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Abstract

We consider a sequence of processes Xn(t) defined on the half-line 0 ≤ t < ∞,
n = 1, 2, . . .. We give sufficient conditions for Large Deviation Principle (LDP) to hold
in the space of continuous functions with metric

ρκ(f, g) = sup
t≥0

|f(t)− g(t)|
1 + t1+κ

, κ ≥ 0.

LDP is established for Random Walks and Diffusions defined on the half-line. LDP in
this space is “more precise" than that with the usual metric of uniform convergence
on compacts.
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1 Introduction

In this work we give sufficient conditions for a sequence of stochastic processes
Xn(t); 0 ≤ t <∞, n = 1, 2, . . ., to satisfy the Large Deviation Principle (LDP) in the space
of continuous functions on [0,∞), which we denote by C. In the recent literature [18],
[9], [12] the space C is considered with the metric

ρ(P )(f, g) :=

∞∑
k=1

2−k min{ sup
0≤t≤k

|f(t)− g(t)|, 1}. (1.1)

Theorem 2.6 of [19] gives sufficient conditions for Xn to satisfy LDP in the space (C, ρ(P )).
As noted in [19], convergence fn → f in metric ρ(P ) is equivalent to convergence in
C[0, T ] with uniform metric for any T ≥ 0. A considerable drawback of metric ρ(P ) is that
it is “ not sensitive" to behaviour of functions as t→∞.

We consider the space C with metric

ρ(f, g) = ρκ(f, g) := sup
t≥0

|f(t)− g(t)|
1 + t1+κ

,

*Support: RFFI 13–01–12415 ofi-m, 14–01–0020–a; Australian Research Council Grant DP120102728.
†Monash University, Australia. E-mail: fima.klebaner@monash.edu
‡Novosibirsk State University, Russia. E-mail: omboldovskaya@mail.ru
§Sobolev Institute of Mathematics, Russia. E-mail: mogul@math.nsc.ru

http://dx.doi.org/10.1214/ECP.v20-4130
http://ecp.ejpecp.org/
http://arXiv.org/abs/1502.06342v2
mailto:fima.klebaner@monash.edu
mailto:omboldovskaya@mail.ru
mailto:mogul@math.nsc.ru


LDP for processes on half-line

for a fixed κ ≥ 0. It is obvious that (C, ρ) is a complete separable metric (Polish) space.
As we shall see in §2, the LDP in the space (C, ρ) is “more precise" than the LDP in
(C, ρ(P )).

Here we treat continuous processes on infinite interval, a treatment of discontinuous
processes on infinite interval will need a metric essentially different to ρ, (see [11], for
the LDP for Compound Poisson processes on infinite interval). Note that in [10], Theorem
1.3.27, LDP for Wiener process in space (C, ρκ) when κ = 0 is given, while in [7] the Law
of Iterated Logarithm is proved for Wiener process in this space.

The paper is organised as follows. Sufficient conditions for LDP in the space (C, ρ)

are given in §2, Theorem 2.1. We also compare Theorem 2.1 and Theorem 2.6 of [19],
and show that Theorem 2.1 is more precise. We apply Theorem 2.1 to Random Walks
and Diffusions on the half line. Only Random Walks case is given here, and the reader is
referred to the Arxiv for other examples.

2 Main Result

To formulate the main result we need the following definitions and notations. For any
T ∈ (0,∞) denote by C[0, T ] the metric space of real continuous functions f = f(t); 0 ≤
t ≤ T , with metric

ρT (f, g) := sup
0≤t≤T

|f(t)− g(t)|
1 + t1+κ

,

where κ ≥ 0 is fixed. We say that

IT0 = IT0 (f) : C[0, T ]→ [0,∞],

is a (good) rate function in space C[0, T ] if:
(i) it is lower semi-continuous: for any f ∈ C[0, T ]

lim
fn→f

IT0 (fn) ≥ IT0 (f); (2.1)

(ii) for any r ≥ 0 the set

BT,r := {f ∈ C[0, T ] : IT0 (f) ≤ r}

is a compact in C[0, T ].
For a non-empty measurable set B ⊂ C[0, T ] let

IT0 (B) := inf
f∈B

IT0 (f), with IT0 (∅) :=∞.

(f)T,ε and (B)T,ε denote ε-neighbourhood in metric ρT in space C[0, T ] of f ∈ C[0, T ] and
a measurable set B ⊂ C[0, T ] respectively. The interior and the closure of B is denoted
by (B)T and [B]T respectively.

