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1 Introduction

Stationary distributions for Markov processes can typically be characterized as probability mea-
sures that annihilate the corresponding generator. Suppose A is the generator for a Markov
process X with state space E, where X is related to A by the requirement that

f(X(t))—f(X(O))—/O Af(X(s))ds (1.1)

be a martingale for each f € D(A). (We say that X is a solution of the martingale problem
for A.) If p is a stationary distribution for A, that is, there exists a stationary solution of the
martingale problem with marginal distribution p, then since (1.1) has expectation zero, we have

/ Afdu =0, feD(A). (1.2)
E

More generally, if {v; : t > 0} are the one-dimensional distributions of a solution, then they
satisfy the forward equation

/Efdz/t_/Efdz/o—I—/Ot/EAfdusds, f e D(A). (1.3)

Conversely, if p satisfies (1.2), then under mild additional assumptions, there exists a stationary
solution of the martingale problem for A with marginal distribution p, and if {v; : t > 0}
satisfies (1.3), then there should exist a corresponding solution of the martingale problem. (See
[11], Section 4.9.)

Many processes of interest in applications (see, for example, the survey paper by Shreve [24])
can be modelled as solutions to a stochastic differential equation of the form

dX(t) =b(X(s),u(s))ds + o(X(s),u(s))dW(s) + m(X(s—),u(s—))d¢s (1.4)

where X is the state process with £ = R?, v is a control process with values in Uy, € is a
nondecreasing process arising either from the boundary behavior of X (e.g., the local time on
the boundary for a reflecting diffusion) or from a singular control, and W is a Brownian motion.
(Throughout, we will assume that the state space and control space are complete, separable
metric spaces.) A corresponding martingale problem can be derived by applying It6’s formula
to f(X(t)). In particular, setting a(z,u) = ((a;j(z,u) ) = o(z,u)o(z,u)’, we have

FX(0) = F(X(0)) - / AF(X(5), uls))ds - / BI(X(s=), uls =), 08(5))de(s)
_ /O Vi(X() (X (s),u(s)dW(s),  (L5)
where 0¢(s) = &(s) — &£(s—),
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and
f(x+om(z,u)) - f(x)
5 )
with the obvious extension to Bf(z,u,0) = m(z,u) -V f(x). We will refer to A as the generator
of the absolutely continuous part of the process and B as the generator of the singular part,
since frequently in applications £ increases on a set of times that are singular with respect to
Lebesgue measure. In general, however, £ may be absolutely continuous or have an absolutely
continuous part.

Bf(z,u,0) = 0 >0, (1.6)

Suppose the state process X and control process u are stationary and that the nondecreasing
process £ has stationary increments and finite first moment. Then there exist measures pg and
w1 satisfying

po(H) = E[Iy(X(s),u(s))], H € B[R x Up),

for each s and

p1(Hy % Hy) = %E[/Ot i, (X (s—),u(s—), 66(s))ds,),  Hy € B(RY x Uy), Ha € BJ0, 00),

for each t. Let D be the collection of f € GQ(Rd) for which (1.5) is a martingale. Then the
martingale property implies

w - %E [ /0 Af(X(s%u(S))dS] - %E

/[0 | BIOKG) (o), Be(s) s

_ Bf(X(0))
t
and, under appropriate integrability assumptions,
/ Af(z,u)po(dr X du) —|—/ Bf(z,u,v)pi(dz x du x dv) =0, (1.7)
R4 x Uy R4 x Uy x[0,00)

for each f € D.

As with (1.2), we would like to show that measures po and p; satisfying (1.7) correspond to a
stationary solution of a martingale problem defined in terms of A and B. The validity of this
assertion is, of course, dependent on having the correct formulation of the martingale problem.

1.1 Formulation of martingale problem

For a complete, separable, metric space S, we define M (S) to be the space of Borel measurable
functions on S, B(S) to be the space of bounded, measurable functions on S, C(S) to be the
space of continuous functions on S, C(S) to be the space of bounded, continuous functions on
S, M(S) to be the space of finite Borel measures on S, and P(S) to be the space of probability
measures on S. M(S) and P(S) are topologized by weak convergence.

Let £,(S) = M(S x[0,t]). We define L(.S) to be the space of measures  on S x [0, 00) such that
£(S x [0,t]) < oo, for each ¢, and topologized so that &, — & if and only if [ fd, — [ fd¢, for
every f € C(S x [0,00)) with supp(f) C S x [0,tf] for some t; < co. Let & € £,(S) denote the
restriction of £ to S x [0,¢]. Note that a sequence {("} C L(S) converges to a & € £(.5) if and



only if there exists a sequence {tj}, with t;, — oo, such that, for each ¢y, &, converges weakly to
&t,, which in turn implies & converges weakly to & for each ¢ satisfying £(S x {t}) = 0. Finally,
we define L™ (S) C L(S) to be the set of ¢ such that £(S x [0,]) =t for each t > 0.

Throughout, we will assume that the state space E and control space U are complete, separable,
metric spaces.

It is sometimes convenient to formulate martingale problems and forward equations in terms of
multi-valued operators. For example, even if one begins with a single-valued operator, certain
closure operations lead naturally to multi-valued operators. Let A C B(F) x B(E). A measur-
able process X is a solution of the martingale problem for A if there exists a filtration {F;} such
that, for each (f,g) € A

f(X(t))—f(X(O))—/O 9(X(s))ds (1.8)

is an {F;}-martingale. Similarly, {v; : t > 0} is a solution of the forward equation for A if, for

each (f,g) € A
/fdut /fduo—l—/ /gdusds t>0. (1.9)

Note that if we have a single valued operator A : D(A) C B(E) — B(E), the “A” of (1.8) and
(1.9) is simply the graph {(f, Af) € B(E) x B(E) : f € D(A)}.
Let Ag be the linear span of A. Note that a solution of the martingale problem or forward

equation for A is a solution for Ag. We will say that A is dissipative if and only if Ag is
dissipative, that is, for (f,g) € Ag and A > 0,

IAf =gl = AllFII-

An operator A C B(F) x B(E) is a pre-generator if A is dissipative and there are sequences of
functions p, : E — P(F) and A, : E — [0, 00) such that, for each (f,g) € A

g() = lim Ay(2) /E () — (@), dy), (1.10)

n—oo
for each z € E. Note that we have not assumed that p, and A, are measurable functions of x.
Remark 1.1 If AC C(E) x C(E) (C(E) denotes the bounded continuous functions on E) and
for each x € E, there exists a solution v* of the forward equation for A with v§ = 0, that

is right-continuous (in the weak topology) at zero, then A is a pre-generator. In particular, if
(f,g9) € A, then

[ee] [ee] [ee] t
/ e MUF(Af = g)dt = / )\G_Atvffdt—/ Ae_’\t/ v¥gdsdt
0 0 0 0

= flx)

which implies |Nf — g|| > Af(z) and hence dissipativity, and if we take A\, = n and pnp(z,-) =

T
Vl/n’

|~

” /E (fF(y) — @)l = n(wipf — f(z) = n /0 " Vrgds — (o).
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(We do not need to verify that vf is a measurable function of x for either of these calculations.)

If E is locally compact and D(A) C C(E) (C(E), the continuous functions vanishing at infinity),
then the existence of A, and p, satisfying (1.10) implies A is dissipative. In particular, Ag will
satisfy the positive maximum principle, that is, if (f,g) € As and f(xo) = || f|l, then g(zp) <0
which implies

IAf =gl = Af(20) — g(z0) > Af(x0) = Al f]|-

If E is compact, A C C(E) x C(E), and A satisfies the positive mazimum principle, then A is a
pre-generator. If E is locally compact, A C C(E) x C(E), and A satisfies the positive mazimum
principle, then A can be extended to a pre-generator on E®, the one-point compactification of
E. See Ethier and Kurtz (1986), Theorem 4.5.4.

Suppose A C C(E) x C(E). If D(A) is convergence determining, then every solution of the
forward equation is continuous. Of course, if for each x € E there exists a cadlag solution of the
martingale problem for A, then there exists a right continuous solution of the forward equation,
and hence, A is a pre-generator.

To obtain results of the generality we would like, we must allow relaxed controls (controls
represented by probability distributions on U) and a relaxed formulation of the singular part.
We now give a precise formulation of the martingale problem we will consider. To simplify
notation, we will assume that A and B are single-valued.

Let A,B:D C C(E)— C(ExU) and vy € P(E). (Note that the example above with B given
by (1.6) will be of this form for D = C? and U = Uy x [0,00).) Let (X, A) be an E x P(U)-valued
process and I' be an L(E x U)-valued random variable. Let T'; denote the restriction of T' to
E xU x[0,t]. Then (X, A,T") is a relaxed solution of the singular, controlled martingale problem
for (A, B,1p) if there exists a filtration {F;} such that (X, A,T';) is {F;}-progressive, X (0) has
distribution v, and for every f € D,

f(X(%)) —/0 /UAf(X(s),u)As(du)ds - /E Bf(z,u)l'(dx x du x ds) (1.11)

xU x[0,t]
is an {F;}-martingale.

For the model (1.4) above, the L(E x U)-valued random variable I" of (1.11) is given by I'(H x
[0,8)) = o Trr (X (=), u(s—), 66(s))ds

Rather than require all control values u € U to be available for every state x € E, we allow the
availability of controls to depend on the state. Let Y C E x U be a closed set, and define

Uy ={u: (z,u) € U}.

Let (X,A,T") be a solution of the singular, controlled martingale problem for (A, B, ug). The
control A and the singular control process I' are admissible if for every t,

/t Iy (X (s),u)As(du)ds = t, and (1.12)
0
U x [0,t]) =T(E x U x [0,t]). (1.13)

Note that condition (1.12) essentially requires A to have support in U, when X (s) = .



1.2 Conditions on A and B

We assume that the absolutely continuous generator A and the singular generator B have the
following properties.

Condition 1.2 i) A,B:DC C(E) - C(ExU),1€D, and Al =0,B1 = 0.

ii) There exist Ya,p € C(E x U), ¥a,p > 1, and constants ay, by, f € D, such that
|Af(z,u)| < appa(z,u), |Bf(xz,u)| < brp(z,u), V(xz,u) € U.

i11) Defining (Ao, Bo) = {(f, wATlAf, wngf) : f € D}, (Ao, Bo) is separable in the sense that
there exists a countable collection {gr} C D such that (Ao, Bo) is contained in the bounded,
pointwise closure of the linear span of {(gx, Aogk, Bogk) = (gk,¢21Agk,¢§lng)}.

iv) For each u € U, the operators A, and B, defined by A,f(z) = Af(x,u) and B, f(z) =

Bf(xz,u) are pre-generators.

v) D is closed under multiplication and separates points.

Remark 1.3 Condition (i), which will establish uniform integrability, has been used in [27] with
¥ only depending on the control variable and in [4] with dependence on both the state and control
variables. The separability of condition (iii), which allows the embedding of the processes in a
compact space, was first used in [2] for uncontrolled processes. The relazation to the requirement
that A and B be pre-generators was used in [19].

The generalization of (1.7) is

/ Af(z,u)po(dr x du) —I—/ Bf(z,u)pi(dr x du) =0, (1.14)
ExU ExU

for each f € D. Note that if 14 is pg-integrable and ¢ p is pi-integrable, then the integrals in
(1.14) exist.

Example 1.4 Reflecting diffusion processes.

The most familiar class of processes of the kind we consider are reflecting diffusion processes
satisfying equations of the form

X(t) :X(O)+/O J(X(s))dW(s)—f—/O b(X(s))ds+/O m(X (s))dé(s),

where X is required to remain in the closure of a domain D (assumed smooth for the moment)
and £ increases only when X is on the boundary of D. Then there is no control, so

2
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where a(z) = ((a;;(x))) = o(z)o(x)T. In addition, under reasonable conditions & will be contin-
uous, so

Bf(z) = m(x) - Vf(2).

If po is a stationary distribution for X, then (1.14) must hold with the additional restrictions
that o is a probability measure on D and p; is a measure on 0D.

If m is not continuous (which is typically the case for the reflecting Brownian motions that arise
in heavy traffic limits for queues), then a natural approach is to introduce a “control” in the
singular /boundary part so that Bf(z,u) = u - Vf(z) and the set Y C D x U that determines
the admissible controls is the closure of {(z,u) : € 9D, u = m(z)}. Then

X(¢) —X(O)—I—/O U(X(s))dW(s)—l-/O b(X(s))ds—l—/O /UuAs(du)df(s),

where again, under reasonable conditions, £ is continuous and by admissiblity, A is a probability
measure on Uy (). In particular, if m is continuous at X (s), then [;; uA(du) = m(X(s)), and if
m is not continuous at X (s), then the direction of reflection [;; uAy(du) is a convex combination
of the limit points of m at X(s).

Example 1.5 Diffusion with jumps away from the boundary.

Assume that D is an open domain and that for x € 9D, m(x) satisfies x +m(x) € D. Assume
that

X(t) :X(0)+/0 U(X(s))dW(s)+/0 b(X(s))ds+/0 m(X (s—))d¢(s),

where £ is required to be the counting process that “counts” the number of times that X has hit
the boundary of D, that is, assuming X (0) € D, X diffuses until the first time 71 that X hits the
boundary (71 = inf{s > 0: X(s—) € dD}) and then jumps to X (1) = X(m1—) + m(X(m1—)).
The diffusion then continues until the next time 7 that the process hits the boundary, and
so on. (In general, this model may not be well-defined since the {7} may have a finite limit
point, but we will not consider that issue.) Then A is the ordinary diffusion operator, Bf(z) =
flx+m(z)) — f(x), and T'(H x [0,¢]) = fg Iy (X (s—))d&(s).

