)2

.

By Jensen and L1–invariance, we may bound the latter expression by

γ

∫ s0

0

ds1
∑

y∈Z2

∑

x∈Z2

ϕ2(x) e8λ|x| pbs1(x− y) = γ s0
∑

x∈Z2

ϕ2(x) e8λ|x| (108)

which gives rise to the second term in the required upper bound. Treating S3 this way, but without
performing the integral in s1, we get

S3 ≤
∞∑

n=1

γ2nc2n−124

∫ s0

0

ds1 · · ·
∫ s2n−1

0

ds2n
1

∏2n
j=2 (sj−2 − sj)

6n
∑

x∈Z2

ϕ2(x) e8λ|x|.

By the Feynman integral Lemma A8 with 2n instead of n and with p = 1/2, this in turn is

≤ 2
∑

x∈Z2

ϕ2(x) e8λ|x|
∞∑

n=1

γ2nc2n−124 6n π2n−2
∫ s0

0

ds1

√
s0

s0 − s1
. (109)
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But
∫ t

0
ds
√
t/s = 2t, and

∞∑

n=1

γ2nc2n−124 6n π2n−2 =
6 γ2 c24

1− 6π2 γ2 c224
(110)

since 6π2 γ2 c224 < 1 by Hypothesis 28 and assumption (104) on γ and λ, respectively. So

S3 ≤
24 s0 γ

2 c24
1− 6π2 γ2 c224

∑

x∈Z2

ϕ2(x) e8λ|x|. (111)

Finally,

S4 ≤
∞∑

n=1

γ2n+1c2n24

∫ s0

0

ds1 ···
∫ s2n

0

ds2n+1
1

∏2n+1
j=2 (sj−2 − sj)

2·6n
∑

x∈Z2

ϕ2(x) e8λ|x|.

Lemma A8 applied to K2n+1(s0, s1) and p = 1/2 gives that this is

≤ 4
∑

x∈Z2

ϕ2(x) e8λ|x|
∞∑

n=1

γ2n+1 c2n24 6
n π2n−1

∫ s0

0

ds1

√
s0

s0 − s1

≤ 48 s0 π γ
3 c224

1− 6π2 γ2 c224

∑

x∈Z2

ϕ2(x) e8λ|x|. (112)

Combining the estimates (111) and (112) for S3 and S4 , respectively, gives rise to the second term of
c29 , and we are done. ¤

3.8 Uniform bound for second moment of collision measure on εZ2

Recall that the mutually catalytic branching processes εX =
(
εX1, εX2

)
in εZ2, 0 < ε ≤ 1, introduced

before Theorem 6, can be defined through 1X via their densities with respect to ε` [defined in (24)]:

εXi
t(x) = 1Xi

ε−2t(ε
−1x), t ≥ 0, x ∈ εZ2, i = 1, 2. (113)

That is, the εM2
tem–valued process εX satisfies the martingale problem (MP)

σ,γ,ε
εµ in (35) if and only if

the 1M2
tem–valued

1X satisfies (MP)
σ,γ,1
1µ , where (113) also determines the relationship between εµ and

1µ. Let

εmi
t(x) :=Pεµ




n∏

j=1

εX
ij
t (xj)




be the corresponding moment densities.

Recall that we fixed T > 0. Instead of imposing (104) we will consider now λ ∈ [0, 1] satisfying

γ exp
[
480σ2 T λ2 e80

]
< γσ (114)

(with γσ from Hypothesis 28). The following statement is crucial for our development.

Corollary 30 (Scaled 2nd moment of collision measure) Assume that γ > 0 and λ ∈ [0, 1] are
small as in Hypothesis 28 and assumption (114), respectively. Suppose that the (deterministic) initial
densities εX0 = εµ satisfy

{
εµi(x) ≤ cλ e

λ|x|, x ∈ εZ2, i = 1, 2, ε ∈ (0, 1],

for some constant cλ (independent of ε).
(115)
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Then there is a constant c30 = c30(T, λ, σ, γ) independent of ε, such that for 0 < t ≤ T and non-
negative test functions ϕ on εZ2,

P εµ

[ ∫

εZ2

ε`(dy) εX1
t (y)

εX2
t (y)ϕ(y)

]2
≤ c30

∫

εZ2

ε`(dy) ϕ2(y) e10λ|y|. (116)

Proof By definition, the left hand side of (116) can be written as

P 1µ

[ ∑

x∈Z2

1X1
ε−2t(x)

1X2
ε−2t(x) ε

2ϕ(εx)

]2
, (117)

where 1µi(x) = εµi(εx) ≤ cλ e
ελ|x|, by (115). Now we want to apply Proposition 29 with T, λ, and ϕ

replaced by ε−2T, ελ and ε2ϕ(ε · ), respectively. This is actually possible, since

ecε − 1 ≤ c ε ec, 0 < ε ≤ 1, c > 0, (118)

hence, by (114) and since λ ≤ 1,

γ exp
[
6σ2 ε−2T

(
e80 ε

2λ2 − 1
)]
≤ γ exp

[
480σ2 T λ2e80

]
< γσ . (119)

Thus, Proposition 29 gives the following upper bound for (117):

c029

[( ∑

x∈Z2

ε2 ϕ(εx) e4ελ|x|
)2

+ c29 ε
−2 T

∑

x∈Z2

ε4 ϕ2(εx) e8ελ|x|
]
, (120)

with c029 = c029
(
ε−2T, ελ, σ

)
and c29 = c29

(
ε−2T, ελ, σ, γ

)
. Concerning their ε–dependence, these con-

stants depend only on terms of the form

c1 exp
[
c2 ε−2T

(
ec

3ε2λ2 − 1
)]

(121)

with constants c1, c2, c3 independent of ε. Using again the trivial estimate (118), the latter expression
can be bounded from above by

c1 exp
[
c2 T c3 λ2 ec

3λ2
]

(122)

which is independent of ε. Moreover, the second term in (120) is of the form of the integral on the right
hand side of (116) [except the enlargement of the constant 8 to 10]. Finally, using Cauchy-Schwarz, the
squared sum in (120) can be bounded from above by

∑

x∈Z2

ε4 ϕ2(εx) e10 ελ|x|
∑

x∈Z2

e−2 ελ|x|, (123)

where the second sum equals c (ελ)−2. Combining the arguments above gives (116), completing the proof.
¤

The following bounds on the scaled fourth moment densities will be used in [DFM+02] and follow directly
from Corollary 27.

Corollary 31 (Scaled moment density bounds) Let 0 < p < 1. Assume

γ

σ2
<

sin
[
π (1− p)

]
√
6 crw π

, (124)
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and that the initial state εX0 = εµ has bounded density functions,
∥∥εXi

0

∥∥
∞ ≤ a, say, i = 1, 2. Then for

ε > 0, s0 ≥ 0, and x = (x1, x2, x3, x4) ∈ (εZ2)4,

εm1122
s0 (x) ≤ a4

(
1 + c27 s

p
0

∫ s0

0

ds1 s
−p
1

[
εp2s1(x

1 − x2) + εp2s1(x
3 − x4)

])

and
εm1112

s0 (x1, x2, x3, x3) ≤ a4
(
1 + c27 s

p
0

∫ s0

0

ds1 s
−p
1

∑

1≤j<k≤3

εp2s1(x
j − xk)

)

for the constant c27 = c27(p, γ, σ).

4 Construction of X

In this section, the approximation Theorem 6, hence Theorem 4 (a) will be proved which states the
existence of a mutually catalytic branching process X on R2, satisfying the martingale problem (MP)

σ,γ
µ .

4.1 Tightness on path space

The purpose of this subsection is to derive some uniform moment estimates, which imply the tightness
on path space (Proposition 37 below).

It is convenient to introduce the following hypothesis.

Hypothesis 32 (Uniformly tempered initial densities) Assume that the initial densities εX0 =
εµ satisfy the uniform domination condition (115) for all λ > 0. 3

Recall that measures on εZ2 will also be considered as (discrete) measures on R2.

Lemma 33 (Uniform first absolute moments) Under Hypothesis 32, for each T > 0 and ϕ ∈
Cexp(R2),

sup
0<ε≤1

P εµ sup
0≤t≤T

∣∣〈εXi
t , ϕ〉

∣∣ < ∞, i = 1, 2. (125)

Proof Fix T > 0 and i = 1, 2. We may assume that ϕ ∈ C√2λ(R
2), λ > 0. Since |ϕ| ≤ |ϕ|√2λ φ

√
2λ

[recall notation (15)], and using the first inequality in (13) in the case n = 0, it suffices to verify the
claim (125) with ϕ replaced by φ̃λ . By the martingale problem (MP)

σ,γ,ε
µ in (35),

P εµ sup
0≤t≤T

〈εXi
t , φ̃λ〉 ≤ c P εµ sup

0≤t≤T

∣∣ εM i
t (φ̃λ)

∣∣ + c 〈εµi, φ̃λ〉

+ c

∫ T

0

ds
〈
εSs

εµi,
σ2

2

∣∣ ε∆φ̃λ
∣∣
〉
,

(126)

where in the last term we have used the expectation formula (50). Write c (S1 + S2 + S3) for the right
hand side (in the obvious correspondence). For S2 we use (115) with λ replaced by a λ′ ∈ (0, λ), and
the upper estimate of (13) in the case n = 0 to get a finite bound, independent of ε.

Next, using the mean value theorem (twice), and then the second part of (13) in the case n = 2, there
is a constant cλ independent of ε such that

∣∣ ε∆φ̃λ(x)
∣∣ ≤ cλ e

−λ|x|, x ∈ εZ2. (127)
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On the other hand, due to (115) with λ replaced by λ′ ∈ (0, λ),

εµ ≤ cλ′ φ−λ′ , (128)

whereas by Corollary A3
εSsφ−λ′ ≤ cA3 φ−λ′ (129)

with cA3 = cA3(T, λ
′, σ). Together these give

εSs
εµi ≤ c φ−λ′ , 0 < λ′ < λ, (130)

with a constant c depending on λ′. Combining these estimates, S3 also behaves nicely.

Finally, to S1 we apply Burkholder’s inequality to get the upper bound

c P εµ

√
γ
〈
εL εX(T ), φ̃2λ

〉
≤ c

√
P εµ γ

〈
εL εX(T ), φ̃2λ

〉
(131)

where we have also used Jensen’s inequality. By the expectation formula (53) and the second part of (13)
in the case n = 0, for the expectation under the root we get the upper bound

c γ

∫ T

0

ds

∫

εZ2

ε`(dx) εµ1 ∗ εps (x)
εµ2 ∗ εps (x) e

−2λ|x|. (132)

Applying (130) twice, we are done. ¤

For the rest of this subsection we assume that the collision rate γ > 0 is small as in Hypothesis 28, and
that the initial densities εX0 = εµ are uniformly tempered as in Hypothesis 32.

Lemma 34 (Uniform 4th moments of increments) Fix a ϕ ≥ 0 belonging to C(2)exp(R2). Then there
is a constant c34 = c34(T, γ, σ, ϕ) such that

sup
0<ε≤1

P εµ

〈
εXi

t′ − εXi
t , ϕ

〉4 ≤ c34 |t′ − t|2, 0 ≤ t < t′ ≤ T, i = 1, 2.

Proof Fix T, γ, σ, i as in the lemma, and take ϕ ∈ C(2)λ (R2), λ > 0. By the Green function representation

of the martingale problem (MP)
σ,γ,ε
εµ in Subsection 3.1,

〈
εXi

t′ − εXi
t , ϕ

〉4 ≤ c
〈
εµi, εSt′ϕ− εStϕ

〉4
(133)

+ c

∣∣∣∣
∫

[0,t]×εZ2

εM i
(
d(s, x)

) [
εSt′−sϕ(x) −εSt−sϕ(x)

] ∣∣∣∣
4

+ c

∣∣∣∣
∫

[t,t′]×εZ2

εM i
(
d(s, x)

)
εSt′−sϕ(x)

∣∣∣∣
4

.

