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1 Introduction and statement of results

Let € denote the space of (ordered) partitions of 1, that is

M ={p=@i)i>1 : P =>p2>..20, pr+p2+...=1}.

By size-biased sampling according to a point p € {}; we mean picking the j-th part p; with
probability p;. The starting point for our study is the following Markov chain on €}y, which we
call a coagulation-fragmentation process: size-bias sample (with replacement) two parts from p.
If the same part was picked twice, split it (uniformly), and reorder the partition. If different
parts were picked, merge them, and reorder the partition.

We call this Markov chain the basic chain. We first bumped into it in the context of triangulation
of random Riemann surfaces [5]. It turns out that it was already considered in [15], in connection
with “virtual permutations” and the Poisson-Dirichlet process. Recall that the Poisson-Dirichlet
measure (with parameter 1) can be described as the probability distribution of (Y,),>1 on €
obtained by setting Y1 = Ui, Yn+1 = Upta(L — 3771 Yj), and reordering the sequence (Yy)n,
where (Up)n is a sequence of ii.d. Uniform[0,1] random variables. Tsilevich showed in [15]
that the Poisson-Dirichlet distribution is an invariant probability measure for the Markov chain
described above, and raised the question whether such an invariant probability measure is unique.
While we do not completely resolve this question, a corollary of our results (c.f. Theorem 3) is
that the Poisson-Dirichlet law is the unique invariant measure for the basic chain which satisfies
certain regularity conditions.

Of course, the question of invariant probability measure is only one among many concerning the
large time behavior of the basic chain. Also, it turns out that one may extend the definition
of the basic chain to obtain a Poisson-Dirichlet measure with any parameter as an invariant
probability measure, generalizing the result of [15]. We thus consider a slightly more general
model, as follows.

For any nonnegative sequence = (z;);, let |z| = 3, x;, the ¢; norm of z, and |z|3 = >, 7. Set
Q ={p=M@)iz1 : m=2p2>..20, 0<|[p[]<oc}

and Q< = {p € Q: |p| < 1}. Let 0 = (0,0,...) and define 2 = QU {0} and Q< = Q< U {0}.
Unless otherwise stated, we equip all these spaces with the topology induced from the product
topology on RY. In particular, Q< is then a compact space.

For a topological space X with Borel o-field F we denote by M (X) the set of all probability
measures on (X, F) and equip it with the topology of weak convergence. M (X) denotes the
space of all (nonnegative) measures on (X, F).

Define the following two operators, called the merge and split operators, on 2, as follows:

M;; : Q—Q, M;;p=the nonincreasing sequence obtained by merging
pi and p; into p; +pj,i # j
SEo Q- Si'p = the nonincreasing sequence obtained by splitting p;

into up; and (1 —u)p;,0 <u<1

Note that the operators M;; and Sj* preserve the £; norm. Let o € M;((0,1/2]) be a probability
measure on (0,1/2] (the splitting measure). For p € Q< and [, 8s € (0,1], we then consider



Figure 1: On the left side a part of size p; has been chosen twice and is split with probability 8s. On
the right side two different parts of sizes p; and p; have been chosen and are merged with probability 5.

the Markov process generated in Q< by the kernel

Kop0.(p?) = 28m Y pipidasp(-) + Bs > _ 1} / Ssup(+) do(u)

i<j i
+ (1= Bulpl + (B = Bo)IpI3) 65(-)-
It is straightforward to check (see Lemma 4 below) that K, g, 3, is Feller continuous. The basic
chain corresponds to o = U(0,1/2], with s = (B, = 1.

It is also not hard to check (see Theorem 6 below) that there always exists a K, g,, g,-invariant
probability measure p € M;(£21). Basic properties of any such invariant probability measure
are collected in Lemma 5 and Proposition 7. Our first result is the following characterization of
those kernels that yield invariant probability measures which are supported on finite (respectively
infinite) partitions. To this end, let S := {p € Q1 | Fi > 2 : p; = 0} be the set of finite partitions.

Theorem 1 (Support properties) For any K, g, g,-invariant p € Mi(21),
. 1
ulS]=1 if /— do(z) < o0 and
x
1
us| =0 if /5 do(z) = oo.

Transience and recurrence criteria (which, unfortunately, do not settle the case o = U(0,1/2]!)
are provided in the:



Theorem 2 (Recurrence and transience) The state p = (1,0,0,...) is positive recurrent
for Ky, 3, if and only if [1/x do(x) < oo. If however

/2 4
/0 70[(0%“ dr < 0 (1)

then p is a transient state for K, 3, 3. .

We now turn to the case o = U(0,1/2]. In order to define invariant probability measures in
this case, set 7 : Q — Qp,p = 7(p) = (pi/|p|)i>1. For each # > 0 consider the Poisson process
on R, with intensity measure vy(dz) = 6z~ 'e " dz which can be seen either as a Poisson
random measure N (A;w) on the positive real line or as a random variable X = (X;)32; taking
values in 2 whose distribution shall be denoted by pg, with expectation operator Ey. (Indeed,
Ey|X| = Ey [,° 2 N(dx) = [;° xvp(dz) < oo while Py(|X| = 0) = exp(—15[(0,00)]) = 0, and
thus X € Q a.s.). A useful feature of such a Poisson process is that for any Borel subset A of R
with 0 < vg(A) < oo, and conditioned on {N(A) = n}, the n points in A are distributed as n
independent variables chosen each according to the law vy (- |A). The Poisson-Dirichlet measure
tg on € is defined to be the distribution of ()?1)121 In other words, jig = pgon~!. In the case
6 = 1 it coincides with the previously described Poisson-Dirichlet measure. See [9], [10] and [3]
for more details and additional properties of Poisson-Dirichlet processes.

We show in Theorem 3 below that, when o = U(0,1/2], for each choice of f,,, s there is a

Poisson—Dirichlet measure which is invariant for K, g, 5,. We also show that it is, in this case,
the unique invariant probability measure in a class A, which we proceed to define. Set

Q]i ={(Ti)i<i<k * 1 20,21+ 32+ o < 1}

and denote by Ay, the set of real valued functions on QO that coincide (leb*-a.e.) with a function
which has a real analytic extension to some open neighborhood of Qli (Here and throughout,
leb® denotes the k-dimensional Lebesgue measure; all we shall use is that real analytic functions
in a connected domain can be recovered from their derivatives at an internal point.) For any
v € M1 () and each integer k, define the measure y, € My (Q%) by

k
pe(B) =By | Y <Hpji> 1, (Djrs - 0) | B € By

jeNy \i=l1

(here N’; = { JENF | ji # juifi # 4 }) An alternative description of py is the following one:
pick a random partition p according to p and then sample size-biased independently (with
replacement) k parts p;,,...,p; from p. Then,

pi(B) = P(the i;-s are pairwise distinct, and (p;,,...,p;,) € B).