Models of this type arise naturally in the study of optimal investment in the presence of trans-
action costs. (See, for example, [8, 25].) In the original control context, the model is of the
form

X (1) = X(0) + /0 o (X (s))dW (s) + /0 b(X (s))ds + /0 w(s—)de(s),

where & counts the number of transactions. Note that £ is forced to be a counting process, since
otherwise the investor would incur infinite transaction costs in a finite amount of time. We then
have A as before and Bf(z,u) = f(xr+wu)— f(z). D and m are then determined by the solution
of the optimal control problem.

Example 1.6 Tracking problems.



A number of authors (see, for example, [14, 26]) have considered a class of tracking problems
that can be formulated as follows: Let the location of the object to be tracked be given by a
Brownian motion W and let the location of the tracker be given by

Y () = Y(0) + /0 u(s—)dE(s),

where |u(s)] = 1. The object is to keep X = W — Y small while not consuming too much fuel,
measured by &. Setting X (0) = —Y'(0), we have

X(t) = X(0) + W(t) - / u(s—)de (s),

so Af(z) = $Af(z) and
[z —ud) — f(x)
5 9
extending to Bf(z,u,d) = —u- Vf(x) for 6 = 0. As before, é represents discontinuities in &,
that is the martingale problem is

Bf(xauaé) -

FOX0) = FXO) = [ FA7X s = [ B (=), u(s). B()de(o)

For appropriate cost functions, the optimal solution is a reflecting Brownian motion in a domain

D.

1.3 Statement of main results.

In the context of Markov processes (no control), results of the type we will give appeared
first in work of Weiss [29] for reflecting diffusion processes. He worked with a submartingale
problem rather than a martingale problem, but ordinarily, it is not difficult to see that the
two approaches are equivalent. For reflecting Brownian motion, (1.7) is just the basic adjoint
relationship consider by Harrison et. al. (See, for example, [7].) Kurtz [16] extended Weiss’s
result to very general Markov processes and boundary behavior.

We say that an L£(FE)-valued random variable has stationary increments if for a; < b;, i =
1,...,m, the distribution of (I'(Hy x (t + a1,t + b1]),...,'(Hp, X (t + am,t + by])) does not
depend on t. Let X be a measurable stochastic process defined on a complete probability
space (92, F, P), and let N’ C F be the collection of null sets. Then F;¥ = o(X(s) : s < t),
?f( = N Vv F¥ will denote the completion of F7*, and ?t)i = ﬂs>tf§. Let By and Ey be
complete, separable metric spaces. ¢ : Ey x B(E2) — [0,1] is a transition function from E; to
E, if for each x € Ej, g(x,-) is a Borel probability measure on Es, and for each D € B(E»),
q(-,D) € B(Ey). If E = E; = E», then we say that ¢ is a transition function on E.

Theorem 1.7 Let A and B satisfy Condition 1.2. Suppose that pg € P(E x U) and py €
M(E x U) satisfy
poU) = po(ExU) =1,  mU) =m(ExU), (1.15)

/¢A(x,u)u0(dx x du) + /wB(x,u),ul(d:r X du) < 00, (1.16)
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and

Af(z,u) po(de x du) —|—/ Bf(z,u) pi(dz x du) = 0, VfeD. (1.17)

ExU ExU

Foriv=10,1, let ,uZ-E be the state marginal p; and let n; be the transition function from E to U
such that p;(dx x du) = n;(x, du)pf (dz).

Then there exist a process X and a random measure I' on E x [0,00), adapted to {?ﬁ_}, such
that

o X is stationary and X (t) has distribution pub .
o I' has stationary increments, I'(E x [0,t]) is finite for each t, and E[I'(- x [0,t])] = tui(-).

o For each f € D,
X)) / /U AF(X(s), ) o (X (s), du)ds
- / / Bf (y,w) my (y, du) T(dy x ds) (1.18)
Ex[0,t] JU

is an {?ﬁ}—martz’ngale.

Remark 1.8 The definition of the solution of a singular, controlled martingale problem did not
require that I' be adapted to {7t+}, and 1t is sometimes convenient to work with solutions that
do not have this property. Lemma 6.1 ensures, however, that for any solution with a nonadapted
I', an adapted I can be constructed.

Theorem 1.7 can in turn be used to extend the results in the Markov (uncontrolled) setting to
operators with range in M (FE), the (not necessarily bounded) measurable functions on E, that
is, we relax both the boundedness and the continuity assumptions of earlier results.

Corollary 1.9 Let E be a complete, separable metric space. Let AB:DcC C(E) - M(E),
and suppose [ip € P(E) and iy € M(E) satisfy

/ Af(z) fip(d) +/ Bf(z) fir(dz) = 0, VfeD. (1.19)
E E

Assume that there exist a complete, separable, metric space U, operators A,B : D — C(E x U),
satisfying Condition 1.2, and transition functions ng and n1 from E to U such that

Af(x) = /U Af(w )y, du),  Bf(x) = /U Bf(z,u)m(z,du),  VfeD,

and

Ya(w,u)no(x, du)pio(dz) + VB (@, u)m(z, du)pi (dr) < oo.
ExU ExU

Then there exists a solution (X,I') of the (uncontrolled) singular martingale problem for
(A, B, fig) such that X is stationary and ' has stationary increments.



Remark 1.10 For E = R?, by appropriate selection of the control space and the transition
functions n;, A and B can be general operators of the form

Vi (@))v(z,dy),

1 0? 1
3 2050 o) +46) - VS (0) ¢ [ () = @) = g

where a = ((ai;)) is a measurable function with values in the space of nonnegative-definite d x d-
matrices, b is a measurable R%-valued function, and v is an appropriately measurable mapping
from R? into the space of measures satisfying fRd ly|? A 1y(dy) < .

Proof. Define po(dx x du) = no(x, du)pio(dz) and pq(dx x du) = n1(x, du)pi(dz) . The corollary
follows immediately from Theorem 1.7. O

Applying Corollary 1.9, we give a corresponding generalization of Proposition 4.9.19 of Ethier
and Kurtz [11] and Theorem 3.1 of Bhatt and Karandikar [2] regarding solutions of the forward
equation (1.3). With the singular operator B, the forward equation takes the form

t
/fdut—/fduo—l—/ /Afdusds—i—/ Bfdu, feD, (1.20)
E E 0o JE Ex[0,t]

where {v; : t > 0} is a measurable P(E)-valued function and g is a measure on E x [0, 00) such
that u(E x [0,t]) < oo for every t¢.

Theorem 1.11 Let E,E C C(E) x M(E), no, m, A, B, ¥4 and ¥p be as in Corollary 1.9.
Let {vy : t > 0} and p satisfy (1.20) and

/ e” QJZ)A('T7U) UO($,dU)Vs(dx)ds
0 ExU
+/ e “Yp(z,u)m(z,du)p(de x ds) < oo, (1.21)
ExUx[0,00)

for all sufficiently large o > 0. Then there exists a solution (X,T) of the singular martingale
problem for (A, B, po) such that for each t > 0, X (t) has distribution v, and E[I'| = p.
If uniqueness holds for the martingale problem for (A\,B\,Vo) in the sense that the distribution

of X is uniquely determined, then (1.20) uniquely determines {1} among solutions satisfying
the integrability condition (1.21).

The standard approach of adding a “time” component to the state of the process allows us to

extend Theorem 1.11 to time inhomogeneous processes and also relax the integrability condition
(1.21).

Corollary 1.12 Let E be a complete, separable metric space. For t > 0, let f/l\t,gt : D C
C(FE) — M(FE). Assume that there exist a complete, separable, metric space U, operators

A,B:D — C(Ex[0,00) xU), satisfying Condition 1.2 with x replaced by (z,t), and transition
functions ng and 1 from E x [0,00) to U such that for each t >0,

Af(x) = /U Af(eto)mo(e,tydu),  Bif(a) = /U Bf(a,t,u)m(x.t,du),  Vf €D,
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Suppose {vy : t > 0} is a measurable P(E)-valued function and p is a measure on E x [0,00)
such that for each t >0, u(E x [0,t]) < oo

/E><0t / Yalz, s, u)mo(z, s du)Vs(dﬂﬁ)dS‘f'/EXOt / Yp(x,u)m(z, du)p(dsxds) < oo, (1.22)

and
t —~ ~
/Efdyt_/Efdyo—l—/O /EASfdySd8+/Ex[0,t} Bsf(z)p(de x dx), feD. (1.23)

Then there exists a solution (X,T') of the singular martingale problem for (g,g,uo), that is,
there exists a filtration {F;} such that

FX (1) — F(X(0)) - / A,f(X(s))ds - /E oy BT a9

is a {Fi}-martingale for each f € D, such that for each t > 0, X(t) has distribution v, and
E[l = u.

If uniqueness holds for the martingale problem for (A\,B\, 1) in the sense that the distribution
of X is uniquely determined, then (1.23) uniquely determines {v;} among solutions satisfying
the integrability condition (1.22).
Proof. Let §(t) > 0 and define 7 : [0,00) — [0,00) so that

T q

o B(s)
that is, 7(t) = B(7(t)). Defining ¥; = v, ;) and i so that

/ B(7(s))h(z,7(s))p(dz x ds) = / h(z, s)pu(dz x ds),
Ex[0,t] Ex[0,7(t)]
we have

t ~ A~
/E fd7, = /E fddo + /0 /E B(7(5)) Ay (s) flds + / B(7(s)) Br(o) f(@)i(de x dz) . f € D.

Ex[0,t]

Note also that § can be selected so that 7(t) — oo slowly enough to give
el [ vatesamie s, du(dods
0 Ex[o,r(t)] JU
+/ / Yp(x,s,u)m(z, s, du)u(de x ds)dt
Ex[0,7(t)]
:/ / Yal(x,7(s),u)no(x, 7(s), du)vs(dx)ds
E><[0,oo)

+/EX[OOO e °B(r / Vvp(z,7(s),uw) m(x,7(s),du)p(dz x ds)

< 00.
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It follows that {;} and 7 satisfy (1.21) for ¥4 (z, s, u) = B(7(s))tba(z, 7(s),u) and ¥p(z, s, u) =
B(1(s))vp(z,7(s),u). Note also that if

~

t
FE) = FEO) - [ 6r(6) Ao (X6 - [ PN B F@ (o
x[0,t
is a {F; }-martingale for each f € D, )A((t) has distribution 7y, and E[f] = i, then (X,T") given
=~ -1 ~
by X(t) = X(r7(t)) and ['(G x [0,]) = [ ® B(1(s))['(G x ds) is a solution of the martingale
problem for (A, B, 1), X (t) has distribution 1, and E[I'] = p.

For simplicity, we assume that we can take 8 = 1 in the above discussion. Let Dy be the
collection of continuously differentiable functions with compact support in [0,00). For v € Dy
and f € D, define A and B by

A(rf)(@,s) = () Asf (@) + f(2)7 (), B(S)(@,8) = (s) B f (),
and define 7 (dzx x ds) =0;(ds)vy(dx) and f(dz x ds x dt) = §;(ds)u(dx x dt). It follows that

t
[ asan= [ s [ dpdnds+ [ B(yf)di
Ex[0,00) Ex[0,00) 0 JEX[0,00) Ex[0,00)%[0,]
v €Dy, feD.

Applying Theorem 1.11 with A and B replaced by A and B gives the desired result. O

The results in the literature for models without the singular term B have had a variety of
applications including an infinite dimensional linear programming formulation of stochastic con-
trol problems [1, 21, 28], uniqueness for filtering equations [3, 5, 20], uniqueness for martingale
problems for measure-valued processes [9], and characterization of Markov functions (that is,
mappings of a Markov process under which the image is still Markov) [19]. We anticipate a
similar range of applications for the present results. In particular, in a separate paper, we will
extend the results on the linear programming formulation of stochastic control problems to mod-
els with singular controls. A preliminary version of these results applied to queueing models is
given in [22].

The paper is organized as follows. Properties of the measure I' (or more precisely, the nonadapted
precurser of I') are discussed in Section 2. A generalization of the existence theorem without the
singular operator B is given in Section 3. Theorem 1.7 is proved in Section 4, using the results
of Section 3. Theorem 1.11 is proved in Section 5.

2 Properties of T’

Theorems 1.7 and 1.11 say very little about the random measure I' that appears in the solu-
tion of the martingale problem other than to relate its expectation to the measures p; and pu.
The solution, however, is constructed as a limit of approximate solutions, and under various
conditions, a more careful analysis of this limit reveals a great deal about I'.

12



Essentially, the approximate solutions X,, are obtained as solutions of regular martingale prob-
lems corresponding to operators of the form

Cf(z) = /U 00 (@) Af (o, dus) + /U nB () B (2w (a, ),

where 79 and 7, are defined in Theorem 1.7 and (7 and 37 are defined as follows: For n > 1,
let bl = KN (pf + Lul’) € P(E), where K,, = pf (E) + LuP(F). Noting that pf and pf are
absolutely continuous with respect to pZ, we define

n_ dpl n_ Lduf
5o:mandﬁ1zgm,

which makes 3 + 87 = K.