Write the right hand side as c (S1+ S2+ S3) (in the obvious correspondence). We will use the fact that

εSt′ϕ− εStϕ =

∫ t′

t

ds
σ2

2
εSs

ε∆ϕ. (134)

By the mean value theorem, and since by assumption ∆ϕ belongs to Cλ(R2), we conclude that

|ε∆ϕ| (x) ≤ c e−λ|x|, x ∈ εZ2. (135)

Then by (130), the term S1 has the required property.
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By Burkholder’s inequality, (48), and the definition of εL εX ,

P εµ S3 ≤ c P εµ

(
γ

∫ t′

t

ds

∫

εZ2

ε`(dx) εX1
s (x)

εX2
s (x)

(
εSt′−sϕ(x)

)2
)2

(136)

≤ c γ2 |t′ − t|
∫ t′

t

ds P εµ

(∫

εZ2

ε`(dx) εX1
s (x)

εX2
s (x)

εSt′−sϕ
2 (x)

)2

,

where we have also used the Cauchy-Schwarz and Jensen’s inequalities. By Corollary 30 with ϕ replaced
by εSt′−sϕ

2, and λ by a λ′ satisfying additionally λ′ ∈ (0, 2λ/5), the latter second moment expression
can be bounded from above by

c30

∫

εZ2

ε`(dy)
(
εSt′−sϕ

2
)2

(y) e10λ
′|y|. (137)

But by Corollary A3 (a),
εSt′−sϕ

2 ≤ c φ2λ (138)

with a constant c depending on T and λ. Hence, by our assumption on λ′, the integral in formula line
(137) is bounded by a constant, uniformly in ε, s, t′. Altogether, S3 behaves as we want it to.

Similarly, S2 can be handled by using (134), finishing the proof. ¤

Since each ϕ ∈ Cλ(R2), λ > 0, satisfies |ϕ| ≤ |ϕ|λ φλ ≤ |ϕ|λ φ̃λ/√2 , and φ̃λ/
√
2 belongs to C(2)

λ/
√
2
(R2),

the previous lemma immediately implies the following result.

Corollary 35 (Uniform fourth moments) Let ϕ ∈ Cexp(R2). Then

sup
0<ε≤1, 0≤t≤T

P εµ

〈
εXi

t , ϕ
〉4

< ∞, i = 1, 2. (139)

We also need the following lemma.

Lemma 36 (2nd moment of collision local time increments) Fix a ϕ ≥ 0 in Cexp(R2). Then
there is a constant c36 = c36(T, γ, σ, ϕ) such that

sup
0<ε≤1

P εµ

〈
εL εX(t)− εL εX(t′), ϕ

〉2
≤ c36 |t′ − t|2, 0 ≤ t < t′ ≤ T. (140)

Proof The proof requires us to estimate

P εµ

(
γ

∫ t′

t

ds

∫

εZ2

ε`(dx) εX1
s (x)

εX2
s (x)ϕ(x)

)2

, (141)

and this can be done in the same way as in the proof of Lemma 34 [recall (136)]. ¤

Here is the essential result of this subsection.

Proposition 37 (Tightness) Under Hypotheses 28 and 32, the family of random processes{
( εX, εL εX) : ε ∈ (0, 1]

}
is tight (in law) in C

(
R+ ,M3

tem(R
2)
)
.
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Proof Fix a T > 0. We want to exploit [EK86, Theorem 3.9.1]. For this purpose, we use the relatively
compact subsets

K = K
(
(cn)n≥1

)
:=

{
ν ∈Mtem : 〈ν, φ̃1/n〉 ≤ cn , n ≥ 1

}
(142)

of Mtem , where (cn)n≥1 is a sequence of positive numbers. For 0 < ε ≤ 1, using Lemma 33, we can
find a sequence (cn)n≥1 such that for i = 1, 2,

P εµ

(
sup

0≤t≤T

∣∣∣
〈
εXi

t , φ̃1/n
〉∣∣∣ ≥ cn

)
≤ ε/2n. (143)

Then
P εµ

(
εXi

t ∈ K
(
(cn)n≥1

)
for all t ∈ [0, T ]

)
≥ 1− ε. (144)

By the Lemmas 34 and 36 we obtain that, for every non-negative ϕ ∈ C(2)exp , the families
{
〈 εXi, ϕ〉 : 0 < ε ≤ 1

}
, i = 1, 2, and

{
〈 εL εX, ϕ〉 : 0 < ε ≤ 1

}
(145)

of random processes, restricted to [0, T ], are tight (in law) in C
(
[0, T ],R

)
. Then by [EK86, Theorem

3.9.1] the claim follows. (In fact, since our processes are all continuous, tightness in the Skorohod space
then yields the tightness in our C–space.) ¤

4.2 Limiting martingale problem (proof of Theorem 4)

As the main task, here we want to verify the following proposition which implies Theorem 4 (a).

Proposition 38 (Limiting martingale problem) Fix γ, σ, µ as in Theorem 4, hence as in Theorem
6, and, for 0 < ε ≤ 1, choose εX0 = εµ ∈ εB2tem(εZ2) as in Theorem 6, that is, satisfying Hypothesis 32
and converging in M2

tem(R
2) to µ as ε ↓ 0. Then for each limit point (X,Λ) of

{
( εX, εL εX) : ε ∈ (0, 1]

}

in C
(
R+ ,M3

tem(R
2)
)
we have Λ = LX , and X satisfies the martingale problem (MP)

σ,γ
µ .

The proof will be divided into a series of lemmas. For this purpose, in this subsection we fix γ, σ, and
εµ→ µ as ε ↓ 0, as well as (X,Λ) as in the proposition. Note that then the Hypotheses 28 and 32 hold.
Take a sequence (εnX, εnL) with 0 < εn ↓ 0 as n ↑ ∞ such that

(εnX, εnL) −→
n↑∞

(X,Λ) in C
(
R+ ,M3

tem(R
2)
)

(146)

in law. By Skorohod’s theorem, we may (and shall) assume that this convergence is almost sure on the
stochastic basis (Ω,F ,F· ,P).
Since each εnX is a time-homogeneous Markov process, from the expected collision local time formula
(53) we immediately get the following statement: for fixed εn , 0 ≤ s ≤ t, and ϕ ∈ Cexp(R2),

P
{〈

εnL εnX(t)− εnL εnX(s), ϕ
〉 ∣∣∣Fs

}

=

∫ t

s

dr

∫

εnZ2

εn`(dx) εnX1
s ∗ εnpr−s (x)

εnX2
s ∗ εnpr−s (x)ϕ(x)

(147)

P–a.s. (conditional expected approximated collision local time).

Lemma 39 (Uniform integrability) For any fixed t > 0 and ϕ ∈ Cexp(R2), the random variables

〈
εnX1

t , ϕ
〉2
,
〈
εnX2

t , ϕ
〉2
,
〈
εnL εX(t), ϕ

〉
, n ≥ 1, (148)

are uniformly integrable with respect to P.
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Proof Fix t and ϕ as in the lemma. By Corollaries 35 and 30 the fourth moment of
〈
εnXi

t , ϕ
〉

and
the second moment of the collision measure, respectively, are bounded, uniformly in n. The conclusion
of the lemma is then immediate. ¤

From the previous lemma it easily follows that the limit point (X,Λ) satisfies the martingale problem
(MP)

σ,γ
µ of Definition 3, but with LX replaced by Λ. In order to complete the proof of Proposition 38,

the only point which remains to be checked is that Λ is in fact the collision local time LX . This we
will achieve by some L1–arguments based on the additional smoothing imposed in Definition 1 on the
collision local time. The first technical result in this direction is the following lemma.

Lemma 40 (Convergence of expected collision local times) For every
0 ≤ s < t and ϕ ∈ C+exp(R2),

∫ t

s

dr[

∫

εnZ2

εn`(dx) εnX1
s ∗ εnpr−s (x)

εnX2
s ∗ εnpr−s (x)ϕ(x)]

−→
n↑∞

∫ t

s

dr

∫

R2
`(dx) X1

s ∗pr−s (x)X
2
s ∗pr−s (x)ϕ(x)

(149)

in L1(P).

Proof Consider s, t, ϕ as in the lemma. By the expectation formula (50), the expectation of the integrand
in square brackets in (149) equals

∫

εnZ2

εn`(dx) εnµ1 ∗ εnpr (x)
εnµ2 ∗ εnpr (x)ϕ(x). (150)

Since the εnµ satisfy (115) for all λ > 0, and t is fixed, by Corollary A3 (a),

εnµi ∗ εnpr ≤ cλ cA3 φ−λ , n ≥ 1, i = 1, 2, r ≤ t. (151)

On the other hand, ϕ ≤ cλ′ φλ′ and choosing λ′ > 2λ, the integral in (150) is bounded from above by
c 〈εn`, φλ′−2λ〉 ≤ c, uniformly in r and εn . Similarly, the expectation of the corresponding integrand on
the right hand side of (149) is uniformly bounded. Thus, by bounded convergence, it is enough to show
that for fixed r > s ≥ 0 and ϕ,

P
∣∣∣∣
∫

εnZ2

εn`(dx) εnX1
s ∗ εnpr−s (x)

εnX2
s ∗ εnpr−s (x)ϕ(x)

−
∫

R2
`(dx) X1

s ∗pr−s (x)X
2
s ∗pr−s (x)ϕ(x)

∣∣∣∣ −→n↑∞
0. (152)

Next we bring in the additional terms

∓
∫

εnZ2

εn`(dx) εnX1
s ∗ pr−s (x)

εnX2
s ∗ pr−s (x)ϕ(x). (153)

This time we want to apply dominated convergence. Besides domination estimates, the key is the following
variance estimate: by the covariance formula (55), for i = 1, 2,

Var εnXi
s ∗
[
εnpr−s (x)− pr−s (x)

]
(154)

= γ

∫ s

0

du

∫

εnZ2

εn`(dy) εnµ1 ∗ εnpu (y)
εnµ2 ∗ εnpu (y)

[∫

εnZ2

εn`(dz)
[
εnpr−s (z − x)− pr−s (z − x)

]
εnps−u (z − y)

]2
.
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For fixed λ > 0, by (151), and using Jensen’s inequality, we may bound this expression from above by

≤ c

∫ s

0

du

∫

εnZ2

εn`(dy)φ−2λ(y) (155)

∫

εnZ2

εn`(dz)
[
εnpr−s (z − x)− pr−s (z − x)

]2 εnps−u (z − y).

Interchanging the order of integration, and exploiting Corollary A3 (a), we get the bound

≤ c

∫

εnZ2

εn`(dz)
[
εnpr−s (z − x)− pr−s (z − x)

]2
φ−2λ(z). (156)

But φ−2λ(z) ≤ φ−2λ(x)φ−2λ(z − x), and, since r − s > 0 is fixed, by Lemma 2 (a), given δ > 0 we may
choose N = N(δ) such that for all n > N,

∣∣εnpr−s (z − x)− pr−s (z − x)
∣∣ ≤ δ. (157)

Therefore, we may bound the expression (156) by

≤ c δ φ−2λ(x)

∫

εnZ2

εn`(dz) εnpr−s (z)φ−2λ(z) (158)

+ c δ φ−2λ(x)

∫

εnZ2

εn`(dz) pr−s (z)φ−2λ(z), n > N.

By Corollary A3, the integrals are bounded in εn . Therefore, the variance expressions in (154) tend to
0 as n ↑ ∞. It is easy to derive bounds in the x variable which allow us to apply Dominated Convergence
by using the fact that ϕ ≤ cλ′ φλ′ and choosing λ′ > 2λ.

