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1 Introduction

Consider the three dimensional Navier-Stokes equation in a domain D, describing the dynamic
of a viscous incompressible Newtonian fluid:

∂u
∂t + (u · ∇) u + ∇p = ν4u + f (1)

div u = 0.

The vector field u(t, x) is the velocity field, p(t, x) is the pressure, f(t, x) the body force, ν > 0 the
kynematic viscosity. We assume that D is a bounded regular open domain, with homogeneous
Dirichlet boundary conditions; however it seems that the results proved below can be adapted
to the case of the full space R3, or the torus T3 with periodic boundary conditions (see Remarks
6 and 10).

One of the main open questions concerning equation (1) is the possible emergence of singu-
larities. This problem is fundamental from the viewpoint of the mathematical analysis (the
well-posedness of equation (1), with given initial and boundary conditions, is an open problem),
but it is also related to the understanding of the evolution of 3-D structures like thin vortex
filaments, the intensity of vortex stretching, the rate of transfer of energy from larger to smaller
scales, so it is relevant for the physical understanding of fluids.

In the sequel, a point (t, x) ∈ (0,∞)×D will be called regular if it has a neighborhood where u
is essentially bounded. This mild regularity condition implies stronger local regularity of u and
its derivatives as soon as the data have a certain regularity (see [16], and comments in [2]). The
points which are not regular will be called singular, and S ⊂ (0,∞) × D will denote the set of
all singular points. For every t, we denote by St ⊂ D the set of singular points at time t:

St = {x ∈ D | (t, x) ∈ S }.
Since we deal with families of solutions, we also write S(u) and St(u) to denote the sets S and
St corresponding to a solution u. We shall recall below the definition of suitable weak solution;
such solutions exist globally in time, but their uniqueness is not known.

It is not known whether S is empty or not. When ν = 0 some numerical investigations (see for
instance [1], [3], [8], [9]) support the belief that S is not empty, but for ν > 0 the answer is even
less clear. Scheffer (see [14] and references therein) and Caffarelli, Kohn, and Nirenberg [2] have
proved that, for certain weak solutions, S is small in the sense of the Hausdorff dimension. The
result of [2], the best known at present, states that for the suitable weak solutions H1(S) = 0,
Hd(·) denoting the d-dimensional Hausdorff measure. See for instance also [7], [11] for other
proofs or comments.

Having in mind the research of Lanford [10], Sigmund-Schultze [17] and other authors who prove
existence of solutions to very difficult dynamical problems for a.e. initial condition with respect
to some time-invariant or space-homogeneous measure, we study the problem of singularities not
for an individual solution, but for a stochastic process solution to (1), stationary in time. The
case of space-homogeneous fields seems to be tractable as well, but we do not solve it here. We
recall also the intensive activity of C. Foias, M. I. Vishik, A. V. Fursikov and others in similar
directions.

Let us state our main result. A stochastic process u, solution of equation (1), can be identified
with a probability measure on the set W of all (deterministic) solution of (1). We prefer to

2



express the result in terms of measures instead of processes. With the definitions and notations
given in the next section, we prove the following result.

Theorem 1 On the set W of all suitable weak solutions u of equation (1), let µ be a probability
measure, invariant for the time-shift, with finite mean dissipation rate. Then, at every given
time t ≥ 0, we have

St(u) = ∅ for µ − a.e. u ∈ W.

In Theorem 5 below we prove that there exists a measure µ with such properties.

Roughly speaking, in terms of processes, we prove that a time-stationary suitable weak solution
u of equation (1), with finite mean dissipation rate, has the property that, at every given time
t ≥ 0, the set St is empty with probability one. In a sense, at every time t ≥ 0, we cannot see
the singularities: only a negligible set of paths may have singularities at time t.

On the contrary, we do not prove that µ-almost all the individual trajectories do not have
singularities in time-space (S = ∅). The counterexample at the end of the paper shows that our
approach is not strong enough to attack this more difficult question.

