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2 ON THE SOLVABILITY OF NONLINEAR SPDES

1. Introduction

The aim of this paper is to prove the unique solvability of the fol-
lowing one-dimensional nonlinear stochastic partial differential equa-
tions(SPDEs):

du = [a(t, x, u)u′′ + f(t, x)] dt+ [σk(t)u′ + gk(t, x)] dwkt , u(0, ·) = u0,
(1.1)

du = [a(t, x, u)u′′ + f(t, x)] dt+ gk(t, x) dwkt , u(0, ·) = u0, (1.2)

under suitable conditions on a, σ, f , gk and u0.
There are not so many works on the solvability of nonlinear SPDEs

except some special classes of nonlinear SPDEs.
In [8],[9], Krylov developed an Lp-theory of SPDEs including some

nonlinear equations. The main assumption (Assumption 4.6 in [9]) was
that the nonlinear terms are strictly subordinated to the linear main
operators. Our equation (1.1) does not fall into this class because we
have a nonlinearity in the main operator.

There are some other interesting classes of nonlinear SPDEs. Among
others are semilinear equations and nonlinear equations of monotone
type.

Semilinear equations have been extensively studied mostly using
semigroup theory. They are evolution equations defined on some Hilbert
spaces:

du = [Au+ F (t, u)] dt+B(t, u) dW (t), (1.3)

where A is the infinitesimal generator of a strongly continuous semi-
group S(t) and W (t) is a Hilbert space-valued Wiener process. Under
some conditions on nonlinear operators F and B like (local) Lipshitz-
ness or dissipativeness, one obtains the solvability of (1.3). The idea is
to convert (1.3) into an integral equation using S(t) and then employ
the fixed point type argument. We refer the readers to Da Prato-
Zabczyk [7].

The theory for the nonlinear equations of monotone type has been
developed by many mathematicians using the variational approach,
Bensoussan-Temam [3],[4] (via time discretisation), Pardoux [16],[17],
Krylov-Rozovskii [13], Ahmed [1] (via Galerkin approximation), Ben-
soussan [2] (via splitting up method). One tries to approximate the
given nonlinear infinite-dimensional equations by a sequence of “solv-
able” ones. One then makes use of the monotonicity of the nonlinear
operators to pass to the limit.

We note that (1.1) is not included in neither of these two theories.
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We also mention recent two papers which consider equations similar
to ours. Dalecky and Goncharuk [5] studied abstract quasilinear SPDEs
which includes the following equation (in a very simplified form) as an
example:

∂u

∂t
= a(t, u(t))u′′ +

∫
D

c(t, x, y, u(t, x))ξ(t, y) dy, (1.4)

where ξ(t, y) is a space-time white noise and D is a smooth bounded
domain. But it is assumed that a(t, ·) does not depend on the pointwise
value of the solution u, but it is a functional of u. Da Prato and Tubaro
[6] considered the following equation as an application of their theory:

du = a(t, x, u)u′′ dt+ [b(t, x)u′+ h(t, x)u] dwt. (1.5)

Under rather strong regularity assumptions on b and h, they proved
that (1.5) has a unique solution. The key idea was to transform the
stochastic PDE (1.5) to a deterministic equation for almost all ω ∈ Ω
using the stochastic characteristic method (see [18],[19] and references
therein for this method). This allows them to use the Hölder space the-
ory for linear PDEs with nonsmooth coefficients and nonlinear PDEs.

We also apply this transformation technique to reduce (1.1) to (1.2)
(if σk’s also depend on x, this transformation does not work in our
approach). But note that after this reduction, we still have a stochas-
tic PDE. Using the idea in [11], one can further transform (1.2) to a
completely deterministic problem in the spirit of [6]. But this process
requires a very strong regularity assumption on g. Thus we do not
make this transformation, which is the main difference between our
work and [6]. Then the Hölder space theory is not available for (1.2).
This is the main difficulty in getting the solvability of nonlinear SPDEs
like (1.2) in our approach. We first work in some stochastic Sobolev
space setting which is available for us by the work of Krylov [8], [9],
and then apply the embedding theorems for these spaces to control the
Hölder norms of the solution and its derivatives.

Now we briefly describe our method and the organization of this
paper.

Our approach heavily depends on Krylov’s Lp-theory [8],[9]. Thus in
Section 2, we briefly summarize some of the notations, definitions and
theorems of this theory. In particular, the solvability of linear equations
in Hn

p (τ )-spaces and the embedding theorems for these spaces enable
us to prove in Section 3 the “local existence” of (1.2) by adapting the
method of continuity argument for nonlinear PDEs (see §1.1 of [10])
to our stochastic PDE. In Section 4, we first prove the uniqueness of
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the solution of (1.2). Then we show that the a priori estimate for one-
dimensional SPDEs with discontinuous coefficients established in [20]
along with the local solvability and the uniqueness yields the main re-
sult of this paper, the unique solvability of (1.2). The unique solvability
of (1.1) follows from this. In many places, we introduce a sequence of
stopping times, which turns out to be a very useful technical tool.

Finally, we remark that we could consider slightly more general equa-
tions, for example, we can add lower order terms in (1.1), and get the
same result under slightly weaker conditions. But we didn’t do this
since we tried to present the main idea as free of extra technical details
as possible. We also think that one can get the unique solvability of
(1.1) with σk = σk(t, x) by a perturbation argument under some rel-
atively mild assumption on the regularity of σk’s. We will make this
generalization elsewhere.

2. Notation and Preliminary Results

Here we present some of the notations, definitions and theorems of
Krylov [8],[9]. We formulate them in a convenient form for our purpose.
We also state an a priori estimate for one-dimensional SPDEs with
discontinuous coefficients which is used in Section 4.

Let R1 be 1-dimensional Euclidean space, T a fixed positive number,
(Ω, F , P ) a complete probability space, ({Ft}, t > 0) be an increasing
filtration of σ-fields Ft ⊂ F containing all P -null subsets of Ω, and P
the predictable σ-field generated by {Ft}. Let {wkt ; k = 1, 2, · · · } be
independent one-dimensional Ft-adapted Wiener processes defined on
(Ω, F , P ). For the above standard terminologies, we refer the readers
to [12].

Let D be the set of real-valued Schwartz distributions defined on
C∞0 (R1). For given p ∈ [2,∞) and nonnegative real number n, define
the space Hn

p = Hn
p (R1) (called the space of Bessel potentials or the

Sobolev space with fractional derivatives) as the space of all generalized
functions u such that (1 − ∆)n/2u ∈ Lp = Lp(R1). For u ∈ Hn

p and
φ ∈ C∞0 by definition

(u, φ) = ((1−∆)n/2u, (1−∆)−n/2φ)

=

∫
R1

[(1−∆)n/2u](x)(1−∆)−n/2φ(x) dx.
(2.1)

For u ∈ Hn
p one introduces the norm

‖ u ‖n,p:=‖ (1−∆)n/2u ‖p,
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where ‖ · ‖p is the norm in Lp. It is known that Hn
p is a Banach space

with the norm ‖ · ‖n,p and the set C∞0 is dense in Hn
p .