Summarizing, it is enough to show that for our fixed r > s ≥ 0 and ϕ,

P
∣∣∣∣
∫

εnZ2

εn`(dx) εnX1
s ∗ pr−s (x)

εnX2
s ∗ pr−s (x)ϕ(x)

−
∫

R2
`(dx) X1

s ∗pr−s (x)X
2
s ∗pr−s (x)ϕ(x)

∣∣∣∣ −→n↑∞
0. (159)

But this follows from the assumed a.s. convergence εnX → X in C
(
R+ ,Mtem(R

2)
)

by domination
arguments using the uniform finiteness of fourth moments of Corollary 35. ¤

By the assumed a.s. convergence in (146), Lemma 39, the identity (147) and Lemma 40, we have, for
each ϕ ∈ Cexp(R2), the following convergence in L1(P) :





P
{〈
Λ(t)− Λ(s), ϕ

〉 ∣∣∣Fs

}
= lim

n↑∞
P
{〈

εnL εnX(t)− εnL εnX(s), ϕ
〉 ∣∣∣∣Fs

}

= lim
n↑∞

∫ t

s

dr

∫

εnZ2

εn`(dx) εnX1
s ∗ εnpr−s (x)

εnX2
s ∗ εnpr−s (x)ϕ(x)

=

∫ t

s

dr

∫

R2
`(dx) X1

s ∗pr−s (x)X
2
s ∗pr−s (x)ϕ(x).

(160)

Recalling Definition 1 of collision local time, we now prove the following result.

Lemma 41 (Identifying the collision local time) For all ϕ ∈ Cexp(R2) and t ≥ 0, we have the
following convergence in L1(P) :

〈
L∗,δX (t), ϕ

〉
−→

〈
LX(t), ϕ

〉
as δ ↓ 0, (161)

and Λ = LX .
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Proof For ϕ ∈ Cexp(R2), by (160) we have

〈
L∗,δX (t), ϕ

〉
=

∫ t

0

ds
1

δ
P
{〈

Λ(s+ δ)− Λ(s), ϕ
〉 ∣∣∣ Fs

}
, P–a.s. (162)

Theorem 37 of [Mey66, p.126] and the continuity of t 7→ Λ(t) in Mtem yield that the latter integral term
converges to

〈
Λ(t), ϕ

〉
in L1(P) as δ ↓ 0, for each t ≥ 0 and ϕ ∈ Cexp(R2). Since Λ is a continuous

non-decreasing Mtem–valued process, the identity (162) and Definition 1 tell us that the collision local
time LX exists, coincides with Λ, and we have the convergence claimed in the lemma. This finishes the
proof. ¤

Note that we have now proved Proposition 38 and hence Theorem 4 (a).

Proof of Theorem 4 (b). The claimed moment formula for the collision local time easily follows from the
corresponding formula (53) for the approximating processes εX, the limiting martingale Proposition
38, and Lemmas 40 (deterministic case s = 0) and 39. Argue similarly for the remaining two moment
formulae. ¤

4.3 Extended martingale problem and Green function representation

In this subsection we present two immediate consequences of the martingale problem (MP)
σ,γ
µ of Defini-

tion 3.

For T, λ > 0, denote by C(1,2)T,λ the set of all real-valued functions ψ defined on [0, T ] × R2 such that

t 7→ ψ(t, · ), t 7→ ∂
∂tψ(t, · ), and t 7→ ∆ψ(t, · ) are continuous Cλ–valued functions. Set C(1,2)T,exp :=

⋃
λ>0 C

(1,2)
T,λ .

Lemma 42 (Extension of the martingale problem (MP)
σ,γ
µ ) Let X be any solution of the mar-

tingale problem (MP)
σ,γ
µ of Definition 3. Then, for ψ1, ψ2 in C(1,2)T,exp ,

〈
Xi

t , ψ
i(t)
〉

=
〈
µi, ψi(0)

〉
+

∫ t

0

ds
〈
Xi

s ,
σ2

2
∆ψi(s) +

∂

∂s
ψi (s)

〉

+

∫

[0,t]×R2
M i
(
d(s, x)

)
ψi(s, x), 0 ≤ t ≤ T, i = 1, 2,

(163)

where M i
(
d(s, x)

)
are the (zero-mean) martingale measures such that

〈〈∫

[0, · ]×R2
M i
(
d(s, x)

)
f i(s, x),

∫

[0, · ]×R2
M j

(
d(s, x)

)
f j(s, x)

〉〉

t

= δi,j γ

∫

[0,t]×R2
LX

(
d(s, x)

)
f i(s, x) f j(s, x), 0 ≤ t ≤ T, i, j = 1, 2.

(164)

Here f1, f2 belong to the set of predictable functions f defined on Ω× R+ × R2 such that

PX
µ

∫

[0,t]×R2
LX

(
d(s, x)

)
f2(s, x) < ∞, t ≥ 0. (165)
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Proof We will only outline the proof which is standard. We may fix a λ > 0 and note that S is a

strongly continuous semigroup acting on the separable Banach space Cλ , and that each St maps C(2)λ

into itself. We then use Proposition 1.3.3 of [EK86] to bootstrap up to the domain of the generator of
time-space Brownian motion on C0

(
[0, T ]× R2

)
(the space of continuous functions [0, T ]×R2 vanishing

at infinity), and this domain contains C(1,2)T,exp . Approximate ψ ∈ C(1,2)T,exp by an appropriate sequence of
step functions in the time variable, and then proceed as in the proof of Proposition II.5.7 of [Per00]. ¤

Corollary 43 (Green function representation of (MP)
σ,γ
µ ) Let X be as in Lemma 42 above.

Then, for ϕ in C2exp , i = 1, 2, and t ≥ 0,

〈
Xi

t , ϕ
i
〉

=
〈
µi, Stϕ

i
〉
+

∫

[0,t]×R2
M i
(
d(s, x)

)
St−sϕ

i(x) (166)

with the martingale measures M i satisfying (164). Further, if in addition µ ∈ C2exp , then equation (166)
holds for ϕ ∈ C2tem .

Proof The first part is standard. Now additionally assume µ ∈ C2exp , hence µ ∈ C2λ for some λ > 0,
and consider non-negative ϕ ∈ C2tem . Take non-negative ϕn ∈ C2exp with ϕn ↑ ϕ ∈ C2tem as n ↑ ∞. Note
that 〈

Xi
t , ϕ

i
n

〉
=
〈
µi, Stϕ

i
n

〉
+

∫

[0,t]×R2
M i
(
d(s, x)

)
St−sϕ

i
n(x), (167)

by (166). By monotone convergence,

〈
Xi

t , ϕ
i
n

〉
↑
〈
Xi

t , ϕ
i
〉

and
〈
µi, Stϕ

i
n

〉
↑
〈
µi, Stϕ

i
〉

as n ↑ ∞. (168)

On the other hand,

PX
µ

[ ∫

[0,t]×R2
M i
(
d(s, x)

) (
St−sϕ

i
n(x) − St−sϕ

i(x)
) ]2

=

∫ t

0

ds

∫

R2
dx

(
St−s

(
ϕi
n − ϕi

)
(x)
)2
Ssµ

1(x)Ssµ
2(x). (169)

But the integrand in (169) is bounded by

cλ,λ′ (St−sφ−λ)
2
(x) (Ssφλ′)

2
(x) ≤ c φ2(λ′−λ) (x) (170)

for any λ′ > 0. Take λ′ > λ, and dominated convergence implies that (169) tends to 0 as n ↑ ∞.
Therefore (166) is satisfied also for µ ∈ C2exp and ϕ ∈ C2tem . ¤

4.4 Convergence of dual processes

The main purpose of this subsection is to define a process X̃ which later will be shown to be dual to X.

For convenience, we introduce now the following notation. For

(ν, ν̃) =
(
(ν1, ν2), (ν̃1, ν̃2)

)
∈ M2

tem(R
2)× B2+(R2) or B2+(R2)×M2

f (R
2)

set
E(ν, ν̃) := exp

[
−
〈
ν1 + ν2, ν̃1 + ν̃2

〉
+ i

〈
ν1 − ν2, ν̃1 − ν̃2

〉]
, (171)
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where the right hand side of (171) is defined to be 0 if
〈
ν1 + ν2, ν̃1 + ν̃2

〉
=∞, and where here i =

√
−1.

We may apply this definition of E(ν, ν̃) also if R2 is replaced by εZ2, 0 < ε ≤ 1, everywhere. In
particular, we may apply it in the situation of the following lemma.

Theorem 2.4 (b) in [DP98], rescaling as in (32) and (33), and using our identification convention for
density functions and corresponding measures gives the following self-duality relation for the discrete
space processes as introduced at the beginning of Subsection 3.1. [DP98] deals with a smaller space of
initial measures than Bexp (called Mrap there) but the proof carries over without significant change.

Lemma 44 (Self-duality: lattice case) Fix 0 < ε ≤ 1. Let εX = (εX1, εX2) and εX̃ = (εX̃1, εX̃2)
denote independent mutually catalytic branching processes in εZ2 with initial states εX0 = εµ =
(εµ1, εµ2) ∈ εM2

tem and εX̃0 = εϕ = (εϕ1, εϕ2) ∈ εB2exp , respectively. Then with probability one,
εX̃t ∈ εB2exp for all t ≥ 0, and the following duality relation holds:

P εµE(εXt ,
εϕ) = P εϕE(εµ, εX̃t), t ≥ 0. (172)

Fix again γ, σ, and

εµ −→
ε↓0

µ, as well as (εnX, εnLεnX) −→
n↑∞

(X, LX) almost surely (173)

as in Proposition 38, respectively in its proof. The εµ continue to satisfy the uniform domination
Hypothesis 32. Fix also

0 ≤ ϕ = (ϕ1, ϕ2) ∈ C2exp(R2). (174)

For each 0 < ε ≤ 1, let

εϕ = (εϕ1, εϕ2) ∈ εB2exp(εZ2) denote the restriction of ϕ to εZ2, (175)

and consider the mutually catalytic branching process

εX̃ in εZ2 starting from εX̃0 = εϕ. (176)

Then for each n ≥ 1, we may apply the duality relation (172) of Lemma 44 to (εnX,εnX̃) [with εn from
(173)]. Later we want to pass to the limit as n ↑ ∞ in the duality relation (172). For this we need, in

particular, the convergence of εnX̃ to some limit process. To make this more precise, we introduce the
following definition.

Definition 45 (Strong integrability condition (SIntC)) For δ > 0, set

Hδ(ν) :=

∫

R2
dx

∫

R2
dy
[
1 +

1

|x− y|
]
Sδν

1(x)Sδν
2(x)Sδν

1(y)Sδν
2(y), (177)

where ν = (ν1, ν2) is a pair of measures in Mf(R
2). A continuous M2

f –valued process Y is said to
satisfy the strong integrability condition (SIntC), if

lim
δ↓0

P
∫ T

0

ds Hδ(Ys) < ∞, (178)

for all T > 0. 3

Proposition 46 (Exponentially decreasing initial densities) Fix ϕ ≥ 0 in C2exp(R2).

(a) (Uniqueness) There exists a unique solution X̃ of the martingale problem (MP)
σ,γ
ϕ of Definition

3 which satisfies the strong integrability condition (SIntC) of Definition 45.
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(b) (Convergence) For
{
εX̃ : 0<ε≤1

}
as in (175) – (176) and X̃ of (a), the convergence in law

lim
ε↓0

εX̃ = X̃ holds in C
(
R+ ,M2

f (R
2)
)
.

(c) (Exponentially decreasing states) For fixed t ≥ 0,

X̃t ∈ M2
exp(R

2), almost surely.

Proof Fix ϕ as in (174). In order to apply a result stated in [DEF+02], we first recall the notation
Mf,se from there. Mf,se is the set of all pairs ν = (ν1, ν2) in M2

f satisfying the following strong energy
condition: for any p ∈ (0, 1), there is a constant c(179) = c(179)(ν, p) such that

max
1≤ i,j≤ 2

∫

R2
νi(dx)

∫

R2
νj(dy) pr(x− y) ≤ c(179) r

−p, 0 < r < 1. (179)

(a) Clearly, ϕ ∈ Mf,se and so by [DEF+02, Theorem 11 (a,b)] there is a unique solution X̃ of the

martingale problem (MP)
σ,γ
ϕ there, satisfying (SIntC). Certainly, this X̃ solves also our martingale

problem (MP)
σ,γ
ϕ of Definition 3 since the ϕ in C2exp(R2) own the needed boundedness properties.