Part of the proof of part (b) of Theorem 3 below will consist in verifying that these measures
(g)r>1 characterize p (see [12, Th. 4] for a similar argument in a closely related context).

Set for k € N,

d
A = {MGMl(Ql) ‘Mk < lebk,mk = 'ukk EAk}.
dleb

Our main result is part (b) of the following:



Theorem 3 (Poisson-Dirichlet law) Assume o = U(0,1/2] and fix 0 = 55/

(a) The Poisson-Dirichlet law of parameter 6 belongs to A := (\,—; Ak, and is invariant (in
fact: reversing) for the kernel K, 3, 3, .

(b) Assume a probability measure p € A is Ky g, 5, -invariant. Then p is the Poisson-Dirichlet
law of parameter 6.

The structure of the paper is as follows: In Section 2, we prove the Feller property of K, 3., 3.,
the existence of invariant probability measures for it, and some of their basic properties. Section
3 and 4 are devoted to the proofs of Theorems 1 and 2 respectively, Section 5 studies the Poisson-
Dirichlet measures and provides the proof of Theorem 3. We conclude in Section 6 with a list
of comments and open problems.

2 Preliminaries

For fixed 0 € M1((0,1/2]), Bm,Bs € (0,1] and p € Q< we denote by P, € /\/ll(QIEU{O}) the law

of the Markov process on Q< with kernel K, 5, 5. and starting point p, i.e. By[p(0) = p] = 1.
Whenever p € M;(Q<), the law of the corresponding Markov process with initial distribution

o is denoted by P,. In both cases, we use (p(n))n>0 to denote the resulting process.

Lemma 4 The kernel K, g,, g, is Feller, i.e. for any continuous function f : Q< — R, the map
Q< =R, p— [ fdK,p, p.(p,") is continuous.

Proof We have

/deU,ﬁmﬂs(pa )= 28> i > pi (f(Myp) - f(p))

i=1 =i+l

.30 [ (S0 = ) dotw) -+ F0)
=1
= 2B > _pigi(p) + Bs Y ihi(p) + f(p). (2)
=1 =1

One may assume that f(p) is of the form F(py,...,px) with ¥ € N and F € C(Q~), since any
f € C(£2<) can be uniformly approximated by such functions, and denote accordingly ||p||» the
R¥ norm of p’s first k& components. We shall prove the lemma in this case by showing that both
sums in (2) contain finitely many nonzero terms, this number being uniformly bounded on some
open neighborhood of a given ¢, and that g; and h; are continuous for every 1.

For the second sum these two facts are trivial: S;'p and p coincide in their first & components
Yu € (0,1/2], Vi > k, since splitting a component doesn’t affect the ordering of the larger ones,

and thus h; = 0 for ¢ > k. Moreover, h;’s continuity follows from equicontinuity of (S}),ec(0,1)-

As for the first sum, given ¢ € Q< with positive components (the necessary modification when ¢
has zero components is straightforward), let n = n(q) > k be such that ¢, < i qr. and consider ¢’s

open neighborhood U = U(q) = {p € Q< : pp > %qk, Pn < %qn}. In particular, for all p € U,



Dn < %pk and thus, when j > 1> n, p; +p; < 2p, < pg, which means that M;;p and p coincide

in their first £ components, or that g;(p) = 0 for every i > n(q) and p € U(q).

Finally, each g; is continuous because the series defining it converges uniformly. Indeed, for
j >4 and uniformly in p, ||M;;p —pllr <p;j < % For a given € > 0, choose jy € N such that

|F(y) — F(x)| < € whenever ||y — x|z < jio Then

> 0 (f(Myp) — f(p)| <> pj<e

J=jo J=jo

which proves the uniform convergence.

Lemma 5 Let p € Mi(Q<) be K, g, g,-invariant. Then

/\M% dp = ﬁ/w dy.

Furthermore, if we set forn > 1,

-1
1%
Vo =0(1,00,.)s Vn="Vn-1Kop,, 5, and vy = n Z Yk
k=0
then for allm > 1,

2 Bm
/|p|2 )

Proof Let ¢ € [0,1], and consider the random variable

X: = Z le<p,
i

on Q< which counts the intervals longer than e. We first prove (3). (The value ¢ = 0 is used
in the subsequent proof of (5).) Assume that X, is finite which is always the case for ¢ > 0
since on Q<, X. < 1/e and is also true for € = 0 if only finitely many p; are non zero. Then
the expected (conditioned on p) increment A, of X, after one step of the underlying Markov

process is well-defined. It equals

Ac = P Zpipj(lpiypjﬁ5<pi+pj - 15<pi7pj)
i#]

+ Bs szlepi </ Lecap, do(z) — / ]‘52(1*3?)177: da(:c))

= Pm Zpipj(lpiypjﬁ5<pi+pj - 15<pi7pj)
Z'7j

+Bs Zp?lmpi (ol(e/pi, 1/2]] — o[l — ¢/pi, 1/2]])

—Bm Zp? (1pi§€<2pi - 15<pi) .
%

6



The right hand side of (6) converges as ¢ tends to 0 to
lim Az = =Bulpl” + (B + Bs)Ipl3- (7)

Since p is K, g, g,-invariant we have [A, dp = 0 for all e. Now (3) follows from (7) by
dominated convergence since |A.| < 2.

For the proof of (5) note that for all n > 0, v, has full measure on sequences p € €y for which
the number X of nonvanishing components is finite because we start with Xg = 1 vg-a.s. and
Xp can increase at most by one in each step. Given such a p € €, the expected increment Ay
of Xo equals (see (6), (7)) Ao = —Bm + (Bm + Bs)|p|3. Therefore for k > 0,

/Xo A1 — /Xo dvy, = —Bm + (Bm + Bs) / p[3 dvy.

Summing over k =0,...,n — 1 yields

n—1
/XO an — /XO dV() = —nﬁm + (ﬁm + ﬁs) Z/ ]p\% de. (8)
k=0

The left hand side of (8) is nonnegative due to [ Xy diy = 1 and [ X dv, > 1. This proves
(5). O

Theorem 6 There exists a K, g,, g, -invariant probability measure p € My ().

