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Abstract

We explore a method introduced by Chatterjee and Ledoux in a paper on eigenvalues of
principle submatrices. The method provides a tool to prove concentration of measure
in cases where there is a Markov chain meeting certain conditions, and where the
spectral gap of the chain is known. We provide several additional applications of
this method. These applications include results on operator compressions using the
Kac walk on SO(n) and a Kac walk coupled to a thermostat, and a concentration of
measure result for the length of the longest increasing subsequence of a random walk
distributed under the invariant measure for the asymmetric exclusion process.
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1 Introduction

In the analysis of Chatterjee and Ledoux on concentration of measure for random
submatrices [7] , it is proved that for an arbitrary Hermitian matrix of order n and
k ≤ n sufficiently large, the distribution of eigenvalues is almost the same for any
principal submatrix of order k. Their proof uses the random transposition walk on Sn
and concentration of measure techniques. To further generalize their results, we observe
that it is important to use a Markov chain which does not change too many matrix entries
all at once and whose spectral gap is known. To demonstrate that this method can
be generalized to a much wider range of problems, we provide three applications. As
our first application, instead of looking at a Markov chain on Sn, we first consider a
Markov chain on SO(n). We introduce the Kac walk on SO(n) and demonstrate that
it is sufficiently similar to the transposition Markov chain to allow for Chatterjee and
Ledoux’s results to carry over to the more general case of operator compressions. It
should be noted that a similar result has been proved by Meckes and Meckes [13] using
different techniques. In a more recent work [14], Meckes and Meckes have extended
their techniques to include several other classes of random matrices and prove almost
sure convergence of the empirical spectral measure. As the purpose of this paper is to
highlight the fact that the methods of Chatterjee and Ledoux can be extended to include
more general cases, we include this operator compression result, as it a straightforward
application and serves as a useful example for us to explain the method in detail. As a
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Concentration of measure bounds on Markov chains

second application, we apply the method to get a concentration of measure result for a
compression by a matrix of Gaussians using the Kac walk coupled to a thermostat. We
also show that the method can be applied to get concentration of measure of the length
of the longest increasing subsequence of a random walk evolving under the asymmetric
exclusion process. This method opens the door to concentration of measure in settings
where one has an appropriate underlying Markov process with a known spectral gap.

2 Overview of method

Before diving into the applications, we would like to give a brief overview of the
method. We will then show how to calculate concentration of measure in our applications
using this technique. To use the method, we must start with a stationary, reversible
Markov chain for which the spectral gap is known. We denote the Markov chain by
X0, X1, . . . . Call the state space of the Markov chain S. We will denote the invariant
distribution as π and the spectral gap as λ1. For a function f : S → R, define

‖|f‖|2∞ :=
1

2
sup
x∈S

E((g(X1)− g(X0))2|X0 = x)

and

Q(f, f) :=
1

2
E((f(X1)− f(X0))2)

The Poincaré inequality tells us that

Q(f, f) ≥ λ1Var(f(X0))

In order for the method to work properly, ‖|f‖|2∞ must be bounded. An important step in
all of our applications will be finding a bound for f , so for now, assume that ‖|f‖|2∞ < δ.

We begin by applying the Poincaré inequality to etf(X0) for t ≥ 0. This gives

λ1Var(etf(X0)) ≤ Q(etf(X0), etf(X0))

=
1

2
E(etf(X1) − etf(X0))2

= E
(
1f(X0)≥f(X1)(e

tf(X1) − etf(X0))2
)

= E(E(1f(X0)≥f(X1)(e
t(f(X1)−f(X0)) − 1)2|X0)e2tf(X0))

≤ t2E(E(1f(X0)≥f(X1)(f(X0)− f(X1))2|X0)e2tf(X0))

≤ t2‖|f‖|2∞E(e2tf(X0))

We then define Λ(t) := e−tEf(X0)E(etf(X0)) and use recursion to show that Λ(c
√
λ1/δ) ≤

C <∞ for explicit values of c and C. Chebyshev’s inequality then leads to

P(f(X0) ≥ E(f(X)) + r) ≤ Ce−cr
√
λ1/δ

for r > 0. Once we have this, the method can be applied after choosing and appropriate
Markov chain and finding λ1 and δ. Further details will be provided in the applications.

