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1 Introduction

Many authors ([1-4,6-10,18-20,23,24,27]) have studied different kinds of FBM (fractional Brow-
nian motion). An important problem was to find a nice extension of the Itô-Skorohod formula.
In the regular case (more regular than the classical one), Dai-Heyde [5], Decreusefond-Ustünel
[6] gave a formula based on the divergence operator. The more difficult singular case was also
studied by Alòs-León-Mazet-Nualart [2-4] who gave a formula in a general context.

Note that many of the cited authors prefer to deal with an other kind of FBM, associated to
the so-called Hurst parameter H which is real and corresponds to our α through the relation
H = Reα− 1

2 .

Recall that the LFBM (Liouville Fractional Brownian Motion) is defined by

Wα
t =

1
Γ(α)

∫ t

0
(t− s)α−1dWs .

There are three main ideas in the present paper. The first is to deal with the Liouville spaces,
J α,p which are the images of Lp([0, T ]) under the Liouville kernel defined by

Iαf(t) =
1

Γ(α)

∫ t

0
(t− s)α−1f(s)ds .

This idea seems to go back to our paper [14] of 1996, in relation with Hölder continuous functions,
and Young-Stieltjes integration. Another advantage of the Liouville space, as pointed in [14], is
to give the natural isomorphism

J α,p(Lp(µ)) = Lp(µ,J α,p)

where µ is an arbitrary measure (for example the Wiener measure). This gives a nice interpre-
tation of Kolmogorov’s lemma, and this gives also some natural Banach spaces of solutions of
trace problems.

For a β-Hölder continuous function ϕ, we redefine the FBM-Wiener integral as the natural
extension of the linear map

Xα
T (G) =

∫ T

0
ϕ(t)dWα

t (G) =
∫ T

0
ϕ(t)dIα−1G(t)

for a G ∈ J 1,2 which is the Cameron-Martin space of the Wiener measure, the integral being
taken in a little more precise sense than that of Young.

The second idea, after the deep study of [17,22,25], is to use the Itô-Skorohod integral, and to
define

Xα
T (ω) =

∫ T

0
ut(ω) � dWα

t (ω) .

Here u is a β-Hölder process with values in a Gaussian Sobolev space, and Xα
T is the Gaussian

divergence of a suitable FBM-Wiener integral.

Observe that if u is not adapted, Xα is not in general. Hence we get a true stochastic calculus
and an Itô-Skorohod formula for anticipative processes.
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The third idea is to use complex values of the parameter α, for Reα > 1
2 . The interesting

property is that all the preceding objects are holomorphic functions of α. So that our first goal
is to show that there exists a differential formula in the ordinary pathwise calculus for Reα > 3

2 .
We then extend its validity by analytic continuation on the domain of definition of every term.
To this end, we only have to prove that each involved term has a meaning. It appears that doing
so, we easily get for α = 1 the so-called Itô-Skorohod stochastic formula, and for Reα > 3

4 the
fractional Itô-Skorohod formula we were looking for.

Notice that for Reα < 1, the definition of the remaining term(s) in the Itô formula, needs
singular integrals which exist in the sense of Hadamard (Parties finies de Hadamard). Finally
for the Itô formula, a natural domain for (α, β) ⊂ C × R is defined by the conditions

Reα >
3
4
, 0 < β < 1, Reα+ β > 1 .

Note that in [2], the Itô formula for the LFBM is only stated under the stronger condition
α+ β/2 > 1. Actually for the reason as above (true stochastic calculus), it is not reasonable to
consider other values than β < Reα − 1

2 . In conclusion, a natural stochastic calculus can only
be obtained for Reα > 3

4 .

Observe that the point (3
4 , 1) is the most left limit point of the natural domain.

As a matter of fact, in all the paper, the only stochastic analysis elements we use, are the Wiener
integral and the Sobolev Gaussian space.

For adapted processes, it would be interesting to know that if the domain could be extended
by considering simultaneously the method in use in [1-4] (cutting the Liouville kernel to obtain
semi-martingales), and analytic extension of integrals.

Of course, it would be possible to extend this formulas to n-dimensional FBM. There would be
no new difficulties, except in writing formulas.

In conclusion, we can say that we have an ordinary pathwise differential calculus for Reα > 3
2 ,

a “Young stochastic” calculus for Reα > 1, and a “Young-Hadamard stochastic” calculus for
Reα > 3

4 .

2 Recall on the Liouville space

Throughout the paper, α is a complex parameter such that Reα > 1
2 , β is a real number (the

order of Hölder continuity) between 0 and 1, and p is a real number (the Hölder exponent of
integrability) strictly between 1 and +∞ when no other precision.

We use the same notations as in [14]. For Reα > 0, the Liouville integral is defined by convo-
lution

Iαf(t) =
1

Γ(α)

∫ t

0
(t− s)α−1f(s)ds

with the locally integrable function kα(t) = tα−1
+ /Γ(α). Thus we obtain a holomorphic semi-

group of continuous operators of Lp
loc([0,+∞[, dt, C ) for p ≥ 1, and then of Lp([0, T ]) as the

values of Iαf on [0, T ] do only depend on the values of f on [0, T ].

The Liouville space J α,p is the image of the complex space Lp([0, T ]) under Iα. For Reα > 1/p,
we have kα ∈ Lq

loc so that J α,p is contained in the space C0 of complex continuous functions on
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[0, T ] vanishing at 0. Notice that J α,p only depends on the real part Reα. Indeed, for real γ,
the Fourier-Schwartz transform

k̂ iγ(ξ) = (2π|ξ|)−iγ exp[πγ Sign(ξ)/2]

is a FLp multiplier according to the Marcinkiewicz theorem [21], so that I iγ is a continuous
operator of Lp([0, T ]). It then easily follows by the semi-group property that J α,p = J α+iγ,p =
J Re α,p.

Note that for Reα > 1
2 , the Iα’s are Hilbert-Schmidt.

The natural norm of J α,p is given by

‖Iαf‖α,p = Np(f)

where Np is the norm in Lp([0, T ]). Obviously J α,p is a separable Banach space which is reflexive
(of Lp type).

