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1 Introduction

Interacting particle systems play a prominent role in such diverse areas as nonlinear filter-
ing, population genetics, and statistical mechanics. In these fields, one often employs particles
systems to approximate complicated models in order to facilitate simulation, computation, or
mathematical derivation. Proper usage of these approximations requires knowledge of the pre-
cise conditions under which various types of convergence to the underlying model takes place.
Within, we consider discrete time models, propose a particle system approximation algorithm
that is most effective for actual computations, and study the fidelity of this and other approxi-
mations through rates of convergence. We illustrate our algorithm through application to non-
linear filtering, Feynman-Kac formulae, mean field particle models, and McKean’s Maxwellian
gas model.

The recent work of Del Moral and Miclo [5] effectively covers the design, application, and
analysis of the most common interacting particle system approximations. We propose and
analyse an interacting particle algorithm not studied there that is very practical for computer
implementation of classical nonlinear problems. Indeed, according to our analysis in section 5 of
this paper, our algorithm provides a lower variance estimator of the underlying model than its
predecessors in [5]. Our algorithm fits into the general framework given in Crisan, Del Moral,
and Lyons [2] but is not realized as one of their branching corrections. Still, the analysis in [2]
applies to our algorithm and is continued herein. Our algorithm and analysis were motivated in
part by Blount and Kouritzin [1] and Del Moral and Miclo [5] respectively.

We start section 2 with the basic notation and our new algorithm. This is followed in subsections
2.2 and 2.3 by the existing algorithm and the amalgamated algorithm, including both algorithms
of subsections 2.1 and 2.2. We also explain the significance of our work through the Feynman-
Kac distributions in subsection 2.3. Our main results are summarized in subsection 2.4. Section
3 is devoted to statement, proof, and application of our consistency results. In particular,
the precise statement and proof of our path space mean ergodic theorem is in subsection 3.1,
our uniform mean ergodic theorem development is contained in subsection 3.2 holds, and our
applications are in subsection 3.3. Central limit theorem behaviour is investigated in section 4.
Finally, the relative advantage of the new algorithm over its predecessor is established through
the variance comparison of section 5.

2 Background

2.1 Notation and New Algorithm

For any measurable space (E, E) we denote by M(E) the space of all finite signed measures on
E, by M1(E) ⊂ M(E) the subset of all probability measures and by Bb(E) the space of real
bounded measurable functions with supremum norm ‖.‖. For any µ ∈ M(E), f ∈ Bb(E) and
for any integral operators K and K ′ on Bb(E) we let KK ′ be the composite operator and K(f),
µK be respectively the function, measure on E defined by

K(f)(x) =
∫

E
K(x, dy) f(y) and (µK)(f) =

∫
E

µ(dx)K(x, dy) f(y).
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Let {K̂n,η ; n ∈ N , η ∈ M1(E)} be a collection of Markov transitions on E. Starting from
this family, we introduce our main object of study. This is an N -interacting particle system
(abbreviate N-IPS) ξ̂n = (ξ̂1

n, . . . , ξ̂N
n ), n ∈ N, which is a Markov process with state space EN

and transition probability kernels

P (ξ̂n ∈ dy | ξ̂n−1) =
N∏

p=1

K̂n,η̂N
n−1

(ξ̂p
n−1, dyp) with η̂N

n
def.=

1
N

N∑
i=1

δ
ξ̂ i

n
. (1)

Here dy
def= dy1 × · · · × dyN stands for an infinitesimal neighborhood of the point y =

(y1, . . . , yN ) ∈ EN , and δa is the Dirac measure at a ∈ E.

We also introduce the empirical distribution of the N -path particles (ξ̂i
0, . . . , ξ̂

i
n)

η̂N
[0,n]

def.=
1
N

N∑
i=1

δ
(ξ̂i

0,...,ξ̂i
n)

, (2)

which is a random measure on En+1, n ∈ N. When the transition probability kernels K̂n,η

are sufficiently regular we will show that for any n ∈ N distributions (2) converge weakly, as
N → ∞, to a non random measure on En+1

η̂[0,n](dx0, . . . , dxn) def.= η0(dx0) × K̂1,η0(x0, dx1) × . . . × K̂n,ηn−1(xn−1, dxn), (3)

where the distribution flow {ηn ; n ∈ N} is solution of the measure valued dynamical system

ηn+1 = ηn K̂n+1,ηn . (4)

Our study concerns approximations (3,4) via empirical measures (2) of N-IPS (1) that were
motivated in part by the work of [1]. The advantage of our new approach over the previous
algorithm (discussed immediately below) can easily be seen in simulations and is explained in
section 5 herein.

2.2 Existing Algorithm

The measure-valued process (4) and the corresponding N-IPS approximating model (1) can be
viewed as a natural extension of discrete time models introduced in a previous work by one of
the authors. More precisely, the non linear measure valued process introduced in [3] and further
studied in [5] is defined as in (4) by replacing the one step transformation η 7→ ηK̂n,η by an
abstract transformation η 7→ Φn(η) so that (4) takes the form

ηn+1 = Φn+1(ηn). (5)

As noticed in [3], p. 475-476, if we have for any n and η

Φn(η) = ηK̂n,η

then the desired distribution flow {ηn ; n ∈ N} can alternatively be approximated by an N -IPS
defined as in (1) by replacing each transition K̂n,η̂N

n−1
(ξ̂p

n−1, dyp) by distribution Φn(m(x))(dyp),
namely

P (ξn ∈ dy | ξn−1) =
N∏

p=1

Φn(η N
n−1))(dyp), η N

n
def.=

1
N

N∑
i=1

ξ i
n (6)
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It is interesting that in this strategy of previous works the empirical measure on path space (2)
converge weakly, as N → ∞, to a distinct limiting measure on En+1, namely

η ⊗
[0,n](dx0, . . . , dxn) def.= η0(dx0) × Φ1(η0)(dx1) × . . . × Φn(ηn−1)(dxn)

= η0(dx0) × η1(dx1) × . . . . . . × ηn(dxn). (7)

More information on the latter N -IPS model (6) can be found in [5] and references therein.

2.3 Amalgamated Algorithm

The mathematical models (5) and (6) can be embedded respectively in the more general and
abstract ones (4) and (1) simply by replacing K̂n,η with Kn,η = Φn(η). Then, K n,η = ηKn,η =
Φ(η) and mechanism

P (ξn ∈ dy|ξn−1) =
N∏

p=1

Kn,ηN
n−1

(ξp
n−1, dyp) with ηN

n =
1
N

N∑
i=1

δξi
n

(8)

ηN
[0,n] =

1
N

N∑
i=1

δ(ξi
0,...,ξi

n) (9)

can be used for both strategies with K, ξn, η N
[0,n] = K, ξn, η N

[0,n] or K̂, ξ̂n, η̂ N
[0,n]. In both cases, we

also assume that the initial configuration ξ0 = (ξ1
0 , . . . , ξN

0 ) consists of N independent variables
with common law η0 and we write F = {Fn ; n ∈ N} for the canonical filtration associated to
the discrete-time Markov process ξ. The aim of this paper is to study the asymptotic behavior of
the empirical measures (9) on path space for a general class of N -IPS defined by the transitions
(8). We also prove central limit theorems for Feynman-Kac’s type limiting system (4). We also
start a comparison of the fluctuations variance associated to the two N -IPS models (6) and (1).