Note that lower semi-continuity (2.1) can be written as: for any f ∈ C[0, T ]

lim
ε→0

IT0 ((f)T,ε) = IT0 (f). (2.2)

For a function f ∈ C, f (T ) denotes its projection on C[0, T ],

f (T ) = f (T )(t) := f(t); 0 ≤ t ≤ T.

Denote by C0 ⊂ C – the class of functions f ∈ C, such that f(0) = 0, lim
t→∞

f(t)
1+t1+κ = 0.

Let now Xn(t); t ∈ [0,∞), n = 1, 2, . . ., be a sequence of processes in space C0. We
assume the following conditions.

ECP 20 (2015), paper 75.
Page 2/14

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v20-4130
http://ecp.ejpecp.org/


LDP for processes on half-line

I. For any T ∈ (0,∞) processes X(T )
n satisfy LDP in space C[0, T ] with good rate

function IT0 , i.e. for any measurable set B ⊂ C[0, T ]

lim
n→∞

1

n
lnP(X(T )

n ∈ B) ≤ −IT0 ([B]T ),

lim
n→∞

1

n
lnP(X(T )

n ∈ B) ≥ −IT0 ((B)T ).

Moreover, for any f ∈ C[0, T ] there is g = gf ∈ C0, such that g(T ) = f , and for any
U ≥ T it holds

IU0 (g(U)) = IT0 (f). (2.3)

Condition (2.3) means that one can extend any f ∈ C[0, T ] for t > T such that the
rate function will stay the same. It is natural to call the function g = gf the most likely
extension of f beyond [0, T ].

II. For any r ≥ 0

lim
T→∞

sup
f∈B+

r

sup
t≥T

|f(t)|
1 + t1+κ

= 0,

where
B+
r := {f ∈ C : lim

T→∞
IT0 (f (T )) ≤ r}.

III. For any N <∞ and ε > 0 there is T = TN,ε <∞ such that

lim
n→∞

1

n
lnP(sup

t≥T

|Xn(t)|
1 + t1+κ

> ε) ≤ −N.

Theorem 2.1. Assume Conditions I, II and III. Then for any f ∈ C there exists

lim
T→∞

IT0 (f (T )) =: I(f), (2.4)

and it is a good rate function in the space (C, ρ). The sequence Xn satisfies LDP in this
space with rate function I(f), i.e. for any measurable B ⊂ C

lim
n→∞

1

n
lnP(Xn ∈ B) ≤ −I([B]), (2.5)

lim
n→∞

1

n
lnP(Xn ∈ B) ≥ −I((B)), (2.6)

where
I(B) := inf

f∈B
I(f), with I(∅) =∞.

Before we give the proof, we compare our Theorem to Theorem 2.6 in [19], which
gives sufficient conditions for LDP in the space (C, ρ(P )). Note that if a set B is such that
I([B]) = I((B))(= I(B)), then inequalities (2.5), (2.6) can be replaced by the equality

lim
n→∞

1

n
lnP(Xn ∈ B) = −I(B).

Hence the difference
D(B) := I((B))− I([B]) ≥ 0

describes the precision of LDP: the smaller the difference the more precise is the
theorem.
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LDP for processes on half-line

The rate functions in both theorems are the same. This is because projections X(T )
n

on [0, T ] satisfy LDP in the space C[0, T ] with uniform metric and common rate function
IT0 (f). Therefore we can compare these theorems by comparing differences

D(B) := I((B))− I([B]) and D(P )(B) := I((B)(P ))− I([B](P )),

where [B](P ), (B)(P ) denote the closure and the interior of B in metric ρ(P ).
As noted earlier, convergence in ρ(P ) is equivalent to convergence in ρT for any T > 0.
Therefore ρ(fn, f)→ 0 implies ρ(P )(fn, f)→ 0. It is easy to see that the opposite is

not true.
Thus

[B] ⊂ [B](P ), (B)(P ) ⊂ (B),

and therefore
I([B](P )) ≤ I([B]), I((B)) ≤ I((B)(P )),

so that we always have D(B) ≤ D(P )(B). Below we give an example of B satisfying
simultaneously

I([B]) = I((B)) ∈ (0,∞), I([B](P )) = 0.

Hence Theorem 2.1 allows to give “precise" logarithmic asymptotic for P(Xn ∈ B), while
Theorem 2.6 in [19] does not. Thus we conclude that LDP in the space (C, ρ) is more
precise than in the space (C, ρ(P )).

Example 2.2. Consider Wiener process w = w(t) on [0,∞). Denote

wn = wn(t) :=
1√
n
w(t), t ≥ 0.