For β ∈]0, 1[, let Cβ the space of β-Hölder continuous functions on [0, T ] in the restricted sense,
that is those functions such that

Φ(s, t) =
ϕ(t) − ϕ(s)
|t− s|β

is a continuous function. This is a separable Banach space under the norm

‖ϕ‖β = ‖ϕ‖∞ + ‖Φ‖∞ .

As it was proved in our paper [14], for exponents satisfying the inequalities 1 > β > γ >
γ − 1/p > β′ > 0, the following inclusions hold

Cβ ⊂ R + J γ,∞ ⊂ R + J γ,p ⊂ Cβ′
. (1)

Now, let B be a complex separable Banach space. Most of the above properties also hold for
B-valued functions. For the property concerning the identity J α,p(B) = J Re α,p(B), we need
an extra property. We say that a Banach space is a Bp-space if it is isomorphic with a closed
subspace of an Lp space. Hence the required equality holds true for a Bp-space.

Note that every separable Hilbert space is a Bp-space (even if p 6= 2), and that a B2 space is a
Hilbert space.

In all of the paper, every involved functional Banach space is separable, and the expression
“absolutely convergent integral” of a Banach space valued function means that the function is
integrable in the Bochner sense.

3 Recall on the Wiener space

We denote Ω the standard Wiener space with the Wiener measure µ, that is the space of R-
valued continuous trajectories ω or $ defined on [0,+∞[ and vanishing at 0. The standard
Brownian motion is denoted Wt. The µ-expectation is denoted E . The first Wiener chaos, that
is the space of µ-measurable linear functions on Ω (cf. . [11], th.22 and [12], th.11) is denoted by
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H1. As for every Gaussian space, the gradient or differential ∇ can be defined. In the particular
case of the Wiener space, for every elementary Wiener functional F (ω) = ϕ(Wt1 , . . . ,Wtn)

∇F (ω,$) =
∑

i

∂iϕ(Wt1(ω), . . . ,Wtn(ω))Wti($) .

Notice that ∇F is linear in the second slot.

The Gaussian Sobolev space D1,p = D1,p(Ω, µ) is the completion of elementary functions under
the Sobolev norm defined by

‖F‖p
1,p = E (|F |p) +

∫∫
Ω×Ω

|∇F (ω,$)|pdµ(ω)dµ($) .

The divergence operator is defined by transposition. If G is a Wiener-Sobolev functional on
Ω × Ω, divG is defined on Ω by

E (F divG) =
∫∫

G(ω,$)∇F (ω,$)dµ(ω)dµ($) .

Thanks to the theorem of divergence continuity, this definition makes sense for G ∈ D1,p(Ω×Ω)
and p > 1.

In fact, the only interesting values of the divergence are achieved on the functional G which are
linear in the second slot $. For the particular functions which are of the form G = Φ(ω)X($)
where X is linear (i.e. belongs to the first Wiener chaos), one has

divG(ω) = Φ(ω)X(ω) − Ẽ (∇Φ(ω, ·)X(·))

where Ẽ is the partial expectation w.r. to $.

4 The holomorphic FBM

Let α a complex number such that Reα > 1
2 . We define the complex FBM by the Wiener

integral

Wα
t =

1
Γ(α)

∫ t

0
(t− s)α−1dWs

that can be symbolically written

Wα = IαẆ = kα ∗ Ẇ

where Ẇ is for the white noise on [0,+∞[, that is the “derivative” of the standard Brownian
Motion.

This can be justified in the following way: the Cameron-Martin space of the Wiener space is
J 1,2 = I1(L2([0,+∞[)), so that Wα

t (ω) is exactly the µ-measurable linear extension of the
bounded linear form (cf. [11], th.38)

G→ Iα−1G(t) = IαĠ(t) = kα ∗ Ġ(t)
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for G ∈ J 1,2. Now we have

E |Wα
t |2 =

t2Re α−1

(2Reα− 1)|Γ(α)|2 .

At this point, one could prouve that the FBM is a Gaussian process with values in the space of
holomorphic functions on Reα > 1

2 , with γ-Hölder continuous trajectories for γ < Reα− 1
2 . In

fact we shall prove more general results in the next section.

Only observe for the moment that for Reα > 3
2 , Wα

t has C1-trajectories, which is obvious since
the Brownian motion has continuous trajectories.

5 The main lemma

Recall that in [14], we defined the Young-Stieltjes integral∫ T

0
ϕdψ

for ϕ ∈ Cβ and ψ ∈ Cγ for β + γ > 1, and the result was Cγ w.r. to T . Now, if g ∈ L2, we want
to define ∫ T

0
ϕdIαg .

Unfortunately, as Iαg is only Cα′− 1
2 , for α′ < Reα, it seems that we are obliged to assume

β+Reα > 3
2 for the existence of the Young integral. Nevertheless we have a more precise result

given by the next lemma, which involves an analytic extension, that is in fact a “Partie finie de
Hadamard”.

Before enouncing this main lemma, it is convenient to introduce some domains of constant use
in the sequel.

D0 = {Reα >
1
2
}, D1 = {(α, β) ∈ C × R

/
Reα >

1
2
, β > 0 Reα+ β > 1}

D1(β) = {α ∈ C
/

(α, β) ∈ D1} .

1 Lemma : Let ϕ ∈ Cβ(B), and g ∈ L2
loc where B is a Banach space. Consider the integral

xα
t =

∫ t

0
ϕ(s)dIαg(s) .

It converges absolutely for Reα > 3
2 and is of class C1 in t. Moreover it admits a unique

holomorphic extension in the domain D1(β). This extension is absolutely continuous for Reα ≥
1. For Reα ≤ 3

2 , 0 < γ < Reα− 1
2 and 0 ≤ s ≤ t ≤ T , we have

|xα
t − xα

s | ≤ KT (α, β, γ)‖ϕ‖βN2(g1[0,T ])|t− s|γ (2)

where KT (α, β, γ) is locally bounded (and even continuous) on the admissible domain

T > 0, (α, β) ∈ D1, Reα ≤ 3
2
, 0 < γ < Reα− 1

2
.
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Proof: The assertion concerning the case Reα > 3
2 is obvious. Now one has

xα
t =

1
Γ(α− 1)

∫ t

0
ϕ(s)ds

∫ s

0
g(r)(s − r)α−2dr .