3 The Kac walk on SO(n)

The following model, introduced by Kac [8], describes a system of particles evolving
under a random collision mechanism such that the total energy of the system is conserved.
Given a system of n particles in one dimension, the state of the system is specified by
~v = (v1, . . . vn), the velocities of the particles. At a time step t, i and j are chosen
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Concentration of measure bounds on Markov chains

uniformly at random from {1, . . . , n} and θ is chosen uniformly at random on (−π, π]. The
i and j correspond to a collision between particles i and j such that the energy,

E =

n∑
k=1

v2k

is conserved. Under this constraint, after a collision, the new velocities will be of the
form vnewi = vi cos(θ) + vj sin(θ) and vnewj = vj cos(θ) − vi sin(θ). For i < j, let Rij(θ) be
the rotation matrix given by:

Rij(θ) =


I

cos(θ) sin(θ)

I

− sin(θ) cos(θ)

I


where the cos(θ) and sin(θ) terms are in rows and columns labeled i and j, and the I
denote identity matrices of different sizes (possibly 0). We will use the convention that
Riiθ = I. After one step of the process, ~vnew = Rij(θ)~v.

In our case, we will be considering this process acting on SO(n), so instead of vectors
in Rn, our states will be given by matrices G ∈ SO(n). Then we can define the one-step
Markov transition operator for the Kac walk, Q, on continuous functions of SO(n):

Qf(G) =
1(
n
2

) ∑
i<j

∫ 2π

0

f(Rij(θ)G)
1

2π
dθ (3.1)

for any G ∈ SO(n), and where f is a continuous function on SO(n).

Theorem 3.1 ([6, 12]). The Kac walk on SO(n) is ergodic and its invariant distribution
is the uniform distribution on SO(n). Furthermore, the spectral gap of the Kac walk on
SO(n) is n+2

2(n−1)n .

Recall that for any reversible Markov chain, we can define the Dirichlet form, Q (·, ·).
It is well known that for a Markov chain with spectral gap, λ1, the Poincaré inequality
holds:

λ1Var(f) ≤ Q (f, f) .

For the Kac walk, we have

Q (f, f) =
1

2
(
n
2

) ∑
1≤i<j≤n

∫ 2π

0

1

2π

∫
SO(n)

(f(G)− f(Rij(θ)G))
2
dµn(G)dθ,

where µn is the Haar measure on SO(n) normalized so that the total measure is 1.
Let us define the triple norm:

|||f |||2∞ =
1

2
(
n
2

) sup
G∈SO(n)

∑
1≤i<j≤n

∫ 2π

0

1

2π
|f(G)− f(Rij(θ)G)|2 dθ. (3.2)

The following result is analogous to Theorem 3.3 from Ledoux’s Concentration of Measure
Phenomenon book [10] . We reproduce the proof of Theorem 3.3 here to verify that
even though our situation does not satisfy the conditions of the theorem, the exact same
argument carries through for the Kac walk on SO(n).

Theorem 3.2. Consider the Kac walk on SO(n) and let F : SO(n) → R be given such
that |||F |||∞ ≤ 1. Then F is integrable with respect to µn and for every r ≥ 0,

µn(F ≥
∫
Fdµn + r) ≤ 3e−r

√
λ1/2

where λ1 = n+2
2(n−1)n is the spectral gap of the Kac walk on SO(n).
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Proof. We first demonstrate that Q
(
eλF/2, eλF/2

)
) ≤ λ2|||F |||2∞

4

∫
SO(n)

eλF (G)dµn(G) by
using symmetry.

Q
(
eλF/2, eλF/2

)
=

1

2
(
n
2

) ∑
1≤i<j≤n

∫ 2π

0

1

2π

∫
SO(n)

(
eλF (G)/2 − eλF (Rij(θ)G)/2

)2
dµn(G)dθ

=
1(
n
2

) ∑
1≤i<j≤n

∫ 2π

0

1

2π

∫
F (G)>F (Rij(θ)G)

(
eλF (G)/2 − eλF (Rij(θ)G)/2

)2
dµn(G)dθ

≤ λ2

4

1(
n
2

) ∑
1≤i<j≤n

∫ 2π

0

1

2π

∫
SO(n)

(F (G)− F (Rij(θ)G))
2
eλF (G)dµn(G)dθ

=
λ2

4
|||F |||2∞

∫
SO(n)

eλF (G)dµn(G)

Setting Λ(λ) = e−λ
∫
SO(n)

F (G)dµn(G) ∫
SO(n)

eλF (G)dµn(G), we combine this with the Poincaré
inequality to obtain

λ1Var(eλF/2) = λ1

(
Λ(λ)− Λ2

(
λ

2

))
≤ Q

(
eλF/2, eλF/2

)
≤ λ2

4
|||F |||2∞Λ(λ).