Our algorithm (8,9) fits into the general framework given in [2]. However, our method was
not highlighted as one of their branching selections, the advantages of sub algorithm (1) over
sub algorithm (6) were not noted, and our Lp−rates of convergence, uniform convergence, and
central limit theorem results were not studied.

To illustrate the significance of our study; we consider the class of Feynman-Kac’s distributions
defined by

ηn(f) =
γn(f)
γn(1)

; where γn(f) = E

 f(Xn) exp
n−1∑
p=0

Up(Xp)

 (10)

{Xn; n ∈ N} is a given E−valued time inhomogeneous Markov chain with one step transition
probability kernels {Pn+1 ; n ∈ N} and initial distribution η0; and {Un ; n ∈ N} is a given
sequence of bounded and strictly positive functions on E. The above Feynman-Kac’s models
naturally arise in biology (modeling genetic and evolutionary processes), physics (distributions
of killed Markov particles, spatially homogeneous Boltzmann-type equation, Moran particle
systems) and non linear filtering (as flow of conditional distributions). The reader who wishes
to know more details about specific applications is recommended to consult [5] and references
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therein. Using the Markov property in (10) it is not difficult to check that the distribution flow
{ηn ; n ∈ N} satisfies (5) with

Φn+1(η) = Ψn(η)Pn+1 , Ψn(η)(f) =
η(gnf)
η(gn)

and gn = exp Un. (11)

Since Ψn(η) can also be written as Ψn(η) = ηSn,η with

Sn,η =
1

η(gn)
Id +

(
1 − 1

η(gn)

)
Ψ̃n(η) , Ψ̃n(η)(f) =

η(g̃nf)
η(g̃n)

and g̃n = gn − 1

we also have Φn(η) = ηKn,η with

Kn,η
def.= Sn−1,ηPn. (12)

One concludes that the desired flow {ηn ; n ∈ N} satisfies (4) for both

Kn,η(u, .) = Φn(η) = ηKn,η and K̂n,η = Kn,η. (13)

The trilogy law of large numbers, central limit theorem and large deviations principles for
genetic type N -IPS models corresponding to the first choice Kn,η = Φn(η) are discussed in [5].
In section 4, we propose a unified framework within which we can study central limit theorems
for the N -IPS approximating model (1) associated to any transition kernels Kn,η(x, dy) such
that

ηKn,η = Φn(η)

that includes both cases in (13).

2.4 Statement of Main Results

The first central result holds with K = K and K = K̂.

Theorem 1 Under some regularity conditions on the transitions kernels Kn,η for any p ≥ 1
and n ≥ 0 there exists some finite constant cp(n) such that for any f ∈ Bb(En+1)

E

(
|ηN

[0,n](f) − η[0,n](f)|p
) 1

p ≤ cp(n)√
N

‖f‖. (14)

In addition, if the evolution semigroup associated to the limiting dynamical system (4) is suffi-
ciently regular then for any p ≥ 1 there exists some finite constant cp < ∞ such that

sup
n≥0

E
(|ηN

n (f) − ηn(f)|p) 1
p ≤ cp√

N
‖f‖. (15)

The precise regularity conditions and the proof of Theorem 1 are given in section 3 In subsec-
tion 3.1 we prove (14) and the uniform estimate (15) will be discussed in subsection 3.2. In
subsection 3.3 we present several examples which can be treated using our framework including
Feynman-Kac’s type measure valued processes, mean field particle models and McKean’s
Maxwellian gases models.

We now recall the definition of ηN
n from (8) and give a central limit theorem for the general

algorithm.

5



Theorem 2 The sequence of random fields

W N
n (f) =

√
N
(
ηN

n (f) − ηn(f)
)

, f ∈ Bb(E)

converge weakly to a centered Gaussian field {Wn(f) , f ∈ Bb(E)}.

The precise statement and the proof of Theorem 2 is given in subsection 4.2. In section 5 we
end the paper with a comparison of the fluctuation variance for the two N -IPS approximating
models corresponding to (1) and (6).

3 General discrete time models

In this section we investigate the weak law of large numbers for the N -IPS (1) associated to an
abstract measure-valued process of the form (4). We always assume that

(K) For every f ∈ Bb(E), η ∈ M1(E) and n ∈ N there exist some constant cn(η)
and a finite set Hn(η, f) of bounded functions h : E → R, ‖h‖ ≤ 1, such that

∀µ ∈ M1(E) ||Kn,η(f) −Kn,µ(f)|| ≤ cn(η) ||f ||
∑

h∈Hn(η,f)

|η(h) − µ(h)|. (16)

In addition assume that sup{|Hn(η, f)| ; f ∈ Bb(E)} < ∞ for any η and n where |S| denotes
the cardinality of a set S.

The regularity condition (K) is validated for a number of examples in subsection 3.3 and
it is strongly related to the one used in (25) Theorem 2, p. 451, in [3] and in Theorem 3.2 page
305 [2]. In fact the N -IPS model (1) can be regarded as an example of branching particle model
discussed in [2] and the N -IPS model (6) coincide with the one presented in [3]. In these two
works L2 -estimates for the particle density profiles ηN

n are discussed but no satisfying analysis
is done on the asymptotic behavior of the empirical measure on path space defined in (2).
In subsection 3.1 we prove an Lp -mean error estimate for ηN

[0,n]. In subsection 3.2 we present
a sufficient condition on the evolution semigroup associated to the limiting measure valued
process (4) under which the particle density profiles ηN

n converge to the desired distribution ηn

uniformly with respect to the time parameter. Typical examples that fit into our framework
will be discussed in subsection 3.3.

3.1 Mean Ergodic Theorems

Theorem 3.1 If the Markov transitions Kn,η satisfy condition (K) then for any p ≥ 1 and
n ≥ 0 there is a finite constant cp(n) = cp(n, {ηn}n−1

n=0) such that

∀f ∈ Bb(En+1) , E

(
|ηN

[0,n](f) − η[0,n](f)|p
) 1

p ≤ cp(n)√
N

‖f‖. (17)

Proof: We first prove that for any n ∈ N we have

∀f ∈ Bb(E) ,∀p ≥ 1 , E
(|ηN

n (f) − ηn(f)|p) 1
p ≤ cp(n)√

N
‖f‖ (18)
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for some finite constant cp(n) which only depends on the parameters n and p. Since ξ0 consists
in N -independent random variables with common law η0 a simple application of Marcinkiewicz-
Zygmund’s inequality (see for instance (26) page 498 in [10]) yields

E
(|ηN

0 (f) − η0(f)|p) 1
p ≤ cp(0)√

N
‖f‖

for some universal constant cp(0). Moreover, the definition of ξn and another application of
Marcinkiewicz-Zygmund’s inequality gives the almost sure estimates

E

(
|ηN

n (f) − ηN
n−1Kn,ηN

n−1
(f)|p |Fn−1

) 1
p

= E(| 1
N

N∑
i=1

[f(ξi
n) −Kn,ηN

n−1
(f)(ξi

n−1)]|p|Fn−1)
1
p ≤ cp√

N
‖f‖

for some universal constant cp whose values only depends on the parameter p. Suppose the
estimate (18) are true with (n − 1) in place of n. Then, the regularity condition (K) and the
induction hypothesis imply that