Write xα
t = yα

t + zα
t with

yα
t =

1
Γ(α− 1)

∫ t

0
ϕ(r)g(r)dr

∫ t

r
(s− r)α−2ds

zα
t =

1
Γ(α− 1)

∫ t

0
ds

∫ s

0
g(r)Φ(r, s)(s − r)α+β−2dr

where we introduced the continuous function (cf. section 2)

Φ(r, s) =
ϕ(s) − ϕ(r)
|s− r|β .

First observe that yα
t is exactly Iα(ϕg)(t), hence it has a holomorphic extension until Reα > 1

2 ,
which belongs to J α,2. Then for Reα > 1, it is absolutely continuous.

Now, the double integral defining zα
t converges absolutely and is holomorphic until Reα > 1−β.

It remains to prove inequality (2). Put a = Reα. First assume that a ≤ 1. We get∣∣∣∣dzα
t

dt

∣∣∣∣ ≤ ‖Φ‖∞
|Γ(α− 1)|

∫ t

0
|g(r)|(s − r)a+β−2dr =

‖Φ‖∞Γ(a+ β − 1)
|Γ(α− 1)| Ia+β−1|g|(t)

which belongs to L2
loc(dt,B). Hence zα

t ∈ J 1,2(B) ⊂ J α,2(B) for a ≤ 1. Moreover zα
t is

absolutely continuous.

From these different inclusions, the following inequality follows

‖xα‖J α,2(B) ≤ KT (α, β)‖ϕ‖βN2(g1[0,T ])

where KT (α, β) is locally bounded on D1. Inequality (2) follows from the inclusions (1).

Now assume that 1 ≤ a ≤ 3
2 . As yα belongs to J α,2(B), we get by the same inclusions

|yα
t − yα

s | ≤ K1
T (α, β, γ)‖ϕ‖βN2(g1[0,T ])|t− s|γ

with a locally bounded K1
T (α, β, γ). On the other hand, we have for 0 ≤ τ ≤ t ≤ T

|zα
t − zα

τ | ≤
‖ϕ‖β

|Γ(a− 1)|
∫ t

τ
ds

∫ s

0
|g(r)|(s − r)a−2dr

|zα
t − zα

τ | ≤ ‖ϕ‖β

∫ t

τ
(Ia−1|g|)(r)dr = ‖ϕ‖β [Ia|g|(t) − Ia|g|(τ)] .

Hence, replacing τ with s, we get the required

|zα
t − zα

s | ≤ K2
T (α, β, γ)‖ϕ‖βN2(g1[0,T ])|t− s|γ

with another K2
T (α, β, γ). The proof is complete.
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2 Remarks : a) Observe that zα
t vanishes for α = 1, so that xα

t reduces to the obvious formula
xα

t =
∫ t
0 ϕ(s)g(s)ds.

b) For Reα ≤ 3
2 , it would be more correct to write

xα
t = (Y)

∫ t

0
ϕ(t)dIαg for Reα+ β > 3

2 , and

xα
t = (Pf)

∫ t

0
ϕ(t)dIαg for Reα+ β > 1

but in general, we shall omit these tedious notations. The context shall recall the meaning of
the singular integrals.

6 The FBM Wiener integral

The following definition is equivalent to the one given in [14], page 12.

3 Definition : For (α, β) ∈ D1 and ϕ ∈ Cβ, we denote by

Xα
t (ω) =

∫ t

0
ϕ(s)dWα

s (ω)

the unique element of the first Wiener chaos which represents the bounded linear functional (cf.
[11] and [12])

Xα
t (G) =

∫ t

0
ϕ(s)Iα−1Ġ(s)ds =

∫ t

0
ϕ(s)dIαĠ(s)

for G ∈ J 1,2 (that is the Cameron-Martin space of (Ω, µ)).

In the case ϕ = 1, we recover Wα
t (take β > 1

2). In the case α = 1, we recover the ordinary
Wiener integral.

Now, it follows from the formulas of the main lemma with the same notations, that we have
Xα

t = Y α
t + Zα

t with

Y α
t =

1
Γ(α)

∫ t

0
(t− s)α−1ϕ(s)dWs

Zα
t =

1
Γ(α− 1)

∫ t

0
dWr

∫ t

r
Φ(r, s)(s − r)ε−1ds

so that with a = Reα and a+ β − 1 = ε > 0

N2(Xα
t ) ≤ ‖ϕ‖∞ta− 1

2

|Γ(α)|√2a− 1
+

‖Φ‖∞tε+ 1
2

|Γ(α− 1)|√ε(2ε + 1)
.

From this inequality we infer that Xα
t makes sense even if ϕ is H-valued for a separable Hilbert

space H.

4 Theorem : Assume that ϕ ∈ Cβ is H-valued. For (α, β) ∈ D1 and for 0 < γ < Inf(1,Reα−
1
2), then Xα

t is a γ-Hölder Gaussian process with values in the space of holomorphic functions
H(D1(β),H). Moreover, a.e. trajectory is γ-Hölder with values in H(D1(β),H).
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Proof: According to inequality (2) of lemma 1, we have for the restriction of Xα
t to the Cameron-

Martin space J 1,2 of µ

|Xα
t (G) −Xα

s (G)| ≤ KT (α, γ, β)‖ϕ‖βN2(Ġ)|t− s|γ .

