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PERCOLATION TIMES IN TWO–DIMENSIONAL

MODELS FOR EXCITABLE MEDIA

Janko Gravner

1. Introduction.

The Greenberg-Hastings model (GHM) ([WR], [GH]) on Z2 tries to capture two essential

properties of a two–dimensional excitable medium: a refractory phase and excitation by contact.

In one of its simplest incarnations, GHM dynamics have two parameters: an integer number

κ ≥ 3, which we refer to as the number of colors (or states), and a finite set N ⊂ Z2, containing

the origin, which is called the neighborhood . The neighborhood of an arbitrary site x ∈ Z2 is

then obtained by translation: Nx = x+N . The state space of the GHM is {0, 1, . . . , κ− 1}Z2

and the update rule is given as follows:

(1.1) γt+1(x) =

{
(γt(x) + 1) mod κ, if γt(x) > 0 or there is a y ∈ Nx with γt(y) = 1,

0, otherwise.

In words, all colors 1, . . . , κ−1 update automatically to 2, . . . , 0, respectively, while 0 updates by

contact with a least one color 1 in its neighborhood. Readers interested in mathematical analysis

of this GHM rule and various generalizations may consult [DS], [FGG1], [FGG2], [DN], [Dur],

[DG], and [Ste]. Researchers closer to applications have considered many classes of multi–

parameter rules related to the GHM (see, for example, [WTW] and the references contained

therein).

Assume for a moment thatN is the five point set {(0, 0), (±1, 0), (0,±1)}, the nearest neighbor

case. Assume moreover that γ0 is a product measure with P (γ0(x) = 0) > 0, P (γ0(x) = 1) > 0

and P (γ0(x) = i) > 0 for some i ∈ {2, . . . , κ − 1}. Then it turns out that the dynamics is

eventually run by “clocks,” i.e. objects like

0 − 1 − 2 − 3 − . . . − κ− 1
| | | | |

κ − 1 − κ− 2 − κ− 3 − κ − 4 − . . . − 0
,

which repeat their pattern every κ units of time and eventually cause other sites to do the same,

giving rise to local periodicity (see [FGG2]). The main aim of this paper is to study the case

when γ0 contains only 0’s and 1’s, which results in a markedly different dynamics. To see why,

start a nearest neighbor GHM with just a single 1 in a sea of 0’s. This initial state generates a

diamond–shaped ring which keeps expanding forever. If the initial state contains just two 1’s,

the two rings proceed to annihilate on the boundary and combine into one big ring, which again
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expands without bound. We will show that such annihilating rings are the dominant feature

of the dynamics started from a product measure consisting only of 0’s and 1’s. Indeed, one

inevitably reaches such a conclusion by doing just a few computer simulations.

As in the simple example above, the number of colors turns out to be completely immaterial

for the ring dynamics. Thus we assume that κ = 3 from now on. We also assume that the

initial state γ0 is the product measure given by P (γ0(x) = 1) = p = 1− P (γ0(x) = 0) for every

x. Since our main results involve various percolation properties of subsets of Z2, we must start

with a few definitions.

Fix a finite set D ⊂ Z2. We say that a set G ⊂ Z2 D–percolates if there exists an infinite

sequence x1, x2, . . . of distinct sites in G such that xk+1 − xk ∈ D for k = 1, 2, . . . . The usual

site percolation, which we call `1–percolation, is obtained by taking D = B1(0, 1), while its dual,

which we refer to as `∞–percolation, is given by D = B∞(0, 1). (We adopt the usual notation

for balls: Br(x, R) = {y : ||x− y||r ≤ R}.)

The study of ring growth and interaction in this simple model of an excitable medium fits into

the general framework of investigating domain growth in physical systems: namely, how spatial

structures arise far from equilibrium. Real–life phenomena that may be related to the ones dis-

cussed here include aspects of the Belousov–Zhabotinsky reaction and processes in cardiac tissue

([FK], [Kap], [KW], [SLC]). Indeed, ring dynamics may be the dominant feature of conduction

of electrical impulses in a healthy heart, while spatial defects (e.g. scar tissue) can break the

rings and cause, through the formation of clock–like excitation centers, atrial fibrillation. These

natural phenomena were the main motivation of S. Fraser and R. Kapral, who studied ring dy-

namics in excitable media in [FK]. They chose the Moore neighborhood (i.e. N = B∞(0, 1)) and

combined computer simulations with various intuitively compelling but non-rigorous arguments,

to arrive at the following three conclusions:

(1) Each point is in state 1 exactly once.

(2) The density of 1’s goes to 0 very quickly as time t increases, and is of order
√
p at its

maximum.

(3) There exists a narrow time interval, lasting at most two time units, during which 1’s

percolate. ([FK] is vague as to what type of percolation this is.)

Assuming (1), (2) follows readily, as shown in [Bra]. But (1) is not very hard to show either

(see Corollary 2.2). The most interesting statement is of course (3); our main aim in the present

paper is to give a rigorous and more detailed treatment of this issue.