Proof Define v, and 7, as in (4). Since Q< is compact, M;(Q<) is compact. Consequently,
there are u € M;(Q<) and a strictly increasing sequence (my,), of positive integers such that
Um,, converges weakly towards p as n — oo. This limiting measure p is invariant under K, g, g,
by the following standard argument. For any continuous function f: Q< — R,

[ dkann) = [ [ F Ko duto)

= lim //f dK s 8,8, (D, ) AU, (D) [Lemma 4]

mp—1
= lim — K, ) d
nggomn Z //f B8 (P, ) AV (p)

mnl

= nh—{gom_n Z /f dvgy1(p) = hm /fdl/mn /fd,u

Hence it remains to show that ©; has full y-measure, i.e. u[|p| = 1] = 1. To prove this observe
that |p|3 (unlike |p|) is a continuous function on Q<. Therefore by (3), weak convergence and

(5),
12 /|p|2 d ﬁm +ﬁs /| |2 ﬁmﬁ"" ﬁs 11 /|p|2 de

by which the first inequality is an equahty, and thus [p| =1 p — a.s. O



Proposition 7 If p € M;(Q) is Ko, 8y.0,8..-tnvariant for @ = 1,2, then o1 = o2 and 6 :=
ﬁS,l/ﬁm,l = ﬁs,?/ﬁmﬂ = 02-

Proof Let k> 1 be an integer and o € {1,2}. Given p, consider the expected increment A, j
of 3=, p¥ after one step of the process driven by Ko, 3, .4,

Dok = Bma ) pivj (—pf — P+ (pi + pj)'“)
i3

toua St (<4 [+ (= 0 douls))

Note that [, p¥ dy is finite because of k > 1. Therefore, by invariance, [ Ay dp =0, which
implies
Binsac | D ipi DD (pi-“ +pf = (pi + pj)'“) dp

f > P?Jrk dp .

Bsa [/(t’“ +(1=t)%) doa(t) — 1] -

Hence, for any k,
f(tk + (1 — t)k) dgl(t) —1 _ ﬁm,lﬁs,? _.
JEF+T=0F) doa®) =1 BuaBor

Taking k — oo we conclude that v = 1. This proves the second claim. In addition, we have

/ (5 + (1 - t)F) do (1) = / (5 + (1 — 1)) dos(t) (9)

for all & > 1. Obviously, (9) also holds true for £ = 0. Extend o, to probability measures on
[0, 1] which are supported on [0,1/2]. It is enough for the proof of o1 = o2 to show that for all
continuous real valued functions f on [0, 1] which vanish on [1/2,1] the integrals [ f(t) doa(t)
coincide for @ = 1,2. Fix such an f and choose a sequence of polynomials

n

7Tn(t) = Z ck,ntk (Ck,n € ]R)

k=0

which converges uniformly on [0,1] to f as n — co. Then 7, (t) + 7, (1 — t) converges uniformly
on [0,1] to f(¢)+ f(1—t). Since f(1—t) vanishes on the support of o1 and oy we get for o = 1,2,

/ F(t) doa(t) = / F(t) do(t) + / F(1— 1) doa(t)
- lim S o / (4 (1= %) dou(t)
k=0

which is the same for « =1 and o = 2 due to (9). O



3 Support properties
Theorem 1 is a consequence of the following result.

Theorem 8 Let i € Mi(1) be K, 5, ,-invariant and denote p := (1,0,0,...) and (p(n))’s
stopping time H := min{n > 1 : p(n) =p(0)}. Then

/i do(z) < 50 = p[S] = 1 <= p[S] > 0 <= u[{p}] > 0 = E,[H] < co.

Proof = We start by proving that [1/z do(z) < oo implies u[S] = 1. Fix an arbitrary
0 < ¥ <1/2 and consider the random variables

Wy, = Zpi1§n<pi (n>1).

i>1

After one step of the process W,, may increase, decrease or stay unchanged. If we merge two
intervals then W,, cannot decrease, but may increase by the mass of one or two intervals which
are smaller than 9" but become part of an interval which is bigger than ¥". If we split an
interval then W, cannot increase, but it decreases if the original interval was larger than 9" and
at least one of its parts is smaller than 9". Thus given p, the expected increment A of W, after
one step of the process is

A = Ay —A_, where
Ay = b sz‘pj (pilpiﬁﬁ”<pj + pjlpj§5”<pi + (pi +pj)1pi,pj§19”<pi+pj) and
i#]
A= B 0} / (Pil(—ayps<om<p; T TPilupi<om<(1-ayp,) do(2).
i

We bound A} from below by

Ay > 260 ) pipjlpcon - Lonay,

,J
> 28, (zp1> S o,
i J
Z 2ﬁm792n+2WnﬁIn+l

where
Ly={i>1:9"<p <9}  (n>1),



and A_ from above by

A_ <

<

IN

IN

IN

<

B> / (P Lom <pycom j(1-2) + PiTLon<p, - Lp<onye) do(z)

1>1

Bs Zp?lﬁn<pi§19n—l [since ¥ < 1/2 <1 — x]
i>1

n—1
+ Bs Z/Zp?xlﬁ"_j<pi<t9”—j—l1pi<19”/:t do(z)
=0

i>1

B> P g pycgn

11

n—1
+/85 Z/Zﬁ3(nj1)x119n—j<pi<19n—j—11x<19j da(x)
7=0

i>1

n—1
BT, + B Y 0D BT gne i1 0((0,97]]
j=0 i>1 -
n—1
B* L, + BN "M o [(0, 97114,
7=0
n—1
28,0°D N " 972 6[(0, 9],

j=0

Since p is invariant by assumption, 0 = [ A du = [ A4 dp— [ A_ dp and therefore

2ﬂm/WnﬁIn+l d:u

IN

n—1
28,0532 72 N "9~ 5(0, 97]] / 8, du

J=0

n—1
= 20,070 3" 0 ol(0.07) [ 0" Iity dp.

J=0

10



Consequently ,

Z/Wnﬁfnﬂ dp

n>1

79 50, i

< ZZ& Io](0,97]] /ﬂ I, du
n>15=0
-5
= 58 219 Ie[(0,97]] Z/ﬁ"ﬁ] dp
n>1

< % S0 0.0 | Y [ 3 i

( - )/Bm =0 n>1 icl,

19 s
= ﬁ /Zlﬂ J<1/ac -9 ]+1 do(z /!p\ dp

555 1
< = )/Bm/ do(z)

which is finite by assumption. Therefore, W, 1,1 is summable and hence tends p-a.s. to 0.
However, W,, converges p-a.s. to 1 as n tends to co. Thus even #1,, 41 tends p-a.s. to zero, which
means that I, is p-a.s. eventually empty, that is p[S] = 1.