As the first Wiener chaos H1 is naturally isometrically isomorphic to the dual space of the
Cameron-Martin space (cf. [11,12]) we get the norm in H1 = (J 1,2)∗

‖Xα
t −Xα

s ‖H1 ≤ KT (α, γ, β)‖ϕ‖β |t− s|γ

that is
N2(Xα

t −Xα
s ) ≤ KT (α, γ, β)‖ϕ‖β |t− s|γ . (32)

As Xα
t is Gaussian, we get for every p ≥ 2

Np(Xα
t −Xα

s ) ≤
√
p− 1 KT (α, γ, β)‖ϕ‖β |t− s|γ . (3p)

Integrating over a compact set L ⊂ D1(β), w.r. to the Lebesgue measure σ on C , we get

[∫
L
E |Xα

t −Xα
s |pdσ(α)

]1/p

≤
√
p− 1 ‖ϕ‖β |t− s|γ

[∫
L
KT (α, β, γ)pdσ(α)

]1/p

<∞ .

The right member is finite. As the topology of H(D1(β),H) is induced by Lp
loc(D1(β), σ,H),

the Kolmogorov lemma gives all the results.

5 Remarks : a) The coefficient
√
p− 1 follows from an easy extension of the Nelson inequalities

(cf. [16], remarque 9) to Gaussian vectors.

b) This applies to the case Xα
t = Wα

t (take ϕ = 1 and β > 1
2 so that α ∈ D0). This is an

improvement of a result of [5], where it is proved an analogous result for Wα
t , but only for

C∞-functions of real α.

c) As in our article [14], we could extend some of these considerations to the fractional Brownian
sheet, and get the separately Hölder continuity for the sheet with values inH-valued holomorphic
functions.

6 Corollary : For Reα > n+ 1
2 , Xα

t has Cn-trajectories.

Proof: This is true for Wα
t = I1Wα−1

t . This extends to Xα
t by the definition of Xα

t .

7 Theorem : Assume that (α, β) ∈ D1, β > 1/p, Reα + β > 1 + 1/p with p ≥ 2, and that
ϕ belongs to Cβ(B) where B is a Bp-space. Then the conclusions of the previous theorem still
hold.

Proof: It suffices to deal with the case Bp = Lp(ξ) for a bounded and separable measure ξ (i.e.
L1(ξ) is separable). As we have Cβ(Lp(ξ)) ⊂ Lp(ξ, Cβ′−1/p) for 1/p< β′< β, we see that ξ-a.e.
every path s→ ϕ(s, x) is (β′−1/p)-Hölder continuous. Hence put

Xα
t (ω, x) =

∫ t

0
ϕ(s, x)dWα

s (ω)

E |Xα
t (ω, x) −Xα

s (ω, x)|p ≤ Kp
T (α, β, β′, γ)‖ϕ(·, x)‖p

β′−1/p|t− s|γp

9



∫
E |Xα

t (ω, x) −Xα
s (ω, x)|pdξ(x) ≤ Kp

T (α, β, β′, γ) |‖ϕ‖|p
β′−1/p

|t− s|γp

where |‖ϕ‖|β′−1/p stands for the norm of Lp(ξ, Cβ′−1/p). It follows

Np(Xα
t −Xα

s ) ≤ K1
T (α, β, γ) ‖ϕ‖β |t− s|γ

with another constant K1
T (α, β, γ) and where ‖ϕ‖β stands for the norm in Cβ(Lp(ξ)).

Also remark that as Cβ(Lp(ξ)) ⊂ Cβ(L2(ξ)), the definitions of Xα
t given by theorems 4 and 7

agree.

7 The fractional Itô-Skorohod integral

For (α, β) ∈ D1, consider the FBM-Wiener integral w.r. to $

X̃α
t (ω,$) =

∫ t

0
us(ω)dWα

s ($)

where u ∈ Cβ(D1,2(µ)). According to theorem 4, this is a D1,2-valued FBM-Wiener integral.
Then we can put

8 Definition : Let (α, β) ∈ D1. The FBM-Itô-Skorohod integral of u is defined by

Xα
t =

∫ t

0
us � dWs = div X̃α

t .

As the FBM-Wiener integral X̃α
t belongs Cγ(D1,2) for every γ < Reα− 1

2 , not only the divergence
is well defined but also the result is a process which belongs to Cγ(L2(µ)).

9 Theorem : Let (α, β) ∈ D1, and that u ∈ ⋂
p Cβ(D1,p). Then Xα

t belongs to
⋂

p L
p(µ, Cγ)

for every γ such that 0 < γ < Reα− 1
2 . Moreover, for a fixed γ, X belongs to

⋂
pL

p(µ, Cγ(H))
where H is the space of holomorphic functions on Reα > 1

2 .

Proof: Applying theorem 7 for p > 1/β and the continuity of the divergence yields

Np(Xα
t −Xα

s ) ≤ cp‖X̃α
t − X̃α

s ‖D1,p ≤ cpK
1
T (α, β, γ)‖u‖Cβ (D1,p)|t− s|γ

for γ < Reα− 1/2.

10 Corollary : Almost every trajectory of Xα
t is Hölder continuous with values in holomorphic

functions on D1(β).

8 The little Itô formula

11 Lemma : Let F be a polynomial. If X belongs to the first Wiener chaos H1 with C1-
trajectories, then

F (Xt) = F (X0) + div
∫ t

0
F ′(Xs(ω))dXs($) +

1
2

∫ t

0
F ′′(Xs)dE (X2

s ) . (4)
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Proof: Compute the divergence which is worth∫ t

0
F ′(Xs(ω))Ẋs(ω)ds−

∫ t

0
Ẽ [∇(F ′(Xs))(ω, ·)Ẋs(·)]ds

that is

F (Xt) − F (X0) −
∫ t

0
F ′′(Xs(ω))ẼXs(·)Ẋs(·)ds .

12 Theorem : Let Reα > 3
4 , and let F be a polynomial, one has

F (Wα
t ) = F (0) +

∫ t

0
F ′(Wα

s ) � dWα
s +

1
2

∫ t

0
F ′′(Wα

s )
s2α−2

Γ(α)2
ds . (5)

Proof: Note that for α > 3
2 formula (5) is nothing but formula (4). The second step consists to

remark that formula (5) makes sense for every complex α in the domain {Reα > 3
4} in view of

theorem 9, since F (Wα
s ) and F ′(Wα

s ) are β-Hölder for every 0 < β < Reα− 1
2 . Indeed one has

(α, β) ∈ D1 for such a β. Hence the equality holds true by analytic continuation for Reα > 3
4 .