Recall that for integers n > 0 the space Hn
p coincides with the

Sobolev space W n
p = W n

p (R1).
We apply the same definitions to l2-valued functions g, where l2 is

the set of all real-valued sequences g = {gk; k = 1, 2, · · · } with the
norm defined by |g|2l2 :=

∑
k |gk|2. Specifically,

‖ g ‖p:=‖ |g|l2 ‖p, ‖ g ‖n,p:=‖ |(1−∆)n/2g|l2 ‖p .
Finally, for stopping times τ 6 T , we denote |(0, τ ]] = {(ω, t) : 0 < t 6
τ (ω)} and

Hn
p(τ ) := Lp( |(0, τ ]],P ;Hn

p ), Hn
p(τ, l2) := Lp( |(0, τ ]],P ;Hn

p (R1, l2)).

If n = 0, we use L instead of H0. The norms in these spaces are defined
in an obvious way.

For n ∈ R and

(f, g) ∈ Fnp (τ ) := Hn
p(τ )×Hn+1

p (τ, l2),

set
‖ (f, g) ‖Fnp (τ ):=‖ f ‖Hnp (τ ) + ‖ g ‖Hn+1

p (τ,l2) .

Every stopping time τ appearing in this paper satisfies τ 6 T a.s.

Definition 2.1. For a D-valued function u ∈ Hn
p(τ ), we write u ∈

Hn
p (τ ) if u′′ ∈ Hn−2

p (τ ) and there exists (f, g) ∈ Fn−2
p (τ ) such that for

any φ ∈ C∞0 , with probability 1 the equality

(u(t, ·), φ) = (u(0, ·), φ) +

∫ t

0

(f(s, ·), φ) ds+
∞∑
k=1

∫ t

0

(gk(s, ·), φ) dwks

(2.2)

holds for all t 6 τ and u(0, ·) ∈ Lp(Ω,F0;Hn−2/p
p ). We also define

Hn
p,0(τ ) = Hn

p (τ ) ∩ {u : u(0, ·) = 0},

‖ u ‖Hnp (τ )=‖ u′′ ‖Hn−2
p (τ ) + ‖ (f, g) ‖Fn−2

p (τ ) +(E ‖ u(0, ·) ‖p
H
n−2/p
p

)1/p.

(2.3)

Definition 2.2. For u ∈ Hn
p (τ ), if (2.2) holds, we write f = Du,

g = Su and we also write

u(t) = u(0) +

∫ t

0

Du(s) ds+

∫ t

0

Sku(s) dwks ,

du = fdt + gkdwkt , t 6 τ.
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We always understand equation like (1.1) in the sense of Definition
2.2, which means that we look for a function u ∈ Hn

p (τ ) such that

Du = a(t, x, u)u′′ + f, Sku = σk(t)u′ + gk.

Lemma 2.3. The spaces Hn
p (τ ) and Hn

p,0(τ ) are Banach spaces with
norm (2.3). In addition for u ∈ Hn

p (τ )

‖ u ‖Hnp (τ )6 N(T ) ‖ u ‖Hnp (τ ),

E sup
t6τ
‖ u(t, ·) ‖pn−2,p6 N(T ) ‖ u ‖pHnp (τ ) .

Proof. See Theorem 2.7 of [9].

Lemma 2.4. If uj ∈ Hn
p (T ) and ‖ uj ‖Hnp (T )6 K, where K is a finite

constant, then there exists a subsequence j′ and a function u ∈ Hn
p (T )

such that
(i) uj′, uj′(0, ·), Duj′, and Suj′ converge weakly to u, u(0, ·), Du, and

Su in Hn
p (T ), Lp(Ω, H

n−2/p
p ), Hn−2

p (T ), and Hn−1
p (T, l2) respectively;

(ii) ‖ u ‖Hnp (T )6 K;

(iii) for any φ ∈ C∞0 and any t ∈ [0, T ] we have (φ, uj′(t, ·)) ⇀
(φ, u(t, ·)) weakly in Lp(Ω).

Proof. See Theorem 2.11 of [9].

On [0, τ ], consider the following equation

du = [a(t, x)u′′ + b(t, x)u′+ c(t, x)u+ f(t, x)]dt+ gk(t, x)dwkt , (2.4)

where a, b, c, f are real-valued and g is a l2-valued function defined
for ω ∈ Ω, t > 0, x ∈ R1. We consider this equation in the sense of
Definition 2.2.

We make the following assumptions.
Assumption 2.1 (uniform ellipticity). For any ω ∈ Ω, t > 0, x ∈

R1, we have
λ 6 a(ω, t, x) 6 Λ,

where λ and Λ are fixed positive constants.
Assumption 2.2 (uniform continuity of a). For any ε > 0, there

exists a κε > 0 such that

|a(t, x)− a(t, y)| < ε

whenever |x− y| < κε, ω ∈ Ω, t > 0.
Assumption 2.3. a, b, c are P × B(R1)-measurable functions and

for any ω ∈ Ω, t > 0, we have a(t, ·), b(t, ·), c(t, ·) ∈ Cn(R1).
f(t, x), g(t, x) are predictable as functions taking values in Hn

p and

Hn+1
p (R1, l2), respectively.
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Assumption 2.4. For any t > 0, ω ∈ Ω,

‖ a(t, ·) ‖Cn + ‖ b(t, ·) ‖Cn + ‖ c(t, ·) ‖Cn6 K, (f(·, ·), g(·, ·)) ∈ Fnp (τ ).

Theorem 2.5. Let Assumptions 2.1-2.4 be satisfied and let

u0 ∈ Lp(Ω,F0;Hn+2−2/p
p ).

Then the Cauchy problem for equation (2.4) on [0, τ ] with the initial
condition u(0, ·) = u0 has a unique solution u ∈ Hn+2

p (τ ). For this
solution, we have

‖ u ‖Hn+2
p (τ )6 N{‖ (f, g) ‖Fnp (τ ) +(E ‖ u0 ‖pn+2−2/p,p)

1/p},

where the constant N depends only on n, λ,Λ, K, T and the function
κε.

Proof. See Theorem 4.1 of [9].

Theorem 2.6. (Embedding theorem)
If p > 2, 1/2 > β > α > 1/p, then for any function u ∈ Hn

p (τ ), we

have u ∈ Cα−1/p([0, τ ], Hn−2β
p ) (a.s.) and for any t, s 6 τ ,

E ‖ u(t, ·)− u(s, ·) ‖pn−2β,p6 N(β, p, T )|t− s|βp−1 ‖ u ‖pHnp (τ ),

E ‖ u(t, ·) ‖p
Cα−1/p([0,τ ],Hn−2β

p )
6 N(β, α, p, T ) ‖ u ‖pHnp (τ ) .

Proof. See Theorem 6.2 of [9].

