
Electron. Commun. Probab. 20 (2015), no. 83, 1–8.
DOI: 10.1214/ECP.v20-4613
ISSN: 1083-589X

ELECTRONIC
COMMUNICATIONS
in PROBABILITY

An Erdös-Rényi law for nonconventional sums

Yuri Kifer*

Abstract

We obtain the Erdös-Rényi type law of large numbers for "nonconventional" sums of the
form Sn =

∑n
m=1 F (Xm, X2m, ..., X`m) where X1, X2, ... is a sequence of i.i.d. random

variables and F is a bounded Borel function. The proof relies on nonconventional
large deviations obtained in [8].
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1 Introduction

Let X1, X2, ... be a sequence of independent identically distributed (i.i.d.) random
variables such that EX1 = 0 and the moment generating function φ(t) = EetX1 exists.
Denote by I the Legendre transform of lnφ and set Sn =

∑n
m=1Xm for n ≥ 1 and S0 = 0.

The Erdös-Rényi law of large numbers from [4] says that with probability one

I(α) lim
n→∞

max
0≤m≤n−[ lnn

I(α
]

Sm+[ lnn
I(α

] − Sm
lnn

= α (1.1)

for all α > 0 in some neighborhood of zero.
The nonconventional limit theorems initiated in [5] and partially motivated by

nonconventional ergodic theorems study asymptotic behaviors of sums of the form
Sn =

∑n
m=1 F (Xm, X2m, ..., X`m) and more general ones where F is a Borel function.

In this paper we will obtain an Erdös-Rényi law similar to (1.1) for such sums where
X1, X2, ... is again a sequence of i.i.d. random variables and F is a bounded Borel
function. Observe that summands in nonconventional sums are long range dependent
so this result cannot be derived directly from existing literature. On the other hand,
as most proofs of the Erdös-Rényi law we will rely on large deviations which in the
nonconventional setup were obtained in [8].

2 Preliminaries and main results

Let X1, X2, ... be a sequence of i.i.d. random variables and F be a bounded Borel
function on R` such that

F̄ = EF (X1, X2, ..., X`) = 0 and σ2 = EF 2(X1, X2, ..., X`) > 0. (2.1)
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Erdös-Rényi law

The first condition in (2.1) is not a restriction since we always can consider F − F̄ in place
of F and the second condition there means that F is not a constant almost surely (a.s.)
with respect to the `-product measure µ(`) = µ×µ×· · ·×µ onR` where µ is the distribution
of X1. Set also M = ‖F‖∞ and M+ = ‖F+‖∞ where F+(x1, ..., x`) = max(0, F (x1, ..., x`))

and the L∞ norm on R` is considered with respect to the measure µ(`). Introduce the
moment generating function φ(t) = E exp(tF (X1, X2, ..., X`)) and its Legendre transform

I(α) = supt(tα− lnφ(t)). (2.2)

Theorem 2.1. With I given by (2.2) the Erdös-Rényi law (1.1) holds true also for the
nonconventional sums Sn =

∑n
m=1 F (Xm, X2m, ..., X`m) for all α ∈ (0,M+) where we set

also S0 = 0.

Our proof of Theorem 2.1 will follow the scheme of [2] but we will rely also on
nonconventional large deviations results from [8]. As in some books and many papers
on large deviations we did not address explicitly in [8] the crucial question when the
rate function of large deviations is positive without which the large deviations principle
is meaningless since it does not lead to any nontrivial estimates for the domains were
the rate function is zero. We will rely on the following theorem which specifies further
the results of [8] and actually provides more information than we need for the proof of
Theorem 2.1.

Theorem 2.2. The limit

Q(λF ) = lim
N→∞

1

N
lnE exp(SN (λF )) (2.3)

exists where Q(λF ) is a C∞ function of λ with bounded derivatives and Sn, n ≥ 1 are
nonconventional sums from Theorem 2.1. The Legendre transform of Q,

J(u) = sup
λ

(λu−Q(λF )) (2.4)

is a nonnegative, convex, lower semi-continuous function such that J(u) = 0 if and only if
u = 0 and J(u) is strictly increasing for u ≥ 0 ( writing for convenience∞ >∞) while it
is strictly decreasing for u ≤ 0. In addition, ifM+ = ‖F+‖∞ > 0 (M− = ‖F − F+‖∞ > 0)
then there exists L+ > 0 (L− > 0) such that J(u) < ∞ when u ∈ [0, L+) (u ∈ (−L−, 0])
and J(u) =∞ when u > L+ (u < −L−). Furthermore, the sums Sn, n ≥ 1 satify the large
deviations principle in the form

lim sup
N→∞

1

N
lnP{ 1

N
SN ∈ K} ≤ − inf

u∈K
J(u) (2.5)

for any closed set K ⊂ R while for any open set U ⊂ R,

lim inf
N→∞

1

N
lnP{ 1

N
SN ∈ U} ≥ − inf

u∈U
J(u). (2.6)