Let ′X̃ be another solution to our martingale problem (MP)
σ,γ
ϕ and ψ = (ψ1, ψ2) be a pair of non-

negative test functions as in the martingale problem (MP)
σ,γ
ϕ of [DEF+02] (that is, twice continuously

differentiable with bounded derivatives). Choose non-negative ψn ∈ C2exp(R2) such that ψn ↑ ψ as
n ↑ ∞. By monotone convergence,

〈′X̃i
t , ψ

i
n

〉
↗
n↑∞

〈′X̃i
t , ψ

i
〉
, i = 1, 2, t ≥ 0. (180)

Hence, by simple moment calculations, ′X̃ satisfies the martingale problem (MP)
σ,γ
ϕ of [DEF+02]. But

by the uniqueness there, ′X̃ = X̃, and the proof of (a) is complete.

(b) Statement (b) is a variant of [DEF+02, Theorem 11 (c)]. In fact, by [DEF+02, Remark 12 (i)] we
need only check that the Lemmas 35 and 45 (a) there are satisfied by our sequence of initial measures εϕ,
and this is trivial to verify. This gives the convergence statement in (b).

(c) We may assume that ϕ belongs to C2λ for some λ > 0. From the expectation formula in Theorem
4 (b) [or from the Green function representation of (MP)

σ,γ
ϕ in Corollary 43],

Pϕ

〈
X̃j

t , φ−λ′
〉

=
〈
ϕj , Stφ−λ′

〉
< ∞, j = 1, 2, 0 < λ′ < λ. (181)

Claim (c) follows, finishing the proof. ¤

4.5 A regularization procedure for dual processes

We also need the following two regularization lemmas.

Lemma 47 (Regularization for εX̃) Fix r ≥ 0, t > 0, 0 ≤ ϕ ∈ C2exp(R2), and initial densities
εµ, 0 < ε ≤ 1, satisfying the uniform domination Hypothesis 32. For each ε ∈ (0, 1], consider the

independent mutually catalytic branching processes εX and εX̃ on εZ2 with initial states εX0 = εµ
and εX̃0 = εϕ, the restriction of ϕ to εZ2, respectively. Then there is a constant c47 such that for all
bounded measurable complex-valued functions f on C

(
R+ ,M2

tem(R
2)
)
, and all δ ∈ (0, t),

sup
0<ε≤1

∣∣∣∣P εµ f(
εX)P εϕ

[
E
(
εXr ,

εX̃t

)
− E

(
εXr ,

εSδ
εX̃t−δ

)]∣∣∣∣ ≤ c47 δ ‖f‖∞ . (182)
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Proof For the moment, fix ε. From the Green function representation of the martingale problem

(MP)
σ,γ,ε
εϕ [see (47) – (49)], conditioning on F εX̃

t−δ , and Itô’s formula (applied to the process εX̃), the
expectation expression on the left hand side of estimate (182) equals

4γP εµf(
εX)P εϕ

∫

[t−δ,t]×εZ2

εL εX̃

(
d(s, x)

)
E
(
εSt−s

εXr,
εX̃s

)
εSt−s

εX1
r (x)

εSt−s
εX2

r (x).

Hence, the absolute value expression in (182) can be bounded from above by

4γ‖f‖∞ P εµ P εϕ

∫

[t−δ,t]×εZ2

εL εX̃

(
d(s, x)

)
εSt−s

εX1
r (x)

εSt−s
εX2

r (x)

= 4γ‖f‖∞P εµP εϕ

∫ t

t−δ

ds

∫

εZ2

ε`(dx) εSs−r
εX̃1

r (x)
εSt−s

εX̃2
r (x)

εSt−s
εX1

r (x)
εSt−s

εX2
r (x)

= 4γ‖f‖∞
∫ t

t−δ

ds

∫

εZ2

ε`(dx) εSs
εϕ1(x) εSs

εϕ2(x) εSt−s+r
εµ1(x) εSt−s−r

εµ2(x),

where we first used the expectation formula (53) for the collision local time, and then the mixed second
moment formula (52). Now take 0 < λ < λ̃ and exploit the fact that, by assumption, εµj ≤ cλ φ−λ and
εϕj ≤ cλ̃ φλ̃ for some constants cλ and cλ̃ , j = 1, 2. Then the claim follows from Corollary A3 (a). ¤

Here is a continuum analog of the previous lemma:

Lemma 48 (Regularization for X̃) Fix r ≥ 0, t > 0, 0 ≤ ϕ ∈ C2exp(R2), and µ ∈ B2tem(R2).Let X

be a solution of the martingale problem (MP)
σ,γ
µ occurring in Proposition 38 and X̃, independent of X,

be the unique solution of (MP)
σ,γ
ϕ as in Proposition 46. Then there is a constant c48 such that for all

bounded measurable complex-valued functions f on C
(
R+ ,M2

tem(R
2)
)
, and all δ ∈ (0, t),

lim
η↓0

∣∣∣∣P
X
µ f(X)P X̃

ϕ

[
E
(
SηXr , X̃t

)
− E

(
Xr , SδX̃t−δ

)]∣∣∣∣ ≤ c48 δ ‖f‖∞ . (183)

Note that according to our general convention, in case of X we must write PX since we do not have
uniqueness in the martingale problem at this point.

Remark 49 (Case r = 0) Note that in the case r = 0, one can immediately pass to the limit as η ↓ 0
on the left hand side of (183), that is, the additional smoothing with Sη can be dropped. 3

Proof of Lemma 48. We need only slightly modify the proof of Lemma 47. From the Green function

representation of the martingale problem (MP)
σ,γ
ϕ of Corollary 43, conditioning on F X̃

t−δ , and Itô’s
formula, the expectation on the left hand side of (183) equals

4γPX
µ f(X)P X̃

ϕ

∫

[t−δ,t]×R2
L

X̃

(
d(s, x)

)
E
(
Sη+t−sXr , X̃s

)
Sη+t−sX

1
r (x)Sη+t−sX

2
r (x)

+ PX
µ f(X)P X̃

ϕ E
(
Sη+δXr , X̃t−δ

)
− PX

µ f(X)P X̃
ϕ E

(
Xr , SδX̃t−δ

)
.

Hence, using the moment formulae in Theorem 4, the absolute value expression in formula line (183) can
be bounded from above by

4γ‖f‖∞
∫ t

t−δ

ds

∫

R2
dx Ssϕ

1(x)Ssϕ
2(x)Sη+t−s+rµ

1(x)Sη+t−s+rµ
2(x) (184)

+ ‖f‖∞ PX
µ

∣∣∣∣P
X̃
ϕ

[
E
(
Sη+δXr , X̃t−δ

)
− E

(
SδXr , X̃t−δ

)]∣∣∣∣. (185)

Now from Corollary A3 (b), the term in (184) gives the desired bound in (183), uniformly in η ∈ (0, 1].
Letting η ↓ 0, the expression in (185) will disappear by bounded convergence, finishing the proof. ¤
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4.6 Convergence of one-dimensional distributions

As a first step to the approximation Theorem 6 we show convergence of one-dimensional (in time) margi-
nals. For this we need a technical lemma.

Lemma 50 (Continuous convergence) For 0 < ε ≤ 1, let εν ∈ M2
tem(εZ

2). Suppose εν → ν in

M2
tem(R

2). Moreover, let ϕ ∈ B2
exp(R

2), and εϕ the restriction of ϕ to εZ2, 0 < ε ≤ 1. Consider the

related processes εX̃⇒ X̃ (as ε ↓ 0) as in Proposition 46. Then, for fixed j, k = 1, 2 and s, t > 0,

〈
ενj , εSs

εX̃k
t

〉
=⇒
ε↓0

〈
νj , SsX̃

k
t

〉
. (186)

Proof We may assume that even εX̃ → X̃ a.s. as ε ↓ 0. For R ≥ 1, choose a continuous function
fR : R2 → R+ such that 1B(R) ≤ fR ≤ 1B(R+1), where B(R) is the centered open ball in R2 with
radius R. Then

∣∣∣
〈
ενj , εSs

εX̃k
t

〉
−
〈
νj , SsX̃

k
t

〉∣∣∣ ≤
∣∣∣
〈
ενj , εSs

εX̃k
t

〉
−
〈
ενj , fR

εSs
εX̃k

t

〉∣∣∣ (187)

+
∣∣∣
〈
ενj , fR

εSs
εX̃k

t

〉
−
〈
νj , fRSsX̃

k
t

〉∣∣∣+
∣∣∣
〈
νj , fRSsX̃

k
t

〉
−
〈
νj , SsX̃

k
t

〉∣∣∣.

Since ϕ belongs to C2λ for some λ > 0, by (50) the expectation of the first term on the right hand side
of (187) equals

〈
ενj , (1− fR) εSs+t

εϕk
〉
≤
〈
ενj , (1− fR) cλ εSs+tφλ

〉
≤ c

〈
ενj , (1− fR)φλ

〉
,

where for the second estimate we used Corollary A3. Now take any δ > 0. Then the latter expression
can be made smaller than δ, uniformly in ε by choosing R sufficiently large. Similarly, enlarging R if
necessary, the expectation of the last term on the right hand side of (187) is smaller than δ.

Concerning the remaining middle term on the right hand side of (187), first of all we have, as ε ↓ 0,

the (a.s.) convergence of finite measures εX̃k
t → X̃k

t and the continuous convergence εps(
εy) → ps(y)

whenever εy → y [by Lemma 2 (a)]. This certainly implies εSs
εX̃k

t (
εx) → SsX̃

k
t (x) whenever εx → x.

But we have also the following convergence of finite measures: ενj(dx) fR(x)→ νj(dx) fR(x). Therefore,
the remaining term tends to 0 a.s. as ε ↓ 0. Altogether, we have proved convergence in probability instead
of (186), and the claim follows. ¤

Restricting our attention to a fixed time t ≥ 0, we know so far only that the random measures εXt are
tight in law as ε ↓ 0. Now we will basically show their convergence in law.

Lemma 51 (Convergence of one-dimensional distributions) Assume εµ ∈ εB2tem(εZ2) are as in
Hypothesis 32 and converge to µ in M2

tem(R
2). Then, for each non-negative ϕ ∈ C2exp(R2) and the related

unique process X̃ from Proposition 46,

∣∣∣P εµE
(
εXt , ϕ

)
− PϕE

(
µ, X̃t

)∣∣∣ −→
ε↓0

0, t ≥ 0. (188)

Proof We may assume that t > 0. Let εϕ denote the restriction of ϕ to εZ2, 0 < ε ≤ 1. By the
self-duality relation (172), the absolute value expression in (188) equals

∣∣∣P εϕE
(
εµ, εX̃t

)
− PϕE

(
µ, X̃t

)∣∣∣. (189)
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Take 0 < δ < t, then (189) can be bounded from above by
∣∣∣P εϕE

(
εµ, εX̃t

)
−P εϕE

(
εµ, εSδ

εX̃t−δ

)∣∣∣+
∣∣∣P εϕE

(
εµ, εSδ

εX̃t−δ

)
−PϕE

(
µ, SδX̃t−δ

)∣∣∣

+
∣∣∣PϕE

(
µ, SδX̃t−δ

)
− PϕE

(
µ, X̃t

)∣∣∣.

By the Lemmas 47 and 48 with r = 0 and f = 1, and Remark 49, the first and last terms are bounded
from above by c47 δ and c48 δ, uniformly in ε. Since δ can be made arbitrarily small, it remains to show
that ∣∣∣P εϕE

(
εµ, εSδ

εX̃t−δ

)
− PϕE

(
µ, SδX̃t−δ

)∣∣∣ −→
ε↓0

0, (190)

for fixed δ. But this follows from the continuous convergence Lemma 50 applied to εν ≡ εµ. ¤

4.7 Convergence of finite-dimensional distributions

The purpose of this subsection is to complete the proof of the approximation Theorem 6. This will be
achieved by the following lemma.

Lemma 52 (Convergence of finite-dimensional distributions) Let X denote any limit point of
{εX : εX0 = εµ, 0 < ε ≤ 1} occurring in Proposition 38 above (where εµ → µ). Moreover, let{
εµ̂ ∈ εB2tem(εZ2) : 0 < ε ≤ 1

}
be any family (possibly different from {εµ : 0 < ε ≤ 1}) also satisfying

the domination condition (36) and converging in M2
tem(R

2) to the same µ as ε ↓ 0. Finally, for each
ε ∈ (0, 1], let εX̂ be the solution to the martingale problem (MP)

σ,γ,ε
εµ̂ (introduced in Subsection 3.1).