As a final preliminary result, we state a theorem recently established
by the author [20]. In this theorem, we assume that a is P × B(R1)-
measurable and satisfies λ 6 a 6 Λ.

Theorem 2.7. There exists a p0 = p0(λ,Λ) > 2 such that if p ∈ [2, p0)
and if (f, g) ∈ Fp(τ ), u0 ∈ Lp(Ω,F0;H2

p ), then there exists a unique
solution u ∈ H2

p(τ ) of

du = [a(t, x)u′′ + f(t, x)] dt+ gk(t, x) dwkt , u(0, ·) = u0. (2.5)

Moreover, u satisfies

‖ u ‖H2
p(τ )6 N(p, λ,Λ, T ){‖ (f, g) ‖Fp(T ) +(E ‖ u0 ‖p2,p)1/p}. (2.6)
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3. “Local” Solvability and Regularity

We consider the following 1-dimensional nonlinear SPDE:

du = [a(t, x, u)u′′(t, x) + f(t, x)] dt+ gk(t, x) dwkt , u(0, ·) = u0. (3.1)

We make the following assumptions:
Assumption 3.1 (uniform ellipticity). For any ω ∈ Ω, t ∈ [0, T ], x ∈

R1, and u ∈ R, we have

λ 6 a(ω, t, x, u) 6 Λ,

where λ and Λ are fixed positive constants.
Assumption 3.2. q > 2 and 0 < ν 6 1 are numbers satisfying the

conditions:

1/2 > β > α > 1/q and ν > 2β + 1/q,

for some α and β.
Assumption 3.3. For any ω ∈ Ω, a is Hölder continuous in t,

continuously differentiable in x and twice continuously differentiable in
u. Moreover,

‖ a(·, x, u) ‖Cν−2β−1/q + ‖ a(t, ·, u) ‖C1 + ‖ a(t, x, ·) ‖C26 K1,

where K1 is independent of ω, t, x, u.
Assumption 3.4. Fix p ∈ (2, p0), where p0 is from Theorem 2.7.
The initial condition u0 is a function in Lp(Ω,F0;H2

p )∩Lq(Ω,F ;H2+ν
q )

and the functions f(t, x), g(t, x) are predictable as functions taking val-
ues in Lp ∩Hν

q and H1
p (R1, l2) ∩H1+ν

q (R1, l2), respectively. Moreover,

max(‖ (f, g) ‖Fp(T ), ‖ (f, g) ‖Fνq (T )) 6 K2.

Theorem 3.1. (“Local existence” for (3.1))
Let Assumptions 3.1-3.4 be satisfied. Then there exists a stopping

time τ 6 T and u ∈ H2
p(τ ) such that E τ > 0 and u is a solution of

(3.1) in [0, τ ].

Proof. For simplicity of presentation, we assume that u0 = 0. The
general case is treated in a similar way.

Step 1 Consider

du = [µu′′ + (1− µ)a(t, x, u)u′′ + f ]dt+ gkdwkt , u(0) = 0. (3.2)

If µ = 1, there exists a unique solution u1 ∈ H2
p(T ) ∩ H2+ν

q (T ) by
Theorem 2.5. Moreover by Theorem 2.5, 2.6 and Assumption 3.3,

E ‖ u1(t, ·) ‖q
C
α− 1

q ([0,T ],H2+ν−2β
q )

6 N(λ,Λ, T ) ‖ u1 ‖qH2+ν
q (T )

6 N(λ,Λ, T ) ‖ (f, g) ‖qFνq (T )6 N(λ,Λ, T,K2).
(3.3)
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Let M be a positive number. By (3.3), Assumption 3.2 and Sobolev

embedding H2+ν−2β
q ⊂ C2+ν−2β−1

q , there exists a positive constant γ
and a stopping time τ1 6 T such that

‖ u1(·, ·) ‖Cγ,2+2γ ([0,τ1]×R1)6M.

Notice that we can take τ1 as close to T as we wish by taking larger
M . Define

Φ(δ) := {w ∈ H2
p,0(τ1) : ‖ (w − u1)(ω, ·, ·) ‖Cγ,2+2γ ([0,τ1]×R1) < δ a.s.}

and then consider the following problem with respect to function v with
zero initial condition, where w is a given function from Φ(δ) and µ is
a number in [0, 1].

dv = [µv′′ + (1− µ){a(t, x, u1)v
′′ + au(t, x, u1)u

′′
1v}

+ (1− µ){a(t, x, w)w′′ − a(t, x, u1)w
′′ − au(t, x, u1)u

′′
1w}+ f ] dt

+ gk dwkt .

(3.4)

If we define ã(t, x) := µ + (1 − µ) a(t, x, u1(t, x)), c̃(t, x) := (1 −
µ) au(t, x, u1(t, x))u′′1(t, x), f̃ := (1 − µ){a(t, x, w)w′′ − a(t, x, u1)w′′ −
au(t, x, u1)u′′1w}+ f and g̃k := gk, then, it is easy to check that ã, c̃, f̃

and g̃k satisfy Assumption 2.1-2.4 with n = 0. For example, we show
that au(·, ·, u1)u′′1w ∈ Lp(τ1):

By Lemma 4.2(i) of [9], it suffices to check that u′′1 ∈ Lp(τ1) and
au(·, ·, u1)w ∈ C0. Now by our assumption, both inclusions are obvi-
ous.

Thus, by Theorem 2.5, (3.4) or

dv = [ã(t, x)v′′ + c̃(t, x)v+ f̃ (t, x)] dt+ g̃k(t, x) dwkt

has a unique solution v ∈ H2
p,0(τ1) in [0, τ1].

In this way, we can define an operator

Ψµ : Φ(δ)→ H2
p,0(τ1), Ψµ(w) = v.

We claim that for some δ > 0 and all µ which are sufficiently close
to 1, Ψµ is a contraction mapping from Φ(δ) into Φ(δ) in the metric
supω∈Ω ‖ (w − w̃)(ω, ·, ·) ‖Cγ,2+2γ ([0,τ1]×R1).

Now note that

d(v − u1) = [µ(v − u1)
′′ + (1− µ) a(t, x, u1) (v − u1)

′′

+ (1− µ)au(t, x, u1)u
′′
1(v − u1) + (1− µ){a(t, x, w)w′′ − a(t, x, u1)w

′′

− au(t, x, u1)u
′′
1w + au(t, x, u1)u

′′
1u1}+ (1− µ){a(t, x, u1)u

′′
1 − u′′1}] dt.