Our result partially confirms (and it has been strongly motivated by) some physical intuition,
see for instance Chorin [4], p. 93, about the fact that very strong vorticity intensification (and
possible blow-up) typical of 3-D fluids is mitigated in the stationary regime.

Finally we remark that S = ∅ is known for constant in time solutions (a particular case of
stationary solutions). In contrast, the stationary solutions considered here may describe a fluid
in the turbulent regime. In a work in progress we also generalize the result of [2] and the previous
theorem to stochastic Navier-Stokes equations.

1.1 Notations

We shall use the function spaces

H = {φ : D → R3 |φ ∈ [L2(D)]3, div φ = 0, φ · n|∂D = 0 }

where n is the outer normal to ∂D (cf. [19] for more details, and in particular for the interpre-
tation of the condition φ · n|∂D = 0), and

V = {φ ∈ [H1(D)]3 | div φ = 0, φ|∂D = 0 }

(Hα(D) denotes the classical Sobolev space). We denote by | · | and 〈·, ·〉 the norm and inner
product in H. Identifying H with its dual space H ′, and identifying H ′ with a subspace of V ′

(the dual space of V ), we have V ⊂ H ⊂ V ′ and we can denote the dual pairing between V and
V ′ by 〈·, ·〉 when no confusion may arise. Moreover, we set D(A) = [H2(D)]3 ∩ V , we denote
by D(A−1) the dual space of D(A), and we perform identifications as above to get the dense
continuous inclusions

D(A) ⊂ V ⊂ H ⊂ V ′ ⊂ D(A−1).

With D(A) defined above, we define the linear operator A : D(A) ⊂ H → H as Au = −P∆u,
where P is the orthogonal projection in [L2(D)]3 over H. The operator A is positive selfadjoint
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with compact resolvent (see [21], Ch. III, Section 2.1); we denote by 0 < λ1 ≤ λ2 ≤ . . . the
eigenvalues of A, and by e1, e2, . . . a corresponding complete orthonormal system of eigenvectors.

The fractional powers Aα of A, α ≥ 0, are simply defined by

Aαx =
∞∑
i=1

λα
i 〈x, ei〉ei

with domain
D(Aα) = {x ∈ H | ‖x‖D(Aα) < ∞}

where

‖x‖2
D(Aα) =

∞∑
i=1

λ2α
i 〈x, ei〉2 = |Aαx|2.

The space D(Aα) is an Hilbert space with the inner product

〈x, y〉D(Aα) = 〈Aαx,Aαy〉,

with x, y ∈ D(Aα).

Since V coincides with D(A1/2) (see [20] Section 2.2, or [21], Ch. III, Section 2.1), we can endow
V with the norm ‖u‖ = |A1/2u|.
We remark that

‖u‖2 ≥ λ1|u|2.

2 Definition and existence of a stationary measure on weak so-

lutions

Let us first recall the definition of suitable weak solution given in [2] (the regularity of p can
be improved, see [18], [11], but we do not need it here). A minor difference with respect to [2]
is that we do not call solution the pair (u, p), but only the velocity u (the pressure appears as
an auxiliary variable). The definitions are equivalent for all purposes, but it is slightly easier to
put a topology only on the set W of fields u.

Throughout the paper, we assume that f is given and time-independent, with the regularity

f ∈ [L2(D)
]3

, div f = 01.

We have assumed that f is independent of time since we are interested in stationary solutions,
so we need an autonomous dynamic; the extension to the case when f is a stationary stochastic
process (possibly a generalized one, as a white noise) is meaningful, and will be treated in a
work in preparation.