13 Remarks : a) This proves a posteriori that the Itô-Skorohod integral∫ t

0
G(Wα

s ) � dWα
s

has an analytic extension all over D0 = {Reα > 1
2} for every polynomial G. This remark is not

so trivial if we deal with the n-dimensional Brownian motion. Some analogous properties will
come below.

b) If F is not a polynomial, formula (5) extends by routine arguments, for real α > 3
4 , to a

suitable subspace of C2-functions F .

9 The FBM Itô-Skorohod differential

14 Proposition : Let (α, β) ∈ D1, and let u a process belonging to Cβ([0, T ],D1,2). Put

Xα
t =

∫ t

0
us � dWα

s .

If Xα vanishes (for every t), then u = 0.

Proof: According to the definition, we have

E

[
∇G(ω,$)

∫ T

0
ut(ω)dWα

t ($)
]

= 0

for every G ∈ D1,2. Take G(ω) = exp(f(ω)) where

f(ω) =
∫ T

0
ψ(t)dWt

11



belongs to H1. We get∫ T

0
E (ef ut)Iα−1ψ(t)dt = E

[
ef(ω)

∫ T

0
ut(ω)f($)dWα

t ($)
]

= 0

for ψ ∈ C1([0, T ]). Varying T we get

E(ef ut)E (Iα−1ψ(t)) = 0

for every t ≤ T . For ψ′ > 0 we then have

E(ef ut) = 0

for every t ≤ T . As ψ runs through a total set in L2([0, T ]), f runs through a total set in H1,
and ef runs through a total set in L2(Ω, µ). Hence we have ut = 0.

15 Theorem : Let ut and vt belonging to Cβ(D1,p) for p ≥ 4. The FBM-Itô-Skorohod integral
of vt w.r. to Xα

t is defined by

Y α
t =

∫ T

0
vt(ω) � dXα

t (ω) =
∫ T

0
vt(ω)ut(ω) � dWα

t (ω) .

Then we have

Y α
t =

∫ T

0
vt(ω) � dXα

t (ω) = div
∫ T

0
vt(ω)dX̃α

t (ω,$) (6)

where

X̃α
t (ω,$) =

∫ t

0
us(ω)dWα

s ($) .

Finally we have the following computational rule

dY α
t = vt � dXt = (utvt) � dWα

t . (6′)

Proof: First observe that the last term in the right member of formula (6) is non-ambiguous
thanks to proposition 14, and this is a FBM-Wiener integral. Secondly the regularity conditions
are satisfied for (α, β) ∈ D1, and all the quantities are holomorphic w.r. to α.

Hence it suffices to prove formulas (6) and (6′) for real large enough values of α.

In this case formula (6) reads

Yt = div
∫ T

0
vt(ω)ut(ω)Ẇα

t ($)dt =
∫ T

0
(utvt)(ω) � dWα

t (ω)

and this is also formula (6′).

10 The main FBM Itô-Skorohod formula

Recall that the domains D1 and D1(β) were defined by

D1 = {(α, β) ∈ C × R
/

Reα >
1
2
, 0 < β < 1, Reα+ β > 1}

12



D1(β) = {α /
(α, β) ∈ D1} .

We deal with a process

Xα
t =

∫ t

0
us � dWα

s

satisfying the condition
u ∈

⋂
p

Cβ(D2,p)

and a polynomial F . We introduce the following domains

D2 = {(α, β) ∈ C × R
/

Reα >
3
4
, 0 < β < 1, Reα+ β > 1}

D2(β) = {α
/

(α, β) ∈ D2} .

It is well known that in the Itô formula are involved many terms. So, before claiming the
formula, we need to analyze the existence of the two following terms. The first one is∫ T

0
F ′(Xα

t ) � dXα
t .

According to theorem 9, Xα
t belongs to

⋂
p Cγ(Lp(µ)) for every 0 < γ < Reα − 1

2 , so that, for
the existence of this term we need to assume that (α,α − 1

2) ∈ D1, that is Reα > 3
4 .

The second one is ∫ T

0
F ′′(Xα

t )dẼ [X̃α
t

2] . (7)

More generally we have

16 Proposition : Let vt ∈
⋂

p Cβ(Lp(µ)). Then

∫ T

0
vtdẼ [X̃α

t
2]

is holomorphically extendable for α ∈ D1(β).

Proof: Denote ∆T
0 the simplex defined by the condition

(r, s, t) ∈ ∆T
0 if 0 ≤ r ≤ s ≤ t ≤ T .

For Reα > 1, we have∫ T

0
vtdẼ [X̃α

t
2] =

1
Γ(α− 1)2

∫∫∫
∆T

0

utvtus(t− r)α−2(s − r)α−2drdsdt

where the triple integral absolutely converges. We then have to apply the following lemma

17 Lemma : Let ϕ,ψ ∈ Cβ(B) where B is a Banach space. Let b a bilinear map with values
in another Banach space B1, that we denote b(ϕ,ψ) = ϕψ. Then

Jα =
1

Γ(α− 1)2

∫∫∫
∆T

0

ϕ(s)ψ(t)(t − r)α−2(s− r)α−2drdsdt

13



converges absolutely for Reα > 1 and admits a holomorphic extension for α ∈ D1(β).

Proof: Write ϕ(s)ψ(t) = (ϕ(s) − ϕ(r))(ψ(t) − ψ(r)) + ϕ(r)ψ(t) + ψ(r)(ϕ(s) − ϕ(r))

so that Jα = Jα
1 + Jα

2 + Jα
3 . The first term Jα

1 absolutely converges for α+ β > 1. One has

Jα
2 =

1
Γ(α− 1)2

∫∫∫
∆
ϕ(r)ψ(t)(t − r)α−2(s− r)α−2drdsdt

=
1

Γ(α)Γ(α − 1)

∫∫
ϕ(r)ψ(t)(t − r)2α−3drdt

=
Γ(2α− 1)
2Γ(α)2

∫ T

0
(I2α−2ϕ)(t)ψ(t)dt

=
Γ(2α − 1)
2Γ(α)2

[
ϕ(0)

2Γ(2α− 1)

∫ T

0
ψ(t)t2α−2dt+

∫ T

0
(I2α+β′−2f)(t)ψ(t)dt

]

where β′ < β, and f is a B-valued continuous function such that ϕ− ϕ(0) = Iβ′
f .