Remark 2.3. Theorem 2.1 shows that the Erdös-Rényi law for nonconventional sums
has the same form as for sums of i.i.d. random variables having the same distribution
as F (X1, X2, ..., X`). This is similar to the nonconventional strong law of large numbers
proved in [6]. On the other hand, the nonconventional central limit theorem and the
nonconventional large deviations estimates are somewhat different from the correspond-
ing results for sums of i.i.d. random variables. In particular, it is shown in [7] that the
nonconventional functional central limit theorem may yield in the limit a process with
dependent increments while concerning large deviations it follows from [8] that the rate
functions I and J above are, in general, different.
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3 Proof of Theorem 2.1

Let Y1, Y2, ... be a sequence of i.i.d. random variables which have the same distribution
as F (X1, X2, ..., X`) and set Σn =

∑n
m=1 Ym. We will need the classical Cramér large

deviation estimates in the form (see, for instance, Section 2.2 in [3]),

lim sup
N→∞

1

N
lnP{ 1

N
ΣN ∈ K} ≤ − inf

u∈K
I(u) (3.1)

for any closed set K ⊂ R while for any open set U ⊂ R,

lim inf
N→∞

1

N
lnP{ 1

N
ΣN ∈ U} ≥ − inf

u∈U
I(u) (3.2)

where I is given by (2.2).
It is essential to observe that I(α) > 0 (I(α) = ∞ is possible) unless α = 0 which

is well known and follows, in particular, from Theorem II.6.3 in [1] (which relies on
general convex analysis results) but it has also a simple direct explanation in our case.
Indeed, since lnφ(0) = (lnφ(t))′t=0 = 0 then lnφ(t) = o(t) for small t. Hence, if α 6= 0

then tα > lnφ(t) either for small positive or for small negative t, and so in view of
(2.2), I(α) = 0 only when α = 0 and otherwise I(α) is positive. By (2.1) and the Jensen
inequality lnφ(t) ≥ tEF (X1, ..., X`) = 0, and so (see Lemma 2.2.5 in [3]),

I(α) = supt≥0(tα− lnφ(t)) if α ≥ 0 and I(α) = supt≤0(tα− lnφ(t)) if α ≤ 0. (3.3)

For each α > 0 there exists a sequence tn → t0 as n→∞ such that I(α) = limn→∞(tnα−
lnφ(tn)) where t0 > 0 (t0 = ∞ is possible) since by above I(α) > 0. Therefore, for any
∆ > 0,

I(α+ ∆) ≥ lim
n→∞

(tn(α+ ∆)− lnφ(tn)) = I(α) + t0∆

which means that I(α) is strictly increasing for α ≥ 0. Similarly, I(α) is strictly decreasing
for α ≤ 0. Observe that, in fact, for any ε > 0,

etM+ + 1 ≥ φ(t) ≥ P{F (X1, ..., X`) ≥M+ − ε}et(M+−ε) if t ≥ 0 and

e−tM− + 1 ≥ φ(t) ≥ P{−F (X1, ..., X`) ≥M− − ε}e−t(M−−ε) if t ≤ 0

where M− = ‖F −F+‖∞. This together with (2.2) yields that I(α) <∞ if −M− < α < M+

while I(α) =∞ if α > M+ or α < −M−. Similar arguments relying on explicit formulas
from [8] yield Theorem 2.2 but for now we will take it for granted in order to prove
Theorem 2.1.

Fix α ∈ (0,M) and let bn = [lnn/I(α)]. Choose ε > 0 and define the event

An(ε) = { max
0≤m≤n−bn

(Sm+bn − Sm) ≥ (α+ ε)bn}.

Then

P (An(ε)) = P
{⋃

0≤m≤n−bn{Sm+bn − Sm ≥ (α+ ε)bn}
}

(3.4)

≤
n−bn∑
m=0

P{Sm+bn − Sm ≥ (α+ ε)bn}.