Since conditions I—III are easily checked, then LDP follows from Theorem 2.1 with rate
function

I(f) =

{
1
2

∫∞
0

(f ′(t))2dt, if f(0) = 0, f is absolutely continuous,
∞ otherwise.

B = (f0)1 :=

{
g ∈ C : sup

t≥0

|g(t)|
1 + t

≥ 1

}
, f0 = f0(t) ≡ 0.

Since it is a complement to an open set (f0)1, it is closed in (C, ρ), and therefore

I([B]) = I(B) = inf
g∈B

I(g).

By Cauchy-Schwarz-Bunyakovski inequality

1 ≤ sup
t≥0

|g(t)|
1 + t

= sup
t≥0

|
∫ t

0
g′(s)ds|
1 + t

≤ sup
t≥0

∣∣∣∣∫ t

0

(g′(s))2ds

∣∣∣∣1/2sup
t≥0

t1/2

1 + t
=

√
2I(g)

2
.

Hence I(g) ≥ 2 for all g ∈ B.
Take now f(t) = 2tI(0 ≤ t ≤ 1) + 2I(t ≥ 1). It is easy to see that f ∈ B and I(f) = 2.

Therefore I([B]) = I(B) = 2.
Taking fn(t) = (2 + 1/n)tI(0 ≤ t ≤ 1) + 2 + 1/nI(t ≥ 1), we can see that fn ∈ (B) and

I([B]) = I(B) = I((B)) = 2. Hence,

lim
n→∞

1

n
lnP(wn ∈ B) = −2.

Consider now [B](P ), the closure of B in metric ρ(P ). By taking gn(t) = t2

n it is
easy to see that gn ∈ B for all n and lim

n→∞
ρ(P )(gn, f0) = 0. Therefore, f0 ∈ [B](P ), and

I([B](P )) = 0. Hence the upper bound for this set is trivial, and does not allow to find
logarithmic asymptotic of the required probability.
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3 Proof of Theorem 2.1

Denote by (f)ε and (B)ε the ε-neighborhoods (ε > 0 ) of f ∈ C, and set B ⊂ C. The
proof of the Theorem 2.1 consists of three steps. The first step in Lemma 3.1 proves
that I(f) is a good rate function. The second step proves the local LDP for Xn in (C0, ρ)

in Lemma 3.2 and Corollary 3.3. The third step proves a weaker form of exponential
tightness for Xn in Lemma 3.4 . The proof is then concluded as follows.

The upper bound is obtained by Lemmas 3.2 and 3.4 from general results on LDP in
metric spaces: for B ⊂ C0 and ε > 0 it holds (e.g. [4], Theorem 3.1)

lim
n→∞

1

n
lnP(Xn ∈ B) ≤ −I((B)ε).

It is also known (e.g. [4], Lemma 2.1), that a good rate function I(f) satisfies

lim
ε→0

I((B)ε) = I([B]),

and the upper bound (2.5) follows. Lower bound (2.6) follows from Lemma 3.2.

Lemma 3.1. The rate function I(f) (defined in (2.4)) is a good rate function, i.e. it is
lower semi-continuous and for any r ≥ 0 the set Br := {f ∈ C : I(f) ≤ r} is a compact in
C.

Proof. First we show that the limit exists. It is known (see e.g. [4], Theorem 3.1 or
Lemma 1.3), that LDP implies local LDP: for any f ∈ C[0, T ]

−IT0 (f) ≥ lim
ε→0

lim
n→∞

1

n
lnP(X(T )

n ∈ (f)T,ε) ≥ lim
ε→0

lim
n→∞

1

n
lnP(X(T )

n ∈ (f)T,ε) ≥ −IT0 (f).

For U ≥ T , with obvious notations, we have for f ∈ C

{X(U)
n ∈ (f (U))U,ε} ⊂ {X(T )

n ∈ (f (T ))T,ε},

therefore

−IT0 (f (T )) ≥ lim
ε→0

lim
n→∞

1

n
lnP(X(T )

n ∈ (f (T ))T,ε)

≥ lim
ε→0

lim
n→∞

1

n
lnP(X(U)

n ∈ (f (U))U,ε) ≥ −IU0 (f (U)).

Thus we established that IT0 (f (T )) is non-decreasing in T , and (2.4) follows.
Next, we show lower semi-continuity, that is if fn → f , then

lim
n→∞

I(fn) ≥ I(f). (3.1)

For any N <∞, ε > 0 there is T = TN,ε <∞ such that

IT0 (f) ≥ min{I(f), N} − ε.