Before we proceed, let us introduce some standard regularity assumptions on the neighbor-

hood N which arose in our previous work ([GG]). We call N symmetric if −N = N and
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supercritical if the origin is an interior point of the convex hull co(N ). Moreover, denote the

sum N +N + · · ·+N of n copies of N by Nn (with the conventions N 0 = {0}, Nn = ∅ when

n < 0), and call N irreducible if ∪n≥1Nn = Z2. Note that irreducibility implies supercriticality,

but not vice versa. We assume throughout this paper that N is both symmetric and irreducible.

Theorem 1. There exist sufficiently large integers a and b (depending only on N ) so that:

(1) For every p > 0 there exists a time T (p) at which {γT (p) = 1} B∞(0, a)–percolates.

(2) The set {γt = 1} may B∞(0, a)–percolate only for t ∈ [T (p), T (p) + b].

(3) T (p)
√
p converges to a finite non-zero constant as p→ 0.

To prove a more precise theorem, we restrict to the special case of Moore neighborhood

considered in [FK].

Theorem 2. Assume that N = B∞(0, 1).

(1) For every p ∈ (0, 1] there is a time T (p) such that the set {γt = 1} l∞-percolates for

t = T (p) but does not l∞-percolate for t /∈ [T (p), T (p) + 1].

(2) There is a countable set S ⊂ (0, 1) with 0 as its only limit point, such that the following

is true. Let I1, I2, I3, . . . be the successive intervals in (0, 1] \ S, where I1 is the one that

includes 1. Let G1 be the union I1 ∪ I3 ∪ I5 ∪ . . . and G2 = (0, 1] \S \G1. If p ∈ G1, then

1’s in γt `
1-percolate at t = T (p) but do not `∞-percolate for t 6= T (p). If p ∈ G2, then

1’s in γt never `1-percolate, but they `∞-percolate for both t = T (p) and t = T (p) + 1.

Finally, if p ∈ S, then 1’s in γt `
∞-percolate only for t = T (p) and at this time they do

not `1-percolate.

Figure 1 illustrates Theorem 2 for the density p = 0.01. The frames represent the state of the

system on a 200× 200 square at times 3 and 4 (top), and 5 and 6 (bottom). At times 4 and 6

(resp. at time 5) the sites with color 1 that are connected via an l∞-path (resp. an l1-path) to

the left edge of the rectangle are painted black. The remaining 1’s are painted dark gray, while

2’s are painted light gray. It is clear that at time 3 the rings of 1’s are still too small to be able

to `∞-percolate. This remains true at time 4, despite the existence of relatively long `∞-paths.

At time 4, 1’s form a left–right `1-connection of the square, suggesting `1-percolation. Finally,

by time 5 there is enough annihilation between the rings so that 1’s cannot even `∞–percolate.

These figures leave little doubt that T (0.01) = 5 and 0.01 ∈ G1.

It is natural to ask what happens to Theorems 1 and 2 in more general circumstances. One

possible generalization is to consider an arbitrary excitation threshold θ; this means that x will

change color from 0 to 1 iff the number of sites with color 1 in Nx exceeds θ ([FGG1], [FGG2],
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[DG], [GG]). In this case “failed centers” can break up the rings and cause local periodicity;

computer simulations show that this is indeed a likely scenario in many regimes, though a

rigorous general statement is hard to prove. Another interesting class of questions concerns the

expanding “shells” in dimensions 3 or higher. These higher dimensional models are considerably

harder to deal with not only because of technical difficulties, but also because of qualitatively

different “intermediate” regimes. On a different note, present methods can be extended to

handle various related two–dimensional models with recurrent ring dynamics ([Gra3]).

Figure 1. Ring dynamics in the GHM.

The first step in the proof of the above theorems is a comparison between the GHM and

a monotone 2–color model which is in fact the threshold 1 (often called additive) version of

threshold growth dynamics ([GG]). This auxiliary monotone automaton with state space {0, 1}Z2

is denoted by ξt and given by the update rule:

ξt+1(x) = max{ξt(y) : y ∈ Nx}.

Thus, {ξt = 1} = {ξ0 = 1}+N t. Assume that ξ0. like γ0, is a product measure of 0’s and 1’s,

with a density of 1’s given by p > 0. Define Ta(p) to be the first time for which the set {ξt = 1}
B∞(0, a)-percolates. By the ergodic theorem, Ta is a deterministic function of p. It is also not



6

hard to prove the following result.

Theorem 3. As p→ 0, Ta(p)
√
p converges to a finite non-zero constant λc, which depends on

N but is independent of a.

Many models for crystal formation and growth, such as the famous Johnson–Mehl model

([JM]), include continuous seeding of nuclei. This inspired R. Kapral and M. Weinberg ([KW])

to propose a variant of ξt. This model, denoted by ξ̃t, is a Markov chain with state space {0, 1}Zd

and the following transition rule at every site x:

0→ 1 if there is a 1 in Nx,

0→ 1 with probability p, if there is no 1 in Nx,

0→ 0 with probability 1− p, if there is no 1 in Nx,

1→ 1 automatically.

Hence this rule is a two–stage procedure: at the first stage the dynamics of ξt are applied to

a configuration of 0’s and 1’s, and at the second stage a proportion p of the remaining 0’s are

turned to 1’s.

Figure 2. Threshold 1 growth rule with continuous nucleation.