Observe that when m > (`− 1)bn then

Sm+bn − Sm =

m+bn∑
k=m+1

F (Xk, X2k, ..., X`k)
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is the sum of i.i.d. random variables having the same distribution as F (X1, X2, ..., X`).
Indeed, if ` = 1 this is clear and if ` > 1 then the equality ik = jk̃ is impossible for
integers (`− 1)bn ≤ m < k̃ < k ≤ m+ bn and 1 ≤ i < j ≤ ` since j/i ≥ 1 + (`− 1)−1 while
k/k̃ < 1 + bn/m ≤ 1 + (` − 1)−1. Hence, we can use Cramér’s upper large deviations
bound (3.1) to conclude that for any m ≥ (`− 1)bn,

P{Sm+bn − Sm ≥ (α+ ε)bn} ≤ exp(−bn(I(α+ ε)− δ)) ≤ exp(−bn(I(α) + δ)) (3.5)

where 0 < δ < 1
2 (I(α+ ε)− I(α)), n ≥ n(δ) is large enough and we use the fact that I(β)

is strictly increasing when β ≥ 0.
On the other hand, if m ≤ (`− 1)bn and ` > 1 then we write

P{Sm+bn − Sm ≥ (α+ ε)bn} ≤ P{Sm+bn ≥ 1
2 (α+ ε)bn} (3.6)

+P{−Sm ≥ 1
2 (α+ ε)bn} ≤ P{ 1

m+bn
Sm+bn ≥ 1

2` (α+ ε)}
+P{− 1

mSm ≥
1

2m (α+ ε)bn}.

Applying the upper nonconventional large deviations bound (2.5) we obtain for m ≤
(`− 1)bn that

P{ 1
m+bn

Sm+bn ≥ 1
2` (α+ ε)} (3.7)

≤ exp(−(m+ bn)(J( 1
2` (α+ ε))− δ)) ≤ exp(− 1

2bnJ( α2` ))

where 0 < δ < J( 1
2` (α + ε)) − J( α2` ), n ≥ n(δ) is large enough and we use that J(β) is

strictly increasing when β ≥ 0.
Since |Sm| ≤ mM a.s. then

P{− 1

m
Sm ≥

1

2m
(α+ ε)bn} = 0 if m <

α

2M
bn. (3.8)

Now assume that (`−1)bn ≥ m ≥ α
2M bn and ` > 1. Observe that−Sm =

∑m
k=1(−F (Xk, X2k, ..., X`k)),

and so we can consider nonconventional large deviations estimates of Theorem 2.2 for
the case where F is replaced by −F with a corresponding rate function Ĵ having the
same properties as J . Then we obtain

P{− 1
mSm ≥

1
2m (α+ ε)bn} (3.9)

≤ P{− 1
mSm ≥

1
2(`−1) (α+ ε)}

≤ exp(−m(Ĵ( 1
2(`−1) (α+ ε))− δ)) ≤ exp(−bn α

2M Ĵ( α2` ))

where 0 < δ < Ĵ( 1
2(`−1) (α+ ε))− Ĵ( α2` ), n ≥ n(δ) is large enough and we use that Ĵ(β) is

strictly increasing when β ≥ 0 (of course, if Ĵ( 1
2(`−1) (α+ ε)) =∞ then any δ will do).

Set c = cα = 1
2 min(J( α2` ),

α
M Ĵ( α2` )) which is a positive number. Then it follows from

(3.4)–(3.9) that for δ satisfying (3.5) and for n large enough,

P (An(ε)) ≤ n exp(−bn(I(α) + δ)) + `bn exp(−cbn) (3.10)

≤ n exp
(
− ( lnn

I(α) − 1)(I(α) + δ)
)

+ `( lnn
I(α) + 1) exp(−c( lnn

I(α) − 1))

= eI(α)+δn−
δ

I(α) + `( lnn
I(α) + 1)ecn−

c
I(α) .

Now let d > I(α) max(δ−1, c−1). Then

∞∑
n=1

(n−
dδ
I(α) + n−

dc
I(α) lnn) <∞
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which together with (3.10) and the Borel-Cantelli lemma yields that with probability one
And(ε) occurs only finitely often. Hence, setting an = bnd we obtain

lim sup
n→∞

max
0≤m≤nd−an

Sm+an − Sm
an

≤ α+ ε. (3.11)

Since for nd < r ≤ (n+ 1)d large enough the difference an − br is bounded by 1 then it
follows that

lim supr→∞max0≤m≤r−br
Sm+br−Sm

br
(3.12)

≤ lim supn→∞max0≤m≤(n+1)d−an+1

Sm+an+1
−Sm+M

an
≤ α+ ε.