Incorporating the assumption |||F |||∞ ≤ 1 yields

Λ(λ) ≤ 1

1− λ2

4λ1

Λ2(λ/2).

Iterating the inequality n times gives

Λ(λ) ≤
n−1∏
k=0

(
1

1− λ2

4k+1λ1

)2k

Λ2n(λ/2n).

Since Λ(λ) = 1 + o(λ), we see that Λ2n(λ/2n)→ 1 as n→∞. This gives the upper bound

Λ(λ) ≤
∞∏
k=0

(
1

1− λ2

4k+1λ1

)2k

.

By plugging in λ =
√
λ1,using the crude estimate

∏∞
k=0

(
1

1− 1

4k+1

)2k

< 3, and applying

Chebyshev’s inequality, we obtain the result.

4 First Application: Random Operator Compressions

Following the notation of Chatterjee and Ledoux, for a given Hermitian matrix A of
order n with eigenvalues given by λ1, . . . , λn, we let FA denote the empirical distribution
function of A. This is defined as

FA(x) :=
#{i : λi ≤ x}

n

Using the results from above, along with the method of Chatterjee and Ledoux, we are
able to prove the following result:

Theorem 4.1. Take any 1 ≤ k ≤ n and an n-dimensional Hermitian matrix G. Let A be
the k × k matrix consisting of the first k rows and k columns of the matrix obtained by
conjugating G by a rotation matrix Rθij ∈ SO(n) chosen uniformly at random. If we let F
be the expected spectral distribution of A, then for each r > 0,

P(‖FA − F‖∞ ≥
1√
k

+ r) ≤ 12
√
k exp

(
−r
√

k

32

)
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Proof. The proof of this theorem uses the method introduced by Chatterjee and Ledoux
[7] with appropriate changes made to apply to the situation we are considering.

Let Rij(θ) ∈ SO(n) and let A be as stated above. Note that since A is a compres-
sion of a Hermitian operator, it will also be Hermitian. Fix x ∈ R. Let f(A) := FA(x),
where FA(x) is the empirical spectral distribution of A. Let Q be the transition operator
as defined in (1) and let |||.|||∞ be as in (2). Using Lemma 2.2 from Bai[3], we know that
for any two Hermitian matrices A and B of order k,

‖FA − FB‖∞ ≤
rank(A−B)

k

In our case, taking one step in the Kac walk is equivalent to rotation in a random plane
by a random angle. Hence A and RθijA will differ in at most two rows and two columns,
bounding the difference in rank by 2, so

‖f(A)− f(RθijA)‖∞ ≤
2

k

Using (2),

|||f |||2∞ =
1

2
(
n
2

) sup
A∈SO(n)

∑
1≤i<j≤n

E[f(A)− f(RθijA)]2

≤ 1

2

(
2

k

)2(
2k

n

)
=

4

kn

where the 2k
n comes from the probability that both i and j are greater than k, in which

case, A and RθijA will be the same. From Theorems 2.1 and 2.2, we have that

P(|FA(x)− F (x)| ≥ r) ≤ 6 exp

−r
2

√
1
2

n+2
(n−1)n√

4
kn



= 6 exp

(
−r/2

√
1

8

k(n+ 2)

n− 1

)
≤ 6 exp

(
−r/2

√
k

8

)
This is true for any x. Now, if we let FA(x−) := limy↑x FA(y), then we have EFA(x−) =

limy↑x F (y) = F (x−). Hence, for r > 0,

P(|FA(x−)− EFA(x−)| > r) ≤ lim
y↑x
P(|FA(y)− F (y)| > r)

≤ 6 exp

(
−r/2

√
k

8

)
The steps to get from P(|FA(x) − F (x)|) to P(‖FA − F‖∞) are identical to the steps in
the original Chatterjee and Ledoux paper, so we will omit them here. After completing
these steps, we are left with

P(‖FA − F‖∞ ≥
1√
k

+ r) ≤ 12
√
k exp

(
−r
√

k

32

)

which concludes the proof of our theorem.
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5 Second Application: Kac Model Coupled to a Thermostat