1The regularity given by [2] is q > 5
2
, but it is easy to see that, going along their proofs, the same results are

valid for f ∈ Lq1(0, T ;Lq2(D)), with q1, q2 > 3
2

and 2
q1

+ 3
q2

< 2. In this situation we have q1 = ∞ and so the

previous condition means q2 > 3
2
; moreover we need f ∈ L2(D) in order to get existence for the solutions (see

also [13]).
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Definition 2 A suitable weak solution to equation (1) in (0,∞) × D is a vector field

u ∈ L∞ (0, T ;H) ∩ L2 (0, T ;V ) for all T > 0,

weakly continuous in H, such that there exists

p ∈ L
5
4
loc((0,∞) × D)

such that equation (1) holds true in the sense of distributions on (0,∞)×D, the classical energy
inequality ∫

D
|u(t)|2 + 2ν

∫ t

s

∫
D
|∇u|2 ≤

∫
D
|u(s)|2 + 2

∫ t

s

∫
D

f · u

holds true for almost all s ≥ 0 and all t > s, and also the following Local Energy Inequality holds
true ∫

D
|u(t)|2ϕ + 2ν

∫ t

0

∫
D

ϕ|∇u|2 ≤
∫ t

0

∫
D
|u|2

(
∂ϕ

∂t
+ ν4ϕ

)

+
∫ t

0

∫
D

(|u|2 + 2p)(u · ∇)ϕ + 2
∫ t

0

∫
D

(f · u)ϕ

for every smooth function ϕ : R× D → R, ϕ ≥ 0, with compact support in (0,∞) × D, and for
all t > 0.

We have included in the definition the classical energy inequality and the weak continuity of u
(as a function of t) with values in H, properties not stated in the definition of [2], since they
hold true for the solutions constructed in [2] and are classical in the theory of 3-dimensional
Navier-Stokes equations.

Denote by W the set of all suitable weak solutions of the Navier-Stokes equation (1) in (0,∞)×D.
It has been proved in [2] that W 6= ∅. Let us define the following metric on W (many of the
ideas below concerning the framework of the path space are taken from Sell [15]; see also [5]):

d(u(1), u(2)) =
∞∑

n=1

2−n

(
1 ∧

∫ n

0

∫
D
|u(1) − u(2)|2dx dt

)
, u(1), u(2) ∈ W.

The metric space (W,d) is presumably not complete; a little modification of the definition of
suitable weak solution would give us a complete metric space: one has to exclude t = 0 as in
[15]. Here we do not need completeness.

Let Cb(W ) be the space of all bounded continuous functions φ : W → R, with the uniform
topology. Let B denote the Borel σ-algebra of (W,d), and let M1(W ) be the set of all probability
measures on (W,B). We denote by µ(φ) the integral

∫
W φ(u)µ(du), for all µ ∈ M1(W ) and

φ ∈ Cb(W ).

Let τt : W → W , t ≥ 0, be the time-shift, defined as (τtu)(s, x) = u(t + s, x). It is easy to verify
the following properties:

i) τtu ∈ W for all u ∈ W and t ≥ 0,

ii) the mapping (t, u) 7→ τtu is continuous from [0,∞) × W to W .
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See also [15]. We denote by τt also the induced mapping on Cb(W ) defined as

(τtφ)(u) = φ(τtu) φ ∈ Cb(W ).

We write τtµ for the image measure of µ under τt (often denoted by µ(τ−1
t )). We have

(τtµ)(φ) = µ(τtφ)

for all µ ∈ M1(W ) and φ ∈ Cb(W ).

Definition 3 A probability measure µ ∈ M1(W ) will be called time-stationary if τtµ = µ for all
t ≥ 0. We say that µ has finite mean dissipation rate if∫

W

(∫ T

0

∫
D
|∇u|2dx dt

)
µ(du) < ∞ for all T > 0.

The measurability of
∫ T
0

∫
D |∇u|2dx dt as a function from (W,B) to R is obvious by the lower

semicontinuity of the integral.

We prepare the existence of time-stationary measures with the following compactness criterium.

Lemma 4 Given a function k : [0,∞) → [0,∞), the set

K =
{

u ∈ W | ‖u‖L∞(0,T ;H) + ‖u‖L2(0,T ;V ) ≤ k(T ), ∀T > 0
}

is relatively compact in (W,d).

Proof. Given a sequence {un} ⊂ K, we have to prove that there exists a subsequence {uν}
which converges to some u ∈ W in the metric d, i.e. in the strong topology of L2(0, T ;H) for
all T > 0.