In order to derive the lower bound choose ε > 0 so that α− ε > 0 and define

Bn(ε) = { max
0≤m≤n−bn

(Sm+bn − Sm) ≤ bn(α− ε)}.

Let Cm = {Sm+bn − Sm ≤ bn(α− ε)}. Then

P (Bn(ε)) = P (
⋂

0≤m≤n−bn

Cm) ≤ P (
⋂

(1−`−1)n≤m≤n−bn

Cm). (3.13)

Observe that when n−bn ≥ m, m̃ ≥ (1−`−1)n then m
m̃ < `

`−1 if m > m̃, and so the equality
im = jm̃ for integers n ≥ m > m̃ ≥ (1− `−1)n and ` ≥ j > i ≥ 1 is impossible since then
min j

i = `
`−1 . Hence, all F (Xk, X2k, ..., X`k), (1 − `−1)n ≤ k ≤ n − bn are independent,

and so all events Cm, (1− `−1)n ≤ m ≤ n− bn are independent. Hence by (3.13),

P (Bn(ε)) ≤
∏

(1−`−1)n≤m≤n−bn

P (Cm). (3.14)

Taking into account that Sm+bn − Sm is a sum of i.i.d. random variables having
the same distribution as F (X1, X2, ..., X`) when (1 − `−1)n ≤ m ≤ n − bn we obtain by
Cramér’s lower large deviations bound (3.2) that

P (Ω \ Cm) ≥ exp(−bn(I(α− ε) + δ)) ≥ exp(−bnI(α)(1− δ)) ≥ exp(−(1− δ) lnn) (3.15)

where we choose δ > 0 so small that (I(α− ε) + δ)/I(α) < 1− δ which is possible since
I(β) is strictly increasing for β ≥ 0. Hence, if n is sufficiently large,

P (Bn(ε)) ≤ (1− exp(−(1− δ) lnn)
n
2` = (1− n−(1−δ)) n2` (3.16)

=
(
(1− n−(1−δ))n1−δ)nδ

2` = O(exp(−nδ/2).

It follows that
∞∑
n=1

P (Bn(ε)) <∞

and by the Borel-Cantelli lemma with probability one Bn(ε) occurs only finitely often
which implies that

lim inf
n→∞

max
0≤m≤n−bn

Sm+bn − Sm
bn

≥ α+ ε. (3.17)

Since ε > 0 can be chosen arbitrarily small we obtain the assertion of Theorem 2.1 from
(3.12) and (3.17).
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4 Proof of Theorem 2.2

Theorem 2.2 mostly follows from the results of [8] together with Theorem II.6.3 from
[1] but for reader’s convenience we will give a direct argument here. First, we recall
relevant notations and formulas from [8]. Let r1, ..., rm ≥ 2 be all primes not exceeding `.
Set An = {a ≤ n : a is coprime with r1, ..., rm} and Bn(a) = {b ≤ n : b = ard11 r

d2
2 · · · rdmm

for some nonnegative integers d1, ..., dm}. For any function V on R` we write

SN (V ) =
∑
a∈AN

SN,a(V ) where SN,a(V ) =
∑

b∈BN (a)

V (Xb, X2b, ..., X`b)

observing that Sn from Theorem 2.2 equals Sn(F ) here.
The existence of the limit (2.3) was proved in [8]. Recall, that convexity and lower

semi-continuity of the Legendre transform J(u) of Q(λF ) follows from (2.3) and (2.4)
automatically (see Theorem II.6.1 in [1]). Observe that by (2.1) and the Jensen inequality
Q(λF ) ≥ 0 and since Q(λF ) ≤ |λ|M then J(u) =∞ when u > M . Note that Theorem 2.7
in [8] is formulated for continuous functions but, in fact, only boundedness of functions
is used in the proof so we can apply it to our setup where ‖F‖∞ = M <∞.

In order to exhibit an explicit formula for Q(λF ) obtained in [8] introduce

D(ρ) = {n = (n1, ..., nm) ∈ Zm : n1, ..., nm ≥ 0, and
m∑
i=1

ni ln ri ≤ ρ}

and observe that D(ln(N/a))| = |BN (a)| = |BN/a(1)| where |Γ| denotes the cardinality of
a finite set Γ. Set

ρmin(l) = inf{ρ ≥ 0 : |D(ρ)| = l} and ρmax(l) = sup{ρ ≥ 0 : |D(ρ)| = l}.