Start ξ̃t from the quiescent state: ξ̃0(x) = 0 for all x. Now define T̃a(p) to be the first time at

which {ξ̃t = 1} B∞(0, a)-percolates. Our next theorem identifies the behavior of T̃a near p = 0.

(We will see later that T̃a is a deterministic function of p as well.)

Theorem 4. As p→ 0, T̃a(p)p1/3 converges to a finite non-zero constant.
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This theorem is illustrated by Figure 2, which shows the state of the 500× 375 system with

N = B∞(0, 1) and p = 0.0005 at time t = 12, the first time when there is an `∞–path connecting

left and right edges of the rectangle. The picture suggests that T̃1(0.0005) = 12.

The rest of the paper is organized as follows. Section 2 contains a few results on additive

growth, and a proof of Theorem 3. Theorem 4 is proved in Section 3. Section 4 states a few well

known results about long–range percolation models, which we then use in Section 5 to prove

Theorem 2. Finally, Section 6 completes the proof of Theorem 1.

2. Growth dynamics with initial nucleation.

We start with a simple lemma which establishes a connection between the growth automaton

ξt and the GHM γt.

Lemma 2.1. Assume that γ0 = ξ0. Then

(2.1) {x : γt+1(x) = 1} = {x : ξt(x) = 0, ξt+1(x) = 1}.

Proof. Denote the set on the right of (2.1) by At. To prove (2.1) by induction, observe first that

it is true at t = 0, and then assume that {γs+1 = 1} = As for all s < t.

Firstly, we prove that At ⊂ {γt+1 = 1}. Assume that x ∈ At. Then x /∈ As for any s < t. In

particular, x /∈ At−1, hence by hypothesis γt(x) 6= 1. Since γt(x) cannot be 2 (γt(x) = 2 would

imply γt−1(x) = 1 and thus x ∈ At−2, a contradiction), γt(x) = 0. Moreover, there is a y ∈ Nx
such that ξt(y) = 1. If ξt−1(y) = 1, then ξt(x) = 1, a contradiction. It follows that y ∈ At−1,

γt(y) = 1 and, consequently, γt+1(x) = 1.

Secondly, we prove that {γt+1 = 1} ⊂ At. Assume now that γt+1(x) = 1, so γt(x) = 0 and

γt(y) = 1 for some y ∈ Nx. Hence y ∈ At−1 and, consequently ξt+1(x) = 1. Since x /∈ At−1,

we either have ξt(x) = 0 or ξt−1(x) = 1. But, since x /∈ At−2, ξt−1(x) = 1 would imply that

ξt−2(x) = 1 and hence ξt−1(y) = 1, a contradiction with y ∈ At−1. This leaves ξt(x) = 0 as the

only possibility, proving that x ∈ At. �

Corollary 2.2. For each site x there is a unique time t at which γt(x) = 1.

Lemma 2.1 also immediately implies that P (γt(x) = 1) =
(

1− (1− p)|N t\N t−1|
)

(1 −
p)|N

t−1|. To estimate the maximal value this expression can have, we first use the shape the-

orem; this result was first proved by Willson ([Wil]), but we give a short proof in Lemma 2.3

below. This theorem implies that |Nn|/n2 → Area(co(N )) as n→∞. (Here, and in the sequel,

we denote by | · | the cardinality and by Area the Lebesgue measure.)
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Assume, for a moment, that the growth at the boundary is also regular enough so that

(2.2)
1

n
· |Nn \ Nn−1| → c as n→∞,

for some constant c > 0. Then c = 2Area(co(N )), and a short computation gives

max
t
P (γt(x) = 1) ∼

√
2e−1Area(co(N )) · √p as p→ 0.

In fact, we show below (Lemma 2.4) that (2.2) is always true. Essentially, we show that the

boundary of Nn is quickly trapped into a stable pattern. Figure 3 provides an illustration in

which points in Nn \ Nn−1 are periodically shaded.

N =

• · · · · • ·
· · · · · · ·
• · · · · · ·
· · · 0 · · ·
· · · · · · •
· · · · · · ·
· • · · · · •

Figure 3. N 30 for the specified N .

Lemma 2.3. There exists a constantM (depending only onN ) such that the set Nn is included

in n · co(N ) and includes all integer points in (n−M) · co(N ).

Proof. The inclusion Nn ⊂ n · co(N ) is elementary. Next, it follows from the results in [Gra2]

that there exists an ε > 0 so that if A is a subset of R2 with C2 boundary whose curvature

does not exceed ε, then A + N = A + co(N ). Moreover, the curvature of the boundary of

A + co(N ) remains at most ε. Let A0 now be any set with boundary curvature at most ε, say

A0 = B2(0, 1/ε).

By irreducibility, there exists an n0 so that A0 ∩ Z2 ⊂ Nn0 . A simple conjugacy argument

([GG]) yields (A0 + (n− n0) · co(N )) ∩ Z2 ⊂ Nn. �
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Lemma 2.4. (2.2) holds.

Proof. Take m ≥ 2 and integers x1 < x2 < · · ·< xm and M = {x1, . . . , xm}. If a = g.c.d.(M−
x1), then elementary number theory implies that there exists a constant M0 so that

(2.3) [nx1 +M0, nxm −M0] ∩ aZ = [nx1 +M0, nxm −M0] ∩Mn.