Since fn → f , ρT (fn, f) → 0. Thanks to Condition I the rate function IT0 (f) is lower
semi-continuous in (C[0, T ], ρT ), therefore

lim
n→∞

I(fn) ≥ lim
n→∞

IT0 (fn) ≥ IT0 (f) ≥ min{I(f), N} − ε.

This implies (3.1), since N and ε are arbitrary.
We show next that the set Br is completely bounded. Due to Condition II for any

ε > 0 there is T = Tr <∞ such that for any f ∈ Br

sup
t≥T

|f(t)|
1 + t1+κ

< ε. (3.2)
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Denote
B(T )
r := {f (T ) : f ∈ Br},

so that
B(T )
r ⊂ BT,r,

where we recall that BT,r := {f ∈ C[0, T ] : IT0 (f) ≤ r}.
Since by Condition I the set BT,r is a compact in C[0, T ], it is possible to find finite

ε-net:
B(T )
r ⊂ BT,r ⊂ ∪Mi=1(fi)T,ε.

Now for f ∈ C[0, T ] define f (T+) ∈ C0 as

f (T+)(t) :=

{
f(t), if 0 ≤ t ≤ T,
f(T ), if t ≥ T

For any f ∈ Br there is i ∈ {1, · · · ,M} such that

sup
0≤t≤T

|f(t)− f (T+)
i (t)|

1 + t1+κ
< ε < 3ε.

We have for this i due to (3.2)

sup
t≥T

|f(t)− f (T+)
i (t)|

1 + t1+κ
≤ sup
t≥T

|f(t)|
1 + t1+κ

+ sup
t≥T

|f(T )|
1 + t1+κ

+ sup
t≥T

|f(T )− f (T+)
i (T )|

1 + t1+κ
≤ 3ε,

therefore the collection {f (T+)
1 , · · · , f (T+)

M } represents a 3ε-net in the set Br. Thus we
have shown that the set Br is completely bounded in C0.

From lower semi-continuity of I(f), established earlier, it follows that Br is closed in
C0. Since a closed completely bounded subset of a Polish space is a compact (e.g. [15],
Theorem 3, p. 109), we have shown that Br is a compact in C0, thus completing the
proof of Lemma 3.1.

Lemma 3.2. For any f ∈ C0, ε > 0

lim
n→∞

1

n
lnP(Xn ∈ (f)ε) ≤ −I((f)2ε), (3.3)

lim
n→∞

1

n
lnP(Xn ∈ (f)ε) ≥ −I(f). (3.4)

Proof. First we prove the lower bound (3.4) as it is also used in the proof of the upper
bound. If I(f) =∞, then (3.4) is trivially satisfied. Let now I(f) <∞. For any T ∈ (0,∞)

we have

{Xn ∈ (f)ε} ⊃ An(T ) ∩Bn(T ) ∩ Cn(T ) ∩D(T ) = An(T ) ∩Bn(T ) ∩D(T ),

where

An(T ) :=

{
sup

0≤t≤T

|Xn(t)− f(t)|
1 + t1+κ

< ε

}
, Bn(T ) :=

{
sup
t≥T

|Xn(t)−Xn(T )|
1 + t1+κ

< ε/4

}
,

Cn(T ) :=

{
|Xn(T )|
1 + T 1+κ

< ε/4

}
, D(T ) :=

{
sup
t≥T

|f(t)|
1 + t1+κ

< ε/2

}
.

For a large T the event D(T ) is a certainty (due to I(f) < ∞). Therefore there exists
T0 <∞, such that for all T ≥ T0

P(Xn ∈ (f)ε) ≥ P(An(T ) ∩Bn(T )) ≥ P(An(T ))−P(Bn(T )), (3.5)
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where Bn(T ) is a complement of Bn(T ). Due to Condition III there is T ≥ T0 such that

lim
n→∞

1

n
lnP(Bn(T )) ≤ −2I(f), (3.6)

and for this T due to Condition I we have

lim
n→∞

1

n
lnP(An(T )) ≥ −IT0 (f (T )) ≥ −I(f). (3.7)

(3.4) now follows from (3.5) by using (3.6), (3.7).
Next we prove the upper bound (3.3). It is obvious that for any T ∈ (0,∞)

P(Xn ∈ (f)ε) ≤ P(X(T )
n ∈ (f (T ))T,ε),

where we recall that (f)T,ε denote ε-neighbourhood in metric ρT in space C[0, T ] of
f ∈ C[0, T ].