E

(
‖Kn,ηN

n−1
f −Kn,ηn−1f‖p

) 1
p ≤ cp(n − 1)√

N
‖f‖ |Hn(ηn−1, f)| (19)

and

E
(|ηN

n−1(Kn,ηn−1f) − ηn−1(Kn,ηn−1f)|p) 1
p ≤ cp(n − 1)√

N
‖f‖

for some finite constant cp(n − 1). Using the decomposition

ηN
n − ηn = [ηN

n − ηN
n−1Kn,ηN

n−1
]

+[ηN
n−1

(
Kn,ηN

n−1
−Kn,ηn−1

)
] + [ηN

n−1Kn,ηn−1 − ηn−1Kn,ηn−1 ]

and previous estimates, one concludes easily the desired Lp -bounds at rank n and the inductive
proof of (18) is completed. Let us show (17) by induction on the time parameter n. The first
case n = 0 is clear. Assume, as induction hypothesis that the estimate (17) has been proved at
rank (n − 1). For any f ∈ Bb(En+1) we use the decomposition

ηN
[0,n](f) − η[0,n](f) = I(1)

n (f) + I(2)
n (f) + I(3)

n (f)

with

I(1)
n (f) =

1
N

N∑
i=1

∫
E

(
f(ξi

0, . . . , ξ
i
n−1, ξ

i
n) − f(ξi

0, . . . , ξ
i
n−1, z)

) Kn,ηN
n−1

(ξi
n−1, dz)

I(2)
n (f) =

1
N

N∑
i=1

∫
E

f(ξi
0, . . . , ξ

i
n−1, z)

(
Kn,ηN

n−1
(ξi

n−1, dz) −Kn,ηn−1(ξ
i
n−1, dz)

)
I(3)
n (f) = ηN

[0,n−1](K̃n,ηn−1(f)) − η[0,n−1](K̃n,ηn−1(f))

7



where K̃n,ηn−1 stands for the Markov integral operator

K̃n,ηn−1 : f ∈ Bb(En+1) 7→ K̃n,ηn−1(f) ∈ Bb(En)

defined by

K̃n,ηn−1(f)(x0, . . . , xn−1)
def.=
∫

E
f(x0, . . . , xn−1, u) Kn,ηn−1(xn−1, du).

Since, conditionally on the algebra Fn−1, the set∫
E

(
f(ξi

0, . . . , ξ
i
n−1, ξ

i
n) − f(ξi

0, . . . , ξ
i
n−1, z)

) Kn,ηN
n−1

(ξi
n−1, dz) , 1 ≤ i ≤ N

forms a sequence of independent, centered and bounded random variables, Marcinkiewicz-
Zygmund’s inequality applies and

E

(
|I(1)

n (f)|p|Fn−1

) 1
p ≤ cp√

N
‖f‖ P− a.s.

for some universal constant cp. Arguing as in (19), we use the regularity assumption (K) and
the estimates (18) to prove that

E

(
|I(2)

n (f)|p
) 1

p ≤ cp(n − 1)√
N

‖f‖

for some finite constant cp(n− 1). Finally, the induction hypothesis at rank (n− 1) implies that

E

(
|I(3)

n (f)|p
) 1

p ≤ c′p(n − 1)√
N

‖f‖

for another finite constant c′p(n − 1) and the rest of the proof is now straightforward.

3.2 A Uniform Convergence Theorem

Suppose that the transitions Kn,η satisfy (K) and we set H̃n(n, f) = Hn(n, f) ∪ {Kn,η(f/‖f‖)}.
Then, the one step mappings

Φn(η) = ηKn,η

have the following Lipschitz type regularity:

(Φ) For every f ∈ Bb(E), η ∈ M1(E) and n ∈ N there exist some constant
cn(η) and a finite set H̃n(η, f) of bounded functions h : E → R, ‖h‖ ≤ 1, such that
sup{|H̃n(η, f)| ; f ∈ Bb(E)} < ∞ and for any µ

|Φn(η)(f) − Φn(µ)(f)| ≤ cn(η)‖f‖
∑

h∈H̃n(η,f)

|η(h) − µ(h)|. (20)
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Let {Φq,n , 0 ≤ q ≤ n} be the non linear semi-group associated to the non linear measure-valued
process (4) and defined by the composite mappings

Φq,n = Φn ◦ . . . ◦ Φq+2 ◦ Φq+1 , Φn,n = Id.

If the one step mappings Φn satisfy condition (Φ) then it follows that for any 0 ≤ q ≤ n and for
every f ∈ Bb(E), η, µ ∈ M1(E)

|Φq,n(η)(f) − Φq,n(µ)(f)| ≤ cq,n(η) ||f ||
∑

h∈H̃q,n(η,f)

|η(h) − µ(h)|, (21)

where cq,n(η) = cn(Φq,n−1(η))cn−1(Φq,n−2(η)) . . . cq+1(η) and

H̃q,n(η, f) =
⋃

h∈H̃n(Φq,n−1(η),f)

⋃
h1∈H̃(Φq,n−2(η),h)

. . .
⋃

hn−q−2∈H̃(Φq+1(η),hn−q−3)

H̃(η, hn−q−2) (22)

Theorem 3.2 Suppose the semi-group {Φq,n , 0 ≤ q ≤ n} associated to the measure valued
process (4) satisfies (21,22)

sup
η

sup
0≤q≤n

cq,n(η) = c < ∞, (23)

|H̃q,n| = sup
η,f

|H̃q,n(η, f)| < ∞, and d(H̃q,n) def= sup
η,f

sup
h∈H̃q,n(η,f)

‖h‖ < ∞. (24)

Then, for any f ∈ Bb(E) and p ≥ 1 and n ≥ 0 we have that

E
(|ηN

n (f) − ηn(f)|p) 1
p ≤ cbp√

N
‖f‖

n∑
q=0

|H̃q,n| d(H̃q,n)

for some universal constant bp and therefore

sup
n≥0

E
(|ηN

n (f) − ηn(f)|p) 1
p ≤ cbp√

N
‖f‖ σ(H̃), (25)

where

σ(H̃) def.= sup
n≥0

n∑
q=0

|H̃q,n| d(H̃q,n) < ∞. (26)

Remark: Equations (21,23,26) collectively impose a contraction property on the semigroup
Φq,n that yields our uniform estimates. In particular, we are assuming that the size of the
hi ∈ H̃(Φq,n−i+1(η), hi−1), ‖hi‖, is decreasing faster than |H̃(Φq,n−i+1(η), hi−1)| is increasing as
i → ∞.

Proof: We first use the decomposition

ηN
n − ηn =

n∑
q=0

[Φq,n(ηN
q ) − Φq,n(Φq(ηN

q−1))]

9



with the convention Φ0(ηN−1) = η0 to check that for any bounded test function f

|ηN
n (f) − ηn(f)| ≤ c ‖f‖

n∑
q=0

∑
h∈H̃q,n(Φq(ηN

q−1),f)

∣∣ηN
q (h) − Φq(ηN

q−1)(h)
∣∣ .

An application of Marcinkiewicz-Zygmund’s inequality gives for any p ≥ 1 and q ≥ 0 the almost
sure estimate

E
(|ηN

q (h) − Φq(ηN
q−1)(h)|p|Fq−1

) 1
p ≤ bp‖h‖√

N

for some universal constant bp and with the convention F−1 = {∅,Ω}. Under our assumptions
it follows from the above that

E
(|ηN

n (f) − ηn(f)|p) 1
p ≤ cbp√

N
‖f‖

n∑
q=0

|H̃q,n| d(H̃q,n)

and the rest of the proof is now straightforward.