Then, for each finite sequence 0 ≤ t1 ≤ · · · ≤ tm , the following convergence in law holds:

(εX̂t1 , . . . ,
εX̂tm) =⇒

ε↓0
(Xt1 , . . . ,Xtm). (191)

Note that (191) yields the desired uniqueness of limit points as well as the independence of the choice of
the approaching εµ, thus completing the proof of the lattice approximation Theorem 6.

Proof of Lemma 52. We will proceed by induction. First assume that m = 1. We will apply Lemma
51 with {εµ : 0 < ε ≤ 1} replaced by {εµ̂ : 0 < ε ≤ 1}. Since there the pair 0 ≤ ϕ ∈ C2exp(R2) of test

functions is arbitrary, this lemma implies that εX̂t1 has a limit in law as ε ↓ 0, which is independent of
the choice of the family {εµ̂ : 0 < ε ≤ 1} and so must coincide in law with Xt1 . This implies (191) in
the present m = 1 case.

Suppose now that (191) holds for some m ≥ 1, and we want to check it for m+1. For this we may assume
that tm < tm+1 , and that for this m we have almost sure convergence in (191). Take 0 ≤ ϕj ∈ C2exp(R2),
1 ≤ j ≤ m+ 1. We only need to show that

P εµ̂

m+1∏

j=1

E
(
εX̂tj , ϕj

)
(192)

has a limit as ε ↓ 0, which is independent of the choice of {εµ̂ : 0 < ε ≤ 1}. Trivially, the expectation
expression (192) equals

P εµ̂

m∏

j=1

E
(
εX̂tj , ϕj

)
P εµ̂

{
E
(
εX̂tm+1

, ϕm+1

) ∣∣∣ F
εX̂
tm

}
. (193)

By time-homogeneity, with probability one the latter conditional expectation can be written as

P εX̂tm
E
(
εX̂tm+1−tm , ϕm+1

)
= P

εX̃
εϕm+1

E
(
εX̂tm ,

εX̃tm+1−tm

)
, (194)
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where εϕm+1 is the restriction of ϕm+1 to εZ2, 0 < ε ≤ 1, and in the last step we exploited the
self-duality relation (172). Now we want to proceed in a way similar to the proof of the convergence
statement (188). It suffices to show that

P εµ̂

m+1∏

j=1

E
(
εX̂tj , ϕj

)
− lim

η↓0
PX
µ

m∏

j=1

E
(
Xtj , ϕj

)
P X̃
ϕm+1

E
(
SηXtm , X̃tm+1−tm

)
(195)

converges to 0 as ε ↓ 0. In fact, using (192) – (194), and taking 0 < δ < tm+1 − tm , the absolute value
of the expressions in (195) can be bounded from above by

∣∣∣∣P
εX̂
εµ̂

m∏

j=1

E
(
εX̂tj , ϕj

)
P
εX̃
εϕm+1

[
E
(
εX̂tm ,

εX̃tm+1−tm

)
− E

(
εX̂tm ,

εSδ
εX̃tm+1−tm−δ

)]∣∣∣∣

+

∣∣∣∣P
εX̂
εµ̂

m∏

j=1

E
(
εX̂tj , ϕj

)
P
εX̃
εϕm+1

E
(
εX̂tm ,

εSδ
εX̃tm+1−tm−δ

)

− PX
µ

m∏

j=1

E
(
Xtj , ϕj

)
P X̃
ϕm+1

E
(
Xtm , SδX̃tm+1−tm−δ

)∣∣∣∣

+ lim
η↓0

∣∣∣∣PX
µ

m∏

j=1

E
(
Xtj , ϕj

)

P X̃
ϕm+1

[
E
(
Xtm , SδX̃tm+1−tm−δ

)
− E

(
SηXtm , X̃tm+1−tm

)]∣∣∣∣.

By the induction hypothesis and Skorohod’s representation we may assume that the convergence state-
ment (191) holds inMm

tem almost surely. Lemma 47 with εX replaced by εX̂, r = tm and t = tm+1−tm
shows that the first absolute value in the above display is bounded by c47 δ, uniformly in ε. Similarly,

by Lemma 48, the lim–term is bounded by c48 δ. Finally, by the continuous convergence of Lemma 50
applied to εν ≡ εX̂tm , our induction hypothesis and bounded convergence, the middle term converges
to 0 as ε ↓ 0. Thus, (195) converges to 0, finishing the proof.

¤

5 Properties of X

Here we will verify the claimed properties of our mutually catalytic branching process X in R2.

5.1 Self-duality, scaling and self-similarity

Completion of the proof of the self-duality Proposition 15. By (188), the left hand side in the duality
relation (172) converges to the right hand side of the self-duality claim in Proposition 15 (b) (recall (176)).
But trivially, by (191), it converges also to PX

µ E(Xt , ϕ), that is, part (b) is proved. But from Proposition
46 (c) we also get claim (a), completing the proof. ¤

Proof of the scaling Proposition 16. We only have to prove (a), since (b) is a special case of (a) in which

θ = 1 and z = 0. Fix θ, ε, t, z,X,X(ε) as in the proposition. Set X̂
(ε)
t := θε2Xε−2t

(
z + ε−1( · )

)
∈M2

tem .

By the self-duality of Proposition 15, applied to X(ε) instead of X, for the process X̃ with initial density
X̃0 = ϕ ∈ C2exp we have

PX(ε)

µ(ε) E
(
X

(ε)
t , ϕ

)
= P X̃

ϕ E
(
µ(ε), X̃t

)
= P X̃

ϕ E

(
µ, ε2θX̃t

(
− εz + ε( · )

))
. (196)
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But by scaling of the finite-measure-valued mutually catalytic branching process X̃ (see [DEF+02, The-
orem 11 (d)]), the chain (196) of equations can be continued with

= P X̃

θε2ϕ(−εz+ε( · ))
E
(
µ, X̃ε−2t

)
= PX

µ E

(
Xε−2t , θε

2ϕ
(
− εz + ε( · )

))

= PX
µ E

(
X̂

(ε)
t , ϕ

)
,

(197)

where we have once again used the self-duality of Proposition 15. Since ϕ is arbitrary, the claim follows.¤

5.2 Absolute continuity, law of densities, segregation, and blow-up

Now we are ready to show that our X has absolutely continuous states and to determine the law of
densities at a point.

Proof of Theorem 11 (a) (absolute continuity). This is a direct application of a more general absolute
continuity result in [DEF+02]. We now check the hypotheses required to apply this result. Let µ,X, t as
in Theorem 11 (a) and ϕ ∈ C∞com(R2). Use the fact that the function ψ := {ST−tϕ : 0 ≤ t ≤ T} belongs

to each C(1,2)T,λ , λ > 0, (introduced at the beginning of Subsection 4.3). Thus, we can apply the extended
martingale problem of Lemma 42 to ψ to see that the hypotheses of the general absolute continuity
Theorem 57 of [DEF+02] are satisfied with d = 2, Q = S, and Λ = LX . The result then follows from
the fact that Brownian motion has absolutely continuous laws for positive times. ¤

Proof of Theorem 11 (b) and (c) (law of densities and segregation). Actually this requires only some
minor modifications to the proofs in the finite measure case of [DEF+02]. In fact, in some respects the
proof is even easier since the key ingredient is the self-duality of Proposition 15, whereas in the general
finite measure case only a limiting duality was available.

Take X with X0 = µ ∈ B2tem(R2) as in the theorem, and X̃ with X̃0 = ϕ in C2exp(R2) as in the
self-duality Proposition 15. Set

U := X1 +X2, V := X1 −X2. (198)

Moreover, for a1, a2 ≥ 0, put a := a1 + a2 and b := a1 − a2. Recall that for t > 0 fixed, Xt is a
pair of absolutely continuous measures, by Theorem 11 (a). Writing pδ,x := pδ( · − x), by standard
differentiation theory, for fixed t > 0 and Lebesgue-almost all x ∈ R2,

PX
µ exp

[
− aUt(x) + ibVt(x)

]
= lim

δ↓0
PX
µ exp

[
− a 〈Ut ,pδ,x〉+ ib 〈Vt ,pδ,x〉

]
.

By the self-duality of Proposition 15, we conclude that for Lebesgue-almost all x ∈ R2,

PX
µ exp

[
− aUt(x) + ibVt(x)

]
= lim

δ↓0
P X̃δ,x

ϕ exp
[
−
〈
U0 , Ũ

δ,x
t

〉
+
〈
iV0 , Ṽ

δ,x
t

〉]
(199)

with ϕi := aipδ,x , i = 1, 2, X̃δ,x = (X̃1,δ,x, X̃2,δ,x) and

Ũ δ,x := X̃1,δ,x + X̃2,δ,x, Ṽ δ,x := X̃1,δ,x − X̃2,δ,x. (200)

Fix x such that (199) holds, and take δ ∈ (0, 1]. By the formula

〈
X̃i

s , f
〉

:=
〈
X̃i,δ,x

δs , f
(
( · − x)/

√
δ
)〉
, s ≥ 0, i = 1, 2, f ∈ C+com(R2), (201)
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we introduce a process X̃ = (X̃1, X̃2). According to the scaling Proposition 16, X̃ is our mutually

catalytic branching process in R2 starting from X̃δ,x
0 = aν, where a = (a1, a2) and ν is the normal law

on R2 with density function p1 . Now the definition (201) of X̃ turns (199) into

PX
µ exp

[
− aUt(x) + ibVt(x)

]
(202)

= lim
δ↓0

P X̃
aν exp

[
−
〈
Ũt/δ , U0( ·

√
δ + x)

〉
+ i
〈
Ṽt/δ , V0( ·

√
δ + x)

〉]
,

where Ũ and Ṽ are defined in an analogous way to (200). Applying the Green function representation

in Corollary 43 with X, t replaced by X̃, t/δ, respectively, and with

ϕ := µ( ·
√
δ + x)− Stµ (x), (203)

but the indices interchanged, we get

〈X̃j
t/δ , ϕ

i〉 = aj
〈
ν, St/δ ϕ

i
〉
+

∫

[0, t/δ ]×R2
M j

(
d(r, y)

)
St/δ−rϕ

i (y) a.s. (204)

For r < t/δ, by scaling of the heat kernel, we have

St/δ−rϕ
i (y) =

∫

R2
dz µi(z)

[
p1

(z − x− y
√
δ√

t− δ/r

)
− p1

(z − x√
t

)]
. (205)

Clearly, the integrand converges to 0 as δ ↓ 0. Also,

p1

(z − x− y
√
δ√

t− δ/r

)
≤ p1

(z − x− y
√
δ√

t

)
≤ p1

(z − x√
t

)
exp

[ |z − x| |y|
√
δ

σ2t

]

≤ p1

(z − x√
t

)
exp

[ |z − x| |y|
σ2t

]
=: gx,y,t(z),

since 0 < δ ≤ 1. But for fixed x, y, t, the dominating function gx,y,t is integrable with respect to
µi(z) dz. Thus it follows from dominated convergence that

St/δ−rϕ
i (y)→ 0 as δ ↓ 0. (206)

But, again by scaling,
St/δ−rϕ

i(y) = St−δrϕ
i( · /

√
δ) (y

√
δ), y ∈ R2, (207)

and, for fixed λ > 0,
µi ≤ cλ φ−λ . (208)

This gives
|ϕi| ≤ cλ,x,t φ−λ

√
δ . (209)

Thus, by Lemma A2, there is a constant c(210) = c(210)(t, λ, σ, x) such that for r < t/δ,

∣∣St/δ−rϕ
i(y)

∣∣ ≤ c(210) φ−λ
√
δ , (210)

which is ν–integrable. Then from (206), the first term on the right hand side of equation (204) approaches
0 as δ ↓ 0, by dominated convergence.