(3.5)

For fixed ω, (3.5) is a uniformly parabolic equation
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in [0, τ1(ω)] × R1. By Assumption 3.2 and the definition of Φ(δ),
a(t, x, u1) , au(u1) , a(t, x, w), w′′ , u′′1 and their products which appear
in (3.5) are Hölder continuous in (t, x). Thus by Theorem 5.1 of [15]
p320, v − u1 ∈ C1+γ,2+2γ([0, τ1(ω)] × R1) and for a constant N =
N(λ,Λ, T,M,K1),

‖ v − u1 ‖Cγ,2+2γ ([0,τ1]×R1)

6 N ‖ a(·, ·, w)w′′ − a(·, ·, u1)w
′′ − au(·, ·, u1)u

′′
1w

+ au(·, ·, u1)u
′′
1u1 ‖Cγ,2γ([0,τ1]×R1)

+N(1− µ) ‖ a(·, ·, u1)u
′′
1 − u′′1 ‖Cγ,2γ ([0,τ1]×R1) .

(3.6)

Now we show that

‖ a(·, ·, w)w′′ − a(·, ·, u1)w
′′ − au(·, ·, u1)u

′′
1w

+ au(·, ·, u1)u
′′
1u1 ‖Cγ,2γ ([0,τ1]×R1)6 χ(δ)δ,

where χ(δ) depends only on δ,K1, λ,Λ, T and χ(δ) ↘ 0 as δ ↘ 0.
Indeed, by the fundamental theorem of calculus,
a(t, x, w)w′′ − a(t, x, u1)w′′ − au(t, x, u1)u′′1w + au(t, x, u1)u′′1u1

= a(t, x, w)w′′−a(t, x, u1)u′′1−a(t, x, u1)(w−u1)′′−au(t, x, u1)u′′1(w−
u1) = {

∫ 1

0
a(t, x, θw+ (1− θ)u1) dθ}(w − u1)′′ + {

∫ 1

0
au(t, x, θw+ (1−

θ)u1) (θw′′+(1−θ)u′′1) dθ}(w−u1)−a(t, x, u1)(w−u1)′′−au(t, x, u1)u′′1(w−
u1).

We can further transform the above equation to get
[
∫ 1

0
{a(t, x, θw+(1−θ)u1)−a(t, x, u1)} dθ] (w−u1)′′ +[

∫ 1

0
{au(t, x, θw+

(1− θ)u1) (θw′′ + (1− θ)u′′1)− au(t, x, u1)u′′1} dθ](w − u1).
After this transformation one can easily see that our claim follows

from Assumption 3.2 and the definition of Φ(δ).
Thus, by first taking δ sufficiently small and then choosing µ close

to 1 according to δ , we can make

‖ v − u1 ‖Cγ,2+2γ ([0,τ1]×R1)< δ.

This shows that Ψµ : Φ(δ) → Φ(δ). Now we proceed to show the
contraction.

If we let v = Ψµw, ṽ = Ψµw̃ for w, w̃ ∈ Φ(δ),

d(v − ṽ) = [µ(v − ṽ)′′ + (1− µ)a(t, x, u1)(v − ṽ)′′

+ (1− µ)au(t, x, u1)(v − ṽ) + (1− µ){a(t, x, w)w′′ − a(t, x, w̃)w̃′′

− a(t, x, u1)(w
′′ − w̃′′)− au(t, x, u1)u

′′
1(w − w̃)}] dt.

(3.7)

By the same argument as above, one can show that

‖ v − ṽ ‖Cγ,2+2γ ([0,τ1]×R1)6 Nχ(δ) ‖ w − w̃ ‖Cγ,2+2γ ([0,τ1]×R1) .
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Now by reducing δ and also µ according to the new δ if necessary,
we can make Ψµ : Φ(δ) → Φ(δ) and Nχ(δ) < 1/2. We fix δ and
corresponding µ. We denote such a µ by µ0.

We have just finished the proof of the claim. It implies that there
exists a uµ0 ∈ Φ(δ) such that Ψµ0(uµ0) = uµ0 (this statement requires
a proof because we didn’t show that Ψµ0 is a contraction in the metric
of H2

p(τ1)). Indeed, if we define a sequence unµ0
∈ Φ(δ) inductively by

u0
µ0

= u1 and un+1
µ0

= Ψµ0(unµ0
) for n > 0, then {unµ0

} is a Cauchy
sequence in the metric supω∈Ω ‖ unµ0

− umµ0
‖Cγ,2+2γ ([0,τ1]×R1). By Arzela-

Ascoli theorem, there exists a function uµ0 = uµ0(ω, t, x) such that
unµ0

(ω, ·, ·)→ uµ0(ω, ·, ·) in say, C0,2 and ‖ uµ0 ‖Cγ,2+2γ ([0,τ1]×R1)<∞.
For any φ ∈ C∞0 , (ω, t) ∈ |(0, τ ]],∫
R1

un+1
µ0

(t, x)φ(x) dx

=

∫ t

0

∫
R1

[µ0(un+1
µ0

)′′(s, x)φ(x) + (1− µ0)a(s, x, u1(s, x))(un+1
µ0

)′′(s, x)φ(x)

+ (1− µ0)au(s, x, u1(s, x))u′′1(s, x)un+1
µ0

(s, x)φ(x)

+ (1− µ0){a(s, x, unµ0
)(unµ0

)′′ − a(s, x, u1)(u
n
µ0

)′′ − au(s, x, u1)u
′′
1u

n
µ0
}φ(x)

+ f(s, x)φ(x)] dxds+

∫ t

0

∫
R1

gk(s, x)φ(x) dxdwks .

(3.8)

Now by passing to the limit in this equation, we get after some
cancellations,∫

R1

uµ0(t, x)φ(x) dx

=

∫ t

0

∫
R1

{µ0u
′′
µ0

(s, x)φ(x) + (1− µ0)a(s, x, uµ0)(s, x))u′′µ0
(s, x)φ(x)

+ f(s, x)φ(x)] dxds+

∫ t

0

∫
R1

gk(s, x)φ(x) dxdwks .

(3.9)

Therefore, uµ0 is a solution of

du = [µ0 u
′′ + (1− µ0)a(t, x, uµ0)u

′′ + f ] dt+ gk dwkt (3.10)

in [0, τ1] in the sense of distribution (see Definition 3.6 of [9]). But
since µ0 + (1− µ0)a(t, x, uµ0) satisfies Assumption 2.1-2.4 with n = 0,
there exists a unique H2

p(τ1)-solution ũµ0 of the above equation.
Then uµ0 − ũµ0 satisfies

d(uµ0 − ũµ0) = [µ0 (uµ0 − ũµ0)′′ + (1− µ0)a(t, x, uµ0)(uµ0 − ũµ0)′′] dt,



12 ON THE SOLVABILITY OF NONLINEAR SPDES

(uµ0 − ũµ0)(0) = 0

in the sense of distribution. But since for fixed ω, ũµ0 is Hölder contin-
uous in (t, x) by the embedding theorem, uµ0 − ũµ0 is bounded. Then
by the uniqueness of parabolic PDE, uµ0 = ũµ0 a.s. and uµ0 is indeed a
H2
p(τ1)-solution of (3.10), which is equivalent to Ψµ0(uµ0) = uµ0. This

finishes Step 1.
Step 2 Now we take uµ0 instead of u1 and proceed as before. That

is, as a next step, we want to show that we can solve (3.2) for µ ∈
[2µ0 − 1, µ0] starting from µ0. To do this, we have to make sure that
all the constants we claimed “under control” (e.g. M) are independent
of this inductive step. Since we don’t know ‖ uµ0 ‖Cγ,2+2γ ([0,τ1]×R1)6M
(we fixed M in Step 1), we are forced to choose another stopping time
τ2 6 τ1 such that

‖ uµ0(·, ·) ‖Cγ,2+2γ ([0,τ2]×R1)6M. (3.11)

By the construction in Step 1, uµ0 ∈ Φ(δ) and

‖ uµ0(·, ·) ‖Cγ,2+2γ ([0,τ1]×R1)6M + δ a.s.