Due to Condition I for any δ > 0

L(ε) := lim
n→∞

1

n
lnP(Xn ∈ (f)ε) ≤ lim

n→∞

1

n
lnP(X(T )

n ∈ (f (T ))T,ε)

≤ −IT0 ([(f (T ))T,ε]T ) ≤ −IT0 ((f (T ))T,ε+δ).

For any T ∈ (0,∞) and chosen ε and δ, in this way we have the inequality

L(ε) ≤ −IT0 ((f (T ))T,ε+δ). (3.8)

Choose now T <∞ so large, that simultaneously the following holds:

sup
t≥T

|f(t)|
1 + t1+κ

< δ; (3.9)

lim
n→∞

1

n
lnP(Xn ∈ R(T, ε)) ≤ −N, (3.10)

where N <∞ is arbitrary, and

R(T, ε) :=

{
g ∈ C0 : sup

t≥T

|g(t)|
1 + t1+κ

> ε

}
.

Denote
((f (T ))T,ε+δ)

(T+) := {g ∈ C0 : g(T ) ∈ (f (T ))T,ε+δ}.

Next we show that
IT0 (B) = I(B(T+)), (3.11)

where for B ⊂ C[0, T ]

B(T+) := {g ∈ C0 : g(T ) ∈ B}.

Indeed, for any ε > 0 let f ∈ B be such that

IT0 (f) ≤ IT0 (B) + ε.

Then due to (2.3) in condition I there is g ∈ C0 such that g(T ) = f (consequently
g ∈ B(T+)) with I(g) = IT0 (f). Therefore

IT0 (B) + ε ≥ IT0 (f) = I(g) ≥ I(B(T+)).

Since ε > 0 is arbitrary,
IT0 (B) ≥ I(B(T+)). (3.12)
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Let now g ∈ B(T+) such that
I(g) ≤ I(B(T+)) + ε.

Then g(T ) ∈ B with IT0 (g(T )) ≤ I(g). Therefore

I(B(T+)) + ε ≥ I(g) ≥ IT0 (g(T )) ≥ IT0 (B),

and
IT0 (B) ≤ I(B(T+)). (3.13)

Inequalities (3.12), (3.13) now prove equality (3.11).

Due to (3.11) we have

IT0 ((f (T ))T,ε+δ) = I(((f (T ))T,ε+δ)
(T+)),

therefore due to (3.8)
L(ε) ≤ −I(((f (T ))T,ε+δ)

(T+)). (3.14)

Take an arbitrary g ∈ ((f (T ))T,ε+δ)
(T+). Then either

sup
t≥T

|g(t)− f(t)|
1 + t1+κ

< ε+ 2δ,

and then
g ∈ (f)ε+2δ; (3.15)

or

sup
t≥T

|g(t)− f(t)|
1 + t1+κ

≥ ε+ 2δ, (3.16)

and then

sup
t≥T

|g(t)|
1 + t1+κ

≥ ε+ δ, (3.17)

and
g ∈ R(T, ε). (3.18)

To see how (3.17) follows from (3.16), note that if the inequality (3.17) is not true, then
the opposite holds

sup
t≥T

|g(t)|
1 + t1+κ

< ε+ δ,

and due to (3.9)

sup
t≥T

|g(t)− f(t)|
1 + t1+κ

≤ sup
t≥T

|g(t)|
1 + t1+κ

+ sup
t≥T

|f(t)|
1 + t1+κ

< ε+ δ + δ = ε+ 2δ,

which contradicts (3.16). We have proved (see (3.15) and (3.18)), that

((f (T ))T,ε+δ)
(T+) ⊂ (f)ε+2δ ∪R(T, ε).

From the latter we obtain

I(((f (T ))T,ε+δ)
(T+)) ≥ min{I((f)ε+2δ), I(R(T, ε))}. (3.19)

Further, due to (3.10)

−N ≥ lim
n→∞

1

n
lnP(Xn ∈ R(T, ε)) ≥ lim

n→∞

1

n
lnP(Xn ∈ R(T, ε)) ≥ −I(R(T, ε)),
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where the last inequality for an open set R(T, ε) follows from the established lower
bound (3.4). Therefore I(R(T, ε)) ≥ N, and, in view of (3.19),

I(((f (T ))T,ε+δ)
(T+)) ≥ min{I((f)ε+2δ), N}.