Writing

N δ
s :=

∫

[0,s]×R2
M j

(
d(r, y)

)
St/δ−rϕ

i (y), s ≤ t/δ, (211)

then from (164)
〈〈
N δ
〉〉

t/δ
= γ

∫

R+×R2
L

X̃

(
d(r, y)

)
1[0,t/δ](r)

[
St/δ−rϕ

i (y)
]2
. (212)
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For K > 0, write IK for this integral, if the integrand is additionally restricted to |y| ≤ K/
√
δ, and JK

in the opposite case. The integrand of IK approaches 0 as δ ↓ 0 by (206), and is bounded by c e2λK by

(210). But L
X̃

is finite P X̃
aν–a.s. This shows that

lim
δ↓0

IK = 0, P X̃
aν–a.s. for each K > 0. (213)

Now use (210) and then the expectation formula for the collision local time [Theorem 4 (b)] to see that

P X̃
aνJ

K ≤ c a1a2

∫ t/δ

0

dr

∫

|y|>K/
√
δ

dy φ−2λ
√
δ(y) p

2
1+r(y). (214)

By scaling, the right hand side equals

c

∫ t

0

dr

∫

|y|>K

dy φ−2λ(y) p
2
δ+r(y) ≤ c

∫ t

0

dr

∫

|y|>K

dy
1

δ + r
pδ+r(y) (215)

where we have used the trivial estimate

φ−2λ(y) pδ+r(y) ≤ c
1

δ + r
, r ≤ t. (216)

Therefore, (214) and (215) give

P X̃
aνJ

K ≤ c

∫ t+1

0

dr

∫

|y|>K

dy
1

r
pr(y) −→

K↑∞
0. (217)

The statements (213) and (217) easily show that
〈〈
N δ
〉〉

t/δ
→ 0 in P X̃

aν–probability as δ ↓ 0. By a

standard martingale inequality, the second term on the right hand side of (204) (that is N δ
t/δ) also

converges to 0 in P X̃
aν–probability as δ ↓ 0.

Summarizing, we have proved

〈X̃j
t/δ , ϕ

i〉 −→
δ↓0

0 in P X̃
aν–probability, (218)

and so (202) now gives

PX
µ exp

[
− aUt(x) + ibVt(x)

]

= lim
δ↓0

P X̃
aν exp

[
−
〈
Ũt/δ , 1

〉
StU0(x) + i

〈
Ṽt/δ , 1

〉
StV0(x)

]
. (219)

According to the convergence Theorem 21 in [DEF+02], the total masses
〈
X̃j

T , 1
〉
, j = 1, 2, of the pair

X̃T of finite measures has a limit in law as T ↑ ∞ which can be described by the exit state ξτ of planar
Brownian motion started at a (recall Definition 10). Therefore, the limit in (219) can be computed and
equals

Πa exp
[
− StU0(x)(ξ

1
τ + ξ2τ ) + iStV0(x)(ξ

1
τ − ξ2τ )

]
(220)

= Π(Stµ1(x), Stµ2(x)) exp
[
−a(ξ1τ + ξ2τ ) + ib(ξ1τ − ξ2τ )

]

(recall that Π refers to the law of Brownian motion). In fact, the last equality is an easy exercise in
harmonic analysis which may be found in the proof of [DP98, Theorem 1.5]. An easy application of
the Stone-Weierstrass Theorem, as in the proof of [DP98, Lemma 2.3(b)], shows that the latter joint
Laplace-Fourier transform for a ∈ R2

+ uniquely determines the law of Xt(x) to be that claimed in
Theorem 11 (b).
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Both, the variance formula and the segregation follow from simple properties of planar Brownian motion,
completing the proof of Theorem 11 (b) and (c).

Proof of Theorem 11(d) (blow-up at the interface). The detailed proof of the blow-up property, is
omitted, since it is similar to the one of Corollary 19 in [DEF+02], which gives the result in the context
of finite measures. In fact, one must simply replace X i

s(R
2) with

〈
Xi

s , φλ
〉

for λ > 0 in some places
(notably in the inequality prior to the estimate (207) in [DEF+02]) to accommodate our Mtem–setting.
¤

5.3 Long-term behavior (proof of Theorem 13)

First we additionally assume that µ = c` = (c1`, c2`), with c = (c1, c2) ∈ R2
+ . Take a non-negative

ϕ ∈ C2com , and consider the mutually catalytic branching process X̃ but starting from ϕ. By the self-
duality Proposition 15 [recall the notation E from (171)],

PX
c` E

(
Xt , ϕ

)
= P X̃

ϕ E
(
c`, X̃t

)
, t ≥ 0. (221)

But again according to Theorem 20 of [DEF+02], the right hand side of (221) converges to

Π(〈ϕ1,1〉, 〈ϕ2,1〉) exp
[
− (c1 + c2)(ξ1τ + ξ2τ ) + i (c1 − c2)(ξ1τ − ξ2τ )

]
(222)

= Πc exp
[
−
(
ξ1τ + ξ2τ

) 〈
`, ϕ1 + ϕ2

〉
+ i

(
ξ1τ − ξ2τ

) 〈
`, ϕ1 − ϕ2

〉]

as t ↑ ∞, where the last identity is again a simple exercise in harmonic analysis (see [DP98, proof of
Theorem 1.5]). This gives the required convergence for a determining class of functionals in M2

tem (see
[DP98, Lemma 6.7]). Moreover, the required tightness follows from

PX
c`

〈
X1

t +X2
t , φλ

〉
= (c1 + c2) 〈`, Stφλ〉 ≡ (c1 + c2) 〈`, φλ〉 < ∞ (223)

[by the expectation formula in Theorem 4 (b)]. More precisely, [DP98, Lemma 6.7] (trivially extended to
R2) gives the required result in the case µ = c`.

Using the method of [CKP00], we remove now the additional assumption µ = c`. In fact, let the initial

densities X0 = µ be bounded and satisfy (40). Consider X̃ with X̃0 = ϕ ∈ C2exp from the self-duality
Proposition 15. Then this proposition gives, for t ≥ 0,

∣∣∣PX
c` E

(
Xt , ϕ

)
− PX

µ E
(
Xt , ϕ

)∣∣∣ ≤ P X̃
ϕ

∣∣∣E
(
c`, X̃t

)
− E

(
µ, X̃t

)∣∣∣. (224)

To show this approaches 0 as t ↑ ∞, it suffices to show that
〈
µj − cj , X̃k

t

〉
−→
t↑∞

0 in probability, j, k = 1, 2. (225)

It suffices to show this for j = k = 1. Put ψ := µ1 − c1 ∈ Ctem . Then by the martingale problem in the
Green function representation of Corollary 43,

〈
X̃1

t , ψ
〉

=
〈
X̃1

0 , Stψ
〉
+

∫

[0,t]×R2
M̃ i
(
d(s, x)

)
St−sψ(x). (226)

Now ∫

[0,t]×R2
L

X̃

(
d(s, x)

) (
St−sψ(x)

)2 −→
t↑∞

0 a.s. (227)

by dominated convergence, the assumption (40), and since L
X̃
(R+ × R2) is finite a.s. Moreover,

limt↑∞
〈
X̃1

0 , Stψ
〉
= 0 by the same reasoning. Consequently,

〈
X̃1

t , ψ
〉
→ 0 in probability and we have

reduced the general case to the special case already proved. ¤
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Appendix: auxiliary facts and remaining proofs

A.1 Some random walk estimates

Recall that 1S denotes the semigroup of the simple symmetric random walk in Zd with jump rate σ2

2 ,

and that φ−λ(x) = eλ|x|.

Lemma A1 (Preservation of tempered functions) For λ ≥ 0,

∣∣ 1∆φ−λ
∣∣ ≤ cA1 φ−λ , (A1)

where cA1 = cA1(λ) :=
d
2

(
eλ − 1

)
.

Proof Take the definition (23) of 1∆ (case ε = 1) and use eλ|y| ≤ eλ|x| eλ|y−x|. ¤

Lemma A2 (Preservation of tempered functions) For t > 0 and λ ∈ R,

1Stφλ ≤ cA2 φλ (A2)

with cA2 = cA2(t, λ, σ) := 2d exp
[
dσ2t (eλ

2 − 1)
]
.

Proof First we assume that d = 1. Let {ζn : n ≥ 0} denote the discrete time simple symmetric random
walk in Z starting from 0. Then, for λ ∈ R,

∑

k∈Z

1pt(k) e
λ|k| = e−σ2t

∞∑

n=0

(σ2t)n

n!
Peλ|ζn|. (A3)

But
eλ|a| ≤ eλa + e−λa, a ∈ R, (A4)

and by symmetry we get
Peλ|ζn| ≤ 2Peλζn = 2

(
Peλζ1

)n
, (A5)

where we additionally used that ζn has i.i.d. increments. But

Peλζ1 =
1

2

(
eλ + e−λ

)
≤ eλ

2

. (A6)

(To see the latter inequality, multiply by eλ, differentiate, multiply by e−2λ, and differentiate again.)
Inserting (A6) into (A5) and (A3) gives

∑

k∈Z

1pt(k) e
λ|k| ≤ 2 e−σ2t

∞∑

n=0

(
σ2t eλ

2)n

n!
= 2 exp

[
σ2t (eλ

2 − 1)
]
. (A7)

Turning back to d ≥ 1 dimensions, we note first that the d–dimensional continuous time simple symmetric
random walk can be considered as d independent one-dimensional random walks each with generator
σ2

2d
1∆. Hence, using the elementary inequality

|k1| ≤ |k| ≤ |k1|+ · · ·+ |kd|, k =
(
k1, . . . , kd

)
∈ Zd, (A8)

from (A7) we get ∑

k∈Zd

1pt(k) e
λ|k| ≤ 2d exp

[
dσ2t (eλ

2 − 1)
]

=: cA2 . (A9)
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Thus, for x ∈ Zd, ∑

y∈Zd

1pt(x− y) eλ|y| =
∑

y∈Zd

1pt(y) e
λ|x+y| ≤ cA2 e

λ|x|, (A10)

since |x|+ |y| ≥ |x+ y| ≥ |x| − |y|, giving the required estimate. ¤

Combining Lemma A2 with the scaling formula (25) and the trivial estimate (118) we get (a) of the
following result. Part (b) is standard (see, for example, Lemma 6.2(ii) of [Shi94]). Recall the definition
(8) of φλ .

Corollary A3 (Uniform preservation of tempered functions)
(a) For 0 < ε ≤ 1 and t > 0, as well as λ ∈ R,

εStφλ ≤ cA3 φλ

with cA3 = cA3(t, λ, σ) := 2d exp
[
dσ2tλ2 eλ

2]
independent of ε.

(b) For each T > 0 and λ ∈ R there is a c̃A3 = c̃A3(T, λ, σ) such that

sup
t≤T

Stφ−λ ≤ c̃A3 φ−λ .

Next we need the following estimate.

Lemma A4 (Binomial estimate) For N ≥ 0 and λ ≥ 0,

N∑

m=0

(
N

m

)
pm(1− p)N−m eλ|m−Np| ≤ 2 eλ

2N , 0 ≤ p ≤ 1. (A11)

Proof Let ξN be distributed according to the binomial distribution B(N, p), and set ηN := N −
ξN , which has the law B(N, 1−p). Then the left hand side of the claim (A11) equals P exp

[
λ|ξN −Np|

]
.