Now we assume u[S] > 0 in which case there exist some i > 1 and € > 0 such that ¢ := u[p; >
g,pi+1 = 0] > 0. By i successive merges of the positive parts and p’s invariance we obtain

pl{pY] = plpr = 1] > (26me?)" 16 > 0. (10)

Next, we assume p[{p}] > 0 and note that K, 3, 315 = lg and thus, defining i := p/pu[S],
one obtains an invariant measure supported on S. The chain determined by K;g,, 3, on S is
dp-irreducible, and has i as invariant measure, with a[{p}] > 0. Therefore, Kac’s recurrence

theorem [11, Theorem 10.2.2] yields E5[H] < oo.

Finally, we assume Ej[H| < co and show [1/z do(z) < co. If A := {p = p(0) # p(1)}, then
P5[A] = B > 0, and when p € A we write p(1) = Pt = (1-¢&,€,0,...), where ¢ has distribution
o. Furthermore, restricted to A and conditioned on §, H > 7 P, —a.s., where in terms of the
chain’s sampling and merge/split interpretation, 7 is the first time a marked part of size & is

sampled, i.e. a geometric random variable with parameter 1 — (1 — ¢)? < 2¢. Thus

oo > )2 BABHAL2 6, (1+ [ Belrlin©) 2 6. (14 [ Jan(@)).

Corollary 9 If [1/x do(x) < oo then there exists a unique Ky g, g,-invariant probability mea-
sure p € Mi(Qq).

11



Proof In view of Theorem 1, for the study of invariant measures it is enough to restrict
attention to the state space S, where the Markov chain (p(n)), is dp-irreducible, implying, see
[11, Chapter 10], the uniqueness of the invariant measure. O

4 Transience and recurrence

Proof of Theorem 2 The statement about positive recurrence is included in Theorem 8.

The idea for the proof of the transience statement is to show that under (1) the event that the
size of the smallest positive part of the partition never increases has positive probability. By

no:=0 and nji:=inf{n >n;: p(n) #pn-1)} (j>0)

we enumerate the times n; at which the value of the Markov chain changes. Denote by s, the
(random) number of instants among the first n steps of the Markov chain in which some interval
is split. Since j — s;; is the number of steps among the first n; steps in which two parts are
merged and since this number can never exceed s, if p(0) = p, we have that Pp-a.s.,

Sn; > Ew for all j > 0. (11)

Let (7);>1 denote the times at which some part is split. This part is split into two parts
of sizes £(1) and L(l) with 0 < ¢(I) < L(l). According to the model the random variables
& = L(1)/(L() + L()), I > 1, are independent with common distribution o. Further, for any
deterministic sequence § = (&,)n, let Pt 5[ - | denote the law of the process which evolves using
the kernel K, g, g, except that at the times 7; it uses the values  as the splitting variables.
Note that

Pl 1= [ Pesl 1 do"(0).

Now denote by ¢(n) := min{p;(n) : ¢ > 1, pi(n) >0} (n > 0) the size of the smallest positive
part at time n. We prove that for N > 0,

q(0) > ... > q(N) implies ¢(N) <& A&A...A&sy. (12)

(Here and in the sequel, we take {1 A... A&, = 00 if sy = 0). Indeed, we need only consider the
case sy > 0, in which case there exists a 1 <t < sy such that & =& A ... A&y, and 7w < N.
But clearly ¢(7:) < &, and then the condition ¢(1) > --- > ¢(N) and the fact that 7, < N imply
q(N) <q(r) <& =& N ... Ny, as claimed.

Next, fix some € € (0, By/2] where [y := min{3,,, 8s}/2. We will prove by induction over j > 1
that

j—1
Pegle > a(1).4(0) > ... > qln)] > Aol [ (1 _an 'ﬁ: 5““) | (13)
k=1

For j = 1 the left hand side of (13) equals the probability that the unit interval is split in the
first step with the smaller part being smaller than e which equals Bs1¢, <.. Assume that (13)

12



has been proved up to j. Then, with F,, = o(p(n),n < nj),

e > g(1), a(0) = ... 2 qlnjs1)
Bep [Pesla(ny) > a(nis1) | Falie > a(l), a(0) = ... > q(ny)] . (14)
Now choose k£ minimal such that py(n;) = ¢(n;). One possibility to achieve g¢(n;) > g(nj41) is

not to merge the part pi(n;) in the next step in which the Markov chain moves. The probability
to do this is

P,

S

1_ 2ﬂm Za:ayék; pa(nj)pk (nj) > ] ﬁmQ(nj) Za DPa (n])
Bim 3 arp Pa(ny)ou(ng) + Bs Do pa(ng) Bo 3 a5 Palnj)ps(n;)
- Bo

Therefore (14) is greater than or equal to
Eep (1= q(n)/Bo), € > q(1), q(0) = ... = q(n)].
By (12) this can be estimated from below by
Bep [(1= (@ A A&, Bo), &> a(l), (0) > ... > q(ny)]
This is due to (11) greater than or equal to

(L= (& A A&/ Bo) Pegple > q(1), q(0) > ... > q(ny)].

Along with the induction hypothesis this implies (13) for j + 1.
Taking expectations with respect to £ in (13) yields

NEN... N
Polg(n) <e foralln>1] > B, |Ble<[] <1 _ENG - QW) : (15)
0
k>1

By independence of & from &;, i > 2, the right hand side of (15) equals

By (1—%>2P[§1<5]Ep H<1—5A§2%“A5’“>2 . (16)

k>2

Observe that (1) implies P[§; < €] = o[(0,e)] > 0. By Jensen’s inequality and monotone
convergence, (16) can be estimated from below by

crexp | ) 2, [ln (1— ENE /g(;"/\ﬁkﬂ

k>2

with some positive constant ¢; = ¢1(¢). Since In(1 — z) > —2x for = € [0,1/2] this is greater
than

crexp | — ZE [Ea A NE] | =crexp v M dt (17)
Bo = ﬁo P& <]
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where we used that due to independence

1/2
Epléa Ao  AN&] = i Pyl& > t]F1 at.

Due to assumption (1), (17) and therefore also the left hand side of (15) are positive. This
implies transience of p. O

Remark: It follows from Theorem 2 that ¢ := [ 27! da( ) < oo implies [ o((0,2])~! dz = oo.
This can be seen also dlrectly from ¢ > [Ft7 do(t) > [a~! do(t) = o((0,2])/x for all
0 < 2 < 1/2, which shows [ o( )1dx>fcac 1dx

5 Poisson-Dirichlet invariant probability measures

Throughout this section, the splitting measure is the uniform measure on (0,1/2]. To emphasize
this, we use Kg,, 3, instead of K, g, g, throughout. Recall that § = 3,/08,.