The first integral in the right hand side absolutely converges for α > 1
2 . According to lemma 1,

the second one holomorphically extends for β + 2α + β′ − 1 > 1, hence α + β > 1 since β′ can
be arbitrarily close to β.

Jα
3 =

1
Γ(α− 1)2

∫∫∫
[ϕ(s) − ϕ(r)]ψ(r)(t − r)α−2(s− r)α−2drdsdt

=
1

Γ(α)Γ(α − 1)

∫∫
[ϕ(s) − ϕ(r)]ψ(r)(s − r)α−2

[
(T − r)α−1 − (s− r)α−1

]
drds

that is Jα
3 = Jα

31 − Jα
32. Now Jα

31 converges absolutely. It remains Jα
32.

Jα
32 =

1
Γ(α)Γ(α − 1)

∫∫
[ϕ(s) − ϕ(r)]ψ(r)(s − r)2α−3drds = Jα

321 − Jα
322 .

As for Jα
2 , one finds that Jα

321 holomorphically extends for α+ β > 1. Finally we have

Jα
322 =

Γ(2α− 1)
2Γ(α)2

I2α−1(ϕψ)(T )

so that we are done.

18 Remarks : For α = 1 every integral vanishes except Jα
322, and we recover

J1 = J1
322 =

1
2

∫ T

0
ϕ(t)ψ(t)dt .

Now we can claim the Itô formula.

19 Theorem : Let (α, β) ∈ D2. Let u ∈ ⋂
p Cβ(D2,p), and let F be a polynomial. Consider

Xα
t =

∫ t

0
us � dWα

s .

14



Then we have the FBM Itô-Skorohod formula

F (Xα
T (ω)) = F (0) +

∫ T

0
F ′(Xα

t (ω)) � dXα
t (ω) +

1
2

∫ T

0
F ′′(Xα

t (ω))dẼ [X̃α
t

2]

+
∫ T

0
F ′′(Xα

t )utdt

∫ t

0

(t− r)α−2

Γ(α− 1)
dr

∫ t

0
∇rus � dWα

s .

(8)

This formula can also be written

F (Xα
T (ω)) = F (0) +

∫ T

0
F ′(Xα

t (ω)) � dXα
t (ω)

+
∫ T

0
F ′′(Xα

t )utdt

∫ t

0

(t− r)α−2

Γ(α− 1)
∇rX

α
t dr .

(8’)

Proof: By the preceding considerations, we know that in formulas (8) and (8′), every term but
maybe the last makes sense and is holomorphic with respect to α.

First we prove formulas (8) and (8′) for Reα large enough (for example Reα>5). In this case
every computation can be made pathwise (as for the little Itô formula). We then get

∫ T

0
F ′(Xα

t (ω))ut(ω) � dWα
t (ω) = div

∫ T

0
F ′(Xα

t (ω))ut(ω)dWα
t ($)

=
∫ T

0
F ′(Xα

t (ω))ut(ω)Ẇα
t (ω)dt − Ẽ

∫ T

0
F ′(Xα

t (ω))∇ut(ω,$)Ẇα
t ($)dt

−Ẽ

∫ T

0
F ′′(Xα

t (ω))ut(ω)∇Xα
t (ω,$)Ẇα

t ($)dt .

On the other hand, we have

Ẋα
t (ω)dt = ut(ω)Ẇα

t (ω)dt − Ẽ

(
∇ut(ω,$)Ẇα

t ($)
)
dt

so that the sum of the two first terms of the right hand side is worth

F (Xα
T ) − F (0) .

We then obtain

F (Xα
T ) = F (0) +

∫ T

0
F ′(Xα

t )ut � dWα
t + Ẽ

∫ T

0
F ′′(Xα

t (ω))ut(ω)∇Xα
t (ω,$)Ẇα

t ($)dt .

It remains to compute

J(ω) = Ẽ

∫ T

0
F ′′(Xα

t (ω))ut(ω)∇Xα
t (ω,$)Ẇα

t ($)dt .

We have

∇Xα
t (ω,$) =

∫ t

0
∇us(ω,$) � dWα

s (ω) +
∫ t

0
us(ω)dWα

s ($)

15



so that J(ω) splits into two terms J1(ω) and J2(ω)

J1(ω) =
∫ T

0
F ′′(Xα

t (ω))ut(ω)dt Ẽ

[
Ẇα

t (·)
∫ t

0
∇us(ω, ·) � dWα

s (ω)
]

J2(ω) = Ẽ

∫ T

0
F ′′(Xα

t )utẆ
α
t dt

∫ t

0
usẆ

α
s ds =

1
2

∫ T

0
F ′′(Xα

t )dẼ
[
X̃α

t
2
]
.

Now we compute J1(ω). First we have

Ẽ

[
Ẇα

t (·)
∫ t

0
∇us(ω, ·) � dWα

s (ω)
]

=
∫ t

0
Ẽ

[
∇us(ω, ·)Ẇα

t (·)
]
� dWα

s (ω) .

Indeed, for every test functional G(ω) ∈ D1,2, we have

E

[
G(ω)Ẇα

t ($)
∫ t

0
∇us(ω,$) � dWα

s (ω)
]

= E

[
∇G(ω, ω̂)Ẇα

t ($)
∫ t

0
∇us(ω,$)dWα

s (ω̂)
]

= E

[
∇G(ω, ω̂)

∫ t

0
Ẽ

[
∇us(ω,$)Ẇα

t ($)
]
dWα

s (ω̂)
]

= E

[
G(ω)

∫ t

0
Ẽ

[
∇us(ω,$)Ẇα

t ($)
]
� dWα

s (ω)
]
.