Remark 2.1 In many examples (e.g., the stationary distribution for a reflecting diffusion), pg
and p1 will be mutually singular. In that case, By = K, on the support of po and 37 = K, on
the support of ui. We do not, however, require pg and 1 to be mutually singular.

It follows that
[ cutauf =0, sep,
E

and the results of Section 3 give a stationary solution X,, of the martingale problem for C,,
where X, has marginal distribution pZ.

The proofs of the theorems in the generality they are stated involves the construction of an
abstract compactification of E. In this section, we avoid that technicality by assuming that E is
already compact or that we can verify a compact containment condition for {X,,}. Specifically,
we assume that for each € > 0 and 7" > 0, there exists a compact set K. C E such that

inf P{X,(t) € Kep,t <T} >1—e. (2.1)

Set
To(H  [0,1]) = /O 0B (X () 11 (X (5)) s,

and observe that
E[Cy(H x [0,1])] = pi (H)t.

Then {(X,,,T',)} is relatively compact, in an appropriate sense (see the proof of Theorem 1.7),
and any limit point (X, ™) is a solution of the singular, controlled martingale problem. Since I'™*

need not be {75( }-adapted, the I of Theorem 1.7 is obtained as the dual predictable projection
of I'*. (See Lemma 6.1.)

To better understand the properties of I'*, we consider a change of time given by

Tn(t)
[ @00 e =

Note that since 8§ + 87" = K, n(t) < t/K,,. Define
Tn(t) Tn(t)
B(t) = /0 B (Xn(s))ds and 7 (t) = /O 0B (X (3))ds.

13



Define
Af(x) = /U Af (e, uyno(e, du),  Bf(x) = / B, ) (z, du),

U
and set Y,, = X,, o 7,,. Then

F(Yalt) — F(Ya(0)) — / Af(Ya(s))drii(s) - / B (Ya(s))dr2(s) (2.2)

0

is a martingale for each f € D. Since 7{(t) + 7' (t) = t, the derivatives 47 and 4] are both
bounded by 1. It follows that {Y,,,7y, 1)} is relatively compact in the Skorohod topology.
(Since {Y,,} satisfies the compact containment condition and ~{ and ~{ are uniformly Lipschitz,
relative compactness follows by Theorems 3.9.1 and 3.9.4 of [11].)

We can select a subsequence along which (X,,,I'),) converges to (X,I'*) and (Y,,, 7, 71') converges
to a process (Y,70,71). Note that, in general, X,, does not converge to X in the Skorohod
topology. (The details are given in Section 4.) In fact, one way to describe the convergence is
that (X, o 7, 7,) = (Y,7) in the Skorohod topology and X = Y o 70_1. The nature of the
convergence is discussed in [17], and the corresponding topology is given in [13]. In particular,
the finite dimensional distributions of X,, converge to those of X except for a countable set of
time points.

Theorem 2.2 Let (X,I'*) and (Y,70,71) be as above. Then

a) (X,T%) is a solution of the singular, controlled martingale problem for (A, B).

b) X is stationary with marginal distribution uf, and T* has stationary increments with
B[L*(- x [0,4]) = tp{ ().
¢) limy— o0 Y0(t) = 00 a.s.
d) Setting v ' (t) = inf{u : vo(u) > t},
X=Yon! (2.3)
and
7 ()
I'*(H x [0,¢]) :/ Ig(Y(s))dvyi(s). (2.4)

0

e) E[fot Ig(Y(s))dvi(s)] < tuf(H), and if Ky is the closed support of u¥, then 1 increases
only when Y is in Ky, that is,

/0 I, (V () (5) = n(t) s, (2.5)

f) If 'yal is continuous (that is, o is strictly increasing), then
t
D (H % [0.8) = [ Ta(X(s)dA(s) (26)
0

where X\ =y o fyo_l. Since I'* has stationary increments, A will also.
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Proof. By invoking the Skorohod representation theorem, we can assume that the convergence
of (Xp,I'n, Xy 0 7n,70,71) is almost sure, in the sense that X, (t) — X(t) a.s. for all but
countably many ¢, I, — I'* almost surely in £(F), and (X, o 7,7¢,77) — (Y,70,71) a.s. in
Dpyg2]0,00). Parts (a) and (b) follow as in the Proof of Theorem 1.7 applying (2.1) to avoid
having to compactify E.

Note that K,,7,(t) > 74 (t) and
Tn(t)
Elluma(t) — ()] = E| / (K — B3 (Xn(s)))ds]

t/Kp
< B /0 n( X (s)))ds]

E
_ M (B)t 0.
K,n

Since Y (t) +17(t) =t, for t > T,
(t =T)P{KnTn(t) <T} < E(t =0 (0) K7 0)<1}]
< B o)
= Tui(E),
and since v (t) and K,,7,(t) are asymptotically the same, we must have that

Tui' (E)

Ply(t) <T} < T

Consequently, lim; o 0(t) = o0 a.s.
The fact that X =Y o, " follows from Theorem 1.1 of [17]. Let

Po(g.t) = /E 9()T(dz [0, 1]) = / 0B (X (5))g( X (5))ds.

Then for bounded continuous g and all but countably many ¢,

(g, t) — IT(g,t) = /Eg(:c)F*(da: x [0,¢]) a.s.

Since
T (g, (1)) = /0 9(Xn 0 7(5))d17(5) — /0 o(Y(5)dn(s) as.

Theorem 1.1 of [17] again gives

o ()
I*(g.t) = /0 Y (9)ds),

which implies (2.4).
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Since yo(t) < t, 75 ' (t) > t, so

E[/O In(Y(s))dyi(s)] < E[U*(H x [0,4))] = tpy’ (H),

and Part (e) follows.
The representation (2.6) follows immediately from (2.4). O

Lemma 2.3 Let (Y,70,71) be as above. Then for each f € D,
t ~
FO0) = 10~ [ A it~ [ BV (5)an) (27)
is a {fg/’vo}—maﬁingale.

Proof. We show that (2.2) converges in distribution to (2.7). Then (2.7) can be shown to be a
martingale by essentially the same argument used in the proof of Theorem 1.7. If A f and B f
were continuous, then the convergence in distribution would be immediate. Let g be continuous.
Then, recalling that 7,,(T") < T,

FE |sup

t<T

<& [[ A0 - s arg o)

[ Armenange) - [ ovatsnane)
0 0

] 09

<T / A () — g(x) i (da).

The right side can be made arbitrarily small by selecting the appropriate g € C(E). Note that
for any nonnegative, bounded continuous function h,

5[ ' Y ($ibo(e)| = i | [ Th(%(s))dv&(sﬂ <7 [ Wt (a2),

n—oo

and the inequality between the left and right sides extends to all nonnegative measurable h. It
follows that

t
sup | [ s - [ o0 ean|| <7 [ 1356 - ot @),
t<T 0
and the convergence of (2.2) to (2.7) follows. O

In general, vy ! need not be continuous. Continuity of Yo 1is equivalent to 7y being strictly
increasing. The following lemma, which is a simple extension of Lemma 6.1.6 of [15], gives
conditions for -y to be strictly increasing. We say that (Z,() is a solution of the stopped
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martingale problem for an operator C' if there exists a filtration {F;} such that Z is {F;}-
adapted, ¢ is an {F; }-stopping time, and for each f € D(C),
tAC
(2N Q) = f(2(0)) = Cf(Z(s))ds

0

is an {F;}-martingale.

Lemma 2.4 Let K; be the closed support of u¥. Suppose that every solution (Z,() of the
stopped martingale problem for B satisfies

CAInf{t: Z(t) ¢ K1} =0 a.s. (2.9)

Then g s strictly increasing.

Remark 2.5 In the case of reflecting diffusions in a domain D (Example 1. 4) K, = 0D,
Bf( ) =m(zx)-Vf(x), and any solution of the stopped martingale problem for B satisfies

7S
Z(tNC)=Z(0) —|—/ m(Z(s))ds.
0
Results on solutions of ordinary differential equations can then be used to verify (2.9).

Proof. For ty > 0, let (o = inf{t > g : y0(t) > Y0(to). Either ~p is a.s. strictly increasing or
there exists tg such that P{{y > to} > 0. For such a ¢y, define Z(t) = Y (to +t) and ¢ = (o — to.
Then, since 7y is constant on [tg, (], and hence dv;(s) = ds on [tg, (o],

N
F(Z(E A Q) — £(2(0)) / Bf(Z(s))ds

is an {]—}Olg} martingale. In particular, (Z, () is a solution of the stopped martingale problem

for B. Since, with probability one, 7, increases only when Y € K7, and by assumption ¢ Ainf{t :
Z(t) ¢ K1} =0 a.s., it follows that ¢ = 0 a.s. contradicting the assumption that P{(y > to} > 0.
O

Theorem 2.2 and Lemma 2.4 give a good description of I'* for many interesting examples in
which I'* is continuous. The next result addresses examples in which the natural version of I'*
is discontinuous.

Theorem 2.6 Suppose that Bf(x,u) = oz, u) [5(f(2) — f(2))q(x,u,dz), where 0 < ofz,u)
< sup, , a(z,v) < oo, and q is a transition function from E x U to E. Define & : E — [0,00)
and g, a transition function on E, so that

E

Bf(x)= | Bf(x,uym(z,du) =a(x) | (f(z) - f(«))d(x,dz).
U

(In particular, a(z) = [;; a(z,u)n(x,du).) Then there exist (X,T*,Y,vp,71) satisfying (2.3)
and (2.4) and a countmg process N such that
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a) (X,I'*) is a solution of the singular, controlled martingale problem for (A, B).
b) X is stationary with marginal distribution ul .
¢) I'* has stationary increments, and for each t > 0, E[I'’*(- x [0,¢])] = tpi(:).

d) There exists a filtration {G} such that (Y, 70,71, N) is adapted to {G;},

N0 =50 - [ 60 ()ans) (2.10)
is a {G,)-martingale, and for each f € D,
P 0) = 100y~ [ A D) - [ BIveohan)
and
For( / AF(Y (5))drols / Lue )Y (s-), d=)dN (s)
(2.12)

are {G;}-martingales.

e) Letting K1 be the closed support of u¥,
¢
/ L, (V(s—))dN(s) = N(t) a.s., t>0.
0

Proof. Let E = E x {—1,1} and D = {f : f(x,0) = fi(x)f2(#), f1 € D, f» € B({—1,1})}. For
f € D, define .
Af(x,0,u) = f2(0) Af1 (2, u)

and
Bf(@,6.0) = (e, [ ((2)(~0) = fi@) fa®). . d2),
Let 1 .
fio(dx x df x du) = po(dx x du) x (55_1(d0) + §5l(d0))
and
fin(dz x d6 x du) = pa (dz x du) x (%5_1(619) + %51(d9)).
Then

/ Afdjiy + / Bfdin =0, feD,
E E
and A and B satisfy Condition 1.2 with

IZA(.Q?,G,U) :wA(xvu)a ZEB(.T,H,U) :wB(xvu)‘
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By Theorems 1.7 and 2.2, there exist (X,©0,T*) and (Y, ®,70,71) satisfying X =Y o~y ! and
© = ® o~ ! and a filtration {G;} such that for each f € D,

FX0.00) = [ [ A(X(5).005) wm (X (). du)ds
—/ / Bf(z,0,u)n (z, du)T* (dz x df x ds)
Ex|0,t]

is a {97071( 1 f-martingale and

FY (1), ®(t)) — /0 /U AF(Y(5), ®(s), wno(Y (s), du)do(s) (2.13)
- [ [ B0 @00 0m v (). duyin ()

is a {G;}-martingale, (X ©) is stationary with marginal distribution u(; (and hence, X has
marginal distribution x{), and I'* has stationary increments and satisfies E[I*(H; x Hyx[0,t])] =
tpr (Hy)(56-1(Ha) + 161(Ha)). Parts (a), (b), and (c) follow by taking f(z,6) to depend only

on x.

For f depending only on 6, we have that

t
f(@(t))—/o a(Y(s))(f(=®(s)) — f(®(s)))dri(s)

is a {gt} martingale. Let B(t) = inf{r : [;a(Y(s))dy(s) > t}, for 0 < t < B =

Jo_@(Y(s))d1(s). It follows that (® o B,0) is a solutlon of the stopped martingale problem for

Cfo ) ( f(—=6) — f(#)). Since the martingale problem for C is well-posed, it follows that ® o 3
can be extended to a solution ¥ of the martingale problem for C' (see Lemma 4.5.16 of [11]),

and we can write .
o) = v ([ ar()in(s).

But ¥(t) = ®(0)(—1)No® | where Ny is a unit Poisson process, so ®(t) = ®(0)(—1)N®, where

N =N ([ &)

Note that N is {G;}-adapted and that (2.10) is a {G;}-martingale. Since (2.11) is a martingale
by Lemma 2.3, and the difference of (2.11) and (2.12) is

/ /u@»—ﬂYeemuwe»mwmma—/ZNWﬂwmw»
0 E 0

it follows that (2.12) is a martingale.
By Theorem 2.2, Part (e),

/mwmme-/awmmwem&>w.
0 0
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Define

Then, with probability one,

¢ ¢ t
N = [ I (=N () = N = [ G0 ()i (s) = [ T (V=) ),
and since the right side is a local martingale, the left side must be zero. O

In the context of Theorem 2.6, the right analog of Lemma 2.4 would be a condition that implies
Nory s still a counting process.