Let {pn} ⊂ L
5/4
loc ((0,∞) × D) be a sequence corresponding to {un} as in the definition of

suitable weak solution. Since un satisfies equation (1) in the sense of distributions, one has∥∥dun
dt

∥∥
L2(0,T ;D(A−1))

≤ C(n, T ) where C(n, T ) depends only on the norms of un in L∞(0, T ;H)
and L2(0, T ;V ). The proof of this result is classical; see for instance [11] Lemma 2.3, that we
use again in the sequel of this proof. From the bound in the definition of K it follows that there
exists a constant C(T ) independent of n such that∥∥∥∥dun

dt

∥∥∥∥
L2(0,T ;D(A−1))

≤ C(T ).

The boundedness of {un} in L2(0, T ;V ) and L2(0, T ;D(A−1)) implies the existence of a strongly
convergent subsequence in L2(0, T ;H), by a classical compactness result (see [19]). We apply
this argument iteratively on [0, n]: first we extract a subsequence {un(1)} strongly convergent
in L2(0, 1;H) to some u(1), then from {un(1)} we can extract a subsequence {un(2)} strongly
convergent to some u(2) in L2(0, 2;H), and so on. Since a fortiori {un(2)} also converges strongly
to u(2) in L2(0, 1;H), u(1) and u(2) coincide over [0, 1]; a similar identification holds true for
the other limit functions. The procedure can be formalized by induction. Then it is sufficient
to take the diagonal sequence to have a subsequence {uν} of the original sequence {un}, and
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a function u, such that {uν} converges strongly to u in L2(0, T ;H) for every T > 0. If we
pass to a further subsequence, we also have that {uν} converges strongly to u in H for a.e.
t, weakly to u in L2(0, T ;V ) and in W 1,2(0, T ;D(A−1)), and weak star in L∞(0, T ;H), for
every T > 0, so in particular u has these regularity properties. By a classical result, from
the properties L∞(0, T ;H) and C([0, T ];D(A−1)) (that follows from W 1,2(0, T ;D(A−1))), there
exists a representative in the equivalence class of u that is weakly continuous in H; we consider
it in the sequel.

From [11] Lemma 2.3, for every closed set B ⊂ D there exists a constant C(B,n, T ), depending
only on the norms of un in L∞(0, T ;H) and L2(0, T ;V ), such that

‖pn‖L5/4((0,T )×B) ≤ C(B,n, T ).

From the bound in the definition of K it follows that there exists a constant C(B,T ) independent
of n such that

‖pn‖
L

5
4 ((0,T )×B)

≤ C(B,T ).

Therefore, up to a further subsequence, we can assume that {pν} converges weakly to some p in
L

5/4
loc ((0,∞) × D).

The proof is complete if we show that u is a suitable weak solution of equation (1) (with the
pressure p). We have already proved all the regularity properties of u and p, so we have only
to prove, by a passage to the limit, that u satisfies equation (1) in the sense of distributions,
that the classical energy inequality holds true, and that the local energy inequality holds true.
The passage to the limit in the local energy inequality is less classical and more difficult, and
essentially contains all the main ingredients or ideas to prove the others (that can be found for
instance in [19]), so we restrict ourselves to this point. We follow the proof of a similar fact
given in the appendix of [2].

Fix some T > 0. Since pn are bounded in L
5/4
loc , then, up to a subsequence, pn converges to p in

L5/4(0, T ;L5/3
loc (D)) (the argument to show this can be found in [2], p. 781-782). Moreover, since

un converges to u in L2((0, T ) × D) and the un are bounded in L10/3((0, T ) × D) by Sobolev
inequalities and the bounds in the definition of K, we have

un → u strongly in Ls((0, T ) × D), s ∈ [2,
10
3

). (2)

Using again Sobolev inequalities and the bounds in the definition of K, we know that the un

are bounded in L20/3(0, T ;L5/2(D)). Since we know that un converges to u in L5/2((0, T )×D),
we can conclude that

un → u strongly in L5(0, T ;L5/2(D)). (3)