Using a spectral gap result from [4], we are able to demonstrate the application of
this method to a more complicated Markov chain. In this system, the particles from the
Kac system interact amongst themselves with a rate λ and interact with a particle from
a thermostat with rate µ. The particles in the thermostat are Gaussian with variance 1

β ,
so they have already reached equilibrium. In [4] they consider the Markov chain acting
on a vector. We consider the Markov chain acting on a matrix by treating the matrix as n
independent vectors, with each row representing a system of n particles. If we let ft(v)

denote the probability distribution of finding the system at time t with velocities v, then
the master equation for the Kac model coupled to a thermostat is given by

∂f

∂t
= −λn(I −Q)[f ]− µ

n∑
j=1

(1−Rj)[f ]

where n denotes the number of particles in the system, Q is the Markov transition
operator for Kac walk (as seen in equation 3.1), and

Rif(G) =
1

n

n∑
j=1

1

2π

∫ 2π

0

∫
Rn

√
β

2π

n

e−
β
2 ω
∗2
ij (θ)f(Vj(θ, ω)G)dθdω (5.1)

where ω = (ω1, ω2, . . . , ωn), Vj(θ, ω) sends each element gij in column j to gijcos(θ) +

ωi sin(θ) for i = 1 to n and ω∗ij = −gij sin(θ) + ωi cos(θ). The following theorem follows
immediately from the results proved in [4].

Theorem 5.1. The Kac walk coupled to a thermostat is ergodic and has unique invariant
measure given by

νn =
∏
i,j

√
β

2π
e−

β
2 v

2
ij

and has spectral gap µ
2n

For the thermostat alone (letting λ = 0), we can again prove a theorem analogous to
Chatterjee and Ledoux’s theorem 3.3. Let G be the set of n×n matrices with independent
and identically distributed N(0, 1/β) entries. We can define the Dirichlet form and the
triple norm for the thermostat as

Q(f, f) =
1

2n

n∑
j=1

1

2π

∫ 2π

0

∫
Rn

∫
G∈G

(
β

2π

)n/2
e−

β
2w
∗2
ij (f(Vj(θ, w))G− f(G))dνndwdθ

|||f |||2∞ = sup
G∈G

1

2n

n∑
j=1

1

2π

∫ 2π

0

∫
Rn

(
β

2π

)n/2
e−

β
2w
∗2
j |f(Vj(θ, w))G− f(G)|2dwdθ (5.2)

Using these, we can prove a concentration of measure result for the thermostat analogous
to Theorem 2.2

Theorem 5.2. Consider the Gaussian thermostat and let F : G → R be such that
|||F |||∞ ≤ 1. Then F is integrable with respect to νn and for every r ≥ 0,

νn(F ≥ Fdνn + r) ≤ 3e−r
√
λ1/2

where λ1 = µ
2n is the spectral gap of the thermostat process.

We omit the proof here as it is symmetric to the proof of Theorem 2.2.

Using this result and Theorem 4.1, we can prove the following concentration of measure
inequality.
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Theorem 5.3. Take any 1 ≤ k ≤ n and an n-dimensional Hermitian matrix G. Let S
be an n × k matrix whose k columns are the first k columns of a random matrix with
distribution νn. Let A be the k × k matrix obtained by conjugating G by S. Letting F

denote the expected spectral distribution of A, then for each r > 0,

P(‖FA − F‖∞ ≥
1√
k

+ r) ≤ 12
√
k exp

(
−r
√
kµ

108

)

where µ is the rate of the interaction with the thermostat.

Proof. The proof of this theorem closely follows the proof of Theorem 3.1, with appro-
priate changes made. Let A be stated as above, and let A′ be A after one step of the
Markov chain. Fix x ∈ R and let f(x) = FA(x), where where FA is the empirical spectral
distribution of A. Notice that rank(A−A′) ≤ 3, since after one step of the chain, at most
3 columns of A will be changed (two from the Kac Walk, and one from the thermostat).
Again using the inequality from [3], we know that

‖f(A)− f(A′)‖∞ ≤
3

k

|||f |||2∞ =
1

2
(
n
2

)
n

sup
A

∑
1≤i<j≤n

n∑
k=1

E|f(A)− f(A′)|2

where the first sum is over possible interactions in the Kac process and the second is
over possible particle interactions with the thermostat. The above is