Lemma 2.7 Let K be the closed support of u¥, and suppose that for each x € Ky, q(x, K1)
= 0. Let 01,09.... be the jump times of N. Then P{ok11 < 00,v(0k) = Yo(ok+1)} = 0, and

hence, N o~y Lisa counting process.

Proof. Since [ I, (Y (s—))dN(s) = N(t) and yo(t+7) —70(t) > [ Ix: (Y (s))ds, it is enough
to show that fg Ike(Y(s))dN(s) = N(t), that is, that every boundary jump lands inside the
open set KT, and hence that Y is in KT for a positive time interval after each boundary jump.

Let Mg denote the martingale
B(t) + /O 28(Y (5))D(s)ds
and M; denote the martingale (2.11). Then
(M. Myl = = [ 20() (7 (9) = SV (5=)aN ()
and, using the fact that (2.13) is a martingale,
(o, Mg} = [ 2 (DR () = [ FEY (). a2 (o)

Since [Mg, My) — (Ms, My); is a martingale, it follows that

| 2060 [ 506D = SRV (5-), d2)an )
0 E

= (Mo, My)¢ — [Mo, Myl +/0 2¢>(8—)(/E F(2)a(Y (s=),dz) = f(Y (s—))dN(s)
is a martingale, and integrating against ®,

/Q(f(Y(S))—/ f(2)q(Y (s—), dz)dN (s) (2.14)
0 E

is a martingale for every f € D. But the collection of f for which (2.14) is a martingale is closed
under bounded pointwise convergence, so is all of B(E). Taking f = I¢, we have that

5 /0 (I (Y (5)) — 1)AN(s)
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is a martingale, but, since the integrand is non positive, that can hold only if the integral is
identically zero and hence

/O I (Y ())AN(s) = N(2).

3 Stationary solutions of controlled martingale problems

The objective of this section is to establish the existence of a particular form of stationary
solution for the controlled martingale problem for a generator A. The formulation is obtained
by taking Bf = 0 for each f € D above, so we drop any reference to B. We also denote pg of
(1.7) by p and 14 by ¥, since there will not be a p; or a ¥ p.

The first result of this type was by Echeverria [10] in the context of an uncontrolled Markov
process (see also Ethier and Kurtz [11, Theorem 4.9.15]). Stockbridge [27] extended the result
to controlled processes. In [27], the state and control spaces were locally compact, complete,
separable, metric spaces and the control process was only shown to be adapted to the past
of the state process. Bhatt and Karandikar [2] removed the local compactness assumption
(on the state space) for uncontrolled processes. The stationary control process was shown
to be a feedback control of the current state of the process (where the particular control is
determined from the stationary measure) by Kurtz and Stockbridge [21] and Bhatt and Borkar
[1]. Kurtz and Stockbridge also established this result for generators whose range consisted of
bounded, measurable (not necessarily continuous) functions. The results were proved by Kurtz
and Stockbridge under the assumption that the state and control spaces are locally compact
and by Bhatt and Borkar under the assumption that the state space E is a complete, separable
metric space and that the control space U is compact.

Here we make certain that the results are valid if both the state and control spaces are complete,
separable metric spaces. Many of the recent proofs simply refer back to previous results when
needed. In this section, we compile the previous results and provide complete details.

Suppose p is a probability measure on E x U with

uth) =1 (3.1)

and which satisfies

Af(z,u) p(de x du) =0, VfeD. (3.2)
ExU

Denote the state marginal by up = p(- x U), and let ) be the regular conditional distribution
of u given x, that is, n satisfies

w(Hy x Hg) = /H n(x, Hy) pp(dz), Hy € B(E),Hy € B(U). (3.3)

Implicit in (3.3) is the requirement that n(z,Uy) =1 a.e. pp(dz).

Our goal is to show that there exists a stationary process X such that the E x P(U)-valued
process (X,n(X,-)) is a stationary, relaxed solution of the controlled martingale problem for
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(A, ug). Note that if X is a stationary process with X (0) having distribution ug, the pair
(X,n(X,-)) is stationary and the one-dimensional distributions satisfy

Ellg, (X)) n(X(t), H2)] = p(Hy x Ha), t>0.

Following Bhatt and Karandikar [2], we construct an embedding of the state space E in a compact
space E. Without loss of generality, we can assume that {gx} in the separability condition is
closed under multiplication. Let Z be the collection of finite subsets of positive integers, and for
I €T, let k(I) satisfy gir) = [I;c; 9i- For each k, there exists a > |gx|. Let

E={z¢ H[—ai,ai] D2y = Hzi,f €7}

i=1 el
Note that E is compact. Define G: E — E by
G(z) = (91(x), g2(), - . .). (3.4)

Then G has a measurable inverse defined on the (measurable) set G(E). In this section and
the next, we will typically denote measures on E by u, fi, po, p1, etc. and the corresponding
measures on F by v, U, vy, vy, etc.

We will need the following lemmas.

Lemma 3.1 Let pg € P(E). Then there exists a unique measure vy € P(E) satisfying
5 grdpo = fE zxvo(dz). In particular, if Z has distribution vy, then G=Y(Z) has distribution

Ho-

Proof. Existence is immediate: take vy = poG~'. Since Eis compact, {[[;c;2z : I € I} is
separating. Consequently, uniqueness follows from the fact that

/Asz‘Vo(dZ) = /Azk(I)VO(dZ) = / G(n)dhio-
E E E

i€l
O

Lemma 3.2 Let C C B(E) x M(E) be a pre-generator. Suppose that ¢ is continuously differ-
entiable and conver on D C R™, that fi,...,fm € D(C) and (f1,...,fm): E — D, and that

(o(f1,.--y fm),h) € C. Then
h > v@(flavfm) : (Cfl,,Cfm)

Proof. Since C' is a pre-generator, there exist A, and p, such that

h(z) = lim An(rr)/E(w(fl(y),---,fm(y))—w(fl(x)j---,fm(x))un(x,dy)

> nh—{go VQD(f1(£1?), s 7fm(x)) ’ )‘n(x) /E(fl(y) - fl(x)v s 7fm(y) - fm(x)):un(x7dy)
= v@(fl(x)v s 7fm(x)) ) (Cf1($), s 7Cfm(x))
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Lemma 3.3 Let X, X be processes in Dg|0,00) with X,, = X, and let Dx = {t : P{X(t)
X(t—)} > 0}. Suppose for each t > 0, X,,(t) and X (t) have a common distribution u, € P(E
Let g be Borel measurable on [0,00) X E and satisfy

/Ot /E l9(s, 2) s (dz)ds < 0o

/. 9(s, Xn(s))ds = / g(s, X(s))ds (3.5)
0 0

4
)

for each t > 0. Then

and, in particular, for each m > 1,0 <t; <.+ <tp, <tpms1, ti ¢ Dx, and hy,... hy € C(E),
tm+1 m
tim £ | [ gl Xas)) ds [ (X 8)
n—o0 tm ey

=F

/t " g(s,X(s))dsHhi(X(ti))] .

Proof. See Kurtz and Stockbridge (1997), Lemma 2.1. Note that the proof there does not use
the assumption that F is locally compact. O

Theorem 3.4 Let A satisfy Condition 1.2. Suppose p € P(E x U) satisfies (3.1), (3.2) and

/w(x,u) p(dz x du) < oo, (3.7)

and define ug and n by (3.8). Then there exists a stationary process X such that (X,n(X,-))
is a stationary relazed solution of the controlled martingale problem for (A, ug), n(X,-) is an
admissible (absolutely continuous) control, and for each t > 0,

EIp, (X (8))n(X(t), Ho)] = p(Hy % Ho) (3.8)

for every Hy € B(E) and Hy € B(U).

Remark 3.5 We will obtain X in the form X = G=1(Z). It will be clear from the proof that
there always exists a modification of Z with sample paths in Dz[0,00), but our assumptions do

not imply that X will have sample paths in Dg[0,00). For example, let Af = (1 4+ z*)(f"(z) +
f'(x)). It is easy to check that p(dx) = c(1 + a*) "tz satisfies [ Af(z)u(dx) = 0, but the
corresponding process will repeatedly “go out” at 400 and “come back in” at —oo.

We first consider the case ¢ = 1.

Theorem 3.6 Let A satisfy Condition 1.2 with ¢ = 1. Suppose p € P(E x U) satisfies (3.1)
and (3.2), and define ug and n by (3.3). Then there exists a stationary process X such that
(X,n(X,)) is a stationary relazed solution of the controlled martingale problem for (A, ug)
satisfying (3.8) and n(X,-) is an admissible absolutely continuous control.
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Proof. For n =1,2,3,..., define the Yosida approximations A, by
Apg=n[I —n"tA)"1 -1y

for g € R(I —n~1A), and note that for f € D(A) and g = (I —n~"tA)f, A,g = Af.
Let M be the linear subspace of functions of the form

m

F(xy,20,u1,u2) = Z {hi(z1) [(I = n " A) fi(za, ur) + gi(22,u2) — gi(w2,u1)] }
i=1
+ho (w2, u1, uz2), (3.9)
where hy,...,hy, € C(E), hg € C(Ex U xU), f1,...,fm € D(A), and g1,...,9m € C(E x U).
Define the linear functional ¥ on M by
VE = / / Z{hz‘(@)[fi(@) + 9i(w2, u2) — gi(x2, ur)]} n(z2, dug) p(drs x duy)
ExU JU ;,—4
—l—/ / ho(x2, u1, uz) n(xe, dus) p(dry x duy) (3.10)
ExU JU
= / / [Z hi(z2) fi(z2) + ho(z2, ur, u2) | n(ze, duz) p(dws X duy)
ExvJu i
in which the second representation follows from the fact that

/ / h(z2)[g(z2,u2) — g(z2, ut)n(ze, dus) u(dry x dui) =0 (3.11)
ExU JU

(write p(dzy X duy) = n(xe,dur)ur(dre)). Also define the linear operator
II:B(ExExUxU)— B(ExExU)

by
HF(:):l,xg,ul)—/F(xl,xg,ul,ug)n(xg,dm) (3.12)
U

and the functional p on B(E x E x U x U) by

p(F) = / sup |IIF (21, xo, uy )| pu(dzy X duy). (3.13)
E

xU 1

Observe that II(IIF) = IIF so
p(F —1IIF) = 0. (3.14)

In order to simplify notation, define the operator C on C(E x U) by

Cy(aa,ur) = /U 922, u2) — g2, un)] (2, dus). (3.15)
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We claim |WF| < p(F). To verify this claim, fix F € M. For a; > |[[(I-n"tA) fi+Cgl|V||fil],i =
1,...,m, let ¢ be a polynomial on R™ that is convex on [[;~,[—a, o;]. By the convexity of ¢
and Lemma 3.2

(I - n_lA)fl +Cg1,...,(I - n_lA)fm +Cgm)
> G(f1, s fm) =0 VO fm) - (Af1, . Afm)
+Vo(fioos fm) - (Co1,...,Cgm)
> ¢(fi,- o ) =0 AG(f1, - o) F V(1,5 fm) - (Cary o, Cgm).

In light of (3.2) and (3.11), integration with respect to p yields

and this inequality can be extended to arbitrary convex functions. Consider, in particular, the
convex function ¢(ry,..., ) = sup,, > vy hi(z1)r;. It follows that

vE < /E U{suthi(xl)fi(:cg) +/Uh0(:c2,u1,u2) n(xg,dUQ)} p(dzg X duy)

1 i
-/ {¢<f1,...,fm><x2>+ / ho<x2,u1,u2>n<x2,du2>} u(dey x dur)
ExU U
< / (8 = A)fy + Cany oo (I — 17 A) fo + Cg) (w2 1))
ExU
—I—/ ho(xg,ul,ug)n(xg,dug)} w(dzy x duy)
U

= / sup ITF(x1, xo, u1) p(dzy X duy)
ExU 1

< p(F),

and —VF = U (—F) < p(—F) = p(F), so |[VF| < p(F).
As a result, we can apply the Hahn-Banach theorem to extend ¥ to the entire space C(FE x E x
U x U), still satisfying |V F| < p(F') (see [23, p. 187]). Since V1 =1, for F' > 0,

|F|| = VF = VY(|[F|| = F) < p([|[F]| = F) <[|F]], (3.17)

so WF > (0. By the extension of the Riesz representation theorem in Theorem 2.3 of Bhatt and
Karandikar [2], there exists a measure ji € P(E x E x U x U) such that

UF = / F(xl,xg,ul,UQ)ﬂ(dxl X dxg X dU1 X d’LLQ) (318)
ExExUxU

Considering F of the form F(wx1,xa,u1,u2) = h(z1)(I — n=1A)1(w2,u1), (1 being the con-
stant function), we see that (- x E x U x U) = pg(-). Taking F(z1,x2,u1,us) = h(x1)(I —



n~'A)f(z2,u1) and writing i(dzy x dxe x duy x dug) = 7i(x1, dws X duy % dug)pp(dr,), we have

[ b o) us(dn)

UF

/ z1)(I —n YA) f(xg, 1) fi(dzy x dzg X duy X dus)
EXEXUXU

:/ h(z1) [/ (I —n YA)f(zg,u1) f(z1, dze x duy x U)| pp(dz).
E ExU

Letting 1(z1, dxs X duy) = 7(x1,dxs X duy x U), it follows that
/ (I = 0= A) (9, w1, ds x dur) = f(21) ae. pum(das). (3.19)
ExU

Observe that WF = W(IIF) by (3.14) and the fact that |VF| < p(F). Again by con-
sidering F(z1,z2,ui,u2) = f(z1,z2,u1)g(ug) and writing f(dr; X dre X du; X dug) =
7(x1, xo,u1, dug)i(dxy X dxgy X duy), we have

/ f(z1,22,u1) [/ g(UQ)ﬁ(xlux27uludu2):| fi(dxy % dxg X duy)
ExExU U

=UF

— W(IIF)

—/ f(x1, 22,u1) [/ g(u2)77(x2,duQ)] n(dxy X dzg X duy).
ExXExU U

Therefore

a(dxy x dxre X duy X dug) = n(xe,dus)i(dry x dry X duy)
= n(z2,du2)n(z1,drs X duj)pup(dry).
Furthermore, using F'(z1,z2, ui,u2) = h(x1)[g(xe,u2) — g(x2,u1)], it follows that
0 = UF
= [t | [ [ totenun) = aton ) bnten. dua)itor o x dun)| (i)
E ExU JU

SO

/ /{g(:cg,ug) — g(z2,u1) }n(ze, duz)n(z1,dre X duy) =0 ae. pup(drr). (3.20)
ExU JU

Let {(Xg,ur): k = 1,2,...} be a Markov chain on E x U having initial distribution p and
transition function 7). A straightforward computation shows that the Markov chain is stationary,
and by (3.19) and (3.20), for each f € D(A) and g € C(E x U),

k-1

(1 =0 A) (X gy ) = > AG[(T = n ™ A) (X, wi)

1=0
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and
k
> Cy(Xi,ui)
i=0

are martingales with respect to the filtration Fj, = o((X;,u;): 0 <i < k).