Now we have all the convergence properties we need to prove that for each positive function
ϕ ∈ C∞

c ((0,∞) × D),

2ν
∫ t

0

∫
D

ϕ|∇u|2 ≤
∫ t

0

∫
D
|u|2

(
∂ϕ

∂t
+ ν4ϕ

)
+
∫ t

0

∫
D

(|u|2 + 2p)(u · ∇)ϕ

+2
∫ t

0

∫
D

(f · u)ϕ.
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In fact the integral
∫ ∫

ϕ|∇u|2 is lower semicontinuous and so

∫ t

0

∫
D

ϕ |∇u|2 ≤ lim inf
n→∞

∫ t

0

∫
D

ϕ |∇un|2 ,

while the other terms converge thanks to (2), (3) and the fact that pn converges to p in
L5/4(0, T ;L5/3

loc (D)). At last the complete local energy inequality can be obtained with an argu-
ment similar to the one used in [2], p. 783.

Theorem 5 There exists a time stationary probability measure µ ∈ M1(W ), with finite mean
dissipation rate, for the Navier-Stokes equation (1). For any such measure µ, there exists a
constant Cµ > 0 such that for all t ≥ s ≥ 0 we have

∫
W

(∫ t

s

∫
D
|∇u|2dx dt

)
µ(du) = Cµ(t − s). (4)

Proof. Step 1. We apply the classical Krylov-Bogoliubov method to the semigroup τt in W .
Let v0 ∈ M1(W ) be the δ-Dirac measure concentrated at some given element u∗ ∈ W (W is non
empty): v0 = δu∗ . Let

vt = τtv0 = δτtu∗

µt =
1
t

∫ t

0
vs ds, t ≥ 0.

It is not difficult to see (using property (ii) of τt) that vt and µt are well defined elements of
M1(W ). We shall show in Step 2 that there exists a compact set K ⊂ W such that τtu

∗ ∈ K
for all t ≥ 0, so vt(K) = 1 and thus

µt (K) = 1

for all t ≥ 0. Then (µt)t≥0 is tight. We can apply Prohorov theorem (notice that completeness
of (W,d) is not required in the part of Prohorov theorem we use here); hence there is a sequence
µtn weakly convergent to some µ ∈ M1(W ):

µtn(φ) → µ(φ) ∀φ ∈ Cb(W ).
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Now for t ≥ 0 we have (φ ∈ Cb(W ))

(τtµ)(φ) = µ(τtφ)
= lim

n→∞µtn(τtφ) (since τtφ ∈ Cb(W ))

= lim
n→∞

1
tn

∫ tn

0
(τsv0) (τtφ) ds

= lim
n→∞

1
tn

∫ tn

0
v0(τsτtφ) ds

= lim
n→∞

1
tn

∫ tn

0
v0(τs+tφ) ds

= lim
n→∞

1
tn

∫ t+tn

t
v0(τrφ) dr

= lim
n→∞µtn(φ) + lim

n→∞
1
tn

(∫ t+tn

tn

v0(τrφ) dr −
∫ t

0
v0(τrφ) dr

)
= µ(φ) (v0(τrφ) is bounded in r).

Therefore µ is time-stationary.

Step 2. We denote u∗ by u for simplicity. As announced in Step 1, we have to prove that τtu ∈ K
for all t ≥ 0, for a suitable compact set K. In view of Lemma 4 and the definition of τtu, it is
sufficient to prove that for all T > 0 there exists a constant C(T ) > 0 such that

sup
s∈[t,t+T ]

∫
D
|u(s, x)|2dx +

∫ t+T

t

∫
D
|∇u|2dx dr ≤ C(T ), (5)

uniformly in t ≥ 0.

From the classical energy inequality, for almost all s ≥ 0 and all t > s we have∫
D
|u(t, x)|2dx + ν

∫ t

s

∫
D
|∇u|2dx dr ≤

∫
D
|u(s, x)|2dx + Cν

∫ t

s
‖f‖2

V ′dr (6)

for some constant Cν . Poincaré inequality implies the existence of a constant λ1 > 0 such that∫
D
|u(t, x)|2dx + νλ1

∫ t

s

∫
D
|u|2dx dr ≤

∫
D
|u(s, x)|2dx + Cν‖f‖2

V ′(t − s).