It was shown in [8] that for any l ≥ 1,

ρmax(l) > ρmin(l) ≥ (l1/m − 1) ln 2. (4.1)

Set
Zn,a(λF ) = E expSN,a(λF ).

As it was explained in [8] the distribution of SN,a(λF ) depends only on |Bn(a)| (in
addition to λF , of course), and so Zn,a(λF ) is determined by |Bn(a)|. Hence, we can set
Rl(λF ) = Zn,a(λF ) provided |Bn(a)| = l. Now we can write the formula for Q obtained
in [8],

Q(λF ) = r

∞∑
l=1

(e−ρmin(l) − e−ρmax(l)) lnRl(λF ) (4.2)

where

r =

m∏
k=1

(1− 1

rk
) = 1 +

m∑
k=1

(−1)k
∑

i1<i2<...<ik≤m

k∏
j=1

1

rij
.

The series in (4.2) converges absolutely in view of (4.1) taking into account that
lnRl(λF ) ≤ lM |λ|. By (2.1) and the Jensen inequality we have also that lnRl(λF ) ≥ 0.

Now observe that for any k ≥ 1,

∣∣dkRl(λF )

dλk
∣∣ ≤ lkMkRl(λF ), (4.3)

and so ∣∣dk lnRl(λF )

dλk
∣∣ ≤ CklkMk (4.4)
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for some Ck > 0 depending only on k. It follows that Q(λF ) is C∞ in λ and

∣∣dkQ(λF )

dλk
∣∣ ≤ Ĉk (4.5)

where

Ĉk = CkrM
k
∞∑
l=1

(e−ρmin(l) − e−ρmax(l))lk

and the latter series converges absolutely in view of (4.1). Note that existence of the
first derivative of Q(λF ) in λ already yields the large deviations bounds (2.3) and (2.4)
(see Theorem II.6.1 in [1]).

Now observe that in view of (2.1),

d lnRl(λF )

dλ

∣∣
λ=0

=
dRl(λF )

dλ

∣∣
λ=0

= 0,

and so
dQ(λF )

dλ

∣∣
λ=0

= 0. (4.6)

From Theorem II.6.3 in [1] it follows that (2.1), (2.3), (2.4) and (4.6) yield already that
J(u) attains its infimum at the unique point 0 and it is positive when |u| > 0. As in
Section 3 the direct argument proceeds as follows. Since Q(0) = 0 then (4.6) implies
that Q(λF ) = o(λ) for small λ, and so |λu| > Q(λF ) when |λ| is small which together
with (2.4) yields the assertion above.

Taking into account that Q(λF ) ≥ 0 we see that

J(u) = supλ≥0(λu−Q(λF )) if u ≥ 0 and J(u) = supλ≤0(λu−Q(λF )) if u ≤ 0. (4.7)

Similarly to Section 3 we argue that for each u > 0 there exists a sequence λn → λ0 as
n→∞ such that J(u) = limn→∞(λnu−Q(λF )) where λ0 > 0 (t0 =∞ is possible) since
by above J(u) > 0. Therefore, for any ∆ > 0,

J(u+ ∆) ≥ lim
n→∞

(λn(u+ ∆)−Q(λnF )) = J(u) + λ0∆

which means that J(u) is strictly increasing for u ≥ 0. Similarly, J(u) is strictly decreasing
for ≤ 0.

Observe that by Jensen’s inequality lnRl(λF ) ≥ 0 for all l ≥ 1, and so all terms of the
series in (4.2) are nonnegative. Hence, for any λ > 0 and ε ∈ (0,M+),

Q(λF ) ≥ K lnR1(λF ) ≥ L(ε)λ > 0

where K = r(e−ρmin(1)−e−ρmax(1)) and L(ε) = KP{F (X1, ..., X`) ≥M+−ε}(M+−ε). Then,
clearly, J(u) <∞ for all u ∈ [0, L(ε)). If M+ > 0 then by the monotonicity property of J
obtained above we conclude that there exists L+ > 0 such that J(u) <∞ for u ∈ [0, L+)

while J(u) = ∞ for u > L+. Similarly, if M− > 0 then there exists L− > 0 such that
J(u) <∞ for u ∈ (−L−, 0] while J(u) =∞ for u < −L−, completing the proof of Theorem
2.2.
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