So we see that we can indeed choose a nonzero stopping time τ2 6 τ1

such that (3.11) is satisfied.
We define

Φ(δ) := {w ∈ H2
p,0(τ2) :‖ (w − uµ0)(ω, ·, ·) ‖Cγ,2+2γ ([0,τ2]×R1)< δ a.s.}.

Then everything in Step 1 goes through with almost no change. After
getting τ2 and u2µ0−1, if 2µ0− 1 > 0, we repeat the argument to get τ3

and u3µ0−2. In this way, we arrive at µ = 0 in a finite number of steps.
Now the theorem is proved.

Theorem 3.2. Suppose Assumptions 3.1-3.4 are satisfied. Let u ∈
H2
p(τ ) be a solution of (3.1) in [0, τ ]. Then the following hold:
(i) There exists an increasing sequence of subsets Ωm of Ω such that

Ωm ↑ Ω.
(ii) For each m, there exists a vm ∈ H2

p(τ ) ∩ H2+ν
q (τ ) such that

IΩmvm = IΩmu in H2
p(τ ).

(iii) vm satisfies

max(‖ vm ‖H2
p(τ ), ‖ vm ‖H2+ν

q (τ )) 6 N(m),

where N(m) = N(m,λ,Λ, T, p,K1, K2).

Proof. By Theorem 2.7,

‖ u ‖H2
p(τ )6 N(λ,Λ, T, p,K2).
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Then, by Theorem 2.6, u satisfies

E ‖ u(t, ·) ‖p
Cα−1/p([0,τ ],H2−2β

p )
6 N(λ,Λ, T, p,K2, α, β).

Since 2− 2β > 1 and 1/p < 1/2, H2−2β
p ⊂ C1/2 by the Sobolev embed-

ding theorem. Thus, we conclude that

E ‖ u(t, ·) ‖p
Cα−1/p([0,τ ],C1/2)

6 N(λ,Λ, T, p,K2, α, β). (3.12)

Now by the Chebychev inequality and (3.12),

P{ω ∈ Ω :‖ u(t, ·) ‖p
Cα−1/p([0,τ ],C1/2)

> kp}

6 1

kp
E ‖ u(t, ·) ‖p

Cα−1/p([0,τ ],C1/2)
6 N

kp
.

Therefore, if we define

Ω̃k := {ω ∈ Ω :‖ u(t, ·) ‖Cα−1/p([0,τ ],C1/2)6 k},

then Ω̃k ↑ Ω as k →∞.
We consider the following equation for v:

dv = [a(t, x, IΩ̃k
u)v′′ + f ] dt+ gk dwkt , v(0) = u0. (3.13)

It is easy to see that one can apply Theorem 2.5 (n=0) to the above
equation and we obtain a unique solution ṽk ∈ H2

p(τ )∩H2
q(τ ). Moreover

‖ ṽk ‖H2
q(τ )6 N(k, λ,Λ, T,K1, K2). (3.14)

Now we claim that ṽk(ω, ·, ·) = u(ω, ·, ·) for almost all ω ∈ Ω̃k. Indeed,
ṽk − u ∈ H2

p,0(τ ) satisfies

d(ṽk − u) = [a(t, x, IΩ̃k
u)ṽk

′′ − a(t, x, u)u′′]dt

= IΩ̃k
a(t, x, u)(ṽk− u)′′dt+ IΩ̃ck

[a(t, x, 0)ṽk
′′ − a(t, x, u)u′′]dt.

For fixed ω ∈ Ω̃k, ṽk − u ∈ H1,2
p (τ (ω)) is a generalized solution of

a uniformly elliptic parabolic PDE with Hölder continuous coefficient.
Since the initial condition is zero, our claim follows from the uniqueness
of the solution.

We apply Theorem 2.6 once more to ṽk. Then by (3.14), we get

E ‖ ṽk(t, ·) ‖q
C
α− 1

q
([0, τ ], H2−2β

q ) 6 N(k, λ,Λ, T,K1, K2).

But since H2−2β
q ⊂ C2−2β−1

q and 2− 2β− 1
q
> 1 by Assumption 3.2, we

have for some γ > 0

E ‖ ṽk(t, ·) ‖qCγ ([0,τ ],C1+γ)6 N(k, λ,Λ, T,K1, K2). (3.15)
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By Chebychev inequality and (3.15),

P{ω ∈ Ω :‖ ṽk(t, ·) ‖qCγ ([0,τ ],C1+γ)
> lq} 6 N(k)

lq
.

We define

Ω̃k,l := {ω ∈ Ω :‖ ṽk(t, ·) ‖Cγ ([0,τ ],C1+γ)6 l}.

Recall that ṽk(ω, ·, ·) = u(ω, ·, ·) for almost all ω ∈ Ω̃k. Thus,

P{ω ∈ Ω :‖ u(t, ·) ‖Cγ([0,τ ],C1+γ)6 l}
> P{ω ∈ Ω : ṽk(ω, ·, ·) = u(ω, ·, ·) and ‖ ṽk(t, ·) ‖Cγ ([0,τ ],C1+γ)6 l}

> 1− P (Ω̃k

c
)− P (Ω̃k,l

c
) > 1− N

kp
− N(k)

lq
.

Note that we can make N
kp

+ N(k)
lq

as small as we like by taking large
enough k and l. We first take large enough k and fix. Then choose
sufficiently large l according to k. ¿From the above construction, we
see that if we define

Ωm := {ω ∈ Ω :‖ u(t, ·) ‖Cγ([0,τ (ω)],C1+γ)6 l(m)},
for some increasing sequence l(m), then Ωm ↑ Ω.

Now consider the following equation for v:

dv = [a(t, x, IΩmu)v′′ + f ] dt+ gk dwkt , v(0) = u0. (3.16)

¿From the definition of Ωm, we see that the above equation satisfies the
assumptions of Theorem 2.5 with n = 0 and n = ν. Thus, there exists
a unique solution vm ∈ H2

p(τ )∩ H2+ν
q (τ ) of (3.16) and vm satisfies

max(‖ vm ‖H2
p(τ ), ‖ vm ‖H2+ν

q (τ )) 6 N(m,λ,Λ, p, T,K1, K2).