Let e1, e2 be the usual basis vectors and assume that βM is such that N ⊂ Ze1 + (−∞, βM ]e2.

Moreover, assume that Nl = min{α : αe1 +βMe2 ∈ N} and Nr = max{α : αe1 +βMe2 ∈ N} are

different, Nl < Nr. Then, we claim that, for any fixed k ∈ {0, 1, 2, . . .}, either (Ze1 + n(βM −
k)e2)∩Nn = ∅ for all n, or else there exists positive integer constants mk, Mk and a

(k)
1 , . . . , a

(k)
mk

so that

(2.4)
([−nNl +Mk, nNr −Mk] ∩

(
∪mki=1a

(k)
i Z

)
)e1 + n(βM − k)e2

=([−nNl +Mk, nNr −Mk]e1 + n(βM − k)e2) ∩ Nn.

Indeed, for k = 0, (2.4) follows immediately from (2.3). In words, we know that the last

horizontal line of Nn in the vertical direction is periodic, away from the edges. But then this

argument shows that the same must be true for the next furthest line, and so on. Hence an

induction argument with a repeated application of (2.3) establishes (2.4). By Lemma 2.3, for

large enough k, mk = 1, a
(k)
1 = 1, and we can take Mk = M . This means that at least the

boundary in the e2 direction stabilizes away from the edges.

However, a similar argument (with a few more notational complications) will work in any

direction u such that a line with normal u contains at least two extreme points of co(N ). Only

finitely many such directions are determined by the boundary of co(N ) and it is easy to combine

them to end the proof. �

Next up is a well–known result about a continuous percolation model (for a proof, see [ZS]

and [Roy]), which identifies the constant λc in the statement of Theorem 3.

Lemma 2.5. Assume that P ⊂ R2 is a Poisson random field with intensity 1. Attach to each

x ∈ P a random variable Ux > 0; assume that Ux are i.i.d., and bounded. Define, for any fixed

λ > 0, the random set W (λ) = P+λ ·Ux ·co(N ) ⊂ R2. Let W (λ, 0) be the connected component

of W (λ) which includes 0. Then there exists a λc ∈ (0,∞) such that

E(Area(W (λ, 0)))<∞ for λ < λc

P (Area(W (λ, 0)) =∞) > 0 for λ > λc.

The above statement remains unchanged (and so does λc) if Area(W (λ, 0)) is replaced by |P ∩
W (λ, 0))|, or the diameter of W (λ, 0). Moreover, W (λ) percolates , i.e. contains an unbounded
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connected set, if λ > λc, while all connected components are bounded if λ < λc. Finally, W (λ)c

percolates if λ < λc and it does not if λ > λc.

In this section, we only need the case when all the Ux are point masses at 1. To prove

Theorem 3, we use a basic coupling between W (λ) and ξt which is similar to the one used by

Zuev and Sidorenko in their pioneering papers ([ZS]).

Proof of Theorem 3. Fix the density p and define Q(x, p) = {y ∈ R2 : ||√px − y||∞ ≤
√
p/2}.

Let P be a Poisson random field with density 1. Declare a site x ∈ Z2 to be occupied if

Q(x, p) ∩ P 6= ∅. Since Area(Q(x, p)) = p, and Area(Q(x, p) ∩Q(y, p)) = 0 for x 6= y, the sites

in Z2 are independently occupied, each with probability 1− e−p. Define ξ0 by making {ξ0 = 1}
equal to the set of occupied sites.

We claim that there exists a constant N > 0 (again dependent only on N ) so that,

(2.5) W ((t−N)
√
p) ⊂ √p({ξt = 1}+B∞(0, 1/2))⊂W ((t+N)

√
p),

for every t and p.

To prove (2.5), assume first that a point x ∈ R2 is in the leftmost set of (2.5). Then there

is a y ∈ P such that x ∈ y + (t− N)
√
p · co(N ). Find a z ∈ Z2 so that ||y − √pz||∞ ≤

√
p/2.

This means that ξ0(z) = 1 and hence the middle set in (2.5) covers
√
pz +

√
p(t−M) · co(N )

by Lemma 3.3. Since N is supercritical, B∞(0, 1/2) ⊂ co(N ), and so x is in the middle set of

(2.3) if we choose N = M + 1.

Assume now that x is in the middle set of (2.5). Hence there is a y ∈ Z2 so that ξt(y) = 1

and ||x−√py||∞ ≤
√
p/2. Then there exists a z ∈ Z2 so that ξ0(z) = 1 and y ∈ z + t · co(N ),

and, in turn, some w ∈ P ∩Q(z, p). Therefore x ∈ w + (t+ 2)
√
p · co(N ).

It is easy to translate (2.5) into a statement about Ta. Namely, Ta(1− e−p) ∈ [λc/
√
p− 2a−

N − 1, λc/
√
p+N + 1], finishing the proof. �

3. Growth dynamics with continuous nucleation.

We start the analysis of ξ̃t by associating to every site x, independently of other sites, a

geometric random variable Sx with P (Sx = k) = p(1− p)k−1, k = 1, 2, . . . . Then,

(3.1) {ξt = 1} =
⋃
{x+N t−Sx : Sx ≤ t}.