3.3 Applications

In this section we present a selection of examples for which conditions (K) and/or the assump-
tions of Theorem 3.2 are met. Let us start with a very simple situation in which the transitions
Kn,η does not depend on distribution η, that is K̂n,η = Kn and Kn,η = ηKn. In this case one
can check that (K) trivially holds with

cn(η) = 0 and Hn(η, f) = φ

and (Φ) holds with
cn(η) = 1 and H̃n(η, f) = {Knf/‖f‖}.

Note also that in this situation the EN -valued chain (1) consists in N independent Markov chain
with the same transitions Kn and clearly the limiting measure (3) coincides with the distribution
of the chain from the origin up to time n, namely

η[0,n](dx0, . . . , dxn) = η0(dx0) × K1(x0, dx1) × . . . × Kn(xn−1, dxn).

Conversely, the EN -valued chain (6) is an N -IPS and its transitions are given by

P (ξn ∈ dy | ξn−1) =
N∏

p=1

1
N

N∑
i=1

Kp(ξ i
n−1, dyp) =

N∏
p=1

Kp,η N
n−1

(dyp).

It is also worth observing that the limiting measure (7) is now the n-tensor product measure

η⊗[0,n](dx0, . . . , dxn) = η0(dx0) × η1(dx1) × . . . . . . × ηn(dxn) , with ηp = Φp(ηp−1).

In this quite trivial example the measure-valued process (4) and the corresponding semi-group
are linear and transformations Φq,n are simply given by

Φq,n(η) = ηKq+1Kq+2 . . . Kn.

10



We also find that (21) is satisfied with cp,n(η) = 1 and

H̃q,n(η, f) =
{

1
‖f‖ [Kq+1 . . . Kn(f) − ηKq+1 . . . Kn(f)]

}
.

A convenient tool for the analysis of the long term behavior of the N -IPS approximating models
is the Dobrushin’s ergodic coefficient α(K) ∈ [0, 1] of a Markov transition K on a measurable
space (E, E) defined by

α(K) = 1 − β(K) with β(K) =
1
2

sup
x,y

‖K(x, .) − K(y, .)‖tv , (27)

where ‖. − .‖tv stands for the total variation distance. (See Dobrushin [6], [7].) We also recall
that α(K) is a natural measure of contraction of the distance of probability measures induced
by K and

β(K) = sup
‖µ1K − µ2K‖tv

‖µ1 − µ2‖tv
, (28)

where the supremum is taken over all µ1, µ2 ∈ M1(E). We have from (27) and (28) the following
estimates

‖Kp+1 . . . Kn(f) − ηKp+1 . . . Kn(f)‖ ≤ 2‖f‖ β(Kp+1 . . . Kn) (29)

and

β(Kp+1 . . . Kn) ≤
n∏

q=p+1

β(Kq) =
n∏

q=p+1

(1 − α(Kq)). (30)

In time homogeneous settings (that is Kn = K) one concludes that

d(H̃p,n) ≤ 2(1 − α(K))n−p

and therefore

σ(H̃) = sup
n≥0

n∑
p=0

d(H̃p,n) ≤ 2/α(K).

3.3.1 Feynman-Kac’s distributions

In this section we discuss condition (K) and the long time behavior of the N -IPS approximating
models (1) and (6) of the Feynman-Kac’s distributions defined in (10). We examine the two
situations

1) Kn,η(u, .) = Φn(η) and 2) K̂n,η = Kn,η (31)

with Φn(η) and Kn,η defined respectively in (11) and in (12). In the first situation we use the
decomposition

Φn(µ)(f) − Φn(η)(f)

=
1

η(gn−1)
{[µ(gn−1Pn(f)) − η(gn−1Pn(f))] + Φn(µ)(f) [η(gn−1) − µ(gn−1)]}

11



and conclude that (K) is satisfied with

cn+1(η) =
‖gn‖
η(gn)

and Hn+1(η, f) =
{

gn

‖gn‖
Pn+1(f)
‖f‖ ,

gn

‖gn‖
}

.

In the second situation we recall that

K̂n+1,η(f) = Kn+1,η(f)

=
1

η(gn)
Pn+1(f) +

(
1 − 1

η(gn)

)
η((gn − 1)Pn+1(f))

η(gn − 1)

=
1

η(gn)
[ Pn+1(f) + η((gn − 1)Pn+1(f)) ] .

We use the decomposition

K̂n+1,µ(f) − K̂n+1,η(f) = I(f) + J(f)

with

I(f) =
1

µ(gn)η(gn)
(η(gn) − µ(gn)) Pn+1(f)

J(f) =
µ((gn − 1)Pn+1(f))

µ(gn)
− η((gn − 1)Pn+1(f))

η(gn)

=
1

η(gn)
{ [µ((gn − 1)Pn+1(f)) − η((gn − 1)Pn+1(f))]

+
µ((gn − 1)Pn+1(f))

µ(gn)
[η(gn) − µ(gn)] }

=
1

η(gn)
{ [µ(gnPn+1(f)) − η(gnPn+1(f))] + [ηPn+1(f) − µPn+1(f)]

+
µ((gn − 1)Pn+1(f))

µ(gn)
[η(gn) − µ(gn)] }.

We check using (11) that

|I(f)| ≤ exp ‖Un‖
η(gn)

|η(gn) − µ(gn)| ‖f‖

and
|J(f)| ≤ 1

η(gn)
{ |µ(gnPn+1(f)) − η(gnPn+1(f))| + |ηPn+1(f) − µPn+1(f)|

+‖f‖ µ(gn + 1)
µ(gn)

|η(gn) − µ(gn)| }.
Using the fact that

µ(gn + 1)
µ(gn)

= 1 +
1

µ(gn)
≤ 1 + exp ‖Un‖,

we can show that

‖K̂n+1,η(f) − K̂n+1,µ(f)‖
≤ 1

η(gn)
{ 2‖f‖(1 + exp ‖Un‖) |η(gn) − µ(gn)| + |ηPn+1(f) − µPn+1(f)|

+|µ(gnPn+1(f)) − η(gnPn+1(f))| }.

12



One easily deduces that condition (K) is met with

cn+1(η) = 2 (1 + exp ‖Un‖)2/η(gn)

and

Hn+1(η, f) =
{

gn

‖gn‖
Pn+1(f)
‖f‖ ,

gn

‖gn‖ ,
Pn+1(f)
‖f‖

}
.

To see that condition (21 ) is satisfied for the Feynman-Kac type semi-group associated to the
distribution flow (10) we use the following technical lemma:

Lemma 3.3 ([4]) For any 0 ≤ p ≤ n we have

Φp,n(µ) = Ψp,n(µ)Pp,n , Ψp,n(µ)(f) def.=
µ (gp,n f)
µ (gp,n)

,

where the functions {gp,n ; 0 ≤ p ≤ n} and the Markov transitions {Pp,n ; 0 ≤ p ≤ n} satisfy
the backward formulae

Pp−1,n(f) =
Pp (gp,n (Pp,n(f)))

Pp (gp,n)
, gp,n = gp Pp+1 (gp+1,n) , (32)

with the conventions gn,n = 1 and Pn,n = Id.