It will be convenient to equip © (but not Q<) with the ¢; topology (noting that the Borel
o-algebra is not affected by this change of topology), and to replace the kernel Kz 5. by

K o (0,) = B S 5ibioanp() + ﬂsZpl / s

i#j
+ (1 _ﬂm"‘( i — Bs) |]/5]2)6p(')- (18)

Both kernels coincide on €©; (not on Q<). However, K é{n 5, has the advantage that it is well
defined on all of 2 and is homogeneous (hence the superscript H) in the sense of the first of the
following two lemmas, whose proof is straightforward and in which by a slight abuse of notation
K 5; g, will denote both the kernel in Q1 and in 2 and also the operators induced by these

kernels, the distinction being clear from the context.
Lemma 10 For all p € Q, Ké{n 5, (D, ") = Ké{n 5.(p,7) 0 a1l

More generally, denoting (ILf)(p) = f(n(p)), we have Kgn gl = HKé{n B

In particular, if p € M1(Q) is invariant (resp. reversing) for Ké{n 5, then
pon~t e My(Q) is invariant (resp. reversing) for Kg,, 3.

Lemma 11 The kernel K gn 3, maps continuous bounded functions to continuous bounded func-
tions.

Proof [Proof of Lemma 11] Note that we work with the ¢; topology, and hence have to modify
the proof in Lemma 4. The ¢; topology makes the mapping p +— p continuous (when 2 is
equipped with the induced ¢; topology). Fix F' € Cy(Q2). By (18) we have

Kgnﬁs F(p) = ﬁmzpzp] z]p +ﬁsz pz / F Su )d
1#£] i

+ (1 - ﬁm + (ﬁm - Bs)|ﬁ|22) F(p)
= BunK1(p) + BsKa(p) + K3(p). (19)

14



Note that for I = 1,2, K;(p) is of the form (T;(p)p,p), with T;(-) € C (; L(¢1,¢)), and (-, ")
denoting the standard duality pairing. In stating this we have used the facts that F’ is continuous
and bounded, and that all the mappings M;; and S}' are contractive.

The continuity of K;, [ =1,2 , then follows from

(Ti(9)g,q) — (Ti(p)p; P) = (Ti(9)q, ¢ — p) + ((Ti(q) — Ti(p)) ¢ P) + (Ti(p)(@ — D), P)

after observing that |g] and ||7;(¢)|| remain bounded in any ¢; neighborhoods of p.

The continuity of K3 is obvious being the product of two continuous functions of p. It has thus
been shown that Ké{n 5, F e C(Q). O

Theorem 12 The Poisson-Dirichlet measure Jig € M1(21) is reversing for K, g, 3, with o =
U(0,1/2].

Proof By Lemma 10 it suffices to verify that ug € M () is reversing for the kernel K gn B’
which for simplicity will be denoted by K for the rest of this proof.

We thus need to show that
Ey(G KF) = Ey(F KG) for all F,G € B(Q). (20)

Because g o Mgl and jg o (S#)~1 are absolutely continuous with respect to pg, it follows from
(19) that if F, {F,}, are uniformly bounded functions such that [ |F,, — F|ug(dp) —n—occ 0, then
[|KF, — KF|pp(dp) —n—c0 0. Thus, by standard density arguments we may and shall assume
F and G to be continuous.

Define for each ¢ > 0 the truncated intensity measure v5 = 1(. )9, and the corresponding
Poisson measure pug, with expectation operator Ej. Alternatively, if X is distributed in
according the pig, then pj is the distribution of T°X := (X;1x,>¢)i, that is, uj = pg o (TE)_I.
Observe that Vé > 0,

€
po(|T°X — X| > 0) <0 ' Ep|T°X — X| =0 Ep sz‘ =5 / zvp(dz) =30,

pi<e 0

implying that the measures py converge weakly to pg as € — 0.

To prove (20) we first write

|Ey(GKF) — Eo(F KG)| < |E5(GKF) — Eg(G KF)| + |E5(G KF) — E5(F KG)|
+|E5(F KG) — Eo(F KG)|  (21)

and conclude that the first and third terms in (21) converge to 0 as ¢ — 0 by virtue of the weak
convergence of ug to pg and K’s Feller property, established in Lemma 11. It thus remains to
be shown that, for all F,G € B(Q2) and £ > 0,

lim | E5 (G KF) — E(F KG)| = 0. (22)

The truncated intensity v has finite mass Vj = HIEOO z le™®dx, and thus N(R,) < oo,
pg—a.s. In particular each F' € B(2) can be naturally represented as a sequence (F},);e of
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symmetric F,,’s € B (R'}), with [|F,|jc < [|F|le for each n. As a result, and in terms of the
expectation operators Ej . of ug conditioned on {N(R, ) = n}, we may write

E5(GKF) — Eg(FKG) = ™" Z (‘2) |55.(G KF) — B, (F KG)|, (23)

n=1

while by the definition (18) of K é{n 5, and the properties stated above of the Poisson random
measure conditioned on {N (R, ) = n},

“2)E%AGKT)
ﬁmH / Ty 2 F_1(M;x)Gy, (x)e*|x\@ dzn,
. 1 € X1 Tn
i#]

Beb" & /:: /: 9 /1 x| 421 dzy,

—— o .. - FTL u n d x| 7L o
t n! ; 5 ] Z; ; +1(Si'x)Gr(x)du | e o .

_9" - ~2 w1 dx dzx
+— /6 /6 ( B + (B = Bs) ;:1 z, > Fo(%)Ga(x) €™ == o

= I\V(F,G)+ IP(F,G) + I)(F,G) (24)
where x = (z1,...,2,). Our goal is to prove that this expression, after summing in n, is roughly

symmetric in F' and G (as stated precisely in (22)). Obviously Y (F,G) = L(f’)(G, F), and in
addition we aim at showing that IT(i)l(G, F)~ L(zl)(F ,G) (with an error appropriately small as

¢ — 0). This will be achieved by a simple change of variables, including the splitting coordinate
win I,

In the integral of the i-th term in 17(12_)1(G,F ) perform the change of variables

(u,21,...,Zp-1) — (Y1,...,yn) given by y = Six (or (u,x) = (ﬁ,Mmy))
Yi = ULy

More precisely, § vy; =z, j#1
Yn = (1 - U)xz

for which |y| =|x| and dy;...dy, =x;dudx;... dx,—1, so that

()(GF)

1
_ B! " / / e Wdy, ... dy,
Gl ce
(- 1! My s T

(C¢ is as the term preceding it but with the dy; and dy,, integrals taken in [0, €], and the notation
y; means that the variable y; has been eliminated from the denominator)

Bt / / e Wldy, ... dy,
= Gn( n +C; 25
(n—2)! ly)!yPyz  UYn—1 (25)
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(by F,—1’s symmetry, the sum’s (n — 1) terms are equal, hence the last equality).