Denote
∫
D |u(t)|2dx by v(t), νλ1 by λ, Cν‖f‖2

V ′ by C. We have, for all s ≥ 0 and all t > s,

v(t) ≤ v(s) −
∫ t

s
λv(r)dr + C(t − s). (7)

Let t 6∈ N , where N is the set of Lebesgue measure zero for which (7) does not hold, and let
u(s) = −v(t − s) for s ∈ [0, t]. It is easy to see that for each s ∈ [0, t] such that t − s 6∈ N , we
have

u(s) ≤ u(0) +
∫ s

0
λu(r)dr + Cs
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and by Gronwall lemma

u(s) ≤ u(0)eλs +
C

λ
(eλs − 1).

Come back to function v to obtain

v(t) ≤ v(t − s)e−λs +
C

λ
(1 − e−λs)

and then we can conclude that for all t 6∈ N

v(t) ≤ sup
0≤s≤1

v(s) +
C

λ
.

In our application, this means that∫
D
|u(t, x)|2dx ≤ Cν‖f‖2

V ′

νλ1
+ sup

0≤s≤1

∫
D
|u(s, x)|2dx (8)

holds true for all t ≥ 0 (by the weak continuity of u in H). Given T > 0, for all t > 0 we have
from (6) and (8)

ν

∫ t+T

t

∫
D
|∇u|2dx dr ≤ Cν‖f‖2

V ′

νλ1
+ sup

0≤s≤1

∫
D
|u(s, x)|2dx + CνT‖f‖2

V ′

so there exists a constant C1(T ) such that∫ t+T

t

∫
D
|∇u|2dx dr ≤ C1(T )

uniformly in t ≥ 0. A similar estimate

sup
s∈[t,t+T ]

∫
D
|u(s, x)|2dx ≤ C2(T )

is a straightforward consequence of (8), so (5) is proved. This proves the claim left open in Step
1 and completes the proof of the existence of a time-stationary measure µ.

Step 3. Let us prove an important identity. Recall some facts and notations from Section 1.1.
For all h ∈ V we have ∫

D
|∇h|2dx = lim

N→∞

n∑
n=1

λn〈h, en〉2.

From the monotone convergence theorem it follows that for every function h ∈ L2(0, T ;V ) we
have ∫ t

0

∫
D
|∇h|2dx dt = lim

N→∞

n∑
n=1

λn

∫ t

0
〈h(t), en〉2dt.

The shift invariance on µ implies that
∫
W φ(τtu)µ(du) =

∫
W φ(u)µ(du) for all t ≥ 0 and all

continuous bounded functions φ on W . Therefore, for every real R > 0 and natural N > 0, we
have ∫

W

(
R ∧

n∑
n=1

∫ t

s
λn〈u(r), en〉2dr

)
µ(du) =

∫
W

(
R ∧

n∑
n=1

∫ t−s

0
λn〈u(r), en〉2dr

)
µ(du)
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for all t > s ≥ 0. The same identity holds true, by monotone convergence, without cut-off:∫
W

(∫ t

s

∫
D
|∇u|2dr

)
µ(du) =

∫
W

(∫ t−s

0

∫
D
|∇u|2dr

)
µ(du). (9)

Both members can be infinite, at this stage of the proof.