≤ 1

2

(
3

k

)2(
3k

n

)
=

27

2kn

Using theorems 4.1 and 4.2, we have that

P(|FA(x)− F (x)| ≥ r) ≤ 6 exp

(
−r

2

√
µ
2n
27
2kn

)

= 6 exp

(
−r

2

√
kµ

27

)
Following the rest of the proof in 2.1 (with the appropriate numbers changed), we get

P(‖FA − F‖∞ ≥
1√
k

+ r) ≤ 12
√
k exp

(
−r
√
kµ

108

)

6 Third Application: The Length of the Longest Increasing Sub-
sequence of a Random Walk Evolving under the Asymmetric
Exclusion Process

.
Consider a random walk X on {1, . . . , n}. Represent X by some element in {0, 1}n,

whereXi = 0 corresponds to a step down in the walk at position i andXi = 1 corresponds
to a step up. We will assume that

n∑
i=1

Xi =
n

2

ECP 20 (2015), paper 95.
Page 7/13

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v20-3817
http://ecp.ejpecp.org/


Concentration of measure bounds on Markov chains

so that we have the same number of up steps as down steps. We can now look at this
random walk as the initial configuration of a particle process with Xi = 1 corresponding
to a particle in position i and Xi = 0 corresponding to no particle at position i. Con-
sider the asymmetric exclusion process acting on this configuration with the following
dynamics. At each step of the process, a number i is chosen uniformly in {1, . . . , n− 1}.
If Xi = Xi+1, then the configuration stays the same. If Xi = 1 and Xi+1 = 0, then the
values of Xi and Xi+1 switch with probability 1− q/2 and if Xi = 0 and Xi+1 = 1, then
the values switch with probability q/2. Viewed in this way, the asymmetric exclusion
process can be viewed as a Markov process on the set of random walks. See [11] for an
in depth discussion of the asymmetric exclusion process.

Theorem 6.1 ([9],[1],[5]). The spectral gap of the ASEP is λn = 1−∆−1 cos(π/n), where

∆ = q+q−1

2 for a parameter q satisfying 0 < q < 1.

In our case, take q = 1− c/nα, for a constant c, and 0 < α < 1, such that q ≈ e−c/nα .
Then Taylor approximating and simplifying gives

λn = c2/2n2α

Now let MX denote the height of the midpoint of the random walk at a fixed time during
the process. In other words, MX = Xn/2, assuming n is even. Note that the range of
this function is [−n/2, n/2]. Let M ′x be the evolution of Mx after one step of the process.
Notice that

‖Mx −M ′x‖∞ ≤ 1

since switching the position of two adjacent particles can change the height of the
midpoint by at most 1. Then

‖|M ||2∞ =
1

2
max
X
E(Mx −M ′x)2

≤ 1

2
(1)2

(
1

n− 1

)
=

1

2(n− 1)

The 1
n−1 appears because the only choice of i that will effect the midpoint is i = n/2.

Now plugging into the Chatterjee Ledoux theorem, we have the following result.

Theorem 6.2. Letting MX denote the height of the midpoint of the random walk after
evolution under the asymmetric exclusion process, for all r > 0 and q = 1− c/nα,

P(|MX − EMX | ≥ r) ≤ 6 exp

(
−r/2

√
c2/2n2α

1/(2(n− 1))

)
= 6 exp

(
−r/2

√
c2(n− 1)

n2α

)

Notice that this implies that the height of the midpoint has fluctuations bounded above
by a constant nα−1/2 for 0 < α < 1.

Consider the length of the longest increasing (non-decreasing) subsequence of the
random walk. This is defined as

LX = max{k : i1 < i2 < · · · < ik and Xi1 ≤ Xi2 ≤ · · · ≤ Xik}

See [2] for a more in depth description of this topic and results for the simple random
walk.

Notice that the height of the midpoint gives a lower bound on the length of the
longest increasing subsequence. Using ASEP as our Markov process and the spectral
gap above, we can prove concentration of measure for LX . Notice that switching the

ECP 20 (2015), paper 95.
Page 8/13

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v20-3817
http://ecp.ejpecp.org/


Concentration of measure bounds on Markov chains

position of two adjacent particles via ASEP can only change LX by at most 1. As before,
let X ′ be the evolution of X after one step of the process. Then, bounding the probability
above by 1, we have

‖|L‖|2∞ =
1

2
max
X
E(LX − LX′)2

≤ 1

2
(1)2 =

1

2

so plugging into the Chatterjee Ledoux formula, we get the following result.