One can also show that vm(ω, ·, ·) = u(ω, ·, ·) for almost all ω ∈ Ωm by
arguing as before. The theorem is proved.

4. Uniqueness and “Global” Solvability

Throughout this section, Assumptions 3.1-3.4 are in force.

Lemma 4.1. Let u1 and u2 be two solutions of

du = [a(t, x, u)u′′ + f ] dt+ gk dwkt , u(0) = u0 (4.1)

in H2
p(τ ) for some stopping time τ . Suppose also that there are two

stopping times τ1, τ2 6 τ such that u1 = u2 as functions in H2
p(τ1) and

H2
p(τ2). Then u1 = u2 as functions in H2

p(τ1 ∨ τ2).

Proof. This is obvious.
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Theorem 4.2. (Uniqueness)
Let u1, u2 be two solutions of (4.1) in H2

p(τ ) for some stopping time
τ . Then u1 = u2 in H2

p(τ ).

Proof. It suffices to show that there exists a sequence of stopping times
τn such that τn ↑ τ a.s. and u1 = u2 as functions in H2

p(τn).
Define

σn(ω) := inf{0 6 t 6 τ (ω) : max
i=1,2

‖ ui(·, ·) ‖Cα−1/p,1/2([0,t]×R1)> n}.

Since by Theorem 2.6,

E ‖ ui(s, ·) ‖p
Cα−1/p([0,τ ],H

2−2β
p )
6 N(β, α, p, T ) ‖ ui ‖pH2

p(τ ),

and 2− 2β − 1/p > 1/2, σn ↑ τ a.s. as n→∞.
Then, for a.e. (ω, s) ∈ |(0, σn]], a(s, x, ui) = a(s, x, ui(ω, s, x)) =:

ã(ω, s, x) satisfies Assumptions 2.1-2.4 with n = 0. By applying Theo-
rem 2.5, we conclude that ui ∈ H2

q(σn) for each n.
We again use the embedding theorem and repeat the above argu-

ment:
Since H2−2β

q ⊂ C2−2β−1/q,

E ‖ ui(s, ·) ‖q
Cα−1/q([0,σn],C

2−2β− 1
q )
6 N(β, α, p, T ) ‖ ui ‖qH2

q(σn)
.

This implies that if we define

σnk(ω) := inf{0 6 t 6 σn(ω) : max
i=1,2

‖ ui(·, ·) ‖Cα−1/p,2−2β−1/q ([0,t]×R1)> k},

then σnk ↑ σn a.s. as k → ∞. For (ω, s) ∈ |(0, σnk]], ã now satisfies
Assumptions 2.1-2.4 with n = ν. Thus ui ∈ H2+ν

q (σnk) for each n, k.
We repeat the whole process one more time. If we define

σnkl(ω) := inf{0 6 t 6 σnk(ω) : max
i=1,2

‖ ui(·, ·) ‖
C
α− 1

q ,2+ν−2β− 1
q ([0,t]×R1)

> l},

then σnkl ↑ σnk a.s. as l → ∞. Recall that 2 + ν − 2β − 1/q > 2.
For each n, k, l, the function u1 − u2 satisfies the following equation in
H2+ν
q,0 (σnkl):

d(u1 − u2) = [a(t, x, u1)u
′′
1 − a(t, x, u2)u

′′
2] dt

= [

∫ 1

0

d

dθ
{a(t, x, θu1 + (1− θ)u2) (θu′′1 + (1− θ)u′′2)} dθ] dt.

(4.2)

The last term is equal to [{
∫ 1

0
a(t, x, θu1 + (1 − θ)u2) dθ}(u1 − u2)′′

+{
∫ 1

0
au(θu1 + (1− θ)u2)(θu′′1 + (1− θ)u′′2) dθ}(u1 − u2)] dt.

But by the definition of σnkl,∫ 1

0
a(t, x, θu1 + (1− θ)u2) dθ and

∫ 1

0
au(θu1 + (1− θ)u2)(θu′′1 + (1−

θ)u′′2) dθ satisfy Assumptions 2.1-2.4 for n = 0. Hence by the unique
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solvability, u1 = u2 as functions in H2
q(σnkl) and so as functions in

H2
p(σnkl).
Now we define a new sequence of stopping times as follows:

τn := sup
i6n

ηi,

where {ηi} is a rearrangement of {σnkl}. Clearly, τn ↑ τ and by Lemma
4.1, u1 = u2 as functions in H2

p(τn). The theorem is proved.

Lemma 4.3. Suppose that there are two stopping times τ1, τ2 such
that u1 ∈ H2

p(τ1) and u2 ∈ H2
p(τ2) are solutions of (4.1) in [0, τ1] and

[0, τ2], respectively.
Then there exist a solution u ∈ H2

p(τ1 ∨ τ2) of (4.1) in [0, τ1 ∨ τ2].

Proof. We define

u(ω, t, x) =

{
u1(ω, t, x) if t 6 τ1(ω)
u2(ω, t, x) if t 6 τ2(ω).

By Theorem 4.2, u1 = u2 ∈ H2
p(τ1 ∧ τ2), so u is well-defined. It is

clear that u is a solution in the sense of distribution. Thus it suffices
to show that u ∈ H2

p(τ1 ∨ τ2). For that, we check:

E
∫ τ1∨τ2

0
‖ u(t, ·) ‖p2,p dt = E(

∫ τ1
0
‖ u(t, ·) ‖p2,p dt) Iτ1>τ2

+E(
∫ τ2

0
‖ u(t, ·) ‖p2,p dt) Iτ1<τ2 6‖ u1 ‖pH2

p(τ1) + ‖ u2 ‖pH2
p(τ2).

Thus, u ∈ H2
p(τ1 ∨ τ2). Similarly, one can show that (a(t, x, u)u′′ +

f, g) ∈ Fp(τ1 ∨ τ2). The lemma is proved.

We present the main theorem of this paper.

Theorem 4.4. (Unique solvability)
There exists a unique solution u ∈ H2

p(T ) of (3.1) and u satisfies

‖ u ‖H2
p(T )6 N ‖ (f, g) ‖Fp(T ) +N(E ‖ u0 ‖p2,p)1/p,

where N = N(λ,Λ, p, T ).

Proof. We only need to prove the existence. The uniqueness and the
estimate follow from Theorem 4.2 and Theorem 2.7.

Step 1 Let Π := {nonzero stopping time τ : there exists a solution

in H2
p(τ ) of (3.1) in [0, τ ]}. Then by Theorem 3.1, Π is nonempty.