On the other hand, and for the same reason of symmetry, the n(n — 1) terms in I,(ll)(F, G) are
all equal so that

n e—Ixl
IV(F,q) = b / / Foy_1 (M7 9%)Gin (x) day...de, (26)

(n—2)! Ix|2x3... 2,

Comparing (25) with (26), and observing that by definition 3,0 = s, we conclude that there
exists a C' > 0 such that, for n > 2,

ce| = |1P,(G, F) — IV(F, G)‘
”F”OOHGHOQ/BS [e'e) e’y n—2
< BRSO 5 )
(V)" 2
¢ (ne— 1)! (27)

Applying (27) via (24) in (23) twice, once as written and once reversing the roles of F' and G,
and noting that Ifl)(F, G) = Ifl)(G, F) =0, we have

|E5(G KF) — Eg(F KG)|

<eti < 12,6, )~ ID(F.G)| + |12, (P, G)—IS’(G,F)\)
n=2 =2

0 n—2
L S V) 2c
SN LIS

n—=

from which (22) follows immediately since Vj —._.g 00. O

Proof of Theorem 3 (a) The Poisson-Dirichlet law p = fig is reversing by Theorem 12, and
hence invariant. We now show that it belongs to A. Note first that ui is absolutely continuous
with respect to leb*: for any D C QF with leb®(D) = 0, it holds that

,uk(D)S/R I/9|:E|‘]€N7g (Xjys--, X)) €D | dyg(z) =0,

+

where we used the fact that under py, 7(X) = X/|X| and | X| are independent, with | X| being
distributed according to the Gamma law ~y(dz) of density 1,027~ 1e™/T(6) (see [9]). It thus
suffices to compute the limit

' Eﬁe [#{jENl;ijiE(xi,xi-i-(S),’iZl,...,k}]
pk‘(xlw"uxk‘) = %1_1’)% 5k ;
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where all x; are pairwise distinct and nonzero, to have

k
mk(xl, PN ,xk) = pk(xl, PN ,xk) sz .
i=1
For such x4, ..., y, set I = (z;,2; + 6) and I° = UF_, I9. Define

Ly =) Xilixigry, No,=#{j:X;€ILl}.
[

By the memoryless property of the Poisson process, for any Borel subset A C R,

lim P(LY € A[NJ, i =1,....k) = P(IX| € A) = 75(4), (28)
where (28), as above, is due to [9]. Further, recall that N and (X;); are independent. Recall that
the density of the Poisson process at (y1,...,yx) is 6?’%3*‘3/'/]_[/;‘::1 yi, where |y| = y1 + ... + yx.
Performing the change of variables y;/(z + |y|) = x;, one finds that the Jacobian of this change
of coordinate is (z + |y|)¥/(1 — |=|) (in computing this Jacobian, it is useful to first make the

change of coordinates (y1,...,yx—1,|y|) — (Z1,...,ZTx—1,|Z|) where |y|,|Z| are considered as
independent coordinates, and note the block-diagonal structure of the Jacobian). It follows that

ok o0 _

my (21, k) = m/o exp (—2|e|/(1 — |z])) vo(dz) = 6% (1 — |=[)"~,

which is real analytic on {z € RF :|z| < 1}. Thus, fiy € A. In passing, we note that my(-) = 1
on Q% when 6§ = 1.

(b) 1) First we show that the family of functions (my)r>1 associated with 1, determines p. To
this end, define for j € N¥ (k € N) functions gj, §; : Q1 — [0, 1] by

k

k
gip) = > []p¥ and gp)=]]Z.(p) where Z;(p):= ZPZ

N A =1
16N¢€ 4

Note that any function g; with j € N¥ can be written after expansion of the product as a (finite)
linear combination of functions gy, with h € N*,n > 1. Since we have by the definition of uy

that i i
/gj dp :/ sz‘“’*l dp () :/ mg(x) H:cé‘fl dz, (29)
Qk Qk =1

< /=1

the family (my),>1 therefore determines the expectations [ g; dp (j € N' k> 1). Consequently,
(my)k>1 determines also the joint laws of the random variables (Z1,...,Z), k > 1, under
. We claim that these laws characterize p. Indeed, let fi be the distribution of the random
variable m 1= (Z,)n>0 : Q1 — [0,1]Y under p. Since 7 is injective it suffices to show that
the distributions of (Z1,...,Zx), k > 1, under p determine fi. But, since any continuous test
function F' on the compact space [0, I]N can be uniformly approximated by the local function
Fr((zp)n>1) = F(x1,...,2k,0,...), this is true due to

k—o00 k—o00
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2) For p € A, the set of numbers

o"my,

m) _ . (n) _
00,..,0  Ozy*---dx* lo,...0

my, =my o (T1,. .., T) (30)

with & > 1 and n; > ng > ... > ng > 0 are enough to characterize (mg)g, and hence by the
first part of the proof of b), to characterize p. It is thus enough to prove that Kpg,, g, uniquely
determines these numbers. Toward this end, first note that

1
/0 ma(w) de = [0, 1)] = 1. (31)

To simplify notations, we define mo = 1 and extend m;, to a function on [0, 1]* by setting it 0
on the complement of Q’i For k > 1 we have

1
/ mk(xl,..., dxl (1—2.’@) mi—1 .21?2, ey k) (32)
0

Indeed, for k =1 this is (31) while for £ > 2, and arbitrary B € Bﬂk 1

1
/ / mk(xl,xg,...,xk.) dxl d.CE‘Q...dxk = ,uk[[O, 1] X B]
BJO

Z <Hpj1> 1B DPjss - - - 7pjk) Z pjll[O,l] (pjl)

¢{g2sedn}

k
= /13(1?2, ce s Dk) (1 - Zm) dpk—1
i=2
k
= / (1 — sz> mg—1(x2,...,2x) dre ... dxg,
B i=2

which implies (32). Now we fix k > 1, apply Kpg,, g, to the test function #{j € N’; i pj; €
(5,2 +0),i =1,... k}d %, with (z1,...,21) € Q’i having pairwise distinct coordinates, and
take 0 \, 0, which yields the basic relation