Theorem 6.3. Letting LX denote the length of the longest increasing subsequence of
the random walk after evolution under the asymmetric exclusion process, for all r > 0

and q = 1− c/nα,

P(|LX − ELX | ≥ r) ≤ 6 exp

(
−r/2

√
c2

n2α

)
This implies that the fluctuations are bounded above by a constant times nα. In particular,
for q = 1− c/

√
n, the fluctuations are bounded above by a constant times

√
n.

In order to give some context to the size of the fluctuations, we calculate height of the
midpoint, which gives a lower bound on the length of the longest increasing subsequence
of the walk under this distribution.

Theorem 6.4. For q < 1 − c/n and c = −20 log(3/5), the height of the midpoint of the
random walk is kn for some constant k > 0.

Before we give the proof, we will need the following lemma.

Lemma 6.5. Consider a random walk with independent steps. Assume that P(Xk =

0) = 1
aqk+1

and P(Xk = 1) = aqk

aqk+1
for some a > 0, q ∈ (0, 1) and k ∈ Z+. Consider

NX =
∑n
i=1Xi. This gives us the number of up steps in our random walk, or equivalently,

the number of particles in our particle process. The fluctuations of NX are at most order√
n.

Proof. We begin by calculating the variance of NX . We can then use Chebyshev’s
inequality to bound the fluctuations. Since the Xi are independent,

Var(NX) =

n∑
i=1

Var(Xi)

Using the probabilities given in the lemma, we know that

Var(Xi) =
aqi

aqi + 1
−
(

aqi

aqi + 1

)2

=
aqi

aqi + 1

(
1− aqi

aqi + 1

)
This gives

Var(NX) =

n∑
i=1

aqi

aqi + 1

(
1− aqi

aqi + 1

)

A derivative calculation show that aqi

aqi+1

(
1− aqi

aqi+1

)
is decreasing in i, so

Var(NX) ≤ n
(

aq

aq + 1

)(
1− aq

aq + 1

)
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Since we only care about the order of the fluctuations, we can bound the positive value(
aq

aq + 1

)(
1− aq

aq + 1

)
by 1, giving us

Var(NX) ≤ n

Plugging into Chebyshev’s inequality tells us that

P (|NX − E(NX)| ≥ k) ≤ n

k2

which proves our result.

We are now set to prove theorem 6.4

Proof. The basic idea of the proof of theorem 6.4 is as follows. We will begin by assuming
that the steps of our random walk are independent, so that our measure is a product
measure. Recall, the steps are not independent, since we are conditioning on the fact
that we have exactly n/2 steps up and n/2 steps down. However, if n is large, the steps
are close to independent. By bounding the fluctuations of the number of particles in our
product system, we can then relate our non-independent state to the product state.

Begin by assuming that
P (Xk = 0)

P (Xk = 1)
= aqk

so that we have a product measure. Then we know that

P (Xk = 0) =
1

aqk + 1

and

P (Xk = 1) =
aqk

aqk + 1

Then

E

(
k∑
i=1

Xi

)
=

k∑
i=1

aqi

aqi + 1

Since the summand is decreasing in i, we get the bounds

k

(
aqk

aqk + 1

)
≤ E

(
k∑
i=1

Xi

)
≤ k

(
aq

aq + 1

)
We will work in this generality for now, and add in appropriate values of a and k later.
Using this information, we can get bounds on the height of the random walk at point k.
Let Hk be the height of the random walk at position k. For convenience later, we will
assume that Xi = 1 corresponds to a step down in the walk, and that Xi = 0 corresponds
to a step up. Provided that we can prove that our height is cn for c < 0, our theorem will
be proved. We have

E(Hk) = (−1)

k∑
i=1

Xi +

(
k −

k∑
i=1

Xi

)
= k − 2

(
k∑
i=1

Xi

)
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Plugging in our bounds on E
(∑k

i=1Xi

)
, we get

−k
(

2

(
aq

aq + 1

)
− 1

)
≤ E(Hk) ≤ −k

(
2

(
aqk

aqk + 1

)
− 1

)
At this point, we need a bound on the number of particles in the system. Since we

are assuming the Xi are independent, we can use the result from the previous lemma,
which gives us

P

(∣∣∣∣∣
n∑
i=1

Xi −M

∣∣∣∣∣ > u

)
≤ 4 exp(−u2/4M)

where M is a median for the number of particles. Estimating the median by the expecta-

tion of the number of particles, we see that M should at least be close to n/2
(

aq
aq+1

)
. If

we choose a appropriately corresponding to q, we should be able to make the constant
order 1, making our expectation order n. Then, by the concentration of measure inequal-
ity,
∑n
i=1Xi has fluctuations on the order of

√
n. This is reasonably small compared with

the expected number of particles in the system.