Using the elementary inequality (A4), we see that the left hand side of (A11) is

≤ e−λNpPeλξN + e−λN(1−p)PeληN . (A12)

But
PeλξN =

(
Peλξ1

)N
(A13)

and
Peλξ1 = peλ + (1− p), (A14)

hence
e−λpPeλξ1 = peλ(1−p) + (1− p)e−λp ≤ eλ

2

, 0 ≤ p ≤ 1. (A15)

(To see the latter inequality, multiply by eλp, differentiate with respect to λ, multiply by e−λ, and
differentiate again.) Putting together (A15) and (A13) gives

e−λNpPeλξN ≤ eλ
2N . (A16)

Replacing p by (1− p), the second term in (A12) has the same bound. This completes the proof. ¤
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Lemma A5 (Hypergeometric estimate) For 0 ≤ m, ` ≤ N, let ξ` be distributed according to the
hypergeometric distribution HG(m,N −m, `), that is

P (ξ` = k) =

(
Np

k

)(
N(1− p)
`− k

)

(
N

`

) , 0 ≤ k ≤ `, (A17)

where p := m
N (taken to be 1 in the case N = m = 0). Then, for all λ ≥ 0,

P exp
[
λ|ξ` − `p|

]
≤ 2 eλ

2`. (A18)

Proof Set η` = `− ξ` . Note that η` has the law HG(N −m,m, `). As in the previous proof,

P exp
[
λ|ξ` − `p|

]
≤ e−λ`p Peλξ` + e−λ`(1−p) Peλη` . (A19)

By “symmetry”, it suffices to show that

e−λ`p Peλξ` ≤ eλ
2`, λ ≥ 0. (A20)

This trivially holds for ` = 0. Assume that (A20) is true for some 0 ≤ ` ≤ N − 1. Then

Peλξ`+1 = Peλξ`
[
qeλ + (1− q)

]
= Peλξ`

[
qeλ(1−q) + (1− q)e−λq

]
eλq, (A21)

where q := m−ξ`
N−` . By (A15), this is

≤ Peλξ` eλ2 eλq. (A22)

Hence
e−λ(`+1)p Peλξ`+1 ≤ eλ

2Peλξ`e−λ(`+1)p+λq = eλ
2

e−λ̃`p Peλ̃ξ` (A23)

with 0 ≤ λ̃ := λ N−`−1
N−` ≤ λ. By the induction hypothesis, for this we get the bound

eλ
2

eλ̃
2` ≤ eλ

2(`+1), (A24)

and we are done. ¤

Lemma A6 (A collision estimate) For λ ∈ R, 0 < s, t ≤ T and x, y in Zd,

∑

z∈Zd

1ps(x− z) 1pt(y − z) eλ|z| ≤ cA6
1pe5λ2 (s+t)(x− y) exp

[
|λ| |tx+ sy|

s+ t

]
,

where
cA6 = cA6(T, λ, σ) := 4d exp

[
2dσ2T

(
e5λ

2 − 1
)]
. (A25)

Remark A7 (Case λ = 0) In the λ = 0 case, the constants in Lemmas A2 and A6 can be improved
to cA2 = 1 = cA6 , that is the inequalities are not sharp. This is trivial for Lemma A6 and for cA2 is
immediate from the proof of Lemma A2. 3

Proof of Lemma A6. The left hand side of the claimed inequality can be bounded from above by

exp

[
λ
|tx+ sy|
s+ t

] ∑

z∈Zd

1ps(x− z) 1pt(y − z) exp
[
|λ|
∣∣∣z − tx+ sy

s+ t

∣∣∣
]
. (A26)
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Switching from x− z to z, for the series this gives

∑

z∈Zd

1ps(z)
1pt(x− y − z) exp

[
|λ|
∣∣∣z − s(x− y)

s+ t

∣∣∣
]
. (A27)

Assume for the moment that d = 1. Setting p := s/(s+ t) and a := x− y, the latter formula line can
be written as

e−σ2(s+t)
∞∑

m,n=0

(σ2s)m

m!

(σ2t)n

n!
(A28)

∑

z∈Z

P
(
ζm = z, ζ ′n = a− z

)
exp

[
|λ|
∣∣z − pa

∣∣
]
,

where ζ and ζ ′ are independent discrete time simple symmetric random walks in Z, starting from 0.
The latter series coincides with the following restricted expectation:

P
{
exp

[
|λ|
∣∣ζm − pa

∣∣
]
; ζm+n = a

}
. (A29)

Substituting m+ n =: N, we rewrite (A28) as

e−σ2(s+t)
∞∑

N=0

(
σ2(s+ t)

)N

N !
P (ζN = a) (A30)

N∑

m=0

(
N

m

)
pm(1− p)N−m P

{
exp

[
|λ|
∣∣ζm − pa

∣∣
] ∣∣∣ ζN = a

}
.

Setting ζ̃n = (ζn + n)/2, which has the binomial law B(n, 12 ), n ≥ 0, the latter conditional expectation
can be written as

P
{
exp

[
|λ|
∣∣∣ζ̃m −m− pa

∣∣∣
] ∣∣∣ ζ̃N =

a+N

2

}
. (A31)

Now, ζ̃m conditioned on ζ̃N = a+N
2 =: ` is hypergeometric HG(m,N −m, `), denoted by ξ` . Thus,

(A31) coincides with

P exp
[
|λ|
∣∣2ξ` −m− pa

∣∣
]
≤ exp

[
|λ|
∣∣∣2`−N

N
(m−Np)

∣∣∣
]
P exp

[
2|λ|

∣∣∣ξ` −
m`

N

∣∣∣
]
.

By Lemma A5, this is

≤ exp

[
|λ|
∣∣∣2`−N

N
(m−Np)

∣∣∣
]
2 e4λ

2N ≤ 2 e|λ| |m−Np| e4λ
2N . (A32)

Thus, for (A31) we obtain the upper bound

2 e|λ| |m−Np| e4λ
2N . (A33)

Hence, for (A30) we get the upper estimate

2 e−σ2(s+t)
∞∑

N=0

(
σ2(s+ t)

)N

N !
e4λ

2N P (ζN = a)

N∑

m=0

(
N

m

)
pm(1− p)N−m e2|λ| |m−Np| . (A34)
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Apply Lemma A4 to bound this by

≤ 4 e−σ2(s+t)
∞∑

N=0

(
σ2(s+ t)

)N

N !
e5λ

2N P (ζN = a)

≤ 4 exp
[
2σ2T

(
e5λ

2 − 1
)]

1pe5λ2 (s+t)(a). (A35)

Turning back to d dimensions, we need only note that the series (A27) can be bounded from above by
a d–fold product of corresponding one-dimensional expressions. This finishes the proof. ¤

A.2 Proof of Lemma 24 (basic estimates)

Our strategy is as follows. We will first bound Ln(a) in terms of some Mk
n−1 [see (A37) below]. After

this we will exploit some of the used techniques to derive an iteration inequality for the M k
n [see (A41)

below]. Then the claim will follow.

In the definition (78) of Ln(a), consider the summands for ` = 2n− 1 and ` = 2n, as well as the factor
for j = n within the product abbreviated by Πn(s2n;x0, . . . ,x2n) [introduced in the end of Subsection
3.3]:

∑

x2n−1,x2n ∈ (Z2)3

exp
[
λ ‖ax2n‖

]

[
ps2n−2−s2n−1(x

2
2n−2−x32n−1)ps2n−2−s2n−1(x

3
2n−2−x12n−1)

+ ps2n−2−s2n−1(x
3
2n−2−x32n−1)ps2n−2−s2n−1(x

2
2n−2−x12n−1)

]

ps2n−2−s2n−1(x
1
2n−2−x22n−1)ps2n−2−s2n−1(x

1
2n−2−x32n−1)ps2n−1−s2n(x

3
2n−1−x32n)(

ps2n−1−s2n(x
1
2n−1−x12n)ps2n−1−s2n(x

2
2n−1−x12n)ps2n−1−s2n(x

3
2n−1−x22n)

+ ps2n−1−s2n(x
1
2n−1−x12n)ps2n−1−s2n(x

2
2n−1−x22n)ps2n−1−s2n(x

3
2n−1−x12n)

+ ps2n−1−s2n(x
1
2n−1−x22n)ps2n−1−s2n(x

2
2n−1−x12n)ps2n−1−s2n(x

3
2n−1−x12n)

)

[which is the “abundance” of Ln(a) over Ln−1(a)]. By Chapman-Kolmogorov, summing over x22n−1
and x12n−1 gives

∑

x32n−1∈Z2, x2n∈(Z2)3
exp

[
λ ‖ax2n‖

]

ps2n−2−s2n−1(x
2
2n−2−x32n−1)ps2n−2−s2n−1(x

1
2n−2−x32n−1)ps2n−1−s2n(x

3
2n−1−x32n)(

ps2n−2−s2n(x
3
2n−2−x12n)ps2n−2−s2n(x

1
2n−2−x12n)ps2n−1−s2n(x

3
2n−1−x22n)

+ ps2n−2−s2n(x
3
2n−2−x12n)ps2n−2−s2n(x

1
2n−2−x22n)ps2n−1−s2n(x

3
2n−1−x12n)

+ ps2n−2−s2n(x
3
2n−2−x22n)ps2n−2−s2n(x

1
2n−2−x12n)ps2n−1−s2n(x

3
2n−1−x12n)

)
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+
∑

x32n−1∈Z2, x2n∈(Z2)3
exp

[
λ ‖ax2n‖

]

ps2n−2−s2n−1(x
3
2n−2−x32n−1)ps2n−2−s2n−1(x

1
2n−2−x32n−1)ps2n−1−s2n(x

3
2n−1−x32n)(

ps2n−2−s2n(x
2
2n−2−x12n)ps2n−2−s2n(x

1
2n−2−x12n)ps2n−1−s2n(x

3
2n−1−x22n)

+ ps2n−2−s2n(x
2
2n−2−x12n)ps2n−2−s2n(x

1
2n−2−x22n)ps2n−1−s2n(x

3
2n−1−x12n)

+ ps2n−2−s2n(x
2
2n−2−x22n)ps2n−2−s2n(x

1
2n−2−x12n)ps2n−1−s2n(x

3
2n−1−x12n)

)
.

Using Lemma 2 (b) six times we get the bound

c2
s2n−2 − s2n

∑

x32n−1∈Z2, x2n∈(Z2)3
exp

[
λ ‖ax2n‖

]

ps2n−2−s2n−1(x
2
2n−2−x32n−1)ps2n−2−s2n−1(x

1
2n−2−x32n−1)ps2n−1−s2n(x

3
2n−1−x32n)

(
ps2n−2−s2n(x

1
2n−2−x12n)ps2n−1−s2n(x

3
2n−1−x22n)

+ ps2n−2−s2n(x
1
2n−2−x22n)ps2n−1−s2n(x

3
2n−1−x12n)

+ ps2n−2−s2n(x
3
2n−2−x22n)ps2n−1−s2n(x

3
2n−1−x12n)

)

+
c2

s2n−2 − s2n
∑

x32n−1∈Z2, x2n∈(Z2)3
exp

[
λ ‖ax2n‖

]

ps2n−2−s2n−1(x
3
2n−2−x32n−1)ps2n−2−s2n−1(x

1
2n−2−x32n−1)ps2n−1−s2n(x

3
2n−1−x32n)(

ps2n−2−s2n(x
1
2n−2−x12n)ps2n−1−s2n(x

3
2n−1−x22n)

+ ps2n−2−s2n(x
1
2n−2−x22n)ps2n−1−s2n(x

3
2n−1−x12n)

+ ps2n−2−s2n(x
2
2n−2−x22n)ps2n−1−s2n(x

3
2n−1−x12n)

)
.