¿From the backward recursions (32) it follows that

Pp,n = S
(n)
p+1Pp+1,n = S

(n)
p+1S

(n)
p+2 . . . S(n)

n , S(n)
p (f) def.=

Pp(gp,n f)
Pp(gp,n)

. (33)

¿From this lemma one can also check that

Φp,n(µ)(f) − Φp,n(η)(f) =
η(gp,n)
µ(gp,n)

µ

(
gp,n

η(gp,n)
[Pp,nf − Φp,n(η)(f)]

)
.

It follows that condition (21 ) holds with cp,n(η) = a2
p,n,

ap,n
def.= sup

x,y∈E

gp,n(x)
gp,n(y)

and

H̃p,n(η, f) =
{

1
ap,n

gp,n

η(gp,n)
1

‖f‖ [Pp,nf − Φp,n(η)(f)]
}

. (34)

Using Lemma 2.3, one can also prove that

Pp,nf − Φp,n(η)(f)(x) =
∫

E
[Pp,n(f)(x) − Pp,n(f)(y)] Ψp,n(η)(dy)

and
‖Pp,nf − Φp,n(η)(f)‖ ≤ ‖f‖ β(Pp,n).

13



Using (27) and (28), we obtain

β(Pp,n) ≤
n∏

q=p+1

β(S(n)
q ) =

n∏
q=p+1

(1 − α(S(n)
q )).

To estimate the Dobrushin’s coefficient of S
(n)
q we will use the following mixing type con-

dition. It is not hard to construct {Pn} satisfying this mixing condition when E ⊂ R
d is compact.

(M) For any n ≥ 1 and x, x′ ∈ E we have Pn(x, .) ∼ Pn(x′, .). In addition there
exists some strictly positive constant ε such that for any x, x′, y ∈ E

dPn(x, .)
dPn(x′, .)(y) ≥ ε. (35)

Under (M) we first notice for any x, x′ ∈ E and A ∈ E that

S(n)
p (x,A) =

Pp(gp,n 1A)(x)
Pp(gp,n)(x)

≥ ε2 S(n)
p (x′, A).

Thus (27) implies that
α(S(n)

p ) ≥ 1 − 2β(S(n)
p ) ≥ ε2 (36)

Using (35) again, we also have

gp,n(x)
gp,n(y)

=
gp(x)Pp+1 (gp+1,n) (x)
gp(y)Pp+1 (gp+1,n) (y)

≤ gp(x)
gp(y)

1
ε

=
1
ε

exp (osc(Up))

with
osc(Up)

def.= sup {Up(x) − Up(y) , x, y ∈ E}. (37)

In summary, we have proved in (34-37) that if (M) is satisfied and

sup
p≥0

osc(Up)
def.= osc(U) < ∞

then conditions (23) and (24) of Theorem 3.2 hold with

|H̃q,n| = 1 , d(H̃q,n) = (1 − ε2)n−q , cq,n(η) ≤ ε−2 e2osc(Uq),

where we have used (29), (30), and (36) to bound d(H̃q,n). Therefore

c = ε−2 exp (2osc(U)) and σ(H̃) =
∑

p

(1 − ε2)p = 1/ε2.

For the two N -IPS approximating models corresponding to the two situations (31) we have for
any p ≥ 1 and f ∈ Bb(E), ‖f‖ ≤ 1, the following estimate

sup
n≥0

E
(|ηN

n (f) − ηn(f)|p) 1
p ≤ bp√

N

e2osc(U)

ε4

for some universal constant bp.

14



3.3.2 Mean field particle models

Let us suppose that E = R
d for some d ≥ 1 and the transition probability kernel Kn,η is described

by

Kn,η(x, dy) =
1

(2π)
d
2

√|Qn|
exp−1

2
[
(y − an(x, η))′ Q−1

n (y − an(x, η))
]

dy

where

• Qn is a symmetric positive definite and (d × d)-matrix, |Qn| = det(Qn).

• dy stands for the Lebesgue measure on R
d , y = (y1, . . . , yd)′ and x ∈ R

d .

• an : Rd ×M1(Rd ) → R
d is a given bounded measurable function.

This example is instructive because the limiting measure (3) can be regarded as the probability
distribution of a path sequence (X0, . . . ,Xn) of random variables defined by the recursion

Xn = an(Xn−1, ηn−1) + Wn , n ≥ 1

where

• Wn, n ≥ 1, is a sequence of independent and R
d -valued random variables with Gaussian

distribution
γn(dy) =

1

(2π)
d
2

√|Qn|
exp−1

2
[
y′Q−1

n y
]

dy

• X0 is a random variable with distribution η0 and independent of the sequence {Wn ; n ≥ 1}
and for each n ≥ 0, ηn is the law of Xn.

Note also that for any n and η we have that

Kn,η(x, dy) = exp In,η(x, y) γn(dy)

with
In,η(x, y) = y′Q−1

n an(x, η) − 1
2
an(x, η)′Q−1

n an(x, η).

A direct calculation shows that

|In,η(x, y) − In,µ(x, y)| ≤ ‖Q−1
n ‖ [|y| + ‖an‖] |an(x, η) − an(x, µ)| , (38)

where |y| = [
∑

1≤i≤d |yi|2]1/2 is the Euclidean norm on R
d , for any (d × d)-matrix A, ‖A‖ =

sup|x|≤1 |A(x)| and ‖an‖ = supx,η |an(x, η)|. Recalling that for any (α, β) ∈ R
2

|eα − eβ| ≤ |α − β| (eα + eβ)

and using (38) we find that

|Kn,η(f)(x) −Kn,µ(f)(x)| ≤ ‖f‖
∫

|In,η(x, y) − In,µ(x, y)| (Kn,η + Kn,µ) (x, dy)

≤ Jn(x, η, µ) ‖f‖ |an(x, η) − an(x, µ)|
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with

Jn(x, η, µ) = ‖Q−1
n ‖

∫
[ |y| + ‖an‖ ] (Kn,η + Kn,µ) (x, dy)

≤ ‖Q−1
n ‖ [ E (|an(x, η) + Wn|) + E(|an(x, µ) + Wn|) + 2‖an‖ ]

≤ Cn
def.= 4 ‖Q−1‖ [ ‖an‖ + E (|Wn |) ],

where Wn stands for a Gaussian d-vector with distribution γn.

Suppose next the drift function an = (a1
n, . . . , ad

n) takes the form

∀1 ≤ i ≤ d , ai
n(x, η) =

∑
j∈J

αi
n,j(x) η(hi

n,j)

with J a finite set with cardinality |J |, αi
n,j and hi

n,j ∈ Bb(Rd ). In this situation we see that

sup
x

|an(x, η) − an(x, µ)| ≤
 ∑

1≤i≤d

[sup
x

|ai
n(x, η) − ai

n(x, µ)|]2
1/2

≤
 ∑

1≤i≤d

[
∑
j∈J

‖αi
n,j‖ |η(hi

n,j) − η(hi
n,j)|]2

1/2

≤
√

d
∑

1≤i≤d

∑
j∈J

‖αi
n,j‖ |η(hi

n,j) − η(hi
n,j)|.

Then, evidently (K) holds with

cn(η) = Cn

√
d sup

i,j
(‖αi

n,j‖‖hi
n,j‖)

and
Hn(η, f) =

{
hi

n,j/‖hi
n,j‖ ; 1 ≤ i ≤ d , j ∈ J

}
.