Using the Wiener representation of ∇us w.r. to $ that is

∇us(ω,$) =
∫ T

0
∇rus(ω)dWr($)

we get

Ẽ

[
∇us(ω,$)Ẇα

t ($)
]

=
∫ t

0
∇rus(ω)

(t− r)α−2

Γ(α− 1)
dr .

Hence we find

J1(ω) =
∫ T

0
F ′′(Xt)utdt

∫ t

0

(t− r)α−2

Γ(α− 1)
dr

∫ t

0
∇rus � dWα

s .

Now we prove formula (8′). We return to

J(ω) = Ẽ

∫ T

0
F ′′(Xα

t (ω))ut(ω)∇Xα
t (ω,$)Ẇα

t ($)dt .

As above we get

Ẽ
[∇Xα

t (ω, ·)Ẇα
t (·)] =

∫ t

0
∇rX

α
t (ω)

(t− r)α−2

Γ(α− 1)
dr .

This yields

J(ω) =
∫ T

0
F ′′(Xα

t (ω))ut(ω)dt
∫ t

0
∇rX

α
t (ω)

(t− r)α−2

Γ(α− 1)
dr

16



and formula (8′) is proved.

So, formulas are proved for Reα large enough.

Every term but the last admits an analytic continuation for α ∈ D2(β), as we have seen above.
Hence the last term (in the formulas (8) and (8′)) has also an analytic continuation. This
establishes the formulas, and the following corollary.

20 Corollary : Let F be a polynomial. Then the integral

∫ T

0
F (Xα

t )utdt

∫ t

0

(t− r)α−2

Γ(α− 1)
dr

∫ t

0
∇rus � dWα

s

admits an analytic continuation for α ∈ D2(β).

Proof: it suffices to notice that every polynomial is the second derivative of another polynomial,
and to apply formula (8).

11 Recovering the case α = 1

Note that the last integral in formula (8) is singular, even in the case α = 1. Nevertheless, the
previous corollary proves that the symbolic writing

Y =
∫ T

0
vtdt

∫ t

0
∇tus � dWα

s

makes sense for vt = F (Xt)ut if F is a polynomial.

In this section we prove that such a formula can be justified under an additional trace hypothesis.

First we prove a lemma

21 Lemma : Let B be a Banach space and q > 1. Consider a function Φ(r, t) which belongs
to the space Lq([0, T ], dr, Cβ(B)). Then the following integral

Jα =
1

Γ(α− 1)

∫ T

0
dt

∫ t

0
(t− r)α−2Φ(r, t)dr

makes sense and is holomorphic w.r. to α for Reα+ β > 1/q. Moreover, its value for α = 1 is

J1 =
∫ T

0
Φ(t, t)dt

where Φ(t, t) belongs to Lq([0, T ], dr).

Proof: First observe that the trace Φ(r, r) exists and belongs to Lq(B). Put

Φ(r, t) − Φ(r, r) = Ψ(r, t)|t− r|β, A(r) = Sup
t

|Ψ(r, t)|B .

By the hypothesis, A(r) belongs to Lq(dr). Put Jα = Jα
1 + Jα

2 with

Jα
1 =

1
Γ(α− 1)

∫ T

0
dt

∫ t

0
Ψ(r, t)(t− r)α+β−2dr

17



Jα
2 =

1
Γ(α− 1)

∫ T

0
dt

∫ t

0
Φ(r, r)(t− r)α−2dr .

The first Jα
1 is absolutely convergent by the majoration (a = Reα)∫ T

0
A(r)dr

∫ T

r
(t− r)a+β−2dt =

∫ T

0
A(r)

(T − r)a+β−1

a+ β − 1
dr < +∞

for a+ β > 1/q. For the other Jα
2 , we have

Jα
2 =

1
Γ(α− 1)

∫ T

0
Φ(r, r)dr

∫ T

r
(t− r)α−2dt =

1
Γ(α)

∫ T

0
Φ(r, r)(T − r)α−1dr

for Reα > 1. The right hand side extends analytically for Reα > 1/q.

It remains to compute J1. For α = 1, J1
1 vanishes, so that J1 reduces to

∫ T
0 Φ(r, r)dr.

22 Theorem : Let (α, β) ∈ D2. Assume that u, v ∈ ⋂
p Cβ(D2,p). Put

Y α(ω) =
∫ T

0
vtdt

∫ t

0

(t− r)α−2

Γ(α− 1)
dr

∫ t

0
∇rus � dWα

s

which is the last term of formula (8). Assume the following additional trace hypothesis, that is

u − u0 ∈ J β+ 1
2
,2(D2,2). Then the integral is absolutely convergent for Reα > 1. Moreover Y α

has an analytic continuation for α ∈ D1(β). Its value for α = 1 is worth

Y (ω) = Lim
α↘1

Y α(ω) =
∫ T

0
vtdt

∫ t

0
∇tus � dWα

s .

Proof: We must analyze the integral∫ T

0
vtdt

∫ t

0

(t− r)α−2

Γ(α− 1)
dr

∫ t

0
∇rus � dWα

s . (9)

To this end, put for Reα > 3
2

Zα
r,t =

∫ t

0
∇rus � dWα

s

where ∇rus is the Wiener representation

∇us(ω,$) =
∫ T

0
∇rus(ω)dWr($) .

We have ∇u − ∇u0 ∈ J β+ 1
2
,2(D1,2), so that by the above Wiener representation ∇rut − ∇ru0

belongs to L2(dr,J β+ 1
2
,2(D1,2)). Thanks to theorem 4, we see that

Z̃α
r,t(ω,$) =

∫ t

0
∇rus(ω)dWα

s ($)

belongs to L2(dr, Cγ (D1,2)) for every γ < Reα − 1
2 . Hence Zα

r,t = div Z̃α
r,t belongs to

L2(dr, Cγ (L2(µ))). Now put Φ(r, t) = vtZr,t which belongs to L2(dr, Cγ(Lq(µ))) for every q < 2.
Applying the previous lemma gives the result.
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23 Corollary (The classical Itô-Skorohod formula, cf. [22]): With the additional trace hy-
pothesis, we have

F (XT (ω)) = F (0) +
∫ T

0
F ′(Xt(ω)) � dXt(ω) +

1
2

∫ T

0
F ′′(Xt(ω))u2

t dt

+
∫ T

0
F ′′(Xt)utdt

∫ t

0
∇tus � dWs .