Define X, () = X, un(:) = up and F* = o((Xn(s),un(s)): 0 < s < t). It immediately
follows (recall A, (I —n~tA)f = Af) that

[nt] /n
(I =" A) F(Xn(t), un(t)) —/0 Af(Xn(s),un(s))ds (3.21)

and nt]/m
/0 Cg(Xn(s),un(s))ds (3.22)
are JF{'-martingales.
Define the measure-valued random variable A,, by
A([0,4] x H) = /Ot Li(un(s))ds,  VH e B(U).
Note that

ElAn((0,8] x H)] = tu(E x H),  VH € BU),

so, by the tightness of a measure on a complete, separable metric space, for each ¢ > 0, there
exists a compact K, such that

E[A,([0,t] x KE)] =tu(E x KY) < te. (3.23)
Recall the definition of £0™ (U) from Section 1.1. Relative compactness of {A,} on £ (U)
follows from (3.23) by Lemma 1.3 of Kurtz [18].
Let Z" = G(X,,), with G defined by (3.4). Then by (3.21) and the definition of A,,, for k =
1,2,...,

B L g (X8, () — o AR ) (ds x )

9k (Xn (t)) -
(3.24)

A G 2 @) 0) — [ An(GHZ ) (s x )

is a martingale. Recalling that [[,.; Z} = Zl?([)? Theorems 3.9.4 and 3.9.1 of Ethier and
Kurtz [11] imply the relative compactness of {Z"} in Dz[0,00), and hence, (Z",A;) is rel-
atively compact in Dz[0,00) x LM(U). Define v € P(E x U) by [ f(z,w)v(dz x du) =
[ f(G(z),w)u(dz x du). Then Agr(G~1(-),-) can be approximated in L; () by bounded, contin-
uous functions in C'(E x U), and as in Lemma 3.3, we see that for any limit point (Z, A), (3.24)
converges in distribution, at least along a subsequence, to

Z(t) — /[0 t}xUAgk(G_l(Z(S))’U)A(dS X du), (3.25)
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which will be a martingale with respect to the filtration {ftZ’A}. Note that 7 is a stationary
process (even though as continuous time processes the X,, are not). Since for each t > 0, Z(t)
has distribution vz = v(- x U) which satisfies [ fdvg = [ foGdug, by Lemma 3.1, Z(t) € G(E)
a.s. and hence we can define X (t) = G~1(Z(t)), and we have that

My, (t) = gr(X (1)) — /[ 1oy A WA )

is a {ff’A}—martingale.

By the same argument, (3.22) converges in distribution to

MS(t) = /[O t]XUC’g(X(s),u)A(ds X du), (3.26)

for every g € B(E x U). Since (3.22) is a martingale, it follows that (3.26) is an {Ff’A}—
martingale. But (3.26) is a continuous, finite variation process, and every martingale with these
properties is a constant implying M, ¢ = 0. Consequently, recalling that A € £ (U) implies
A(ds x U) = ds, we have the 1dent1ty

/ / X(s),du)ds = / 9(X(s),u)A(ds x du), g€ B(E xU),
[0,t]xU
M (0) = (X 0) = [ [ An(X(6).0) (X (5). ) ds.

Since A is contained in the bounded pointwise closure of the linear span of {(gx, Agr)}, we see
that (X,n(X,-)) is a solution of the controlled martingale problem for (A, ug). Finally, n(X,-)
is admissible since p(U) = 1 implies n(z,U,) = 1 a.e. p(dz). O

Proof of Theorem 3.4. For each n > 1, let
Y = (2n v ¢)
kn(x) = /1% z,u)n(z,du) ,
cn = /kn(x) o (dx) = /@bn(:c,u)u(dx X du).

Observe that 1, > 1 for all n, and that as n — oo ¥, (z,u) \, 1, ¢, \, 1 and k, \, 1. Define
the operators A,, on D(A) by

Anf(xv u) = Af(.il?, u)/wn(xv u)v
and note that A, C C(E) x C(E x U). Defining u,, € P(E x U) by

i (H) = ¢! /Hi/)n(:c,u),u(dx x du) VH e B(ExU),

we have

Apfdp, = ¢! Afdu = 0.
ExU ExU
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For each n, A, and p, satisfy the conditions of Theorem 3.6 and 7, of (3.3) is given by

71%57&1;) n(x,du).

Note, in particular, that A, = w_AO so Condition 1.1(ii) is satisfied since -2 is bounded
and Aj satisfies the condition. Thus there exist stationary processes {Z"} with sample paths
in D3[0,00) such that, setting X,, = G™1(Z"), (Xn,nn(Xy,-)) is a solution of the controlled
martingale problem for (A, fin).

M (z, du) =

Let ¢ be nonnegative and convex on [0, 00) with ¢(0) = 0, lim,_,~ ¢(r)/r = oo, and

/ e((z,u))p(de X du) < oo.
ExU

(Existence of ¢ follows from (3.7).) Since ¢ and ¢’ are nondecreasing on [0, 00), it follows that
if z>0and y > 1, then (p(é)y < p(z). Consequently, for f € D(A),

([ Anf (@ )l /ag) < @, u) [ (z,u)) < %

and

[ tnt @ wlfapn(ds x du) < - [ ot wds < dw < [ el w)us < do).

TL

In particular, this inequality ensures the uniform integrability of

{ f

The relative compactness of {Z"} is established by applying Theorem 3.9.1 of Ethier and Kurtz
[11] and Theorem 4.5 Stockbridge [27] exactly as in the proof of Theorem 4.7 of Stockbridge
[27]. Let Z be a weak limit point of {Z"}, and to simplify notation, assume that the original
sequence converges. As before, set X = G71(Z).

For each k, ¢
_/ / Agr(X(s),u)n(X(s),du)ds
0o Ju

is an {7 }-martingale if and only if

nf (Xn(t), w)iin (Xn (1), du)

E[(Zk(th) Zi(tm /tm“/ Agr(G 5)),u)77(G—1(Z(5)),du)ds) X

[Tr(z)n] =0 @27

=1

foreach m > 1,0 <t < ... <ty <tms1, and hy,... by € 6(E) Note that condition (3.27)
is satisfied with A,,, n, and Z" replacing A, n, and Z .
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Let t1,... tme1 € {t > 0: P(Z(t) = Z(t—)) = 1} and hy, ..., hy € C(E). Since Z" = Z, as
n — o0,

E (21 (tmy1) — 21 (tm)) Hhi(Z"(ti)))]
i=1
= E|(Zi(tmr1) = Zi(tw)) [ [ (2 (1))
1=1
= E (X (tmr1)) = 9(X () [ [ Ri(2(2))
i=1

Lemma 3.3 does not apply directly to the integral term, but a similar argument works using the
fact that p,(dr x du) = ¢, ", (z, w)u(dz x du) < Pz, u)u(dz x du). O

Theorem 3.4 establishes the existence of stationary processes on the complete, separable, metric
space E. The proof involves embedding F in the compact space E, demonstrating existence
of appropriate stationary processes Z on E, and then obtaining the solution by applying the
inverse G~!. In the next section, it will be necessary to work directly with the processes Z.
We therefore state the corresponding existence result in terms of these processes; the proof, of
course, has already been given.

Theorem 3.7 Let A satisfy Condition 1.2. Suppose p € P(E x U) satisfies (3.1) and (3.2),
Y satisfies (3.7), and define pg and n by (3.3). Define v € P(E x U) by v(Hy x Hy) =
w(G=Y(Hy), Hy) for every Hy € B(E) and Hy € B(U). Then there exists a cadlag, stationary,
E-valued process Z such that

HGY(Z(1) - / / AF(GY(Z(5)), win(G (Z(s), du)ds
0 U

is an F# -martingale for every f € D and
Bl (Z(t))n(G~1(Z(t)), H)] = v(H1 x Ha)
for every Hy € B(E) and Hy € B(U).

4 Singular martingale problems

In this section, we characterize the marginal distributions of stationary solutions of the singular
controlled martingale problem. Previous work of this nature includes the papers by Weiss [29]
and Kurtz [16] which considered constrained processes. Weiss [29] characterized the marginal
distribution of a stationary solution to a submartingale problem for diffusions in a bounded
domain. Inspired by Weiss, Kurtz [16] used the results of Stockbridge [27] to characterize the
stationary marginals for general constrained processes. The results of this section are more gen-
eral than the previous results in that they apply to processes with singular control, constrained
processes being a subclass of such processes, and the controls are identified in feedback form.

Let E be the compact space constructed in Section 3, and let G be the mapping from E into E
given by (3.4).
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Lemma 4.1 Let A and B satisfy Condition 1.2. Suppose that pog € M(E x U) and py €
M(E x U) satisfy conditions (1.15), (1.17), and (1.16). For i = 0,1, let u; have a state
marginal pF and kernel n;(x,-) on the control space so that pi(dz x du) = n;(z,du)ul (dz).
Define the measure p € P(E x U) by

W(H) = K1 (uo(H) + (), VH € B(E x U), (4.1)
where K = po(E x U) + p1(E x U) is the normalizing constant. Let
v=poG 1t vy = pig 0 G 1, v =p o GL, (4.2)

and let V7, l/éE and v denote the corresponding marginals on E. Then there exist a stationary
process Z on E and non-negative, continuous, non-decreasing processes Ao and A1 such that

o Z(0) has distribution VE,

(@]

Ao and A1 have stationary increments,

(@]

Ao(t) + A1(t) =1,
(Z, Mo, \1) is {F# }-adapted and

(@]

o

for each f € D,
t
G2~ [ [ KARG(Z().0) (G (Z()),du)ido(s)
t
- [ [ KBIGT ) 0y m(G 25, dujin (s
0o Ju
is an {FZ}-martingale.
Remark 4.2 By defining X = G~1(Z), the conclusions of Lemma 4.1 can be stated in terms
of a stationary E-valued process X. Since we will need to use the process Z in the sequel, we
have chosen to express Lemma 4.1 in terms of this process.
Proof. Let {ko,k1} be distinct points not contained in U and define U="Ux {ko, k1}. For

f € D, define
Cf(x,u,k) = KAf(x,u)l{,0y (k) + KBf(x,u) {1 (k)

and
V(@ u, k) = a(@, u)liey (k) + vz, u) i, 0y (k).

We redefine 1 so that it is a probability measure on E x U by setting
/h(x,u, k)p(dx x du x dk)
= K! (/ h(z,u, ko) po(dz x du) +/h(:c,u, k1) p (dx X du)) ,
where K = po(E x U) + p1(E x U) is the normalizing constant above.
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Observe that p has marginal p and that both pf’ and pf’ are absolutely continuous with respect
to u¥. Hence we can write

/ h(z,u, k) p(de x du x dk)
ExU
dyg
// T, U, K) 770 T, du)dypy (dr) K™ 1d %( )
d E
(@, du)de, ) (dR)K L (2)) P (da).

Thus, when p is decomposed as p(dx x du x dr) = n(x, du x dx)p (dz), the conditional distri-
bution 7 satisfies

d _du¥
n(x7du X d’%) = 7’]0(21?, du)d{no}(d’%)K ldMOE( ) +m (.CU, du)d{nﬂ(d’%)K le—IE(x) a.e. :UE'

It follows that for each f € D,
/Cf(x,u, k) p(de x du x dk) = [/ Af(z,u)po(dzx x du) + /Bf(:c,u),ul(dx X du)
= 0.