Observe that if τ1, τ2 ∈ Π, then τ1 ∨ τ2 ∈ Π.
Now let τ̄ :=

∨
τ∈Π τ . We claim that τ̄ ∈ Π:

First we show that τ̄ is a stopping time. Let r := supτ∈Π{E τ}. Since
0 6 τ 6 T , r is a finite number. And there exists a sequence τn ∈ Π
such that E τn → r as n→∞. By the above observation, without loss
of generality, we may assume that τn ↑. Define τ ′ := limn→∞ τn. τ ′ 6 T
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is a stopping time and by the Monotone convergence theorem E τ ′ = r.
Clearly τ ′ 6 τ̄ a.s. But τ ′ > τ̄ a.s., for otherwise there exists a τ ∈ Π
such that E τ > E τ ′ = r. This is a contradiction to the definition of
supremum. Thus, τ ′ = τ̄ a.s. and τ̄ is a stopping time.

Now we identify τ ′ and τ̄ . If we let un be the corresponding solution
to τn, then by the uniqueness,

un = um in H2
p(τn ∧ τm) = H2

p(τn∧m). (4.3)

We extend un such that un = 0 between τn and τ̄ . Then by Theorem
2.7,

‖ un ‖H2
p(τn)=‖ un ‖H2

p(τ̄)6 N,
where N is a constant independent of n. By Lemma 2.4, there exists
a subsequence nk and u ∈ H2

p(τ̄ ) such that unk ⇀ u weakly in H2
p(τ̄ ).

Combining this with (4.3), we get

u = un in H2
p(τn). (4.4)

On the other hand, for any φ ∈ C∞0 , t ∈ [0, τ̄ ] and m ∈ N, with
probability one,

(unk((t− 1/m)+ ∧ τnk , ·), φ) = (u0, φ)

+

∫ (t−1/m)+∧τnk

0

(a(s, x, unk)u
′′
nk

(s, ·), φ) ds

+

∫ (t−1/m)+∧τnk

0

(f(s, ·), φ) ds+

∫ (t−1/m)+∧τnk

0

(gk(s, ·), φ) dwks .

(4.5)

First using (4.4), we replace unk in (4.5) by u and then let k →∞.
Since τnk → τ̄ and u is Hölder continuous in (t, x) by Theorem 2.6, we
get

(u((t− 1/m)+ ∧ τ̄ , ·), φ) = (u0, φ) +

∫ (t−1/m)+∧τ̄

0

(a(s, x, u)u′′(s, ·), φ) ds

+

∫ (t−1/m)+∧τ̄

0

(f(s, ·), φ) ds+

∫ (t−1/m)+∧τ̄

0

(gk(s, ·), φ) dwks .

(4.6)

Now we let m → ∞ in (4.6) and conclude that u is a solution of
(3.1) in [0, τ̄ ] in the sense of distribution. Since we already know that
u ∈ H2

p(τ̄), τ̄ ∈ Π. This proves the claim.
Step 2 Suppose that τ̄ 6= T . Otherwise we are done.

In Step 1, we showed that there exists a solution u in H2
p(τ̄ ) of

(3.1). Then by Theorem 3.2, there exists a set Ω′ ⊂ Ω and a function
v ∈ H2

p(τ̄ )∩H2+ν
q (τ̄) such that P (Ω′) > 1/2 and v(ω, ·, ·) = u(ω, ·, ·) as

functions in H2
p (τ̄ (ω)) for almost all ω ∈ Ω′.
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By the definition of H2
p(τ̄) and H2+ν

q (τ̄),

dv = Dv dt+ Skv dwkt ,

where Dv ∈ Lp(τ̄ ) ∩Hν
q(τ̄ ) and Sv ∈ H1

p(τ̄ , l2) ∩H1+ν
q (τ̄ , l2).

We define f̃ := (Dv − ∆v)It6τ̄ and g̃k := (Skv)It6τ̄ . Notice that

f̃ ∈ Lp(T )∩Hν
q(T ), g̃ ∈ H1

p(T, l2) ∩H1+ν
q (T, l2) and on [0, τ̄ ] v satisfies

dy = (∆y + f̃ ) dt+ g̃k dwkt , y(0) = 0. (4.7)

By Theorem 2.5, (4.7) has a unique solution y ∈ H2
p(T ) ∩ H2+ν

q (T ).
The difference y−v satisfies the heat equation on [0, τ̄ ] with zero initial
condition, thus it follows that y(ω, ·, ·) = v(ω, ·, ·) on [0, τ̄ ] a.s.

Now we are ready to solve the following equation “locally”:{
dz = [a(t+ τ̄ , x, z)z′′ + f(t+ τ̄ , x)] dt+ gk(t+ τ̄ , x) dwkt+τ̄
z(0, ·) = v(τ̄ , ·). (4.8)

As we showed above, since v has an extension as a function in H2
p(T )∩

H2+ν
q (T ), we may assume that v(τ̄ , ·) ∈ Lp(Ω,Fτ̄ ;H2

p ) ∩Lq(Ω,Fτ̄ ;H2+ν
q ).

Actually we understand the initial condition exactly in this sense in
Krylov’s Lp-theory.

We apply Theorem 3.1 to (4.8). It is easy to check that the coefficient
and the data satisfy the assumption of Theorem 3.1. The only thing
is that we have wkt+τ̄ as a driving noise. But the proofs of Theorem
2.5 and Theorem 2.6 go without any change in this situation. Thus,
by repeating almost word by word, we can prove the local existence
for (4.8). This implies that there exists a stopping time σ such that
Eσ > 0 and if we define

U :=

{
u if t 6 τ̄(ω)
z(· − τ̄ , ·) if τ̄(ω) < t 6 (τ̄ + σ)(ω)

then U is a well-defined function in H2
p(τ̄ + σ) and U satisfies (3.1) on

[0, τ̄ + σIΩ′] by the construction and the definition of v and z.
Thus τ̄ + σIΩ′ ∈ Π. But since we may assume that EσIΩ′ > 0,

E(τ̄ + σIΩ′) > Eτ̄ , which is a contradiction to the definition of τ̄ .
Therefore, τ ≡ T and the theorem is proved.

Remark. The choices ν = 1, q = 4 satisfy the Assumption 3.2. In
this case, one can give a simpler proof for the existence. Indeed, if we
let v := u−

∫ t
0
gk(s, ·) dwks , then v satisfies for each fixed ω

∂v

∂t
= ã(·, ·, v)v+ f +

∫ t

0

∆gk(s, ·) dwks ,

which is a deterministic partial differential equation.
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Finally, we prove the unique solvability of (1.1).

Theorem 4.5. Suppose that σ(t) = {σk(t), k > 1} is an l2-valued
function, where σk’s are P-measurable and α(t) := 1

2

∑
k(σ

k)2(t) is
Hölder continuous such that supω∈Ω ‖ α(·) ‖Cν−2β−1/q ([0,T ])6 K3 for
some constant K3. Assume also that λ 6 a(t, x, u)− α(t) 6 Λ for all
t ∈ [0, T ], x ∈ R1, u ∈ R.

Then there exists a unique solution u ∈ H2
p(T ) of{

du = [a(t, x, u)u′′ + f(t, x)] dt+ [σk(t)u′ + gk(t, x)] dwkt
u(0, ·) = u0.