Exploit now Lemma A2 in the summation over x2n to obtain

c3A2c2
s2n−2−s2n

∑

x32n−1∈Z2

ps2n−2−s2n−1(x
2
2n−2−x32n−1)ps2n−2−s2n−1(x

1
2n−2−x32n−1)

(
exp

[
λa1|x12n−2|+ λ(a2+a3)|x32n−1|

]
+ exp

[
λa2|x12n−2|+ λ(a1+a3)|x32n−1|

]

+ exp
[
λa2|x32n−2|+ λ(a1+a3)|x32n−1|

])

+
c3A2c2

s2n−2−s2n
∑

x32n−1∈Z2

ps2n−2−s2n−1(x
3
2n−2−x32n−1)ps2n−2−s2n−1(x

1
2n−2−x32n−1)

(
exp

[
λa1|x12n−2|+ λ(a2+a3)|x32n−1|

]
+ exp

[
λa2|x12n−2|+ λ(a1+a3)|x32n−1|

]

+ exp
[
λa2|x22n−2|+ λ(a1+a3)|x32n−1|

])
,

where cA2 = cA2(T, 2λ, σ). Next we apply Lemma A6 to x32n−1 to arrive at

55



c3A2 cA6 c2
s2n−2−s2n

(
exp

[
λa1|x12n−2|+

λ

2
(a2+a3)|x12n−2|+

λ

2
(a2+a3)|x22n−2|

]

p2e5λ2(a2+a3)2 (s2n−2−s2n−1)
(x12n−2−x22n−2)

+ exp

[
λa2|x12n−2|+

λ

2
(a1+a3)|x12n−2|+

λ

2
(a1+a3)|x22n−2|

]

p2e5λ2(a1+a3)2 (s2n−2−s2n−1)
(x12n−2−x22n−2)

+ exp

[
λa2|x32n−2|+

λ

2
(a1+a3)|x12n−2|+

λ

2
(a1+a3)|x22n−2|

]

p2e5λ2(a1+a3)2 (s2n−2−s2n−1)
(x12n−2−x22n−2)

)

+
c3A2 cA6 c2
s2n−2−s2n

(
exp

[
λa1|x12n−2|+

λ

2
(a2+a3)|x12n−2|+

λ

2
(a2+a3)|x22n−2|

]

p2e5λ2(a2+a3)2 (s2n−2−s2n−1)
(x12n−2−x32n−2)

+ exp

[
λa2|x12n−2|+

λ

2
(a1+a3)|x12n−2|+

λ

2
(a1+a3)|x22n−2|

]

p2e5λ2(a1+a3)2 (s2n−2−s2n−1)
(x12n−2−x32n−2)

+ exp

[
λa2|x22n−2|+

λ

2
(a1+a3)|x12n−2|+

λ

2
(a1+a3)|x22n−2|

]

p2e5λ2(a1+a3)2 (s2n−2−s2n−1)
(x12n−2−x32n−2)

)

with cA6 = cA6(T, 4λ, σ). This is our estimate for that part of Ln(a) [abundance over Ln−1(a)]. It can
be written as

c3A2 cA6 c2
s2n−2−s2n

3∑

i=1

exp
[
λ ‖aix2n−2‖

] 3∑

k=2

p2bi (s2n−2−s2n−1)(x
1
2n−2−xk2n−2), (A36)

with some ai ∈ A and bi ≥ 1, where the ai depend on a, however the bi on a and λ. But by our
definition of Mk

n(a, b) [introduced after (77)], this means

Ln(a) ≤
c3A2 cA6 c2
s2n−2−s2n

3∑

i=1

3∑

k=2

Mk
n−1(ai, bi), n ≥ 2. (A37)

In the definition of Mk
n(a, b), we restrict our attention to the summands for ` = 2n−1 and ` = 2n, and

again to the factor concerning j = n (also some type of abundance):
∑

x2n−1,x2n∈(Z2)3
exp

[
λ ‖ax2n‖

]
p2b (s2n−s2n+1)(x

1
2n − xk2n)

[
ps2n−2−s2n−1(x

2
2n−2−x32n−1)ps2n−2−s2n−1(x

3
2n−2−x12n−1)

+ ps2n−2−s2n−1(x
3
2n−2−x32n−1)ps2n−2−s2n−1(x

2
2n−2−x12n−1)

]

ps2n−2−s2n−1(x
1
2n−2−x22n−1)ps2n−2−s2n−1(x

1
2n−2−x32n−1)ps2n−1−s2n(x

3
2n−1−x32n)(

ps2n−1−s2n(x
1
2n−1−x12n)ps2n−1−s2n(x

2
2n−1−x12n)ps2n−1−s2n(x

3
2n−1−x22n)

+ ps2n−1−s2n(x
1
2n−1−x12n)ps2n−1−s2n(x

2
2n−1−x22n)ps2n−1−s2n(x

3
2n−1−x12n)

+ ps2n−1−s2n(x
1
2n−1−x22n)ps2n−1−s2n(x

2
2n−1−x12n)ps2n−1−s2n(x

3
2n−1−x12n)

)
.
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As in the first two estimation steps at the beginning of this subsection, by Chapman-Kolmogorov, we
sum over x22n−1 and x12n−1 , and use Lemma 2 (b) six times to obtain the upper bound

c2
s2n−2 − s2n

∑

x32n−1∈Z2, x2n∈(Z2)3
exp

[
λ ‖ax2n‖

]
p2b (s2n−s2n+1)(x

1
2n − xk2n)

ps2n−2−s2n−1(x
2
2n−2−x32n−1)ps2n−2−s2n−1(x

1
2n−2−x32n−1)ps2n−1−s2n(x

3
2n−1−x32n)(

ps2n−2−s2n(x
1
2n−2−x12n)ps2n−1−s2n(x

3
2n−1−x22n)

+ ps2n−2−s2n(x
1
2n−2−x22n)ps2n−1−s2n(x

3
2n−1−x12n)

+ ps2n−2−s2n(x
3
2n−2−x22n)ps2n−1−s2n(x

3
2n−1−x12n)

)

+
c2

s2n−2 − s2n
∑

x32n−1∈Z2, x2n∈(Z2)3
exp

[
λ ‖ax2n‖

]
p2b (s2n−s2n+1)(x

1
2n − xk2n)

ps2n−2−s2n−1(x
3
2n−2−x32n−1)ps2n−2−s2n−1(x

1
2n−2−x32n−1)ps2n−1−s2n(x

3
2n−1−x32n)(

ps2n−2−s2n(x
1
2n−2−x12n)ps2n−1−s2n(x

3
2n−1−x22n)

+ ps2n−2−s2n(x
1
2n−2−x22n)ps2n−1−s2n(x

3
2n−1−x12n)

+ ps2n−2−s2n(x
2
2n−2−x22n)ps2n−1−s2n(x

3
2n−1−x12n)

)
.

Lemma A6, applied to the sum over x12n, leads to factors cA6 = cA6(T, 2λ, σ), to several new

ai ∈ A depending on a, b, k, λ, and s2n−2, . . . , s2n+1, (A38)

and replacements of x2n as (x12n−2, x
2
2n, x

3
2n) in the exponential expressions, and certain p–terms. For

the p–terms we use Lemma 2 (b), estimating additionally their time expression as follows:

e5λ
2a2i [2b (s2n − s2n+1) + s2n−2 − s2n] ≥ s2n−1 − s2n+1 . (A39)

This way we get the bound

cA6
c2

s2n−2 − s2n
c2

s2n−1 − s2n+1

∑

x32n−1,x
2
2n,x

3
2n∈Z2

ps2n−2−s2n−1(x
2
2n−2−x32n−1)ps2n−2−s2n−1(x

1
2n−2−x32n−1)ps2n−1−s2n(x

3
2n−1−x32n)

(
ps2n−1−s2n(x

3
2n−1−x22n) exp

[
λ
∥∥a1(x12n−2, x22n, x32n)

∥∥
]

+ ps2n−2−s2n(x
1
2n−2−x22n) exp

[
λ
∥∥a2(x32n−1, x22n, x32n)

∥∥
]

+ ps2n−2−s2n(x
3
2n−2−x22n) exp

[
λ
∥∥a3(x32n−1, x22n, x32n)

∥∥
])

+ cA6
c2

s2n−2 − s2n
c2

s2n−1 − s2n+1

∑

x32n−1,x
2
2n,x

3
2n∈ Z2

ps2n−2−s2n−1(x
3
2n−2−x32n−1)ps2n−2−s2n−1(x

1
2n−2−x32n−1)ps2n−1−s2n(x

3
2n−1−x32n)
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(
ps2n−1−s2n(x

3
2n−1−x22n) exp

[
λ
∥∥a1(x12n−2, x22n, x32n)

∥∥
]

+ ps2n−2−s2n(x
1
2n−2−x22n) exp

[
λ
∥∥a2(x32n−1, x22n, x32n)

∥∥
]

+ ps2n−2−s2n(x
2
2n−2−x22n) exp

[
λ
∥∥a3(x32n−1, x22n, x32n)

∥∥
])
.

By Lemma A2, the sum over x32n and x22n gives the estimate

cA6
cA2 c2

s2n−2 − s2n
cA2 c2

s2n−1 − s2n+1

∑

x32n−1∈ Z2

ps2n−2−s2n−1(x
2
2n−2−x32n−1)ps2n−2−s2n−1(x

1
2n−2−x32n−1)(

exp
[
λa11|x12n−2|+ λ(a21 + a31)|x32n−1|

]
+ exp

[
λa22|x12n−2|+ λ(a12 + a32)|x32n−1|

]

+ exp
[
λa23|x32n−2|+ (a13 + a33)|x32n−1|

])

+ cA6
cA2 c2

s2n−2 − s2n
cA2 c2

s2n−1 − s2n+1

∑

x32n−1∈ Z2

ps2n−2−s2n−1(x
3
2n−2−x32n−1)ps2n−2−s2n−1(x

1
2n−2−x32n−1)(

exp
[
λa11|x12n−2|+ λ(a21 + a31)|x32n−1|

]
+ exp

[
λa22|x12n−2|+ λ(a12 + a32)|x32n−1|

]

+ exp
[
λa23|x22n−2|+ (a13 + a33)|x32n−1|

])
.

Finally, by Lemma A6, the sum over x32n−1 amounts to

cA2 cA6 c2
s2n−2 − s2n

cA2 cA6 c2
s2n−1 − s2n+1

3∑

ı̄=1

3∑

k̄=2

p2bı̄ (s2n−2−s2n−1)(x
1
2n−2−xk̄2n−2) exp

[
λ ‖aı̄,k̄x2n−2‖

]

with cA6 = cA6(T, 4λ, σ) and some aı̄,k̄ ∈ A and bı̄ ≥ 1, where the aı̄,k̄ and bı̄ depend on a, b, k, λ,

and s2n−2, . . . , s2n+1 [via a1,a2,a3 – recall (A38) – which enter into the e5λ
2

–factor in Lemma A6].
This is our estimate for that abundance part of M k

n(a, b). Since

cA2(T, 2λ, σ) cA6(T, 4λ, σ) c2(σ) ≤ c24(T, λ, σ) (A40)

as defined in the lemma, this means that

Mk
n(a, b) ≤

c24
s2n−2 − s2n

c24
s2n−1 − s2n+1

3∑

ı̄=1

3∑

k̄=2

M k̄
n−1(aı̄,k̄, bı̄), n ≥ 2, (A41)

and

Mk
1 (a, b) ≤

c24
s0 − s2

c24
s1 − s3

e2λ‖x0‖
3∑

ı̄=1

3∑

k̄=2

p2bı̄ (s0−s1)(x
1
0−xk̄0). (A42)

Iteration gives (81), and inserting (81) into (A37) amounts to (80), finishing the proof of Lemma 24. ¤
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A.3 A Feynman integral estimate

We need also the following simple estimate.

Lemma A8 (Feynman integral estimate) For n ≥ 2 and s0 > s1 > 0, set

Kn(s0, s1) :=

∫ s1

0

ds2 · · ·
∫ sn−1

0

dsn
1∏n

j=2 (sj−2 − sj)
. (A43)

Then, for each p ∈ (0, 1),

Kn(s0, s1) ≤
1

p
cn−2A8

( s0
s0 − s1

)p
, (A44)

where
cA8 = cA8(p) := π/ sin

[
π (1− p)

]
.

Proof We proceed by induction. If n = 2, then the left hand side of (A44) equals

∫ s1

0

ds2
s0 − s2

= log
s0

s0 − s1
≤ 1

p

( s0
s0 − s1

)p
, (A45)

where we used the elementary inequality

log r ≤ p−1 rp, r ≥ 1. (A46)

Hence, (A44) holds in the case n = 2. Suppose now that it is true for n ≥ 2. Then,

Kn+1(s0, s1) =

∫ s1

0

ds2
(s0 − s1) + (s1 − s2)

Kn(s1, s2)

≤ 1

p
cn−2A8 sp1

∫ s1

0

ds2
(s0 − s1) + s2

1

sp2
. (A47)

Substituting r := s2/(s0 − s1) the right hand side is

=
1

p
cn−2A8

( s1
s0 − s1

)p ∫ s1/(s0−s1)

0

dr

(1 + r) rp
(A48)

≤ 1

p
cn−2A8

( s0
s0 − s1

)p ∫ ∞

0

dr

(1 + r) rp
=

1

p
cn−1A8

( s0
s0 − s1

)p

by a standard residue calculation. The result follows for n+ 1. ¤
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