3.3.3 McKean’s Maxwellian gases

We examine the discrete time version of the McKean’s 2-velocity model for Maxwellian gases
presented in section 3 of [9]. In this situation the state space is given by E = {−1,+1} and for
any η ∈ M1({−1,+1}) the transition probability kernel Kn,η is described by

Kn,η(x, dy) = η(+1) δx(dy) + η(−1) δ−x(dy). (39)

Since

Kn,η(f)(x) −Kn,µ(f)(x) = (η(1) − µ(1)) f(x) + (η(−1) − µ(−1)) f(−x)
= (η(1) − µ(1)) (f(x) − f(−x))

we clearly have
‖Kn,η(f) −Kn,µ(f)‖ ≤ 2 ‖f‖ |η(h) − µ(h)|
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with h(x) = 1{1}(x)(= 1 if x = 1 and 0 otherwise). One concludes that (K) holds with

cn(η) = 2 Hn(η, f) = {h} .

Note also that (39) can also be rewritten as

Kn,η(x, dy) =
∫

E
η(dx′) Kn((x, x′), dy),

where Kn((x, x′), dy) is the transition probability kernel from E2 into E defined by

Kn((x, x′), dy) = δxx′(dy).

Therefore, the corresponding limiting measure-valued process (4) can be formulated in terms of
a discrete-time Boltzmann’s equation

ηn(f) = ηn−1 Kn,ηn−1(f)

=
∫

E×E
ηn−1(dx) ηn−1 (dx′) Kn((x, x′), dy) f(y)

= 〈ηn−1 ⊗ ηn−1,Kn(f)〉 .

4 Feynman-Kac formulas

4.1 Description of Models, Statement of Some Results

Throughout this section {ηn , n ∈ N} denotes the flow of Feynman-Kac distributions defined in
(10). In this framework the one step mappings {Φn , n ≥ 1} are defined by (11). The Markov
transitions {Kn,η , η ∈ M1(E) , n ≥ 1} denote any transition probability kernel satisfying the
regularity condition (K) presented in section 3 and such that for any n and η

Φn(η) = ηKn,η.

A more detailed and precise description of the two N -IPS models corresponding to (1) and
(6) can be found in section 5. The precise description of the variance in the forthcoming
central limit theorems is related to the dynamics structure of the flows of the un-normalized
and normalized measures {γn ; n ∈ N} and {ηn ; n ∈ N}. Next, we describe the corresponding
evolution semi-groups (more details can be found in [5]).

The Markov property in (10) also gives

γn(f) = γn−1(Qnf) with Qnf(x) = gn−1(x) (Pnf)(x).

Therefore, if we set for any 0 ≤ p ≤ n

Qp,n = Qp+1Qp+2 . . . Qn

with convention Qn,n = Id, we also have

γn = γpQp,n.
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It is also convenient to introduce the “normalized” semigroup {Qp,n ; 0 ≤ p ≤ n} given for any
0 ≤ p ≤ n and f ∈ Bb(E) by

Qp,nf =
Qp,nf

γp(Qp,n1)
.

On the basis of the definition of the distributions {ηn, γn ; n ∈ N} we have that

ηn(gn) =
γn(gn)
γn(1)

=
γn+1(1)
γn(1)

.

Therefore, for any f ∈ Bb(E) and n ∈ N

γn(f) = γn(1) ηn(f) with γn(1) =
n−1∏
p=0

ηp(gp) (40)

(with the convention
∏

∅ = 1). Taking in consideration the above formula the natural particle
approximating measures ηN

n and γN
n for the “normalized” and “unnormalized” distributions ηn

and γn is simply given by

ηN
n =

1
N

N∑
i=1

δξi
n

and γN
n (f) = γN

n (1) ηN
n (f) with γN

n (1) =
n−1∏
p=0

ηN
p (gp).

One of the main tool for the analysis of the asymptotic behavior is the Rd -valued F -martingales
defined by

M (N)
n (f) =

n∑
p=0

[
ηN

p (fp) − Φp(ηN
p−1)(fp)

]
(41)

=
1
N

n∑
p=0

N∑
i=1

[
fp(ξi

p) −Kp,ηN
p−1

fp(ξi
p−1)

]
with convention K0,m(ξ−1) = Φ0(ηN

−1) = η0 and where f : (p, x) ∈ N × E 7→ fp(x) ∈ R
d , d ≥ 1, is

a bounded measurable function. Indeed, in accordance with the definition of the unnormalized
measure γN

n and the semi-group Qp,n we have the decomposition

γN
n (f) − γn(f) =

n∑
p=0

[
γN

p (Qp,nf) − γN
p−1(QpQp,nf)

]
=

n∑
p=0

γN
p (1)

[
ηN

p (Qp,nf)− Φp(ηN
p−1)(Qp,nf)

]
(42)

for any n ∈ N and f = (f1, . . . , fd) ∈ Bb(E)d, d ≥ 1, and with convention γN−1Q0 = γ0 = η0 and
Φ0(ηN−1) = η0.

For any R
d -valued function f = (f1, . . . , fd), fu ∈ Bb(E), 1 ≤ u ≤ d, and for any

integral operator K on E and µ ∈ M1(E) we write

µK(f) def.=
(
µK(f1), . . . , µK(fd)

)
18



and K[(f1 − Kf1)(f2 − Kf2)] for the function on E defined by

x 7→ K[ (f1 − (Kf1)(x)) (f2 − (Kf2)(x)) ](x).

Comparing (40), (41), and (42), one finds that the Rd -valued process

W γ,N
p,n (f) = γN

p (f) − γp(f) 0 ≤ p ≤ n (43)

is an F -martingale (transform) such that, for any 1 ≤ u, v ≤ d and 0 ≤ p ≤ n

〈W γ,N.,n (fu),W γ,N.,n (f v)〉p

=
1
N

p∑
q=0

(
γN

q (1)
)2

ηN
q−1Kq,ηN

q−1

( [
Qq,nfu −Kq,ηN

q−1
Qq,nfu

]
×
[
Qq,nf v −Kq,ηN

q−1
Qq,nf v

] )
.

(44)

Many asymptotic convergence results including Lp -rates and exponential estimates and fluc-
tuations can be profitably studied in terms of the above F -martingale. We do not give
all details since the results are essentially the same as those exposed in [5] for the case
Kn,η(xn−1, dxn) = Φn(η)(dxn). To give a flavor, we notice that (44) clearly implies that for
any f ∈ Bb(E) and n ∈ N

E(γN
n (f)) = γn(f) and E([γN

n (f) − γn(f)]2) ≤ c(n)
N

‖f‖2 (45)

for some finite constant c(n) which only depends on the time parameter n. Since

ηN
n (f) =

γN
n (f)

γN
n (1)

and
γN

n (1)
γn(1)

[ηN
n (f) − ηn(f)] =

γN
n (1)

γn(1)
ηN

n [f − ηn(f)]

= γN
n

(
1

γn(1)
(f − ηn(f))

)
we also have that

ηN
n (f) − ηn(f) = [ηN

n (f) − ηn(f)][1 − γN
n (1)

γn(1)
] + γN

n

(
1

γn(1)
(f − ηn(f))

)
Thus, by the first part of (45) we have

E (ηN
n (f)) − ηn(f) =

1
γn(1)

E
(
[ηN

n (f) − ηn(f)][γn(1) − γN
n (1)]

)
.