Note that T̃a(p) is a translation invariant function of the independent family {Sx : x ∈ Z2}, hence

a determinstic quantity. Moreover, (3.1) and (2.2) yield, after a straightforward computation,

(3.2) P (ξ̃t(0) = 0) =
t∏

k=0

P (S0 > t− k)|N
k\Nk−1| = (1− p)(Area(co(N ))/3)t3+o(t3).
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If we denote the first passage time to the origin by τ , i.e. τ = min{t : ξt(0) = 1}, then (3.2)

immediately implies that p1/3τ converges weakly as p→ 0 to a non–degenerate random variable.

Therefore, most sites make the 0 to 1 transition at times of the order p1/3, which certainly makes

Theorem 4 plausible.

In this section, we use Lemma 2.5 with Ux uniformly distributed on [0, 1]. Before proceeding

with the proof of Theorem 3 we need a few preliminary results. DenoteW ε(λ) = W (λ)+ε·co(N ),

and W−ε(λ) = P + max{λUx − ε, 0} · co(N ).

Lemma 3.1. If λ < λc then there exists an ε > 0 so that the ε-fattening W ε(λ) does not

percolate.

Proof. For 0 ≤ a < b, let W ′([a, b], µ) =
⋃
{x + U ′x · co(N ) : x ∈ P(µ)}, where U ′x are now

independent and uniform on [a, b] and P(µ) is a Poisson point location with intensity µ. Note

that W ε(λ) = W ′([ε, λ+ ε], 1).

There exists a δ > 0 so that W ((λ+ δ)(1 + δ)) does not percolate, hence (as is easily seen

by shrinking the space by a factor of 1/(1 + δ)) neither does W ′([0, λ+ δ], 1 + δ). However,

by discarding points x ∈ P(1 + δ) for which U ′x < ε, W ′([0, λ + δ], 1 + δ) can be seen to

dominate W ′([ε, λ+ δ], (1 + δ)(1 − ε/(λ + δ))). If ε is chosen small enough so that ε < δ and

(1 + δ)(1− ε/(λ+ δ)) ≥ 1, then W ′([ε, λ+ ε], 1) cannot percolate. �

Lemma 3.2. If λ > λc then there exists an ε > 0 so that W−ε(λ) percolates.

Proof. The random variable max{λUx− ε, 0} dominates a uniform random variable on [0, λ− δ]
with probability 1 − ε/δ. If one chooses ε = δ2, then W−ε(λ) dominates W ′([0, λ− δ], 1− δ),
which does percolate for small enough δ. �

Lemma 3.3. Given p ∈ [0, 1] and any integer t > 0 let

ur =
p(1− p)t−r
1− (1− p)t , vr =

r∑
i=1

ui =
(1− p)−r − 1

(1− p)−t − 1
,

for r = 1, . . . , t. (Note that vt = 1.) Define a real–valued function f on [0, 1] by f(0) = 0 and

f(v) = rp1/3 for v ∈ (vr−1, vr], r = 1, . . . , t. If there exists a constant λ > 0 so that tp1/3 → λ

as p→ 0, then sup
v∈[0,1]

|f(v)− λv| → 0 as p→ 0.

Proof. Since tp → 0, (1 − p)−r = 1 + rp + ar, where |ar| ≤ C(rp)2, for some constant C.

Therefore,

|f(vr)− λvr| =
∣∣∣∣rp1/3 − λ r

t

1 + ar/(rp)

1 + at/(tp)

∣∣∣∣ ≤ |tp1/3 − λ|+ 2Cλtp.
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Moreover, a simple calculation shows that supr(vr−vr−1) = supr ur ∼ p1/3/λ as p→ 0. Finally,

if v ∈ (vr−1, vr], then |f(v) − λv| ≤ |f(vr) − λvr| + λ(vr+1 − vr) ≤ |tp1/3 − λ| + Cp1/3, for a

(different) constant C. �

Proof of Theorem 3. We prove that T2(p)p1/3 → λ
2/3
c as p→ 0.

Let Rt(x) equal 0 if Sx ≥ t and t − Sx otherwise. This is the radius of the growing set

which was generated by a seed at x during the time interval [0, t]. Observe that P (Rt+1(x) =

r | Rt+1(x) > 0) = ur, r = 1, . . . , t, where ur are defined in the statement of Lemma 3.3. Now,

assume that P is an intensity 1 Poisson random field and declare a site x ∈ Z2 open at time

t+ 1 if

B∞(x
√

1− (1− p)t, 1

2

√
1− (1− p)t) ∩ P 6= ∅.

This makes sites open independently with probability P (Rt+1(x) > 0). Adjoin to each site

x that is open at time t a random variable Vt+1(x) with P (Vt+1(x) = r) = ur , r = 1, . . . , t,

independently of other points. We get, by (3.1),

(3.3) {ξ̃t+1 = 1} =
⋃

x open at time t+1

(
x+N Vt+1(x)

)

Assume that the claim of the theorem is false. Then, we can find some sequence pn converging

to 0, and λ ∈ [0,∞] \ {λc}, such that T̃a(pn)p
1/3
n → λ2/3 as n → ∞. We will assume that

λ ∈ (0,∞); the other two cases are then treated easily.