Step 4. We have to prove that µ has finite mean dissipation rate. Given T > 0, from (6) there
exists a constant CT,f > 0 such that

∫ t

0

∫ t

s

∫
D
|∇u(r, x)|2dx dr ds ≤

∫ t

0

∫
D
‖u(s, x)|2dx ds + CT,f

whence ∫ t

0

∫ r

0

∫
D
|∇u(r, x)|2dx ds dr ≤

∫ t

0

∫
D
|u(s, x)|2dx ds + CT,f

yielding ∫ t

0
r

∫
D
|∇u(r, x)|2dx dr ≤

∫ t

0

∫
D
|u(s, x)|2dx ds + CT,f

Therefore, for all δ > 0,∫ t

δ

∫
D
|∇u(r, x)|2dx dr ≤ 1

δ

(∫ t

0

∫
D
|u(s, x)|2dx ds + CT,f

)
. (10)

The claim of finite mean dissipation rate will follow as soon as we prove that∫
W

(∫ t

0

∫
D
|u(s, x)|2dx ds

)
µ(du) < ∞ (11)

for all T > 0. Indeed, the left-hand-side of (10) will be µ-integrable, so by the identity (9) we
get ∫

W

(∫ T−δ

0

∫
D
|∇u(r, x)|2dx dr

)
µ(du) < ∞

which is the required property. We have∫
W

(∫ t

0

∫
D
|u(s, x)|2dx ds

)
νt(du) =

∫ t+T

t

∫
D
|u(s, x)|2dx ds ≤ Ct

by the estimates of Step 2. By convex combination, the same estimate is true for µt in place of
νt. Thus for every R > 0 we have∫

W

(∫ t

0

∫
D

(|u(s, x)|2 ∧ R) dx ds

)
µt(du) ≤ Ct.

Taking t = tn, the sequence found in Step 1, we get in the limit as n → ∞∫
W

(∫ t

0

∫
D

(|u(s, x)|2 ∧ R) dx ds

)
µ(du) ≤ Ct

for every R > 0, which implies (11) by monotone convergence.
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Step 5. Let us prove (4). Let ϑ(t) be the real valued function

ϑ(t) =
∫

W

(∫ t

0

∫
D
|∇u|2dr

)
µ(du).

By identity (9) we get ϑ(t + s) = ϑ(t) + ϑ(s), for all t, s ≥ 0. Moreover, ϑ(t) is non decreasing.
These two properties imply that it is linear. The proof of the theorem is complete.

Remark 6 In the same way an existence result can be obtained for stationary solutions in
the periodic case. An existence theorem for deterministic suitable weak solutions with periodic
boundary conditions can be found in P. L. Lions (Theorem 3.2, [12]).

As it may concern the case of the whole space, a different approach has to be used, since it is
not possible to use Poincarè inequality to obtain the uniform estimates used to control the mean
dissipation rate. A way to show the claim is to proceed by approximating a stationary solution
in the whole space by means of (statistically) stationary solutions with periodic boundary con-
ditions and then taking the limit as the characteristic length goes to infinity (a more detailed
proof of these facts can be found in [13]).

In order to be convinced that the mean dissipation rate remain finite also in the case of the
whole space, we use the classical energy inequality. In fact, once we have proved that the mean
dissipation rate is finite, we can see that it does not depend on the geometry of the domain
we consider, but only on the amplitude of the external force and on the viscosity. Consider for
example a stationary solution uL

st of law µL with periodic boundary conditions. If we take the
expectation in the classical energy inequality, using stationarity, we get

νE
∫ T

0

∫
QL

|∇u|2 ≤ T‖f‖2
V ′

L
,

where QL =
(−L

2 , L
2

)3 is the periodic domain, and so

CµL ≤ 1
ν
‖f‖2

V ′
L
.

3 Proof of Theorem 1

Let us recall the fundamental criterium of regularity proved by Caffarelli, Kohn and Nirenberg
[2]: if u is a suitable weak solution, there exists ε > 0 such that any point (t, x) ∈ (0,∞) × D
satisfying

lim sup
r→0

1
r

∫ t+r2

t−r2

∫
Br(x)

|∇u|2 ≤ ε (12)

is a regular point for u. Here Br(x) is the ball of radius r centered at x.

Lemma 7 Let µ be a time-stationary measure for the Navier-Stokes equation (1), with finite
mean dissipation rate. Let rn = 2−n. For every t ≥ 0, we have

lim
n→∞

1
rn

∫ t+r2
n

t−r2
n

∫
D
|∇u|2 = 0 for µ-a.e. u ∈ W.