Therefore, using Cauchy-Schwartz inequality and the second part of (45) one gets∣∣E (ηN
n (f)) − ηn(f)

∣∣ ≤ c(n)
N

‖f‖
for some finite constant c(n) whose values only depends on the time parameter n. As a direct
consequence one concludes that

‖Law(ξ1
n) − ηn‖tv ≤ c(n)

N
.
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4.2 Central Limit Theorem

One way to obtain fluctuations is as weak limit of well chosen martingales. We will use the
following technical lemma.

Lemma 4.1 For any bounded measurable function f : (p, x) ∈ N × E 7→ fp(x) ∈ R
d , d ≥ 1

the R
d-valued, FN -martingale {√N M

(N)
n (f) ; n ∈ N} defined in (41) converges in law to an

R
d-valued Gaussian martingale {Mn(f) ; n ∈ N} such that for any 1 ≤ u, v ≤ d and n ∈ N

〈M(fu),M(f v)〉n =
n∑

p=0

ηp−1Kp,ηp−1

((
fu

p −Kp,ηp−1(f
u
p )
) (

f v
p −Kp,ηp−1(f

v
p )
))

. (46)

Proof: The proof is essentially the same as the proof of Lemma 2.16 p. 42 in [5]. We give its
outline for the convenience of the reader. To use the central limit theorem for triangular arrays
of Rd -valued random variables (Theorem 3.33, p. 437 in [8]) we first rewrite the martingale√

N M
(N)
n (f) in the following form

√
N M (N)

n (f) =
N∑

i=1

n∑
p=0

1√
N

(
fp(ξi

p) −Kp,ηN
p−1

(fp)(ξi
p−1)

)
with convention K0,ηN

−1
= η0. If we denote by [a] the integer part of a ∈ R and {a} = a− [a] this

yields
√

N M (N)
n (f) =

(n+1)N∑
k=1

UN
k (f),

where for any 1 ≤ k ≤ (n + 1)N ,

UN
k (f) =

1√
N

(
fp(ξi

p) −Kp,ηN
p−1

(fp)(ξi
p−1)

)
with i = N{ k

N } and p =
[

k
N

]
so that k = pN + i and for any 1 ≤ u, v ≤ d

E
(
UN

k (fu)UN
k (f v)

∣∣FN
k−1

)
=

1
N

Kp,ηN
p−1

[(
fu

p −Kp,ηN
p−1

(fu
p )(ξi

p−1)
)(

f v
p −Kp,ηN

p−1
(f v

p )(ξi
p−1)

)]
(ξi

p−1).

Here, we let FN
k be the σ-algebra generated by the random variables ξj

p for any pair-index (j, p)

such that pN + j ≤ k. Since
[

[Nt]
N

]
= [t] one gets that for any 1 ≤ u, v ≤ d and t ∈ R+

[Nt]+N∑
k=1

E
(
UN

k (fu)UN
k (f v)

∣∣FN
k−1

)
= CN

[t] (fu, f v) + [Nt]−N [t]
N

(
CN

[t]+1 (fu, f v) − CN
[t] (fu, f v)

)
where,

CN
n (fu, f v) =

n∑
p=0

m(ξp−1)Kp,ηN
p−1

( (
fu

p −Kp,ηN
p−1

fu
p

)(
f v

p −Kp,ηN
p−1

f v
p

) )
.
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This implies that for any 1 ≤ u, v ≤ d

lim
N→∞

[Nt]+N∑
k=1

E
(
UN

k (fu)UN
k (f v)

∣∣FN
k−1

)
= Ct(fu, f v)

in probability with

∀ n ≥ 0, Cn (fu, f v) =
n∑

p=0

ηp−1Kp,ηp−1

( (
fu

p −Kp,ηp−1f
u
p

) (
f v

p −Kp,ηp−1f
v
p

) )
and

∀ t ∈ R+ , Ct(fu, f v) = C[t] (f
u, f v) + {t} (C[t]+1 (fu, f v) − C[t] (f

u, f v)
)
.

Since
∥∥UN

k (f)
∥∥ ≤ 2√

N
‖f[ k

N ]‖ for any 1 ≤ k ≤ [Nt] + N , the conditional Linderberg condition is

clearly satisfied and therefore one concludes that the Rd -valued martingale

XN
t (f) def.=

[Nt]+N∑
k=1

UN
k (f)

converges in law to a continuous Gaussian martingale {Xt(f) ; t ∈ R+} such that, for any
1 ≤ u, v ≤ d

∀ t ∈ R+ , 〈X(fu),X(f v)〉t = Ct(fu, f v).

Recalling that XN
[t](f) =

√
N M

(N)
[t] (f) the proof of the lemma is completed.

Arguing as in [5], one can check that the F -martingale {√NW γ,N
p,n (f) ; 0 ≤ p ≤ n} converges

in law to an R
d -valued and Gaussian martingale {W γ

p,n(f) ; 0 ≤ p ≤ n} such that for any
1 ≤ u, v ≤ d and 0 ≤ p ≤ n

〈W γ.,n(fu),W γ.,n(f v)〉p

=
p∑

q=0

γ2
p(1) ηq−1Kq,ηq−1

( [
Qq,nfu −Kq,ηq−1Qq,nfu

] [
Qq,nf v −Kq,ηq−1Qq,nf v

] )
.

Observing that

ηN
n (f) − ηn(f) =

γn(1)
γN

n (1)
γN

n

(
1

γn(1)
(f − ηn(f))

)
and limN→∞ γn(1)/γN

n (1) = 1, in probability, we prove the following central limit theorem.

Theorem 4.2 For any time n ∈ N, the sequence of random fields

W γ,N
n (f) =

√
N
(
γN

n (f) − γn(f)
)

, resp. W η,N
n (f) =

√
N
(
ηN

n (f) − ηn(f)
)
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with f ∈ Bb(E), converges in law as N → ∞, in the sense of convergence of finite dimensional
distributions, to a centered Gaussian field W γ

n , resp. W η
n , satisfying for any f, f ′ ∈ Bb(E)

E (W γ
n (f)W γ

n (f ′))

=
n∑

p=0

γ2
p(1) ηp−1Kp,ηp−1

( [
Qp,nf −Kp,ηp−1Qp,nf

] [
Qp,nf ′ −Kp,ηp−1Qp,nf ′] )

and

W η
n (f) = W γ

n

(
1

γn(1)
(f − ηn(f))

)
.

Recalling that

ηp(Qp,n(1)) =
γp(Qp,n(1))

γp(1)
=

γn(1)
γp(1)

,

we notice that
γp(1)
γn(1)

Qp,n(f − ηn(f)) = Qp,n(f − ηn(f)) def.= Q̃p,n(f).

Therefore, the variance of the random field {W η
n (f) ; g = f ∈ Bb(E)} can also be described for

any test functions f and f ′ as follows

E (W η
n (f)W η

n (f ′))

=
n∑

p=0
ηp−1Kp,ηp−1

(
[Q̃p,n(f) −Kp,ηp−1Q̃p,n(f)] [Q̃p,n(f ′) −Kp,ηp−1Q̃p,n(f ′)]

)
.