Bm Z/ — 2)Pkt1 (X1 e Tim1, 2y T — 2, T 1y - - -5 Tl )dZ
+20, Z/ 2pk(T1y e i1, 2, Ty - e, T )2
S .
= 206, <Z :cl> pr(z1, ... xk) + (Bs — Bm) (Z x?) pr(z, ... xp)
z:kl ) =1
—Bm, (sz> pr(T1, ... xp) .
i=1
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Here the left hand side represents mergings and splittings that produce a new part roughly at
one of the x;-s; the right hand side represents parts near one of the x;-s that merge or split.
After multiplying by z1 - - -z, rearranging and using (32) to get rid of the integral with upper
limit 1, we obtain the equality

k x;
5mzxz/ Mp1 (P15 00, i1, 2, T — 2, Tig 1, - - -, Tp)d2 (33)
=1 70
k o
_Qﬁszxz/ mk(xla"'7xi—lvzvxi+17"'7xk)dz (34)
i=1 70
k
+2552ximk,1(x1,...,xi_l,xi+1,...,xk) (35)
=1
k k
—2ﬂ5 Z Z :Ei$jmk_1($1, ey Li—1y Tj41y - - - ,CCk) (36)
i=1 j=1,j#1
k k
= 26 ( xz> me(z1, ..., 2k) + (Bs — 20m) (Z x?) mg(T1, ..., o) (37)
i=1 i=1
k k
—ﬁmz Z xixjmk(xl,... ,iL'k) . (38)
i=1 j=1,j7#i

We now proceed to show how (33) — (38) yield all the required information. As starting point
for a recursion, we show how to compute my(0,...,0) for all £ > 1. Taking in (33) — (38) all
x; — 0 except for 1 and using the continuity of the functions my yields

1 1
ﬁm/ mi+1(z, 21 — 2,0,...,0)dz — 255/ my(z,0,...,0)dz
0 0

+2ﬁsmk71(07 s 70)
= Qﬁmmk(.ﬂfl, o0,... ,0) + (ﬁs — Qﬁm)xlmk(xl, o0,... ,0) .

Letting 1 — 0 we get B,,mp(0,...,0) = Bemi_1(0,...,0). With mg = 1 as start of the recursion
this implies
m(0,...,0) =6% (k>0). (39)

For the evaluation of the derivatives of mj; we proceed inductively. Recall the functions
mggn)(xl,...,xk.) defined in (30), and write mkm’ng""’nj), j < k, for m,gnl’"z""’"j’o""o). Fix n
such that ny > ng > ... > ng, with n; > 2. Our analysis rests upon differentiating (33) — (38)
n1 times with respect to x1; to make this differentiation easy, call a term a G term of degree £

if it is a linear combination of terms of the form

1
/+1
xl/ mgﬁ_l)(z,xl —2,9,...,x)dz
0
and
R0
/ my (2,01 — 2,22, ... 1) d2
0
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and

(£-1)
my4 ($1,0,$2,...,$k)
and (
)
xlmkﬂ(acl, 0,22,...,%k).

Note that (33) — (38) contains one G term of degree —1 in (33) and that differentiating a G
term of degree ¢ once yields a G term of degree ¢+ 1. Thus, differentiating the G term in (33)

n1 > 2 times and substituting x; = 0, we recover a constant multiple of mgj_ll_m (0,229, ...,z,0).

Similarly, call a term an H term of degree £ if it is a linear combination of terms of the form

(0)

042
my,’(x1,...,2,) and z1m (t+2)

/41
§€+)(x1,...,xk) and  zimy O (z1,...,Tk).

Observe, that differentiating an H term of degree £ produces an H term of degree ¢ + 1. If
we differentiate twice the term x foxl mg(2z,z2,...,x)dz in (34) we get an H term of degree
0. Therefore differentiating this term n; > 2 times results in an H term of degree n; — 2.
Since the term x2my(z1,..., 7)) in (37) is an H term of degree -2, differentiating this term
n1 times produces also an H term of degree ny — 2. Thus both terms produce after ni-fold
differentiation and evaluation at z; = 0 a constant multiple of mggm_2)(0,x2, ...,xp). The H
term zymy(x1,...,2,) in (37) is treated more carefully. It is easy to see by induction that its
ni1-th derivative equals nlm,gnl_l)(xl, ceyTE) + xlm,gnl)(xl, ..., 7). Evaluating it at z; = 0
(n1—1)

(

gives nim, 0,z2,...,Tk).

Moreover, the terms in (35) and (36) for ¢ = 1 vanish when differentiated twice with respect to
x1, while the term in (38), when differentiated with respect to x1 nq > 2 times, and substituting
x1 = 0, produces terms of the form (Z?:g xj)m,g"rl)(o,:cg, cey TE).

Summarizing the above, we conclude by differentiating (33) — (38) n; > 2 times with respect to
x1 and subsequent evaluation at z; = 0 that there are some constants C;(n1), such that
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2B,mam™ V0, 2y, .. ) [(37a),i = 1]
= Cm{(0,00, .2y, 0)  [(33),0 = 1]
+Com\™ (0,29, k) [(3TH),i =1+ (34),i = 1]

(sz> D0, 29, 2k)  [(38)]
— 26m (Zx) (26 — 8 <Zx )] 0,29,...,2)  [(37)]

—I—ﬁm xz/ mgj_ll) 0,22, ..., Tim1, 2, T — Z,Tig1, ..., Tk)dZ [(33)]

—Qﬁs xz/ 'm(n1 (0,2, .o L1, 2, Tis 1, -, Tk )d2 [(34)]
+255 Z :cimk_l(O, L2y e ooy Lj—1yLj41y--- ,CCk) [(35)]
=2

—2Bsn1 lem,iml b (0,29, ..., X1, Tit1y- - Tk) [(36),7 = 1]

_2682 Z xixjm]gn_ll)(xlu"'7x’i*17xi+17”'7xk) [(36)]

i=2 jﬂ,j;ﬁz‘
S S w0 ) (99

1=2 j=2,j7#1
For z9 = ... = 21 = 0 only the first three lines do not vanish and give a recursion which allows
us to compute starting at (39) all derivatives mggn) (0,...,0) (n>0).
Further differentiating with respect to xo, ..., x, one concludes that there exist constants Dﬁl o
such that

2Byt ) = K D™ + Do i + D ymi )]
n’:n’|<|n|-2,n,<n;,nf <ni
+ Y (DA ™) 4 D3m0 4 DS m{™)].  (40)

n’:|n’|<|n|—-1,n,<n;n1=n}

We now compute iteratively any of the m,in), with nqy > no > ... > ny: first, substitute in

(40) ny = n+ 1,n2 = 1 to compute m,(:’l) for all n,k. Then, substitute ny = n+1,ny = j

(n,5) (J))

(j < n) to compute iteratively m, ~’ from the knowledge of the family (m

More generally, having computed the terms (m ,(:1 M2l )) j<jo<ks We compute first m,

by substituting in (40) n = (n1 + 1,n2,...,nj,,1), and then proceed inductively as above. O

k,5'<g> ete.
(7’11 njovl)
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6 Concluding remarks

1) We of course conjecture (as did A. Vershik) the
Conjecture 13 Part b) of Theorem 3 continues to hold true without the assumption p € A.