The first possibility is that λ < λc. Take t = T̃a(pn). We claim that, if pn is small enough,

then the subset of R2:
√

1− (1− pn)t · ({ξ̃t+1 = 1} + B∞(0, (a + 1)/2)) does not percolate

(i.e. contains no unbounded connected set). This will certainly show that {ξ̃t+1 = 1} does

not B∞(0, a)–percolate, implying t < T̃a(pn), a contradiction. To prove the claim, note that√
1− (1− pn)t/p

1/3
n → λ1/3, so (3.3) and Lemma 3.3 imply that for every ε > 0 there exists a

large enough n so that the set
√

1− (1− pn)t · ({ξ̃t+1 = 1}+ B∞(0, (a+ 1)/2)) is included in

the fattening W (λ)ε. Now, use the ε from Lemma 3.1.

On the other hand, if λ > λc, then take t = T̃a(pn) −M − 2, with M as in Lemma 2.3. If

pn is small enough, then it follows from Lemma 2.3, (3.3), Lemma 3.3, and Lemma 3.2 that√
1− (1− pn)t · ({ξ̃t+M+1 = 1}+B∞(0, (a+ 1)/2))⊂ R2 percolates. Therefore, {ξ̃t+M+1 = 1}

B∞(0, a)-percolates, and so t ≥ T2(pn)−M − 1, a contradiction. �

4. Some percolation preliminaries.

In this section, we state the results needed to prove Theorem 2. These are either applications

of general percolation theory, or else follow by minor modifications of well–known arguments,

so detailed proofs will be omitted.
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Fix a positive integer k. Recall that γ0 is an i.i.d. collection of Bernoulli random variables

with density p. Call the sites of the set {γ0 = 1}+ B∞(0, k) k–occupied , and other sites in Z2

k–vacant . Let C1
k(x) (resp. C∞k (x)) be the `1–cluster (resp. `∞–cluster) of occupied sites which

includes x, i.e. the set of all occupied points which can be connected to x by an `1–path (resp.

`∞–path) of occupied sites. A self–avoiding `1–path (resp. `∞–path) which circles once around

the origin is called an `1–circuit (resp. an `∞–circuit). Define:

pkc = inf{p : P (|C1
k(0)| =∞) > 0},

p̃kc = inf{p : P (|C∞k (0)| =∞) > 0}.

Note that p0
c = pc ≈ 0.593 is the critical density for the usual site percolation on Z2, while

p̃0
c = 1− pc is the critical density for its dual.

Lemma 4.1.

(1) If p ≤ pkc , then there exists an infinite sequence of disjoint k–vacant `∞–circuits.

(2) If p ≥ pkc , then there exists an infinite sequence of disjoint k–occupied `1–circuits.

(3) The k–occupied sites `1–percolate iff p > pkc , while k–vacant sites `∞–percolate iff p < pkc .

Proof. The statements for p 6= pc follow by straightforward generalizations of the arguments in

[Roy], together with standard geometric facts. (For example, an infinite k–occupied `∞–path

does not exist iff there is an infinite sequence of disjoint k–vacant `1–circuits.) In fact, away from

the critical values the necessary version of the Russo–Seymour–Welsh (RSW) lemma ([Gri]) can

be proved in a more direct fashion ([Gra1]).

If p = pc, then the k–vacant sites again cannot `∞–percolate by the RSW lemma for k–vacant

sites ([Roy]) and the standard form of Russo’s argument ([Gri]). To see that the k–occupied

sites cannot `1–percolate, assume they do and fix a small ε > 0. Then, for a large enough n, the

probability that there is an `1–path consisting of k–occupied sites which stays inside the rectangle

[0, 1.2n]×[0, n] and connects the left edge with the right edge is at least 1−ε. (Otherwise infinitely

many k–vacant `∞–circuits could be constructed using the argument of [Roy] and Chapter 6 of

[Kes].) This enables us to decrease p a little while keeping the probability of a left–right crossing

of [0, 1.2n]× [0, n] larger than 1 − 2ε. A standard oriented percolation scheme (together with

a Peierls argument) can now be utilized to show that, for a small enough ε, an infinite `1–path

of k–occupied sites emanating from the origin exists with positive probability. This contradicts

the fact that p = pc. �
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Of course, almost exactly the same arguments handle the `∞–percolation case:

Lemma 4.2.

(1) If p ≤ p̃kc , then there exists an infinite sequence of disjoint k–vacant `1–circuits.

(2) If p ≥ p̃kc , then there exists an infinite sequence of disjoint k–occupied `∞–circuits.

(3) The k–occupied sites `∞–percolate iff p > p̃kc , while k–vacant sites `1–percolate iff p < p̃kc .

It is obvious that pk+1 ≤ p̃k ≤ pk for all k ≥ 0. For many of our arguments it is however

crucial that strict inequalities hold.

Lemma 4.3. · · ·< p3
c < p̃2

c < p2
c < p̃1

c < p1
c < p̃0

c = 1− pc < p0
c = pc.