Going back to (3.14), we obtain the inequality

L(ε) ≤ −min{I((f)ε+2δ), N},

in which δ > 0 and N <∞ are arbitrary. Taking 2δ = ε and sending N to∞, we obtain
the required upper bound

L(ε) ≤ −I((f)2ε).

Local LDP in C0 follows from Lemma 3.2, and is stated as a corollary.

Corollary 3.3. For any f ∈ C0

lim
ε→0

lim
n→∞

1

n
lnP(Xn ∈ (f)ε) ≤ −I(f), lim

ε→0
lim
n→∞

1

n
lnP(Xn ∈ (f)ε) ≥ −I(f).

Next result proves a weaker form of exponential tightness: for any N there is a
completely bounded set KN in (C0, ρ) such that

lim
n→∞

1

n
lnP(Xn 6∈ K) ≤ −N.

Lemma 3.4. For any N < ∞ and ε > 0 there is a finite collection of g1, · · · , gM ∈ C0

such that

lim
n→∞

1

n
lnP(Xn 6∈ ∪Mi=1(gi)ε) ≤ −N. (3.20)

Proof. Denote by

RT (ε) :=

{
f ∈ C0 : sup

t≥T

|f(t)|
1 + t1+κ

≤ ε
}
.

Then due to condition III there is T <∞ such that

lim
n→∞

1

n
lnP(Xn 6∈ RT (ε)) ≤ −N. (3.21)

For this T , thanks to condition I, processes X(T )
n satisfy LDP in the space C[0, T ]. There-

fore for a chosen N by the Puhalskii theorem on exponential tightness ([19], Theorem
2.1) there is a compact K ⊂ C[0, T ] such that

lim
n→∞

1

n
lnP(X(T )

n 6∈ K) ≤ −N.

For a given ε > 0 take a finite ε-net f1, · · · , fM ∈ C[0, T ] in K:

K ⊂ ∪Mi=1(fi)T,ε.

Then

lim
n→∞

1

n
lnP(X(T )

n 6∈ ∪Mi=1(fi)T,ε) ≤ −N. (3.22)

Denote for all i = 1, · · · ,M

gi(t) :=

{
fi(t), if 0 ≤ t ≤ T,
fi(T ), if t ≥ T.
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Define the setMε := {i ∈ {1, · · · ,M} : |fi(T )|
1+T 1+κ ≤ 2ε}. Then

P := P(Xn 6∈ ∪Mi=1(gi)3ε) ≤ P(Xn 6∈ RT (ε)) + P(Xn ∈ RT (ε), X(T )
n 6∈ ∪Mi=1(fi)T,ε)+

P(Xn ∈ RT (ε), X(T )
n ∈ ∪Mi=1(fi)T,ε, Xn 6∈ ∪Mi=1(gi)3ε) =: P1 + P2 + P3.

We bound P3 as follows:

P3 ≤
∑
i∈Mε

P

(
sup
t≥T

|Xn(t)− fi(T )|
1 + t1+κ

> 3ε

)
≤MP

(
sup
t≥T

|Xn(t)|
1 + t1+κ

> ε

)
≤MP(Xn 6∈ RT (ε)).

Since
P1 ≤ P(Xn 6∈ RT (ε)),

we obtain
P ≤ P(X(T )

n 6∈ ∪Mi=1(fi)T,ε) + (M + 1)P(Xn 6∈ RT (ε)). (3.23)

The required inequality in (3.20) now follows from (3.21), (3.22) and (3.23).

4 Large Deviations for Random Walks

4.1 Large Deviation Principle for Random Walks on half-line.

Let ξ be a non-degenerate random variable satisfying the following condition
[C∞]. For any λ ∈ R Eeλξ <∞.
Denote by A(λ) := lnEeλξ the log moment generating function, and by Λ(α) the

Deviation function of ξ (Legendre-Fenchel transform of A )

Λ(α) := sup
λ
{λα−A(λ)}.

Denote S0 := 0, Sk := ξ1 + · · ·+ ξk for k ≥ 1, where {ξn} is a sequence of i.i.d. copies
of ξ. Consider a random piece-wise linear function sn = sn(t) ∈ C, going through the
nodes (

k

n
,
Sk
x

)
, k = 0, 1, · · · ,

where x = x(n) is a sequence of positive constants such that x ∼ n, n→∞.

Theorem 4.1. Assume [C∞]. Then the sequence of processes sn(t) satisfies LDP in
space (C, ρκ) with κ = 0 and rate function I,

I(f) :=

{ ∫∞
0

Λ(f ′(t))dt, f(0) = 0, f is absolutely continuous,
+∞, otherwise.