Recall that we are actually concerned with finding the height of the midpoint, so
plugging in k = n/2, we have that

−n/2
(

2

(
aq

aq + 1

)
− 1

)
≤ E(Hn/2) ≤ −n/2

(
2

(
aqn/2

aqn/2 + 1

)
− 1

)
At this point, we can ignore the lower bound, using the fact that that a lower bound
is −n/2 anyway, regardless of the configuration. We will refer to our interface as the
position in which P(X = 0) = P(X = 1). For now, we will put our interface at 9n/20,
which will be just to the left of the midpoint. In other words, a = q−9n/20 and at position
9n/20, P(X = 0) = P(X = 1). We will push it to the edge at n/2 at the end, since moving
the interface to the right only increases the probability of more Xi being equal to 1,
hence lowering the expectation of the midpoint. Using this interface, we will first look at
the height of the random walk at position 8n/20. Using the upper bound from above, we
have that

E(H8n/20) ≤ −8n

20

(
2

(
q−n/20

q−n/20 + 1

)
− 1

)
Beyond this point, if we assume that all of the remaining steps between 8n/20 and n/2
are steps up, we have that

E(Hn/2) ≤ −8n

20

(
2

(
q−n/20

q−n/20 + 1

)
− 1

)
+

2n

20

The important thing to notice here, is this actually gives us an upper bound on the height
of the midpoint in the fixed particle number (ASEP) random walk. In the product state
configuration, with our interface at 9n

20 , we know that the fluctuations in the number of
down steps are less than n

20 . By assuming that all steps after site 8n
20 are up, we have

accounted for the worst case scenario where we actually have
√
n less down steps then

we expect. If some of the steps after site 8n
20 are actually down instead of up, this will

only serve to lower the height of our midpoint. Hence, we have, that in the ASEP (fixed
number of down steps) random walk generated using the blocking measures,

E(Hn/2) ≤ E(Hn/2) ≤ −8n

20

(
2

(
q−n/20

q−n/20 + 1

)
− 1

)
+

2n

20
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We would like to show that for an appropriate choice of q, this is cn for some constant
c < 0. This is true provided that

8

20

(
2

(
q−n/20

q−n/20 + 1

)
− 1

)
>

2

20

Solving this inequality gives a condition on q, which is

q >

(
3

5

) 20
n

or
q > e20/n log(3/5)

Taylor expanding the exponential gives

q > 1 +
20

n
log(3/5) +

400

2n2
(log(3/5))2 + . . .

As n→∞, taking q > 1− α/n with α = −20 log(3/5) should be sufficient. As long as this
condition is satisfied, our expectation is cn for a constant c < 0.

At this point, we do want to move the interface to a = q−n/2, such that P(Xn/2 =

0) = P(Xn/2 = 1). This simply increases our probability of down steps between 9n
20 and

n
2 . Since adding extra down steps only decreases the expectation of the height of the
midpoint, the theorem is proved.

7 Remarks

Using this method, we are able to show concentration of measure of the empirical
spectral distribution not only for operator compressions via SO(n) but also for operators
that are "compressed" by conjugation with a Gaussian matrix. We are also able to use
the method to prove a concentration of measure result for the length of the longest
increasing subsequence of a random walk. It is likely that this method could be applied
to a much wider range of Markov chains, given that the chain does not change too many
entries at once, has an appropriate invariant distribution, and for which the spectral
gap is known. It is possible that better bounds for the Gaussian compression could be
obtained by adapting the method to use the "second" spectral gap or the exponential
decay rate in relative entropy found in [4].

It is worth noting that Talagrand’s isoperimetric inequality [15] gives concentration
of measure for the length of the longest increasing subsequence for random permu-
tations, but it cannot be used in the context of this ASEP random walk, as it requires
independence. Using Chatterjee and Ledoux’s method, independence is not needed. We
only need a spectral gap bound for the Markov chain.
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