Proof. To apply the arguments from Section 3 of [AG], note that `1–percolation (resp. `∞–

percolation) of k–occupied sites is equivalent to the site percolation on the graph with vertices

Z2 and edges between any two sites x and y for which y − x ∈ B∞(0, 2k) + B1(0, 1) (resp.

y − x ∈ B∞(0, 2k+ 1)). �

5. Ring dynamics in the GHM: the Moore neighborhood case.

We begin with some notation. By distr we mean distance taken in the norm ||·||r. Choose any

set A ⊂ Zd. Define its `∞–boundary ∂∞A to consist of all sites x ∈ A for which dist∞(x, Ac) =

1, and the outside `∞–boundary by ∂∞o A = ∂∞(Ac). Note that Lemma 2.1 then says that

{γt+1 = 1} = ∂∞o ({ξt = 1}).

The proof of Theorem 2 starts with a geometrical lemma which is probably well–known.

Lemma 5.1. Let A ⊂ Z2. Let x, y ∈ ∂∞o A. Let x and y be connected by an `1–path (resp.

`∞–path) contained in Ac and connected by an `1–path (resp. `∞–path) contained in A∪∂∞o A.

Then x and y can be connected by an `1–path (resp. `∞–path) contained in ∂∞o A.

Proof. A path (an `1–path or an `∞–path) will be called self–avoiding if the induced path in R2

(obtained by adding line segments between successive points) does not cross itself. Moreover, for

two self–avoiding paths with the same endpoints π1 and π2, we define K(π1, π2) to be the subset

of R2 consisting of the union of the two induced paths together with all bounded components

of the complement of this union.

We start by proving the `1 version. Let π1 be a self–avoiding `1–path connecting x to y

through A ∪ ∂∞o A and let π2 be a self–avoiding `1–path connecting x to y through Ac.
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Assume first that the only common sites of π1 and π2 are x and y. Then we can, without loss

of generality, assume that K(π1, π2) is seen on the left while moving from x to y on π2. Let Π

be the set of all self–avoiding `1–paths which connect x to y through Ac and have K(π1, π) on

their left (but allow π to possibly intersect π1). We let π ≤ π′ iff K(π1, π) ⊂ K(π1, π
′). Note

that two paths π, π′ ∈ Π always have a path π′′ such that π′′ ≤ π and π′′ ≤ π′. (Proof: Start

at x and find the first point z where π and π′ split. At this point start to follow the left path

until it crosses the other path again. If the crossing point is y then the procedure is completed,

otherwise continue the same way.) This property, together with the fact that Π is non-empty

and finite, imply that there exists the smallest path ρ in Π. We claim that ρ consists only of

sites in ∂∞o A.

If not, then there is a z on ρ which is not on ∂∞o A. Figure 4 identifies (up to rotations) all

possible local configurations around z; we assume that the previous site on ρ was below z. The

symbol � then indicates sites in ρ, and • indicates sites which are not in A (since z /∈ ∂∞o A).

Eliminate z from ρ, transforming the path in the indicated way. If this transformation creates

a loop in the path, simply discard it. We thereby obtain a path ρ′ ∈ Π such that ρ′ ≤ ρ, but

ρ′ 6= ρ, a contradiction.

� �
• �z −→ � z
� �

• � �
• �z −→ � z
� �

• � � �
• �z −→ � z
• � � �

• � �
• �z −→ � z
• � �

� �z −→ � z
• � � �

• � �
• �z −→ � z
• • � � �

• • • � � �
• �z � −→ � z �
• � � �

� �
• �z −→ � z
• • � � �

• • � � �
• �z −→ � z
• • � � �

Figure 4. Transformation of ρ in the `1 case (left) and `∞ case (right).
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If π1 and π2 do meet at sites other than x and y, let x = v0, v1, . . . , vn = y be all points of

intersection. Then do the above for x replaced by vk and y replaced by vk+1; k = 0, . . . , n− 1.

Finally, we prove the `∞ version. Let π1 be a self–avoiding l∞-path connecting x and y

through A ∪ ∂∞o A, and let π2 be a self–avoiding l∞-path which connects x and y through

Ac. Then ρ is defined in a way analogous to the `1 case. Again, to prove that ρ consists of

sites on ∂∞o A, one needs to define a transformation that will eliminate z /∈ ∂∞o A from ρ. The

transformation is given by Figure 4 (all other cases are rotations or reflections of those drawn).

Note that every new point on ρ is within `1–distance 1 of z, and, because z is not on π1, this

implies that new points cannot be on the right of π1. Apart from this issue, the argument is the

same as before. �

Proof of Theorem 2. Start by defining S = ∪k≥0{pkc , p̃kc}.

Assume first that p̃kc < p < pkc for some k ≥ 0. Then {ξt = 1} `∞–percolates at t = k,

but neither `1–percolates for t ≤ k nor `∞–percolates for t < k. We first prove that {γt = 1}
`∞-percolates for t = k. This is obvious for k = 0, so we can assume that k ≥ 1.

Assume that v0, v1, v2, v3, . . . is a self–avoiding infinite `1–path in {ξk−1 = 0} (which exists

by Lemma 4.2(3)). Let in, n = 1, 2, . . . be such that all vin belong to the infinite `∞–cluster

of 1’s in ξk. (Such indices must exist by Lemma 4.2(2), because 1’s in ξk form an infinite

sequence of disjoint `∞–circuits.) Then vin and vin+1
can be connected by an `∞–path in

{ξk = 1} = {ξk−1 = 1} ∪ ∂∞o {ξk−1 = 1}. By Lemma 5.1, we can connect vin and vin+1
via

an `∞–path πn in ∂∞o {ξk−1 = 1}. The union of paths πn is an infinite `∞–connected set, and

consists of sites v ∈ ∂∞o {ξk−1 = 1}, hence such that ξk−1(v) = 0 and ξk(v) = 1, hence γk(v) = 1.