Proof. Without loss of generality we can take Eξ = 0. This is because the Deviation
function for ξ(0) := ξ−a is given by Λ(0)(α) = Λ(α+a). (superscript (0) denotes quantities

for the centered random variable). Therefore the rate function for s(0)
n , is given by

I(0)(f) = I(f + ea), where ea = ea(t) := at; t ≥ 0. Clearly, sn = s
(0)
n + ea, P(sn ∈ B) =

P(s
(0)
n ∈ B − ea), where B − ea := {f − ea : f ∈ B}. It is obvious that [B − ea] =

[B]− ea, (B − ea) = (B)− ea, implying I(0)([B − ea]) = I([B]), I(0)((B − ea)) = I((B)).

Hence LDP for s(0)
n with rate function I(0) implies LDP for sn with rate function I.

The rest of the proof consists in checking Conditions I− III. Condition I follows from
the LDP for sn in C[0, 1] (Theorem 9 of [5] or [4], Section 6.2).

Proof of II. By [C∞], with Eξ = 0 it follows that there exists a non-decreasing
continuous function h(t); t ≥ 0, such that for some δ > 0, h(t) = δt, if 0 ≤ t ≤ 1,
limt→∞ h(t) =∞, and that for all α ∈ R the following inequality holds

Λ(α) ≥ h(|α|)|α|. (4.1)
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Indeed, for α→ 0 (see e.g. [5], p.21) Λ(α) ∼ α2

2σ2 ; and for any λ > 0, α > 0

Λ(α) ≥ λα−A(λ), Λ(−α) ≥ λα−A(−λ).

Therefore lim
|α|→∞

Λ(α)
|α| ≥ λ, so that lim

|α|→∞

Λ(α)
|α| =∞, and (4.1) follows. Denote by

fT (t) := t
f(T )

T
, t ∈ [0, T ].

The function fT “straightens" function f on [0, T ]:

IT0 (f) ≥ IT0 (fT ) =

∫ T

0

Λ

(
f(T )

T

)
dt = TΛ

(
f(T )

T

)
.

Therefore by (4.1) for f ∈ Br

r ≥ TΛ

(
f(T )

T

)
≥ T |f(T )|

T
h

(
|f(T )|
T

)
,

so that
|f(T )|
T

≤ r

Th
(
|f(T )|
T

) . (4.2)

Let c :=
√

r
δ , and T be such that c√

T
≤ 1. Assume that |f(T )|

T > c√
T
. Then it follows from

(4.2)
|f(T )|
T

≤ r

Th( c√
T

)
=

r

Tδ c√
T

=
c√
T
,

which is a contradiction. Thus for T ≥ c2 = r
δ it holds

|f(T )| ≤
√
r

δ

√
T .

Clearly, Br = B+
r . Therefore we have proved

sup
f∈B+

r

sup
t≥T

|f(t)|
1 + t

≤
√
r

δ

√
T

1 + T
≤
√
r

δ

1√
T
.

Condition II now follows.
Check now condition III. Let Tn := max{ kn ≤ T : k = 1, 2, · · · }, to have

P

(
sup
t≥T

|sn(t)|
1 + t

> ε

)
≤ P

(
sup
t≥Tn

|sn(t)|
1 + t

> ε

)
≤ P

(
sup
t≥Tn

|sn(t)− sn(Tn)|
1 + t

> ε/2

)
+ P

(
sup
t≥Tn

|sn(Tn)|
1 + t

> ε/2

)
= P

(
sup
u≥0

|sn(u)|
1 + Tn + u

> ε/2

)
+ P

(
sup
t≥Tn

|sn(Tn)|
1 + Tn

> ε/2

)
≤ P

(
sup
k≥1

|sn( kn )|
T + k

n

> ε/2

)
+ P

(
|sn(Tn)|
Tn

> ε/2

)
=: P1(n) + P2(n).

To bound P1(n) use the exponential Chebyshev’s (Chernoff’s) inequality

P1(n) ≤
∑
k≥1

P

(
|Sk|

x(T + k
n )

> ε/2

)

≤
∑
k≥1

P

(
Sk

x(T + k
n )

> ε/2

)
+
∑
k≥1

P

(
Sk

x(T + k
n )

< −ε/2

)
≤

∑
k≥1

e−kΛ(R) +
∑
k≥1

e−kΛ(−R),
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where R := x
k (T + k

n ). Since for all n and T large enough

R ≥ ε/4, kR ≥ Tε/4 + kε/4,

we have due to (4.1) for ε/4 ∈ (0, 1)

kΛ(±R) ≥ kRh(R) ≥ (Tε/4 + kε/4)δε/4 = T
δε2

16
+ k

δε2

16
.