This identity, together with the conditions on A and B, imply that the conditions of Theorem
3.7 are satisfied. Therefore there exists a stationary process Z such that

Gz t/ /)Cf (5)), 1) (G~ (Z(s)), du x di) ds
t E
= FENZw) - /0 /U Af(G—1<Z<s>>,u>m(G—l(Z(s)),du>jﬁ—%<a—1<z<s>>>ds
1 dﬂf -1
/ / B(GH2(s). )y (G (2()). ) S (G (2(5)) ds

is an {ftZ}-martingaleAfor each f € Dand E[Iy, (Z(t))n(G~1(Z(t)), H2)] = v(Hy x Hy). Observe
that for each Hy € B(E) and Hy € B(U),

E[IH1(Z(t))du—E(Gfl(Z(S)))no(Gfl(Z(t)),HQ)] = vo(H1 x Hy)
and .
E[IHl(Z(t))w—}g(G_l(Z(S)))m(G H(Z(1)), Hy)] = v1(H1 x Ha)

For i = 0,1, define

M@:K*/Z?«;(( ))ds = K~ /dﬁ

Then \g and A\; have stationary increments and Ag(t) + A1 (t) O
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4.1 Proof of Theorem 1.7

Proof. For n =1,2,3,..., consider the operators A and B,, = nB. By (1.17), the measures py
and fin, 1 = (1/n)p; satisty

[Ardu+ [ Bufdun, =0, vieD,

and A and B, satisfy the conditions of Lemma 4.1. Define the probability measure u, =
K, (po + (1 /n),ul), where Kn is a normalizing constant, and the measures vy, vy and v, as

n (4.2). Let v”, V(])E , and vF ', denote the corresponding marginals on E. Then for each n,

Lemma 4.1 implies that there exist a stationary process Z" and non-negative, continuous, non-
decreasing processes A\j and A having stationary increments such that Aj(t) + A (t) = ¢ and
for each f € D,

(G2 0) [ [ KaAfGT (26 um( G2 ), du)dr (o
0 U
| [ KB @2 ) om (@ (20 ) )i (s) (43

is an {F#" }-martingale and Z"(t) has distribution Vf (+) = vp(- x U). In particular, by consid-
ering f = g, we have

/ / K Agi(G™H(Z™(5)), w)no (G~ (Z27(s)), du)dNE (s)
/ / K Bg(G™H(Z2™(5)), ) (G~H(Z™(5)), du)d} (s)

is an {F7" }-martingale.
Observe that K, = puo(E x U) + (1/n)p1(E x U) > 1 and K,, \, 1 as n — oo. Thus yf = 1/(1)ij
as n — 00.

Also note that

— K- /jﬁi Z™(s)))ds  and — K- /ijﬁ; “L(Z™(s))) ds. (4.4)

Now observe that

nEDME)] = nE[ L




Therefore E[A\}(t)] < C¢/n and converges to zero as n — 0o, which implies
EX(t)] —t, asn— oo, (4.5)

d E
since Ajj(t) + AT (t) = t. Note that dMOE < K,,, and hence (4.4) and (4.5) imply

n

Ag (t) — t in probability as n — oo.

We now show existence of a limiting process Z. We verify that the conditions of Corollary 1.4
of [17] are satisfied.

Consider the collection of coordinate functions {z;} Note that the compact containment condi-
tion is trivially satisfied and {2} C C(F) separates points in F.

For t > 0, consider any partition {¢;} of [0,¢]. Then

E Z |E[Z} (tit1) — Zﬁ(ti)lﬂi]ll

=F

> \E [ [ [ a6 (260 (6 (270 du) )

v [ [ Ko <Z”<s>>,u>m(G—1<Z”<s>>,du>dw<s>m}\ }

St ) ([ [ 14067 i@ ). B 6712y o )

1dpf
ti _ti B ) 7d -
+;< a=t) ([ lBote e a0 2
=t- </ |Agr (x,u)| po(dx x du) —I—/ | By (z,w)| 1 (dz x du)>
ExU ExU

=t (I14gkl |1 (o) + 1Bkl 1)) < 00,

(@) v () )

where the last inequality follows from (1.16) and Condition 1.2. Thus condition (1.7) of [17,
Corollary 1.4] is satisfied. By selecting a weakly convergent subsequence and applying the
Skorohod representation theorem, if necessary, we may assume that there exists a process Z
such that Z"(t) — Z(t) a.s., for all but countably many ¢.

Now for each n, define the random measure I'"™ on E x [0, 00) satisfying

["(Hy x Hy) = / nKn T, < i, (2" (s), s)dAY (s)
0

> n dpt 1 om
= [ (2799 G 2 ) s (1.6)

for all Hy € B(E),Hy € B[0,00). Then {I"} is a sequence of £(E)-valued random variables.
We show that this sequence of measure-valued random variables is relatively compact.

34



Note that for a complete, separable metric space S, a collection of measures K C L(S5) is
relatively compact if sup,cc (S x [0, T]) < oo for each T, and for each T and € > 0, there exists
a compact set K7, C S such that sup,cc (K%, x [0,7T]) <

Recall, Eis compact, so the second condition is tr1v1ally satisfied by each ['™. Now observe that

N T E
B < 0.1)) = B[ [ Iz )G (26 ds

-1(H dun
= Tuf(G™H(H)).

= %xEx
S A (VAT (47)

Taking H = E and applying Markov’s inequality,
P(T™(E x [0,T]) > Mr) < Tpf(E)M;".

Given € > 0, taking a sequence {T}} with Tj — oo and setting My, = T;uf’ (E)e/27 shows that
the sequence {f"} of random measures is tight and hence relatively compact. By passing to an
appropriate subsequence {ny}, if necessary, and applying the Skorohod representation theorem,
we can assume that there exists a random measure I on E x [0 oo) such that ™ — T a.s.in L(E )
and, for all but countably many ¢, Z"(t) — Z(t) a.s. in £ and F 5 =Ty a.s. in M(E x [0,1]),
where F i® and Ft are the restriction of the measures to E x [0,t]. The stationarity of the time
1ncrements of F follows from the definition of I'” and the fact that the Z™ are stationary. The

finiteness of & [T(E x [0,1])] for each t follows from Fatou’s Lemma, which implies the finiteness
of I'(E x [0,t]) a.s

We now shon that foAr each k, each m > 1, and each choice of 0 < t; <ty < - <t <ttt
and h; € C(E x Ly,(E)),i=1,...,m
tm+1 1
£zt - 2t = [ [ A6 @) miG 2o s )

B /E“xum,tmﬂ] /UBg’“(Gl(Z)’“) m(G7 (), du)l'(dz ds)} ' ﬁhi(Z (ti),rti)] =0,
which is true if and only if for each k,
/ t / Age(GTH(Z(s)), u)no(G™1(Z(5)), du)ds
/EX . / Bgi(G~(2),u)ni (G (2), du)T(dz x ds) (4.9)

is an {F7" }-martingale.
The analog of (4.8) for (Z™,T™) is

EHZJ?(th) = Zj (tm) o
/t mﬂ/ ZZO Z2"(s) Agi(GTHZ" (), u) mo(GTH(Z"(5)), du)ds
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- /A / Bgr(G(2), u) (G (2), du)I"(dz x ds)} (4.11)
EX(tmtm41] JU

The idea is to let n — oo to establish (4.8). However, care needs to be taken since the {I'} are
not necessarily bounded measures. To overcome this difficulty, for each n > 0 and M > 0, we
define the stopping time 7" by

M —inf {6505 T(E x [0,6]) > M} (4.12)
Note that for My < Mo, Mi,n < M2n onq

P(rMn<T) = P (f”(E x [0,T7) > M)

IN

M7E [f“(E X [o,T])}
= M7'Tuf(B),

so ™M 56 a.s. as M — oo.

Since if M} is a martingale, MJ*(- A 77) is also a martingale,

E{ 20 (tmar A7) = Z2 (b A7)
M,n

tm+1 AT E
[T G 6 A @ 260, 6 7). s (419

E
ATMn U dlu'n

m

- /Ex(t ATMon g, AT M ng(Gfl(Z"(s)), u)m((Gil(Z"(s)), du)f"(dz % ds)}

Hh (Z"(t F”]—o

holds for each k&, m > 1,0 <t; <t9 <--- <ty < tms1, and hiEU(Exﬁti(E)),izl,...,m

Now for each M and n, define the random measure M by
/ h(z,s) TM"(dz x ds) = / h(z,s)I™(dz x ds),
Ex[0,4] Ex[0tArM:n]

for all bounded, continuous functions h. The following observations should be made about [Mn,
First, ™™ is monotone in M in that for every nonnegative function h,

/hdfMl’” < /hdwa,

whenever M; < Ms. Second, as M — 00, Mn _, Tn and, moreover, f = f“ on the set
{TMm > 1}, where, as above, F " and F” denote the restrictions of I*™ and I'™, respectively,
to random measures on E x [0, t] Finally, {T™"} also satisfies

ELM"(H x [0,4)] < BE™(H x [0,4])] = vf (H),
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and so is relatively compact.

Using a diagonal argument and the Skorohod representation theorem, if necessary, for each M
there exist 7, I'M and some subsequence (to simplify notation, we assume the entire sequence)
such that TM" — T'M and 7" — 7M a5, and for all but countably many t, Z"(t) — Z(t) and
FM,n M

;0 — I as

M and EM inherit a number of properties from 7" and Mn, First, ™ — 00 a.s. as M — oo.
Second, ' is monotone in M, and since 7™ > lim oinf{t > 0 : T'(E x [0,t]) > M — €}, it
follows that TM =T a.s. on the set {I'(E x [0,t]) < M} and hence,

f,{w /' Tyas. Yt>0.

Now choose t1, ..., tm,tme1 € T := {t : (Z"(t),I7) — (Z(t),T}) a.s.} in (4.13). Since |Zx| < as,

E Zg(t)ﬁhi(Z”(ti),fZ) —E Zk(t)ﬁhi(Z(ti),fti)], teT. (4.14)
i=1 =1
Note also that
E Zg(t)ﬁhi(Z”(ti),fZ) - E Z,’;(t/\TM’”)ﬁhi(Z”(ti),fZ)]'
=1 i=1
<2 ﬁ || P{r M <t}
=1
and
E Zk(t)ﬁhi(z(ti),fti) - E Zk(tATM)ﬁhi(Z(ti),fti) §2akﬁ\|hi\|P{rM§t}.
=1 =1 =1

Now recall the definitions of the measures VO , N1 , and v on E (from the first paragraph of

the proof). Observe that the measures l/éE and 1/1 are absolutely continuous with respect to Z/E
v d

with Radon-Nikodym derivatives —=(z) = :qu (G71(2)).
dI/E d:u’n

We claim that for each g € ﬁl(yéﬁ ),

1 n dl/E n . n Tn
E /tm (26 o (N [ 12", ) (4.15)
~e| [ g(Z(s))dsHW(tz),rtZ)] ,
tm i=1

as n — oo. To see this, fix g € El(uf) and let € > 0 be given and select g, € C(E) (recall, E is
compact so ge is bounded) such that

192 = gl (@) <
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Then, recalling that Z"(s) has distribution 1/}? and the definition of A in (4.4),

E / m“<g<zn<s>>—ge<zn<s>>>d”0 n( dsHh (2t f”

v

tm41 dVE m
/t 19(Z27(5)) = ge(Z™(9))| - —= ]H [l

an

(b1 — Huhu

Similarly, Z(¢) will have distribution Vé@ and so

E /mH(Q(Z(S)) —ge(Z(S)))dSth‘(Z(tz‘)afti)]‘
tm i=1

<E tm+1! (Z(s)) — ge(Z(s))| ds ] [P
[ e - ez 11
< 6(tm-i-l - tm) H thH

=1

We now consider the convergence of

tmt1 d1/0
ge(Z™ (s Z™(s))ds | | hi(Z7 (¢ ”
| ez H ]

n

E

Since for each 7, h;(Z™(t;), F”) (t), lqtl) a.s. as n — 00, and for almost all s € [ty,, tm11],

hi(Z
E
9e(Z™(s)) — ge(Z(s)) a.s. and dv o

E
dv

(Z"(s)) — 1 in probability, as n — oo, (4.15) follows. A

similar argument establishes

M,n

tm4+1 AT d R
/t AL ”0 A dsHh ZM(t;), T ]

mATMm dyn

/ e g(Z(s))dsHhi(Z(ti),fti)] . (4.16)
t i=1

E

— F

mATM

Turning to the convergence of the terms involving the random measures, observe that

/A g(2)TM" (dz x ds) — g(2)TM(dz x ds) a.s. (4.17)
E><(tm thrﬂ

EX (tm tma1]

for all g € C(E). Since these random variables are bounded by ||g||M, the bounded convergence
theorem implies

E /A g(2)TM"(dz x ds) Hhi(Z"(ti),I‘Z)] (4.18)
EX(tm,tm+1]

i=1
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— F

/Ex(t . ]g(z)fM(dz X ds)Hhi(Z(ti),fti)] ,

=1
Noting that for g > 0,
£ () TM M (dz x ds)] < E /

; ) 9" (02 5 d5)] = (s — t) [ g
EX(tm, tm+1] EX(tm,tm+1]
this convergence can be extended to all g€ El(Vl ) by approximating g by ¢g. € C(E ) as above.