(10)

24 Proposition : If u is an adapted process, and for α = 1, the last term vanishes, so that
we recover the classical Itô formula.

Proof: It suffices to remark that ∇tus vanishes a.e. on the set {(s, t)/t > s}.
25 Remarks : a) It should be observed that the last term in formula (8′) is the sum of the two
last terms in formula (8), so that there is no need to look after it.

b) By routine arguments, we can replace F by a C2 function which is bounded with its two first
derivatives, for (α, β) ∈ D2.

12 A more complete formula

26 Theorem : Let u, v ∈ ⋂
p Cβ(D2,p), and let F (x) be a polynomial. Suppose that the trace

additional property is satisfied for u or v. Consider

Xα
t =

∫ t

0
us � dWα

s , Yt = Xα
t +

∫ t

0
vsds

for α such that (α, β) ∈ D2. Then we have the FBM-Itô-Skorohod formula

F (Y α
T (ω)) = F (0) +

∫ T

0
F ′(Y α

t (ω)) � dXα
t (ω) +

∫ T

0
F ′(Y α

t (ω))vtdt

+
1
2

∫ T

0
F ′′(Yt(ω))dẼ [X̃α

t
2]

+
∫ T

0
F ′′(Y α

t )utdt

∫ t

0

(t− r)α−2

Γ(α− 1)
dr

∫ t

0
∇rus � dWα

s

+
∫ T

0
F ′′(Y α

t )utdt

∫ t

0

(t− r)α−2

Γ(α− 1)
dr

∫ t

0
∇rvsds.

(11)

Proof: Similar to the one of formula (8), without new difficulties.

27 Remark : According to [4], [8] and [20] the FBM BH
t with Hurst parameter H is worth

BH
t = W

H+ 1
2

t + Zt

where Zt is a pathwise absolutely continuous process, so that formula (11) proves an Itô formula
for BH

t .
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13 The FBM Stratonovich integral

28 Theorem : Let Xα
t =

∫ t
0 us � dWα

s , and Yt ∈
⋂

p Cβ(D1,p). For Reα > 3
2 , we have∫ T

0
Yt
dXα

t

dt
dt =

∫ T

0
Yt � dXα

t +
∫ T

0
utdt

∫ t

0
∇rYt

(t− r)α−2

Γ(α− 1)
dr . (12)

Proof: As in the proof of theorem 19 we have

utẆ
α
t dt = ut � dWα

t + Ẽ

(
∇ut(ω, ·)Ẇα

t (·)
)
dt

YtutẆ
α
t dt = (Ytut) � dWα

t + Ẽ

(
∇(Yt(ω)ut(ω, ·))Ẇα

t (·)
)
dt

Yt
dXα

t

dt
dt = (Ytut) � dWα

t + Ẽ

(
∇(Yt(ω)ut(ω, ·))Ẇα

t (·)
)
dt

− Ẽ

(
Yt∇ut(ω, ·)Ẇα

t (·)
)
dt .

So that we get

Yt
dXα

t

dt
dt = Ytut � dWα

t + ut(ω)Ẽ
(
∇Yt(ω, ·)Ẇα

t ($)
)
dt .

Replacing Ẽ

(
∇Yt(ω, ·)Ẇα

t (·)
)
dt by its value from the proof of theorem 19 completes the proof.

Now we are in a position to put

29 Theorem and definition: Let u, v ∈ ⋂
p Cβ(D2,p). Let G be a polynomial. Put

Y α
t = G(Zα

t ), where Zα
t =

∫ t

0
vs � dWα

t .

Suppose in addition that v ∈ J β+ 1
2
,2(D2,2). Then the ordinary integral

∫ T
0 Y α

t dX
α
t admits an

analytic continuation for α ∈ D2(β) which is by definition the Stratonovich integral∫ T

0
Y α

t ◦ dXα
t .

Proof: As in the proof of theorem 19, we have for Reα > 3
2∫ t

0
∇rG(Zα

t )
(t− r)α−2

Γ(α− 1)
dr = G′(Zα

t )
∫ t

0
vsds

∫ s

0

((t− r)(s− r))α−2

Γ(α− 1)2
dr

+ G′(Zα
t )

∫ t

0

(t− r)α−2

Γ(α− 1)
dr

∫ t

0
∇rvs � dWα

s .

Hence we get ∫ T

0
Yt ◦ dXα

t =
∫ T

0
Yt � dXα

t

+
∫ T

0
utG

′(Zα
t )dt

∫ t

0
vsds

∫ s

0

((t− r)(s− r))α−2

Γ(α− 1)2
dr

+
∫ T

0
utG

′(Zα
t )

∫ t

0

(t− r)α−2

Γ(α− 1)
dr

∫ t

0
∇rvs � dWα

s .
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In the right hand member, the Skorohod integral extends for α ∈ D2(β), the following term
extends for α ∈ D2(β) thanks to lemma 17. The last term extends by the extra trace property
for v, thanks to theorem 22. The proof is complete.

30 Theorem : Under the hypotheses of theorem 28, for every polynomial F we have the FBM
Itô Stratonovich formula

F (Xα
T ) = F (0) +

∫ T

0
F ′(Xα

t ) ◦ dXα
t .

Proof: Put Y α
t = F ′(Xα

t ), so that Y α
t satisfies the hypotheses of the last theorem, and applies

the analytic continuation from the case Reα > 3
2 .

Notes Added After Proof: After the acceptance of this paper, we have learned of the following
relevant and interesting preprint:

M. Gradinaru, F. Russo, P. Vallois (2001) Generalized covariations, local time and
stratonovitch Itô’s formula for fractional Brownian motion with Hurst index H ≥
1/4. Preprint of the Institut Elie Cartan, 2001/no38, Université de Nancy.
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