Therefore
P1(n) ≤ 2e−Tδ1

∑
k≥1

e−kδ1 = C1e
−Tδ1 ,

where δ1 := δε2

16 , C1 := 2 e−δ1

1−e−s1 . Similarly we obtain the bound P2(n) ≤ C2e
−Tδ2 for

some δ2 > 0, C2 <∞. Condition III follows.

4.2 Moderate Deviation Principle for Random Walks on half-line.

Let sn = sn(·) ∈ C be defined as in previous section, and let Eξ = 0. Assume Cramer’s
condition

[C0]. For some δ > 0 Eeδ|ξ| <∞.
Let a sequence x = x(n), used in the construction of sn, satisfy as n→∞

x√
n
→∞, x

n
→ 0.

Theorem 4.2. Let Eξ = 0, Eξ2 =: σ2, and condition [C0] holds. Then the sequence of

processes sn(t) satisfies LDP with speed x2

n in space (C, ρκ) with κ = 0, and rate function
I0

I0(f) :=

{
1

2σ2

∫∞
0

(f ′(t))2dt, if f(0) = 0, f is absolutely continuous
∞ otherwise,

i.e. for any measurable set B ⊂ C

lim
n→∞

n

x2
lnP(sn ∈ B) ≤ −I0([B]), lim

n→∞

n

x2
lnP(sn ∈ B) ≥ −I0((B)).

The proof is similar to that of Theorem 4.1 with replacing n by x2

n .
Condition I is verified with help of [17] (Theorem 1) or [6] (Theorem 2.2). Condition II

is obvious. Only Condition III requires clarification, which is done by using the following
form of Kolmogorov’s inequality ([1], p. 295, lemma 11.2.1): for any x ≥ 0, y ≥ 0, n ≥ 1

P( max
1≤m≤n

|Sm| ≥ x+ y) ≤ P(|Sn| ≥ x)

min
1≤m≤n

P(|Sm| ≤ y)
. (4.3)

It is clear that

P

(
sup
t≥T

|sn(t)|
1 + t

≥ ε
)
≤

∑
K≥T

P

(
sup

K≤t≤K+1
|sn(t)| ≥ Kε

)
≤

∑
K≥T

P( sup
K≤t≤K+1

|sn(t)− sn(K)| ≥ Kε/2) +
∑
K≥T

P(|sn(K)| ≥ Kε/2)

≤
∑
K≥T

P1(K,n) +
∑
K≥T

P2(K,n), (4.4)

where

P1(K,n) := P( sup
0≤t≤1

|sn(t)| ≥ Kε/2), and P2(K,n) := P(|sn(K)| ≥ Kε/2).
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We bound P2(K,n) using exponential Chebyshev’s (Chernoff) inequality:

P2(K,n) = P

(
|SnK |
nK

≥ xε

2n

)
≤ e−nKΛ( xε2n ) + e−nKΛ(− xε2n ).

It follows by (4.1) that ∑
K≥T

P2(K,n) ≤ 2
e−

x2

n Tδ1

1− e− x
2

n δ1
, (4.5)

as for n large enough xε
2n ≤ 1, and nKΛ

(
± xε

2n

)
≥ x2

n Kδ1, with δ1 := δε2

4 .

By (4.3)

P1(K,n) = P

(
max

1≤m≤n

|Sm|
xK

≥ ε/4 + ε/4

)
≤

P
(
|Sn|
xK ≥ ε/4

)
min1≤m≤nP

(
|Sm|
xK < ε/4

) .
Since

min
1≤m≤n

P

(
|Sm|
xK

< ε/4

)
≥ min

1≤m≤n
P

(
|Sm|√
m

<
xT√
n
ε/4

)
→ 1

as n→∞, for n large enough

P1(K,n) ≤ 2P

(
|Sn|
xK

≥ ε/4
)
≤ 2e−nΛ( xKn ε/4) + 2e−nΛ(− xKn ε/4).

It now follows by (4.1) ∑
K≥T

P1(K,n) ≤ 4
e−

x2

n Tδ1

1− e− x
2

n δ1
. (4.6)

The desired inequality in III follows from (4.5), (4.6) and (4.4): for T ≥ N
δ1

lim
n→∞

n

x2
lnP

(
sup
t≥T

|sn(t)|
1 + t

≥ ε
)
≤ −N.
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