Therefore {γk = 1} `∞–percolates.

Moreover, by Lemma 4.1(3), there is an `∞–path of 0’s in ξk. Since 1’s in ξk+1 `
1–percolate

and form `1–circuits (by Lemma 4.1(2)), this path must have infinitely many sites in the infinite

`1–cluster of {ξk+1 = 1}. As in the preceding paragraph, Lemma 5.1 assures that 1’s in γk+1

`∞–percolate.

Finally, 0’s in ξk+1 do not `∞–percolate (Lemma 4.1(3)). Hence 1’s in γk+2 cannot `∞–

percolate and neither can they at any succeeding time. Of course γt ⊂ ξt, so {γt = 1} cannot

`∞–percolate for t < k. As neither {ξk = 1} nor {ξk+1 = 0} `1–percolate, {γt = 1} cannot `1–

percolate for t ∈ {k, k + 1}. Therefore we have proved the claim of the theorem with T (p) = k

in this case.

Assume now that pk+1
c < p < p̃kc . Then {ξt = 1} `1–percolates at time t = k + 1, but

it does not `∞–percolate for t ≤ k. There is an infinite `1–path of 0’s in ξk (Lemma 4.2(3)),
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which intersects the infinite `1–cluster of 1’s in ξk+1 infinitely many times (Lemma 4.1(2)(3)). A

procedure similar to the one above, `1 version of Lemma 5.1 shows that 1’s in γk+1 `
1–percolate.

They cannot `∞–percolate in γt for t ≥ k + 2 since 0’s in ξk+1 do not `∞–percolate (Lemma

4.1(3)). This proves the claim of the theorem, with T (p) = k + 1 in this case.

Finally, we consider the case where p equals some critical value, assuming first that p = pkc for

some k. We then know that 1’s in ξk `
∞–percolate and form infinitely many disjoint `∞–circuits

(Lemma 4.2(2)(3)), while 0’s in ξk−1 `
1–percolate. As we have seen, this implies that 1’s in γk

`∞-percolate. An infinite collection of disjoint `1–circuits of 1’s in ξk (Lemma 4.1(2)) prevents

`∞–percolation of {γk+1 = 1}. As {ξk = 1} does not `1–percolate (Lemma 4.1(3)), neither can

{γk = 1}. Hence T (p) = k in this case.

If p = p̃kc , then there is an `∞–path of 0’s in ξk (Lemma 4.1(3)), which is intersected infinitely

many times by the infinite `1–cluster of 1’s in ξk+1 (Lemma 4.1(2)). Again, this implies that

{γk+1 = 1} l∞–percolates for t = k + 1. Moreover, {γk = 1} does not `∞–percolate (as

{ξk = 1} does not, by Lemma 4.2(3)), and neither can {γk+2 = 1} (as {ξk+1 = 0} does not).

Since {ξk = 0} does not `1–percolate (Lemma 4.2(3)), neither does {γk+1 = 1}. Therefore,

T (p) = k + 1 in this final case. �

6. Ring dynamics in the GHM: the general neighborhood case.

Proof of Theorem 1. Throughout this proof C is a generic positive integer constant, which may

change value from one appearance to another, and depends only on N . Recall the coupling of

ξt and W from the proof of Theorem 3 which establishes (2.5). That proof and Lemma 2.5

then imply that there exists a C so that if t2 > λcp
−1/2 +C, then {ξt2 = 1} `1–percolates and

the infinite `1–cluster contains an infinite sequence of disjoint `1–circuits. On the other hand, if

t1 < λcp
−1/2 −C, then {ξt1 = 0} `∞–percolates.

For every x ∈ Z2, let e(x) be the “excitation time” of x, when γe(x)(x) = 1. Assume that

t1, t2 are as above, with t2 − t1 ≤ C. Let v0, v1, . . . be a self–avoiding `∞–path inside {ξt1 = 0}.
Let ik, k = 1, 2, . . . be such that vik are in in the infinite `1–cluster of {ξt2 = 1}. By Lemma

5.1 we can connect vik and vik+1
by an `∞–path in ∂∞o {ξt2 = 1}. However, Lemma 2.3 implies

that there exists a large enough C so that ξt2+C(x) = 1 for every x ∈ ∂∞o {ξt2 = 1}. Thus we

produce a self–avoiding infinite `∞–path v′0, v
′
1, . . . inside {ξt1 = 0} ∩ {ξt1+C = 1}. By Lemma

2.1, e(v′k) ∈ [t1, t1 +C] for every k, and thus there exists an xk ∈ B∞(v′k, C) so that γt1(xk) = 1.

However, if a is large enough, then {xk} forms an infinite B∞(0, a)–percolating set, proving part

(1).

Parts (2) and (3) follow easily from Theorem 3 and its proof. �
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