12



Proof. Let us introduce the random variable

Xn(u) =
1
rn

∫ t+r2
n

t−r2
n

∫
D
|∇u|2,

defined on W . We have ∫
W

Xn dµ = Cµrn

where Cµ is the constant given by Theorem 5. Given δ > 0, we thus have

µ(Xn > δ) ≤ Cµ

δ
rn

so that ∞∑
n=1

µ(Xn > δ) < ∞.

By Borel-Cantelli Lemma, there exists a set Wt ⊂ W of µ-measure one, such that for all u ∈ Wt

there exists n0(u) such that for all n > n0(u) we have u ∈ (Xn < δ), i.e.

Xn(u) < δ.

Taking a sequence δk → 0, the previous statement (with n0(u) depending on k) holds true for
all k and all u in a set of µ-measure one, proving the claim.

Corollary 8 For every t ≥ 0, we have

lim
r→0

1
r

∫ t+r2

t−r2

∫
D
|∇u|2 = 0 for µ-a.e. u ∈ W.

The proof of the first claim follows from the inequality

1
r

∫ t+r2

t−r2

∫
D
|∇u|2 ≤ 2

1
rn

∫ t+r2
n

t−r2
n

∫
D
|∇u|2

for r ∈ (rn+1, rn). The claim of Theorem 1 is now a simple consequence of the criterium of
Caffarelli, Kohn and Nirenberg [2] recalled above and the previous corollary.

Remark 9 With a similar proof as in Corollary 8, it is possible to give a stronger estimate of
the quantity in (12), namely

lim
r→0

1
r2−ε

∫ t+r2

t−r2

∫
D
|∇u|2 = 0 for µ-a.e. u ∈ W

for every ε > 0.It is not known if this estimate can improve the result in Theorem 1 (see also
the counterexample in the next section).

Remark 10 In view of Remark 6, we can see that Theorem 1 holds also for statistically sta-
tionary solutions with periodic boundary conditions and in the whole space.
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3.1 A counterexample

We do not know whether the following result is true: for µ-a.e. u ∈ W the set S(u) is empty. In
this section we only show that it is difficult to obtain such a result with the present approach.
More precisely, we show that the following abstract condition, corresponding to the basic prop-
erties we have in our approach, are not sufficient to prove the better statement on S(u). Having
in mind the process Yt(u) =

∫
D |∇u(t)|2dx, assume that a real valued stochastic process (Yt)t

on (W,B, µ) fulfills the conditions:

1) Yt is stationary,

2) Yt ≥ 0,

3) t → Yt is integrable µ-a.s.

4)
∫
W Ytdµ < ∞.

In fact these properties are a little stronger than those satisfied in the Navier-Stokes problem.
We show that these conditions do not imply that for µ-a.e. u ∈ W

lim
r→0

1
r

∫ t+r2

t−r2

Ys = 0 for all t, (13)

i.e. the condition of Corollary 8 that implies Theorem 1. Consider the torus T1 and let φ :
T1 → R+ be a function which is regular except at 0, where it has a singularity such that

∫
T1

φ < ∞ but
∫ r2

−r2

φ =
1

log r−1
.

We do not have

lim
r→0

1
r

∫ r2

−r2

φ = 0

(and even with arbitrary powers of r). On W = T1 consider the Borel sets with the Haar
measure µ and the process

Yt(u) = φ(t + u).

For all u ∈ T1 it has a singularity at t = −u and condition (13) is violated. On the other side it
satisfies the assumptions (1)-(4) above. Finally, notice that it does not contradict the theorems
proved above: given t, for µ-a.e. u we have

lim
r→0

1
r

∫ t+r2

t−r2

Ys(u) = 0.

Indeed, it holds true for all u 6= −t:

1
r

∫ t+r2

t−r2

Ys(u) ds =
1
r

∫ t+r2

t−r2

φ(s + u) ds =
1
r

∫ t+u+r2

t+u−r2

φ(s′) ds′

and at t + u 6= 0 the function φ is regular. This expression diverges only at t + u = 0.
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