We note that recently, [16] provided a further indication that Conjecture 13 may be valid, by
proving that when 6 = 1, and one initiates the basic chain with the state (1,0,0,...), then the
state of the chain sampled at a random, independent Binomial(n,1/2) time, converges in law to
the Poisson-Dirichlet law of parameter 1.

It is tempting to use the technique leading to (3) in order to prove the conjecture by charac-
terizing the expectations with respect to u of suitable test functions. One possible way to do
that is to consider a family of polynomials defined as follows. Let n = (ng,ns,...,nq) be a
finite sequence of nonnegative integers, with ng > 1. We set |n| = Z?:Q Jjnj, i.e. we consider n
as representing a partition of |n| having n; parts of size j, and no parts of size 1. Recall next
Z; = Zj(p) = >, p, and the n-polynomial

d
P,(p) = HZ;-” : — R.
j=2

In| is the degree of P,, and, with n and d as above, d is the mazimal monomial degree of Py.
Because we do not allow partitions with parts of size 1, it holds that P, # P, if n # n’ (i.e, there
exists a point p € Q; such that Py(p) # Pw(p)). It is easy to check that the family of polynomials
{Pn} is separating for M;(Q2). Letting A,, denote the expected increment (conditioned on p) of
P, after one step of the process, we have that Ay is uniformly bounded. Hence, by invariance
of p, [ Apdp = 0. Expanding this equality, we get that

nep—1 d
| o> (Tt | (S (1)t ) 1T ) | -
a,f3 k=

j=2 £=0 j=k+1

_E, Zpai /( Iﬁ(zjf,a,x)”j (nkzlzi(?“)fsz,ﬁ) 1 2]t

(=0 j=k+1

/X
s
|
—
L
N
S 3
ES
~_
/N
—~
)
ES
|
)
S~—
S
Q
N———
3
ol
~

- d
.
> 11 #z" (41)
j=k+1
where ‘ ‘ ' ‘
Gopj = (Pa+ DY —Dh =Py 20, fajo=[2/ +(1—z) —1]p}, <0,
Zq ,G_Z +qan@j’ZjOtJ? Z +fa,]x

Note that all terms in (41) are positive. Note also that the right hand side of (41) is a polynomial
of degree |n|+2, with maximal monomial degree d+2, whereas the left hand side is a polynomial
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of degree at most |n| + 2 and maximal monomial degree at most d. Let w(k) denote the
number of integer partitions of k& which do not have parts of size 1. Then, there are w(k)
distinct polynomials of degree k, whereas (41) provides at most 7(k — 2) relations between
their expected values (involving possibly the expected value of lower order polynomials). Since
always m(k) > m(k—2), it does not seem possible to characterize an invariant probability measure
€ M1(€21) using only these algebraic relations.

2) With a lesser degree of confidence we conjecture

Conjecture 14 For any o € M1((0,1/2]) and any Bp,Bs € (0,1] there exists exactly one
Ko 3,8, -invariant probability measure p € Mi(§21).

3) We have not been able to resolve whether the state p = (1,0,0,...) is transient or null-
recurrent for K, ;1 with o = U(0,1/2].

4) There is much literature concerning coagulation-fragmentation processes. Most of the recent
probabilistic literature deals with processes which exhibit either pure fragmentation or pure
coagulation. For an extensive review, see [1], and a sample of more recent references is [2],
[4] and [6]. Some recent results on coagulation-fragmentation processes are contained in [8].
However, the starting point for this and previous studies are the coagulation-fragmentation
equations, and it is not clear how to relate those to our model. The functions mj, introduced in
the context of Theorem 3 are related to these equations.

5) A characterization of the Poisson-Dirichlet process as the unique measure coming from an
i.i.d. residual allocation model which is invariant under a split and merge transformation is
given in [7]. J. Pitman has pointed out to us that a slight modification of this transformation,
preceded by a size biased permutation and followed by ranking, is equivalent to our Markov
transition K, g,, 3,. Pitman [13] then used this observation to give an alternative proof of part
(a) of Theorem 3.

6) Yet another proof of part a) of Theorem 3 which avoids the Poisson representation and
Theorem 12 can be obtained by computing the expectation of the polynomials Py (p), defined in
remark 1) above, under the Poisson-Dirichlet law. We prefer the current proof as it yields more
information and is more transparent.

7) A natural extension of Poisson-Dirichlet measures are the two parameter Poisson-Dirichlet
measures, see e.g. [14]. Pitman raised the question, which we have not addressed, of whether
there are splitting measures ¢ which would lead to invariant measures from this family.

8) While according to Theorem 3 there is a reversing probability measure for o = U(0, 1/2] this
does not hold for general o € M;((0,1/2]). For instance, let us assume that the support of o
is finite. Then there exist 0 < a < b < 1/2 such that o[(a,b)] = 0. To show that any invariant
measure p is not reversing it suffices to find s,t € ; such that the detailed balance equation

{8} Ko g, (s, {t}) = ul{t}] Ko g, 6, (8 {5}) (42)

fails. Due to Theorem 8, u[{p}] > 0. Now we first refine the partition p by successive splits until
we reach a state p € (0 with p; < e, where € > 0 is a small number. Since p has finite support,
u[{p}] > 0. Then we create from p by successive mergings some s € Qy with a < sy/s; < b,
which is possible if € was chosen small enough. Again, p[{s}] > 0. If we call now ¢ the state
which one gets from s by merging s; and s, then the left hand side of (42) is positive. On the
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other hand, the right hand side of (42) is zero because of K (t,{s}) = 0 due to the choice of a
and b.
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