In particular, g € El(Vl ) if |g( )| < Cg¢3 =(Cy fU Yp(G™H(2)), wm (G™1(2), du).
Taking g in (4.16) to be g(z) = [;; Agr(G 1( ), w)no(G~1(2),du) and g in (4.18) to be g(z) =
J Bo(G™(2), w)m (97 (2), du) along with (4.14), we have

‘E[{Zk(thrl A TM) — Zp(tm A TM)
[ e A6 ) (G (25 s (119)
- /E< . Bo(@T ) wm (@), )T (dz ds>} HW(ti),fti)} '

m
< dag [T il P{rar <t}
i=1

Defining w A(z) = [ ¥(G(2), u)no(G~1(2), du), the expression in the expectation is dominated
by

tm+1 N N 0
Ry = Qak—i—/ agkwA(Z(s))ds—i—/A RO CRED HHh I (4.20)
tm Ex (tm,tm

Let R be defined as Ry; with I'™M replaced by I'. Noting that Ry / R and E[R] < oo, the
dominated convergence theorem implies that as M — oo, the expectation on the left side of
(4.19) converges to the left side of (4.8) while the right side converges to zero. Consequently,
(4.8) holds for t1,...,t, € 7. Right continuity of Z and [ then implies (4.8) holds for all ¢, and
thus (4.9) is a martingale.

The random measure I' has stationary increments but need not be adapted to the filtration
generated by Z. Without loss of generality, assume the process Z is defined for all ¢, not just
for t > 0, and assume that T takes values in measures on E x R. Define ?tZ =0(Z(s): —00 <
s < t) VN, where N denotes the null sets, so that {7—"5 } is the completion of the filtration
generated by the process Z. Let F; = ?tZ +. Then by Lemma 6.1, using the space E and taking
H(x,s) = eIl there exists a predictable random measure T satisfying (6.16). As a result, (4.9)
will be an ?tZ | -martingale with I replacing T. Note that I has stationary increments.

Define X = G~1(Z) and the random measure I' on E x R by

/ h(z, )D(dz x ds) = /A WG1(2), )0 (dz x ds).
EXR EXR

By working with the completions, 751 = 7tz+, which implies (1.18) is an {?ii }-martingale for
each g and hence for each f € D. O
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5 Proof of Theorem 1.11

Proof. We essentially follow the proof of Theorem 4.1 of Kurtz and Stockbridge [21]. Let a be
chosen to satisfy (1.21). Define the operators A and B by

A(6f)(@.0.5) = 6(0.)Af (x) + #(60, )1 (x) + o [d)(—@, 0) [ swnlay) o0.5)5)| 6.

and

B(¢f)(@.0,5) = (0, 5)Bf (=), (5.2)

for feDand ¢ € Dy = {¢: ¢,¢' € C({—1,1} x [0,00))}, where ¢' denotes differentiation
with respect to the second variable. Taking D = {fo:feD,¢ec D}, A, B and D satisfy
Condition 1.2 with ¢ 5 = [, ¥a(-,u)no (-, du) and ¢z = [;; ¥ (-, u)ni (-, du). Define the measures
fp € P(E x {—1,1} x [0,00)) and g1 € M(E x {—1,1} x [0,00)) by

/ h(, 0, 8)fio(dx x df x ds) (5.3)
Ex{-1,1}x][0,00)
/ / +hx,1,5)ys(dx)d8
/ h(z,0,s)p(dz x df x ds) (5.4)
Ex{-1,1}x[0,00)
_ a/ e_ash(:r, —1,5) + h(z, 1’0)u(dx « ds),
Ex[0,00) 2

for h € B(E x {—1,1} x [0,00)). The following computation verifies that (A, B, jig, ji1) satisfy
(1.19). For f € D and ¢ € Dy, and setting ¢(s) = (¢(—1, ) + #(1,5))/2,

[ Aendin+ [ B
- / / QS[_ VAf + (s f—i—a( /fdyo—_ ﬂdusds
va [ oy BB
_ a/ooo( e %G (5) — e~ (s ) </ fdys> ds
/ —O55(s) < / Afdz/s> ds + ap(0) / fdvy+ a / e~ (s)Bfdu
:a/ooo( e (5) — ae P (s ) (/Efdyo+/OS/EEfdyrdr+/Ex[078}§fdu> ds
ta /0 T emosg(s) ( / deys) ds + ad(0) / fdvo+ o / =G (s) B fdp

> d —Qs
—o [" (L )(/W [ fontr s
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+ / Ioq(r)B fdu) ds
Ex[0,00)

+a /0 b e~ (s < / Afdz/s> ds + ap(0 / fdvy+ a / e~ (s)Bfdu

where the last equality follows by interchanging the order of the integrals with respect to r and
s and observing that all the terms cancel.

At this point we could apply Corollary 1.9 to obtain the existence of a stationary space-time
process (Y, ©,.S) and boundary measure I" with stationary distribution given by fip; however, we
need to specify a more explicit form for the random measure. As i 1n the proof of Theorem 1.7,
for each n, define the operators B, = nB and the measures oy == Ml and fi, = K, ' (fio + A7)
Apply Lemma 4.1 to get the stationary processes Z", ©", and S” and processes A\ and A7
satisfying (4.4) such that

¢
¢(O" (1), S" () F(GTHZ" (1)) — /O K, A(0f)(GTH(Z2"(5)), 0" (s), 8™ (5))dA5 (5)  (5.5)
¢
| KB )G (27(5).07(). 5" ()i ()
is an {F7°"5" J-martingale.
Existence of limiting processes Z, ©, and S follow as in the proof of Theorem 1.7, and in the

current setting, (©",5™) = (0,S5) in the Skorohod topology. This stronger convergence of
(@™, 8™) allows us to be more explicit in describing a boundary measure I'.

For each n, let I € E(E) be the random measure satisfying
N T
I'"(H; x [0,T]) = / nK, Iy, (Z"(s))dN](s) (5.6)
0
_ r n dﬂl —1/n n n
= 11, (Z27(8)) == (G~ (2"(s)), ©"(s), 5" (s)) ds.

dfiy,
Note that

nK, / (5)), 0" (s), S™(s))dAT(5) = /A WG1(2), 07 (s), S™ ()T (d= x ds),

Ex[0,t]

and hence
t/EX[O 0, 8)in e 0 ) = E[/EX[O t] WG1(2), 07 (s), S (s))T"(dz x ds)].  (5.7)

In terms of I'™, (5.5) becomes

GH(Z"(5)),0"(s),5"(s))dAg(s)  (5.8)

~ [ BGNE (2,0 (s), 5" (s) P (d= x ds).

¢(0"(t), S"(t)F(GTH(Z (1) ~



Since
o~ ~ T [
EEEX 0.1 = B[ gz
= T[Ll(E X {_]—; 1} X [0700))7

(G™H(Z"(5)),0"(s), 8" (s))ds

the argument in the proof of Theorem 1.7 shows that the sequence {f”} is relatively compact,
and the existence of the limit (Z,0, S, f), at least along a subsequence, follows as before. The
Ex{—1,1}x [0, 00)-valued process (Z, 0, S) (which we may take to be defined for —0o < t < c0)
is stationary and the random measure I (which we may take to be defined on E x (—o0, 00))
has stationary time-increments. The convergence of (5.8) to a martingale follows as before,
except for the last term. Applying the Skorohod representation theorem, we will assume that
the convergence is almost sure.

Taking f =1 in (5.8), we see that
P(0" (), 5" (1)) —/O [¢/(07(s), 8" (s)) + a($(=0"(s),0) — ¢(O"(5), 5™ (5)))]dA5 (s)

is a martingale, and it follows that (©",S™) can be written as (©"(t), S™(t)) = (O™(\i(t)),
S™(AB(t))), where (6", 5™) is a solution of the martingale problem for C' given by Cé(8,7) =
&' (0,1) + a(d(—0,0) — ¢(0,7)), for ¢ € Dy. Uniqueness of this martingale problem (cf. [11,
Theorem 4.4.1]) and the fact that \g(t) — ¢ implies that (0, 5) is a stationary solution of the
martingale problem for C'. It follows (see [21], page 624) that S is exponentially distributed at
each time ¢, increases linearly at rate 1 up to a random time that is exponentially distributed with
parameter o at which time it jumps to 0, and the cycle repeats. Similarly, ©(t) = ©(0)(—1)N®),
where N(t) is the number of returns to zero made by S in the time interval (0, ¢]. Note also that
(©™,S™) converges to (©,95) in the Skorohod topology.

Some care needs to be taken in analyzing the convergence of the last term in (5.8). We can
approximate B(¢f)(G~1(z), 0" (s), S™(s)) by h(z,0"(s), S"(s)) with h € C(Ex{—1,1}x[0,00))
(that is, select h so that fEx{—l 11x[0,00) |B(of)(G7Y(2),0,7)—h(2,0,7)|ii1(dz xdf xdr) is small),

~

but we cannot rule out the possibility that I" has a discontinuity at the jump times of (©,S5).
In particular, p(E x {0}) may not be zero. For instance, in the transaction cost models (see
Example 1.5 and [8, 25]), if the support of v is not a subset of the control region, then the
optimal solution may instantaneously jump to the boundary of the control region at time zero.
In this situation, {4} will not be right continuous at zero, but will satisfy

AﬂmzémWﬁéﬂmmme»

Since in the process we are constructing, ¥ = G71(Z) “starts over” with distribution vy at
each time 75 that S jumps back to zero, in this situation ¥ must take an instantaneous jump
governed by I' so that Y (7;+) has distribution .

Let 7 = inf{t > 0: S(t) = 0}, and for k > 1, let 7441 = inf{t > 74 : S(¢) = 0}. Then we can
write I' = I'g + I'y so that

¢(0(1), St F(GH(Z(t+)) — /fl(¢f)(G_1(Z(8)),@(8)75(8))618 (5.9)

0
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- /A B(of)(G~'(2),0(s—), S(s—))To(dz x ds)

Ex0,t]

[ BN )00, 0 0z x )

Ex0,t]

is an {?i’r@’s’ro’rl}—martingale for f € D and ¢ € D1, where the support of the measure I, is
on E x {r;, k> 1}.
Taking ¢ = 1, we see that

t

~

FIGTHZ(t) — /(Af(G_l(Z(S))JraUEf(y)Vo(dy)—f(G_l(Z(S)) )ds  (5.10)

0

— | BFGY2)T(dz x ds)
Ex[0,t]
is an {?tZ J’FG’S’F}-martimgade.

Define the E-valued process Y = G~'(Z) and the random measure I' on E x [0, 00) by

/ h(z, s)[(dz x ds) = / MG (2), s)T(dz x ds).
Ex[0,t] Ex[0,t]

We may assume that T is adapted to the filtration {721@’5}, by applying Lemma 6.1, if necessary.
We can rewrite (5.10) as

~

1) - [ @) +a [ [ #tmtan) - f<Y<s>] jis— [ oy BT x )
(5.11)
and (5.11) is an {?ﬁs}—martingale.

Now let 79 = sup{t < 0 : S(t) = 0}. Define the process X by X(t) = Y (71 +t), t > 0, the
random measure I' on E x [0,00) by ['(H X [t1,t2]) = ['(H X [11 + t1, 71 + t2]), for H € B(E)

and 0 < t1 < t9, and the filtration G; = ?(‘;1 {#)4+ t = 0. Then, an application of the optional
sampling theorem (cf. [11, Theorem 2.2.13]) implies

rece) - [ t [flf(Xv)) ta ( [ g - f(X(r)))] ar— [ o BT

is a {G;}-martingale.
Define

1+ @(Tl)@((Tl —I—t) /\7‘2)
2 9

L(t) = [o(r1 — 70)] " Ijg ry—ry) () = [o(71 — 70)] XA A =T

and observe that L is a {G; }-martingale with E[L(t)] = 1. Let P be a new probability measure
having Radon-Nikodym derivative L(t) on G; with respect to the original probability measure

P, and denote expectation with respect to P by EF[].
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Observe that, under P,
t o~
[Tt — 70)] " €™ T ry—ry ) () F(X (1)) — /0 [y — 70)] 1€ Tjg ) (P AS (X (7)) dr
[ faln = ) e gy (DB (o x dr)
Ex[0,t]

is a {G;}-martingale which implies that for each m > 1, 0 < t; < -+ < ¢, < tp41, and
h; € C(E x Ly,(E)),i=1,...,m

[a(r1 — 70)] {eatm“f[o,m—n)(tm+1)f(X(tm+1)) — €M 110 my—ry) (b ) f (X (t))

= F

[a(r1 —70)] {eatm“I[O,TQn)(tm+1)f(X(tm+1))

— Bl 1o ry—ry) (tms1) |Gt | F (X (tm))

tm+1 ~
Oltm_HIO [0,72—71) (tm—i—l) ’gT’]Af(X(T))dT
tm
_ / Ble®™ 1 1ig 1y (tmt1)|Gr) B f ()L (da dr)} Hhi(X(ti),l“ti)]
EX(tm,tm+1] i=1

_ Eﬁ[ FO (b)) = FOC () = [ AR (X))

_/ Bf(x)0 d:):xdr}Hh Fm],
EX(tm,thrﬂ

where the elimination of the conditioning in the last term in the braces follows by Lemma 6.2.
It follows that

FX(1) — F(X(0)) /0 AF(X(r))dr - /E Bf ()T (de x dr)

x10,¢]

is an {]—"tX TV martingale under P.
We now derive the distribution of X (t). First for each h € C(E x [0, 0)),

EP [a /0 ' e h(X (1), t)dt]

T
—F [[a(ﬁ —70)] e Ijg 1y —r) (T) /0 e‘ath(X(t),t)dt}
= F [(ﬁ — 1)t / TE[eaTIO (T)|Gele  “*h(X (t) t)dt}
0 [0,72—71) 5
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and letting T" — oo yields

BP [a /0 b eath(X(t),t)dt} —E [(Tl — ) / " h(Y(t),S(t))dt} . (5.12)

1

For ¢ > 0, define ¢ = sup{r < t¢: S(r) =0}, 7 = inf{r > t: S(r) = 0}, and 75 = inf{r > 7{ :
S(r) = 0}. Note that 70 = 7; for i = 0,1,2. The quantity

=)t [ ). S

is stationary in ¢ and for ¢ € [7x, Tk+1),

4 Tk+42

(=) [ bS8 = (e =m0 [ Y0, S0

i k1

Let N(t) denote the number of jumps of S in the interval (0,¢]. Then by stationarity,

E [(n — ) /T Py (), S(r))dr}

1

T T2t
=5 |1 [t =a [ h o), sera
0 Tlt
N(T)+1 |
T/\T‘—T-i \/0 Tit1
= *1E 7 i—1 / v
! ; Ti — Ti—1 ( - h(Y (r),S(r))dr

=T7'E [/OT h(Y (r), S(r))dr]

g /0 = h(Y(fr),S(r))dr]

+T'E /T PTG v, S(r))dr}

., T1—T0

1 [ TN(T)+1
LB | Iy /T h(Y (r), S(r))dr

. T — TN(T TN(T)+2
+T'E | Iinrysoy Rl / h(Y(r),S(r))dr].
TN(T)+1 — TN(T) (T)+1

The first term of the right hand side equals [ h(x,s)fo(dx x {—1,1} x ds) by the stationarity
of (Y,S), and the other terms converge to 0 as ' — oo. By (5.3) and (5.12), we obtain

EP [a /0 et (X ( dt] ~a / —at / vy (dx)d (5.13)
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Let {hy} C C(E) be a countable collection which is separating (see [11, p. 112]). Taking h(z,t)

in (5.13) to be of the form ¢(t)hg(z), we see that

EP [ (X (1))] = /E h(@wi(ds),  ae.t,

and since {hy} is separating, it follows that X (¢) has distribution v, for a.e. t.