(47)

5 Variance comparison

To ease the notation, we define m(x) = 1
N

∑N
i=1 δxi for x ∈ EN . We now compare now the

asymptotic behavior of the N -IPS approximating model associated to the choices

1) Kn,η(u, .) = Φn(η) and 2) K̂n,η = Kn,η,

where Φn and Kn,η are defined in (11) and (12). From their definition it becomes clear that the
one step transition of the corresponding N -IPS is decomposed into two mechanisms

ξn

Selection−−−−−−−−−−−−−−−−−−−−−−−−−→ Xn

Mutation−−−−−−−−−−−−−−−−−−−−−−−−−→ ξn+1

• In the first case the selection transition ξn −→ Xn consists in sampling randomly N
variables Xn = (X 1

n, . . . ,X N
n ) with common law

Ψn

(
m(ξn)

)
=

N∑
i=1

gn(ξ i
n)∑N

j=1 gn(ξ j
n)

δξ i
n

(48)

and during the mutation stage each particle evolves randomly according to the transition
probability kernel Pn+1. In other words, for each 1 ≤ i ≤ N , ξ i

n+1 is a random variable
with law Pn+1(X i

n, .).
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• In the second case the selection stage consists in sampling for each 1 ≤ i ≤ N a random
variable X̂ i

n with distribution

S
n,m(ξ̂n)

(ξ̂ i
n, .) =

1

m(ξ̂n)(gn)
δ
ξ̂ i

n
+

(
1 − 1

m(ξ̂n)(gn)

)
Ψ̃n(m(ξ̂n)).

In words, with probability 1/m(ξ̂n)(gn), the i-th particle does not move, so that X̂ i
n = ξ̂ i

n,
and with probability 1−1/m(ξ̂n)(gn), X̂ i

n is sampled according to the discrete distribution

Ψ̃n(m(ξ̂n)) =
N∑

j=1

(gn(ξ̂ j
n) − 1)∑N

k=1(gn(ξ̂ k
n) − 1)

δ
ξ̂ j

n
. (49)

We remark that in both cases (13) we have

E

(
m(X̂n)(f)|Fn

)
= Ψn(m(ξn))(f) = m(ξn)Sn,m(ξn)(f).

Note also that in the first situation and given ξn, the N -tuple Xn = (X 1
n, . . . ,X N

n ) consists in
N independent random variables with law Ψn(m(ξn)) so that

E

((
m(Xn)(f) − Ψn(m(ξn))(f)

)2 |Fn

)
=

1
N

Ψn(m(ξn))
((

f − Ψn(m(ξn))(f)
)2)

. (50)

In the second situation (and given ξ̂n) each particle X̂ i
n, 1 ≤ i ≤ N , is selected with distribution

S
n,m(ξ̂n)

(ξ̂ i
n, .) so that

E

((
m(X̂n)(f) − Ψn(m(ξ̂n))(f)

)2 |Fn

)
=

1
N

m(ξ̂n)S
n,m(ξ̂n)

((
f − S

n,m(ξ̂n)
(f)
)2
)

. (51)

In both cases (50) and (51) we have the “local” L2 -estimate

E

(
(m(Xn)(f) − Ψn(m(ξn))(f))2 |Fn

) 1
2 ≤ 1√

N
‖f‖.

Therefore, one concludes that the resulting N -IPS models also fit into the model framework
considered in [2].

For comparison, we notice that the selection distribution (48) can be formulated as

Ψn

(
m(ξn)

)
=

1
m(ξn)(gn)

m(ξn) +
(

1 − 1
m(ξn)(gn)

)
Ψ̃n(m(ξn)).

Hence, in the first case a (Nn, 1/m(ξn)(gn))−binomial number N ′
n(≤ N) of particles are sampled

randomly according to the empirical measure m(ξn) and N −N ′
n particles are chosen randomly

with distribution (49). In contrast, in the second case, a binomial number N ′
n of particles with

parameter 1/m(ξ̂n)(gn) remain in the same location and again N − N ′
n particles are chosen

randomly with distribution (49). In the second situation the closer function gn is to the con-
stant function 1 the more likely particles don’t move (during selection) and remain in the same
sites. Conversely, in the first case, particles are sampled randomly and uniformly in the current
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population when gn is 1.
To explain in mathematical terms this excess of randomness in the first case, we look at a com-
parison between the fluctuation variances. We finish this subsection with an example where this
excess randomness induces a degenerate variance with respect to the time parameter. In essence
our comparison is based on the formula

ηK([f − ηK(f)]2) = ηK([f − K(f)]2) + η([K(f) − ηK(f)]2) (52)

that is valid for any distribution η ∈ M1(E), any test function f ∈ Bb(E) and any Markov
transition K. To highlight the connections between (52) and the “local” variances (50) and (51)
we notice that

K̂n,η = Sn,η =⇒ ηK̂n,η = ηSn,η = Ψn(η)

so that (52) here takes the form

Ψn(µ)([f − Ψn(µ)(f)]2) = µSn,µ([f − Sn,µ(f)]2) + µ([Sn,µ(f) − Ψn(µ)(f)]2)
≥ µSn,µ([f − Sn,µ(f)]2).

In words, the “local” L2 -mean error bound (51) is not more than the one in (50).

Let us write σn(f), respectively σ̂n(f), for the fluctuation variance (47) for the N -IPS
corresponding to the choice Kn,η = Φn(η), respectively K̂n,η, namely

σn(f) =
n∑

p=0

Φp(ηp−1)
(
[Q̃p,n(f) − Φp(ηp−1)(Q̃p,n(f))]2

)
σ̂n(f) =

n∑
p=0

ηp−1Kp,ηp−1

(
[Q̃p,n(f) −Kp,ηp−1(Q̃p,n(f))]2

)
with conventions Φ0(η−1) = η−1K0,η−1 = K0,η−1 = η0. Using formula (52), one can check that

σn(f) = σ̂n(f) +
n∑

p=1

ηp−1

(
[Kp,ηp−1(Q̃p,n(f)) − ηp−1Kp,ηp−1(Q̃p,n(f))]2

)
.

In practice the excess of randomness in the first N -IPS approximating model becomes disastrous
when the functions {gn , n ∈ N} are “nearly” constant which corresponds to the case of high
observation noise in nonlinear filtering problems. This difference between these two algorithms
can be seen by considering the degenerate situation where the functions gn equals to the unit
function 1 and Kp,η = Kp does not depend on η. In this case, we clearly have

Qp,n = Qp,n = Kp+1 . . . Kn and ηp = ηp−1Kp

from which one concludes that

σn(f) = σ̂n(f) +
n−1∑
p=0

ηp

(
[Kp+1 . . . Kn(f) − ηn(f))]2

)
with

σ̂n(f) =
n∑

p=0

ηp

(
[Kp+1 . . . Kn(f) − Kp . . . Kn(f))]2

)
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and convention K0 = η0. In the degenerate situation where Kn = Id, for any n ≥ 1 we have
ηn = η0 and

σn(f) = (n + 1) σ̂n(f) and σ̂n(f) = η0((f − η0(f))2).

25



References

[1] D. Blount and M.A. Kouritzin, Rates for branching particle approximations of continuous-
discrete filters, (in preparation), 1999.

[2] D. Crisan and P. Del Moral and T.J. Lyons, Non linear filtering using branching and interacting
particle systems, Markov Processes and Related Fields, 5(3):293–319, 1999.

[3] P. Del Moral, Measure valued processes and interacting particle systems. Application to non
linear filtering problems, The Annals of Applied Probability, 8(2):438–495, 1998.

[4] P. Del Moral, Non linear filtering: interacting particle solution, Markov Processes and Related
Fields, 2(4):555–581, 1996.

[5] P. Del Moral and L. Miclo, Branching and Interacting Particle Systems Approximations of
Feynman-Kac Formulae with Applications to Non Linear Filtering, In J. Azéma and M. Emery
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