(4.9)

and
‖ u ‖H2

p(T )6 N ‖ (f, g) ‖Fp(T ) +N(E ‖ u0 ‖p2,p)1/p,

where N = N(λ,Λ, p, T,K3).

Proof. Suppose that u is a generalized solution i.e., solution in the sense
of distribution (see Definition 3.6 of [9]) of (4.9). We define a process
xt and a function v by

xt :=

∫ t

0

σk(s) dwks , v(t, x) := u(t, x− xt).

Then by the Itô-Wentzell formula (see [14]), we get

dv = [a(t, x− xt, v)v′′ − α(t)v′′ + f(t, x− xt)− (gk)′(t, x− xt)σk(t)] dt
+ gk(t, x− xt) dwkt .

Let ã(t, x, v) := a(t, x−xt, v)−α(t), f̃(t, x) := f(t, x−xt)− (gk)′(t, x−
xt)σk(t), and g̃k(t, x) := gk(t, x− xt). Then v satisfies{

dv = [ã(t, x, v)v′′ + f̃(t, x)] dt+ g̃k(t, x) dwkt
v(0, ·) = u0.

(4.10)

By Lemma 3.7 of [9], (4.9) and (4.10) are equivalent, that is, (4.9) holds
(in the sense of distribution) if and only if (4.10) holds (in the sense of
distribution). Thus, it suffices to show that (4.10) has a unique solution
in H2

p(T ). Because of xt in the definition of ã, the Hölder norm of ã
with respect to t is not uniform in ω. So we cannot apply Theorem 4.4
directly to (4.10). Therefore, we proceed in the following way.

Recall that x· is Hölder continuous with exponent say 1/4 (it follows
for example from the Kolmogorov test and Burkholder-Davis-Gundy
inequality). Let Ωn := {ω ∈ Ω :‖ x·(ω) ‖Cν−2β−1/q([0,T ])6 n}. Then
Ωn ↑ Ω as n→∞. Consider{

dvn = [ãn(t, x, vn)(vn)′′ + f̃(t, x)] dt+ g̃k(t, x) dwkt
vn(0, ·) = u0,

(4.11)
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where ãn(t, x, vn) := a(t, x− IΩnxt, v
n)− α(t).

Now we check Assumptions 3.1, 3.3 and 3.4 for ãn, f̃ and g̃:

(i) λ 6 ãn(t, x, u) 6 Λ,

(ii) ‖ ãn(·, x, u) ‖Cν−2β−1/q + ‖ ãn(t, ·, u) ‖C1 + ‖ ãn(t, x, ·) ‖C26 K̃1 for

K̃1 independent of ω, t, x, u,

(iii) max(‖ (f̃ , g̃) ‖Fp(T ), ‖ (f̃ , g̃) ‖Fνq (T )) 6 K̃2.

(i) and (iii) are immediate from our assumptions and definitions.
For (ii), we only need to show that ‖ ãn(·, x, u) ‖Cν−2β−1/q6 K for some
constant K independent of ω, t, x, u (δ := ν − 2β − 1/q):

sup
ω,x,u
‖ ãn(·, x, u) ‖Cδ6 sup

ω,x,u
‖ a(·, x− IΩnx·, u) ‖Cδ + sup

ω
‖ α(·) ‖Cδ

6 sup
ω,x,u
‖ a(·, x, u) ‖Cδ + sup

ω,x,u
‖ a(t, ·, u) ‖C1 sup

ω∈Ωn
‖ x· ‖Cδ

+ sup
ω
‖ α(·) ‖Cδ6 K1 + nK1 +K3 =: K

Thus we can apply Theorem 4.4 and obtain a unique solution vn of
(4.11) and

‖ vn ‖H2
p(T )6 N ‖ (f̃ , g̃) ‖Fp(T ) +N(E ‖ u0 ‖p2,p)1/p, (4.12)

where N = N(λ,Λ, p, T ) is independent of n.
Now we claim that if n 6 m, then

vn(ω, ·, ·) = vm(ω, ·, ·)
for almost all ω ∈ Ωn = Ωn ∩ Ωm. Suppose the claim is true. Then
we get the unique solvability of (4.10). Indeed, by (4.12) and Lemma
2.4, (after passing to a subsequence) vn converges weakly to some v̄ ∈
H2
p(T ). But from our claim, v̄(ω, ·, ·) = vn(ω, ·, ·) for almost all ω ∈ Ωn.

Then we can pass to the limit in (4.11) by an argument similar to the
one given at the end of Step 1 of the proof of Theorem 4.4 and we
conclude that v̄ is a solution of (4.10). The uniqueness follows from
Theorem 4.2 (for the proof of this theorem we do not need the Hölder
continuity of the coefficient in t).

Now it remains to prove the claim. For an arbitrary n, by Theorem
3.2, there exist sequences Ωn

k ⊂ Ω and vnk ∈ H2
p(T )∩H2+ν

q (T ) such that
Ωn
k ↑ Ω and vnk (ω, ·, ·) = vn(ω, ·, ·) in H2

p (T ) for almost all ω ∈ Ωn
k .

By the definition of a solution,

(vn(t, ·), φ) = (u0, φ) +

∫ t

0

(ãn(s, ·, vn)(vn)′′, φ) ds

+

∫ t

0

(f̃(s, ·), φ) ds+

∫ t

0

(g̃k(s, ·), φ) dwks

(4.13)
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holds for all φ ∈ C∞0 and t 6 T a.s. (and the same for vm).
We fix ω ∈ Ωn such that (4.13) holds for both vn and vm. Note

that such ω’s have the full probability of Ωn. Then for this ω, take
sufficiently large k such that ω ∈ Ωn

k ∩ Ωm
k . Then from the equation

(4.13) for vn and vm,

((vn − vm)(ω, t, ·), φ) = ((vnk − vmk )(ω, t, ·), φ)

=

∫ t

0

(ã(ω, s, ·, vn)(vn)′′ − ã(ω, s, ·, vm)(vm)′′, φ) ds

=

∫ t

0

(ã(ω, s, ·, vnk )(vnk)′′ − ã(ω, s, ·, vmk )(vmk )′′, φ) ds.

But ã(ω, s, x, vnk)(vnk )′′− ã(ω, s, x, vmk )(vmk )′′ = [
∫ 1

0
ã(ω, s, x, θvnk +(1−

θ)vmk ) dθ](vnk − vmk )′′ +[
∫ 1

0
ãu(ω, s, x, θvnk + (1 − θ)vmk )(θ(vnk )′′ + (1 −

θ)(vmk )′′) dθ](vnk − vmk ). Since vnk and vmk are in H2+ν
q (T ), the coeffi-

cients of (vnk − vmk )′′ and (vnk − vmk ) are Hölder continuous in t and x a.s.
Thus, from the uniqueness of solution of parabolic PDE, vn(ω, ·, ·) =
vnk (ω, ·, ·) = vmk (ω, ·, ·) = vm(ω, ·, ·). The claim is proved.
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