Following a similar argument, we determine E[[]. For h € C(E x [0,00)), we have

EP

/ ae” “h(z,r)[(dx x dr)]
Ex[0,T)

= B |[a(r — m)]aeT T,y (T) /
Ex[0,T)

=FE |(n — 7'0)1/ L0,y —7y) ()1, )T (dz % dr)]
Ex[0,T)

= E (Tl —To)i

1
\/E'X [7'1 ,TQ/\(Tl +T))

h(z,r — )T (dz x dr)] ,
where the second equality follows by Lemma 6.2. Letting T — oo, we obtain

EP

/ ae” “h(zx,r)'(dx x dr)]
Ex[0,00)

=F

(1 — 7'0)1/ h(z,r — Tl)f(d:c X dr)] .
EX[Tl,TQ)

Recalling the definitions of 7}, for i = 0,1,2, and 7%, for k£ > 0, the quantity
(rf —78H)~t fEx[rf,rg) h(z,r — mH)[(dz x dr) is stationary in ¢, and for t € [1x, Tk11),

(rt — ) / Wz, r — ) (dz x dr)
Bx[r}r)

= (Tht1 — Tk)l/ h(z,r — Thp)D(dz x dr).
EX[TkJrl,TkJrg)

Proceeding exactly as before we have

E

(rp — 7'0)1/ h(z,r — Tl)f(d:c X dr)]
EX[TLTQ)

T
Tl/ (Tf - 7'8)1/ h(z,r — Tf)F(dCC x dr)dt
0 Ex[rf,

73)

=F
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e “h(x,r)I'(dx x dr)]

=E (n—m)"" / E[e®" I ry—ry)(T)|Gp e h(w, )T (dz x dr>]
Ex[0,T)

(5.14)



=T7'F

/ h(z,r — Tg)f(dx X dr)]
Ex[0,T)

-T7'E / h(z,r — 75)T(dz x dr)]
EX[O,TQ/\T)

- . )
+r'E | 2 h / h(z,r — 1)L (dx x dr)
Tl - TO EX[Tl,TQ)

—I-TilE I{N(T)>1} h(CC, r— TN(T))f(d.T X d’l”)]
EX[T,Tn(1)+1)

T— TN(T) /
(T)+1 = TN(T) JEX[7n()41,TN(T)+2)

—I-TilE I{N(T)>O} . h($, r— TN(T)Jrl)f(dx X d’l”)

Since S(r) = r — 73, by (5.7) and the definition of T, the first term equals fEx[O 00) h(z,r)f(de
x{—1,1} x dr) and the other terms converge to 0 as 7' — oo. Thus combining (5.14), the above
limit, and (5.5), we have established that

EP

/ ae” " h(x,r)[(dx x dr)| = / ae”*h(z, s)u(dx x ds). (5.15)
Ex[0,00) Ex[0,00)

Taking h of the form h(x,7) = a= e Iy, wm,(z,r) for Hy € B(E) and Hy € B(][0,00)) with Ho
bounded, we have E¥[['(H; x Hs)] = u(Hy x H3), and hence the result. O

6 Appendix

6.1 Existence of an adapted compensator for a random measure

Let (2, F, P) be a probability space with a filtration {F;}. Let P be the predictable o-algebra,
that is, the smallest o-algebra of sets in [0,00) x Q such that for each {F;}-adapted, left-
continuous process X, the mapping (t,w) — X(¢,w) is P-measurable. A process X is {F;}-
predictable (or simply predictable if the filtration is clear from context) if the mapping (t,w) —
X (t,w) is P-measurable.

Let (E,r) be a complete separable metric space, and let Pg = B(E) xP. A process Z with values
in M(F) (the space of B(FE)-measurable functions) is predictable if the mapping (z,t,w) —
Z(z,t,w) is Pp-measurable. A random measure IT on F x [0, 00) is adapted if for each D € B(FE),
the process II(D x [0,¢t]) is adapted, and II is predictable if for each D € B(FE), the process
II(D %[0, t]) is predictable. The following result is essentially the existence of the dual predictable
projection of a random measure. (See, for example, Jacod and Shiryaev [12], Theorem II.1.8).

Lemma 6.1 Let {F;} be a complete, right-continuous filtration. Let I' be a random measure
on E x [0,00) (not necessarily adapted). Suppose that there exists a strictly positive predictable
process H such that

E

/ H(z,s)I'(dx x ds)| < oc.
Ex[0,00)
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Then there exists a predictable random measure T such that for each B(E)-valued predictable Z
satisfying |Z| < K for some constant K < oo,

My(t)=FE Fi

/ Z(x,s)H (x,s)I'(dx x ds)
Ex[0,t]

- / Z(x,s)H(z, s)T'(dz x ds), (6.16)
Ex[0,t]

is an {Fi}-martingale. In addition, there exist a kernel v from ((0,00) x Q,P) to E and a
nondecreasing, right-continuous, predictable process A such that

f(d:): X ds,w) = (s, w,dr)dA(s,w) + 0101 (ds) E[['(dx x {0})|Fol(w). (6.17)

Proof. We separate out the atom of I' at time 0 (which may or may not exist) by defining
I'(- x {0}) = E[I'(- x {0})|Fo]. This explains the second term in (6.17).

For D € Ppg, define v(D) = E[fEx(o ooy ID(x,8)H (z,5)T(dz x ds)] and for C' € P, define
vy(C) =v(E x C). Since E is Polish, there exists a transition function 7o from ((0,00) x Q,P)
into F such that

v(D) = / Y0(8,w, Ds))vo(ds x dw),
(0,00)xQ2

where D,y = {7 : (v,s,w) € D}. In particular, for each G € B(E), 7o(:, -, G) is P-measurable.
Let Ag(t) = fE><(O g H(x,s)I'(dx x ds), and note that

I/()(C) =F

/EX(O’OO) Ic(s)H(x,s)T(dx x ds)| = E [/OOO Ic(s)dAo(s)] , CeP,

SO

(D) = /Q /0 Ooyo(s,w,D(va))dAo(s,w)P(dw):E[ /0 myo(s,-,D(&,))dAo(s)},

for every D € Pg which implies

E

/ Z(x,s)H (x,s)I'(dx x ds)
Ex(0,00)

~F [ /0 b /E Z(:c,s)vo(s,-,dx)dAo(s)}

for every bounded, predictable Z.

There exists a nondecreasing, right-continuous, predictable process A, such that Ag — A is a
martingale and hence

w(C) = E Uot Ic(s)dA(s)] , CeP,

and

v(D)=E [ /0 b 'yO(s,w,D(s,w))dA(s)] .

For G € B(E x (0,00)), define

~ o0 1
F(G,w)—/o /GH(x’S)yo(s,w,d:r)dA(s),
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and observe that

E

/E or Z(x,s)H (z,s)[(dz x ds)] = F /O t /E Z(x,s)yo(s,d:c)dA(s)}

_ B /O t /E Z(x,s)fyo(s,d:r)dAo(s)]

= FE /(O,t]xE Z(x,s)H (x, s)'(dx x ds)] .

Let ¢ > 0 and 7 > 0, and let R be bounded and F;-measurable. Note that if Z is predictable,
then Z(z,s) = Rl 4.(s)Z (7, s) is predictable. It follows that

E[(Mz(t +7) — Mz(t))R]

= E (E / Z(x,s)H (x,s)I'(dx x ds) er]
Ex[0,t+7]
- F / Z(x,s)H (x,s)I'(dx x ds)| Fy ) R
Ex[0,t]
—F / Z(x,s)H (z,s)[(dz x ds)R
Ex(t,t+r]
=k

(/ Z(x,s)H (x,s)'(dx x ds)
Ex[0,t+7]

—/ Z(x,s)H (x,s)'(dx x ds)) R
Ex[0,t]

—-F

/ Z(x,s)H (z,s)[(dz x ds)R
Ex(t,t+r]

=k

/ RZ(x,s)H(x,s)I'(dx x ds)]
Ex(t,t+r]

—-F

/ RZ(x,s)H (x, $)L(dz x ds)]
Ex(t,t+r]

so My is a martingale. O

6.2 Conditioning and random measures

Let I" be an adapted random measure on E x [0,00) defined on (2, F, P) and satisfying I'(E x
[0,t]) < oo a.s., for each t > 0. Let V' be a stochastic process defined on (2, F, P), indexed by
E x [0,00). V is measurable if the the mapping (z,t,w) € E x [0,00) x Q — V(z,t,w) € R
satisfies V=1(C) € B(E) x B[0,00) x F for each C € B(R). Let {F} be a filtration in F. T is
adapted to {F;} if I'(G x [0, s]) is Fi-measurable for all G € B(E) and 0 < s < t.
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Let O be the optional o-algebra, that is, the smallest o-algebra of sets in [0, c0) x €2 such that for
each {F;}-adapted, right continuous process X, the mapping (t,w) — X (¢,w) is O-measurable.
A variant of the optional projection theorem (see, for example, [11], Corollary 2.4.5) ensures
that if V' is nonnegative, then there exists a B(E) x O-measurable function V such that

ElV(z,7)|F] =V (x,7) a.s.,

for every finite {7 }-stopping time 7. We will simply write E[V (z,t)|F] for V (z, ).
Lemma 6.2 Let {F;} be a complete, right-continuous filtration. Let T' be an {F;}-adapted
random measure on E x [0,00), satisfying E[I'(E x [0,t])] < oo, for everyt > 0. Let V be a

nonnegative, measurable process on E x [0,00). Suppose E[fEX[O . V(z,s)I'(dx x ds)] < oo, for
allt > 0. Then

My(t) = /E g V@ x A9 /E o PV I FD e < )

is an {Fy}-martingale. In particular,

/ V(z,s)I'(dx x ds)
Ex[0,t]

Proof. The collection of bounded V for which (6.18) holds is a linear space that is closed
under bounded, pointwise convergence. Let £ be an R-valued random variable, C' € B(FE), and
0 <a <b. Define V(z,s) = &lc(z)l(q(s). Then, letting 7 = {sx} be a partition of (a At,bA]
and v(s) = min{sy € 7 : s > s}

E

E / E[V(z, )| AT (dz x ds)| . (6.18)
Ex[0,t]

E

/ V(z,s)I'(dx x ds)] = E[ET(C x (aNt,bAt])]
Ex]0,t]

- ZE [ET(C x (Sk, Sk+1])]
= Y E[E[¢]Fo, JT(C X (38, $811])]

= b /EX[Oﬂ €175 ) e (@) Lq, }(S)F(dxde)]

= F

/ E[V(z,s)|Fys]T(dz x ds)] .
Ex[0,t]

Letting max(sgy+1 — sx) — 0, ¥(s) — s+, by the right continuity of E[¢|Fs], we have (6.18). A
monotone class argument (see, for example, Corollary A.4.4 in [11]) then implies (6.18) for all
bounded, measurable processes V', and the extension to all positive V' follows by the monotone
convergence theorem.

Let Z be bounded and F;-measurable. Then

E[Z(My(t+h) — My(t))]

= FE Z(/ Vix,s)I'(dx x ds) —/ V(z,s)['(dx x ds)
Ex[0,t+h] Ex[0,t]
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_/ E[V(x,s)|Fs]T(dz x ds))]
Ex(t,t+h]

= b

/ ZV (x,s)'(dx x ds)
EX(t,t+h]

- / E[ZV (z,s)|FsT'(dx x ds)]
Ex(t,t+h]

where the last equality follows by (6.18). This result implies that My is a martingale. O
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